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Summary
The tumor suppressors Lats1 and Lats2 are mediators of the Hippo pathway that regulates tissue growth and proliferation. Their N-terminal
non-kinase regions are distinct except for Lats conserved domains 1 and 2 (LCD1 and LCD2), which may be important for Lats1/2-specific

functions. Lats1 knockout mice were generated by disrupting the N-terminal region containing LCD1 (Lats1DN/DN). Some Lats1DN/DN mice
were born safely and grew normally. However, mouse embryonic fibroblasts (MEFs) from Lats1DN/DN mice displayed mitotic defects,
centrosomal overduplication, chromosomal misalignment, multipolar spindle formation, chromosomal bridging and cytokinesis failure.

They also showed anchorage-independent growth and continued cell cycles and cell growth, bypassing cell-cell contact inhibition similar to
tumor cells. Lats1DN/DN MEFs produced tumors in nude mice after subcutaneous injection, although the tumor growth rate was much slower
than that of ordinary cancer cells. Yap, a key transcriptional coactivator of the Hippo pathway, was overexpressed and stably retained in

Lats1DN/DN MEFs in a cell density independent manner, and Lats2 mRNA expression was downregulated. In conclusion, N-terminally
truncated Lats1 induced Lats2 downregulation and Yap protein accumulation, leading to chromosomal instability and tumorigenesis.

Key words: Lats1, Hippo, Lats2, YAP, Chromosome instability

Introduction
Aberrant cell growth and chromosomal instability (CIN), two

major hallmarks of human malignant cancer cells (Hanahan and

Weinberg, 2011; Gordon et al., 2012), are caused by malfunctions

of the machineries that regulate various cell growth control

signaling pathways, cell cycle, and cell death. These machineries

and their related molecules may be potent and promising cancer

therapy targets.

The Hippo pathway, a novel tumor suppressor signaling

pathway that regulates cell growth, organ size, and stem cell self-

renewal, is conserved in fruit flies and higher eukaryotes (Pan,

2010; Zhao et al., 2011). The core pathway in mammalian cells

consists of the Ste20-like Ser/Thr kinases, Mst1/2 (mammalian

sterile 20-like kinase 1 and 2, as Hippo homologues), the Dbf2-

related Ser/Thr kinases, Lats1/2 (large tumor suppressor 1 and 2,

as Warts homologues), their adaptor proteins, hWW45 (as a

Salvador homologue) and Mob1 (Mps one-binder 1, as a Mats

homologue), and the transcriptional coactivators Yap/Taz (yes-

associated protein and transcriptional coactivator with PDZ-

binding motif, as Yorkie homologues).

When the Hippo pathway is activated in response to upstream

signals (e.g. cell-cell contact), Mst1/2 kinases phosphorylate and

activate Lats1/2 kinases, which phosphorylate Yap/Taz and

prevent their nuclear translocation to promote transcription of

cell-proliferative and anti-apoptotic genes. The Lats-mediated

negative regulation of Taz is mediated through a similar

mechanism (Liu et al., 2010). When the Hippo pathway

signaling is turned off, the inhibitory phosphorylation of Yap/

Taz is cancelled. These proteins enter the nucleus, where they

associate with and activate transcription factors, such as those of

the Tead (TEA domain transcription factor, as Scalloped

homologue) family, thereby inducing the expression of cell-

proliferative and anti-apoptotic genes (Zhao et al., 2008).

The Hippo core pathway is tightly regulated by various

upstream factors, including Fat1/4, Merlin/Nf2, Kibra, Tao-1/

TAOK, Willin/FRMD6 and Rassf, and some direct modulators

of Lats1/2, including Ajuba, Itch and Angiomotin/Amot (Zhao

et al., 2011; Boggiano and Fehon, 2012). Downregulation of

Hippo pathway components such as Fat1/4, Merlin/Nf2, Kibra,

Mst1/2 and Lats1/2, and overexpression of Yap/Taz occur in

various human tumor cells because of epigenetic silencing or

chromosome rearrangement; thus, this pathway probably has a

functionally important role in human tumor suppression in

breast, prostate, liver, and other organs (Pan, 2010). However,

the detailed mechanisms of this pathway are not fully

understood.
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Lats1/2 kinases play pivotal roles in growth control through
the Hippo pathway and in chromosomal stability through cell

cycle checkpoint machinery (Visser and Yang, 2010). Lats1 or
Lats2 overexpression induces cell cycle arrest, including G1/S
and G2/M arrest, and apoptosis in human cancer cell lines (Yang
et al., 2001; Xia et al., 2002; Kamikubo et al., 2003; Li et al.,

2003; Ke et al., 2004). In particular, nuclear Lats2 directly binds
to and inhibits Mdm2, an E3 ubiquitin ligase, in response to
mitotic damage (e.g. treatment with spindle poisons), which in

turn stabilizes p53 protein to prevent the accumulation of
malignant cells with chromosomal instability (Aylon et al.,
2006). Lats2 phosphorylates ASPP1 (apoptosis-stimulating

protein of p53-1) in response to oncogenic stress, thereby
triggering apoptosis through the p53-mediated induction of
proapoptotic genes (Aylon et al., 2010). Interestingly, Lats1
also binds to and sequesters Mdm2, leading to p53 stabilization

and apoptosis; however, unlike Lats2, Lats1 achieves these
effects by mediating the Mst2-Rassf1A pathway (Matallanas
et al., 2011).

Lats2 normally localizes to the centrosome, cytoplasm, and
nucleus and regulates centrosomal integrity (Toji et al., 2004;
Abe et al., 2006). Indeed, Lats22/2 knockout mouse embryonic

fibroblasts (MEFs) reportedly exhibit centrosomal fragmentation
[amplification of pericentriolar material (PCM) but not
centrioles], abnormal mitotic spindle formation, chromosomal
missegregation, and cytokinesis failure, leading to chromosomal

instability (McPherson et al., 2004; Yabuta et al., 2007).
Although Lats1 also localizes to the centrosome (Nishiyama
et al., 1999), the kinase activity of overexpressed Lats1 or Lats2

does not appear to affect centrosomal duplication in human
osteosarcoma U2OS cells, although enforced expression of Ndr1,
a Lats1/2-related kinase, enhances centrosomal overduplication

in a kinase activity-dependent manner (Hergovich et al., 2007).
However, it remains unclear whether Lats1 helps to suppress
centrosomal overduplication or fragmentation, because the

centrosomal integrity in Lats1-deficient MEFs and -knockdown
cell lines has not been reported. Furthermore, both Lats1/2
dynamically localize to chromosomes and the mitotic apparatus,
including the central spindle, and regulate proper chromosome

segregation, probably through the spindle assembly checkpoint,
during mitotic progression and cytokinesis (Hirota et al., 2000;
Iida et al., 2004; Yabuta et al., 2011). These studies suggest that

Lats1/2 coordinate to prevent chromosomal instability by
regulating the cell cycle and checkpoint machinery.

Mammalian and fruit fly homologues of Lats/Warts proteins

possess a long, stretched N-terminal region located ,700 amino
acids (aa) upstream of the conserved kinase domain (Visser and
Yang, 2010). Because yeast homologues (budding yeast Dbf2/20
and fission yeast Sid2) do not possess this region, the N-terminal

regions of Lats kinases may play an important role in tumor
development and control of organ size. In fact, the N-terminal
regions of Lats1/2 physically interact with various cell cycle

regulators (Cdc2, Zyxin and LIMK1 for Lats1; Ajuba and
Aurora-A for Lats2) and Hippo pathway regulators (Mob1, Yap,
Taz and Kibra for Lats1/2). We, and others, showed that the N-

terminal regions are phosphorylated by several kinases, including
Cdc2/cyclin B (S613 of Lats1), NUAK1 (S464 of Lats1), PKCd
(S464 of Lats1), Aurora-A (S83 and S380 of Lats2) and Chk1/2

(S408 of Lats2), whereas the C-terminus is phosphorylated by
Mst1/2 (S909 and T1079 of Lats1; S872 and T1041 of Lats2).
These findings indicate that the N-terminal regions of Lats1/2

contribute to the physiological regulation of these proteins,
including subcellular localization, protein stability, or enzymatic

activity (Morisaki et al., 2002; Chan et al., 2005; Takahashi et al.,
2006; Humbert et al., 2010; Okada et al., 2011; Yabuta et al.,
2011).

The C-terminal regions of Lats1 and Lats2, including the
kinase domain, are highly conserved (85% and 80% sequence
identity in human and mouse, respectively). Their N-terminal

halves share low similarity, except for two Lats conserved
domains, LCD1 and LCD2 (Yabuta et al., 2000; Li et al., 2003).
LCD1s [human Lats1, 12–167 amino acids (aa); Lats2, 1–160 aa]

of Lats1/2 contain a UBA (ubiquitin-associated) domain, but
LCD2s (Lats1, 458–523 aa; Lats2, 403–463 aa) do not. Deletion
in either LCD1 or LCD2 of human Lats2 inhibits NIH3T3/v-ras

cell growth and suppresses soft-agar colony formation, although

Lats1 was not examined (Li et al., 2003). Thus, although the
biological functions of LCDs are incompletely understood, the N-
terminal regions of Lats1/2 appear to be functionally important

for tumor suppression and kinase domain activity.

We generated knockout mice (Lats1DN/DN) by disrupting exon
2 of the Lats1 gene encoding the N-terminal region containing

LCD1, but not LCD2. The goal was to investigate the
physiological impact of the N-terminal region (especially
LCD1) of Lats1 on cell growth, tumorigenicity, chromosome

instability (e.g. centrosomal integrity), and Hippo pathway
signaling. Although some Lats1DN/DN mice were safely born,
the birth rate was very low and did not show Mendelian

distribution. Lats1DN/DN MEFs expressing N-terminally truncated
Lats1 protein exhibited drastic mitotic defects, including
centrosomal overduplication, chromosomal missegregation, and
cytokinesis failure. Lats1DN/DN MEFs showed abnormal cell

growth, anchorage-independent growth, and Yap protein
accumulation through downregulation of Lats2 expression in a
cell density independent manner. These findings suggest that the

N-terminal region of Lats1 is required for chromosomal stability
and suppression of tumorigenicity through the regulation of Lats2
expression.

Results
Generation of knockout mice expressing N-terminally
truncated Lats1 protein

St. John et al. previously reported a Lats1 knockout mouse remaining

exons encoding the 756-aa N-terminal region of mouse Lats1
(supplementary material Fig. S1A, top; St John et al., 1999). To
investigate the physiological function of the N-terminal region

(especially LCD1) of Lats1, we disrupted exon 2 (E2) of the mouse
Lats1 gene encoding the N-terminal region (1–117 aa), which
contains LCD1 but not LCD2, replacing it with the neomycin-
resistant cassette, PGK-neo (supplementary material Fig. S1A,

bottom). Three independent 129/S2SvPas-derived mouse embryonic
stem (ES) cell clones showed disruption of the N-terminus of Lats1

(hereafter referred to as Lats1-DN), which was confirmed by

genomic PCR using a specific primer pair (primers A and B) and
Southern blot analysis using probe A (supplementary material Fig.
S1B,C, clone #1B, 4A and 13B). Chimeric mice derived from these

correctly targeted ES clones transmitted the germ-line mutation to
their offspring. Homozygous C57BL/6 mice (Lats1DN/DN) were
obtained by intercrossing the heterozygous offspring, but the birth

rate was very low (Lats1+/+:Lats1+/DN:Lats1DN/DN535:44:13) and
non-Mendelian. Mouse genotypes were confirmed by Southern blot
analysis with probe A (supplementary material Fig. S1D) and by

Lats1 N-terminus regulates Yap 509
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genomic PCR with primers A-C (supplementary material Fig.

S1E). Notably, Lats1DN/DN mice exhibited growth retardation and

low body weight until 4 weeks after birth, but not thereafter

(supplementary material Fig. S1F,G). These phenotypes are

similar to those of C-terminally truncated Lats1 mice (St John

et al., 1999). However, unlike St John’s Lats1 knockout mice,

Lats1DN/DN mice did not develop tumors, such as soft-tissue

sarcoma or ovarian stromal cell carcinoma, during the feeding

period of about two years (data not shown). Thus, the loss of Lats1

activity might reduce tumor formation in Lats1DN/DN mice.

To elucidate mRNA expression of the Lats1-DN mutant in

Lats1DN/DN mice, we designed seven primer pairs for RT-PCR

(Fig. 1A). Pairs F1-R1, F2-R8, F3-R8, F4-R8, F5-R8, F6-R8 and

F7-R7 were targeted to regions encoding the start-methionine

(first Met1) in E2 of mouse Lats1, the sixth internal Met118 in

exon 3 (E3), the seventh internal Met141 in E3, the eighth internal

Met151 in E3, the ninth internal Met163 in E3, the boundaries

between E3 and exon 4 (E4), and part of E4, respectively. RT-

PCR analyses using MEFs from Lats1+/+ and Lats1DN/DN

revealed that Lats1 mRNA in Lats1DN/DN was transcribed from

the region including the sixth internal Met118 in E3, because

Lats1 mRNA in Lats1DN/DN was expressed in all regions except

those encoding the first Met1 in E2 (Fig. 1B).

Western blot analysis of MEF extracts using an anti-Lats1

antibody showed that smaller bands from the truncated Lats1

protein were additionally detected in Lats1+/DN and Lats1DN/DN,

but not Lats1+/+ MEFs (Fig. 1C). This finding suggests that

Lats1DN/DN MEFs express N-terminally truncated, but not full-

length, Lats1 protein, because the Lats1 antibody (clone #C66B5)

recognizes amino acids surrounding Gly180 in human and mouse

Lats1 (Fig. 1A). The Lats1-DN protein comprised ,1002–

1042 aa. Thus, the sixth Met in E3 was likely used to generate

the 1012-aa Lats1-DN protein in Lats1DN/DN MEFs. Moreover,

we examined whether the Lats1-DN protein was expressed in

embryos and/or adult mice of Lats1+/DN and Lats1DN/DN. Lats1-

DN protein was expressed not only in MEFs but also in embryos

at embryonic days 12.5 (E12.5) and 16.5 (E16.5), and in some

adult mouse organs such as the liver, spleen and stomach

(Fig. 1D,E).

Lats1DN/DN MEFs exhibit abnormal cell growth and
anchorage-independent growth

LCD1 and LCD2 of Lats2 and its kinase activity are required for

the inhibition of NIH3T3/v-ras cell growth and soft-agar colony

formation (Li et al., 2003). However, the impact of the LCD

regions of Lats1 on growth inhibition remains elusive. We

Fig. 1. Expression of N-terminally truncated Lats1 in Lats1DN/DN

mice and MEFs. (A) Schematic representation of exons 2-4 of wild-

type mouse Lats1. Boxes and kinked lines indicate exons and introns,

respectively. Black boxes indicate coding exons. Arrows indicate

primers for RT-PCR. The amino acid sequence surrounding Gly180 of

mouse and human Lats1 is a putative epitope of anti-Lats1 monoclonal

antibody (C66B5). (B) Expression of Lats1 mRNA in Lats1+/+ and

Lats1DN/DN MEFs was analyzed by RT-PCR with the indicated seven

sets of primer pairs. M, size marker. (C) Western blot analysis using

cell lysates from Lats1+/+, Lats1+/DN and Lats1DN/DN MEFs. Full-length

(black arrow) and truncated (DN, white arrow) Lats1 proteins were

recognized by an anti-Lats1 monoclonal antibody (C66B5). GAPDH

was analyzed as the loading control. The size of the Lats1-DN protein

was ,1002–1042 aa. Mr(K), relative molecular mass (kDa).

(D) Western blot analysis using homogenized lysates from Lats1+/+,

Lats1+/DN and Lats1DN/DN mouse embryos at E12.5 and E16.5. The full-

length and DN forms of Lats1 are indicated by black and white

arrowheads, respectively. a-tubulin was used as a loading control.

Asterisk indicates nonspecific bands. (E) Western blot analysis using

homogenized lysates from the indicated tissues of Lats1+/+, Lats1+/DN

and Lats1DN/DN adult mice. MEFs (top panel) are shown as a size

control. The full-length and DN forms of Lats1 are indicated by black

and white arrows, respectively. a-tubulin was used as a loading control.

Journal of Cell Science 126 (2)510
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examined the cell growth rate of Lats1DN/DN MEFs expressing the

Lats1-DN protein with truncated LCD1. Lats1DN/DN MEFs did

not exhibit a significant increase in growth rate (1.18 times), but

Lats1DN/DN MEFs continued to grow, escaping from contact

inhibition 5 days after the confluent stage (Fig. 2A,B, upper

panels). By Day 12, Lats1DN/DN MEFs piled up (the increase in

total cell number after 12 days was 2.2-fold) and formed foci that

resembled cancer cells (Fig. 2B, lower panels), because their

growth was not blocked by contact inhibition. Compared to

Lats1+/+ MEFs, more Lats1DN/DN MEFs were collected by

microcentrifugation 8 days after contact inhibition (Fig. 2C).

Consistent with these data, nuclear Orc2 (origin recognition

complex 2; a DNA replication and cell growth marker) showed

nuclear accumulation in Lats1DN/DN and Lats1+/+ MEFs during

cell growth (low cell density; supplementary material Fig. S3B,

second panel) and Lats1DN/DN MEFs under conditions of high cell

density (Fig. 6A, third panel from bottom), whereas it did not

show nuclear accumulation in Lats1+/+ MEFs during growth

arrest (high cell density; Fig. 6A), suggesting that DNA

replication was upregulated in Lats1DN/DN MEFs even under

conditions of high cell density.

The anchorage-dependent growth effect was then examined in

Lats1DN/DN MEFs in a soft-agar colony formation assay. Lats1DN/DN

MEFs were horizontally dispersed and continued to grow with

migration in soft agar, which prevented typical colony formation,

whereas Lats1+/+ MEFs did not grow or form colonies (Fig. 2D).

This result is similar to that seen for tetraploid-derived epithelial

cells with chromosomal abnormalities (Fujiwara et al., 2005).

We also investigated the abnormal growth of Lats1DN/DN MEFs

using other 3D cell culture systems, such as NanoCulture Plates

(NCPs) and 3D collagen gels (Mizushima et al., 2009). NCP is a

synthetic resin film-bottom plate with a microscale structure that

disturbs cell attachment to the matrix. When cultured on NCPs,

Lats1DN/DN MEFs showed abnormally accelerated growth and

spheroid formation, whereas Lats1+/+ MEFs hardly grew (Fig. 2E).

After incubation for 14 days, the number of living Lats1DN/DN

MEFs in spheroids was three times greater than the number of

Lats1+/+ MEFs (Fig. 2F). Lats1DN/DN MEFs showed abnormally

Fig. 2. Lats1DN/DN MEFs show anchorage-independent

growth. (A) Cell growth curves of immortalized Lats1+/+

(open diamonds) and Lats1DN/DN (closed triangles) MEFs.

Lats1+/+ MEFs were confluent at 5 days after plating (dashed

line). Means and s.d. were derived from three individual

experiments. (B) Morphology of Lats1+/+ and Lats1DN/DN

MEFs on days 5 and 12. (C) Representative pictures of Lats1+/+

and Lats1DN/DN cell pellets (arrows) in centrifugation tubes. Cells

were cultured for 8 days under contact inhibition and then

scraped. Pellets were derived from two individual experiments

(#1 and #2). (D) Soft-agar assay. The indicated MEFs were

cultured in 0.33% top agar for 36 days. (E) 3D cell culture using

NanoCulture Plates. Lats1+/+ and Lats1DN/DN MEFs were plated

at 16104 cells and cultured on the plates for 14 days. Scale bars:

100 mm. (F,G) Number of Lats1+/+ (gray bars) and Lats1DN/DN

(black bars) MEFs growing on NanoCulture Plates (F) and in

3D-collagen gels (G). Means and s.d. were derived from three

individual experiments. (H) Isolation of Lats1DN/DN MEF clones

stably expressing full-length wild-type Lats1 (Lats1-WT),

kinase- Lats1 (Lats1-KD) or vector alone. Cell lysates were

prepared from two independent clones and analyzed by western

blotting with the indicated antibodies. Exogenous full-length and

endogenous DN forms of Lats1 are indicated by black and white

arrows, respectively. (I) Growth curves of Lats1DN/DN MEF

clones stably expressing full-length Lats1-WT (black lines and

open squares), Lats1-KD (black lines and filled squares) and

vector alone (gray dashed lines and triangles). Intact Lats1+/+

(gray lines and open circles) and parental Lats1DN/DN (gray lines

and filled circles) MEF are controls. Means and s.d. were derived

from three individual experiments.

Lats1 N-terminus regulates Yap 511
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accelerated growth on 3D collagen gels (Fig. 2G). These results

suggest that Lats1DN/DN MEFs exhibit abnormal cell growth and

anchorage-independent growth, similar to tumor cells.

To confirm that the abnormal growth of Lats1DN/DN MEFs was

due to the N-terminal deletion of Lats1, we isolated Lats1DN/DN

MEF clones stably expressing full-length wild-type Lats1 (Lats1-

WT), kinase-dead Lats1 (Lats1-KD), and vector alone (Fig. 2H).

The abnormal growth of Lats1DN/DN MEFs was rescued by re-

expression of full-length Lats1-WT, but not Lats1-KD or vector

alone (Fig. 2I). This result indicates that the N-terminus and

kinase activity of Lats1 are required for suppression of the

abnormal growth of Lats1DN/DN MEFs. Lats1-KD overexpression

likely dominantly inhibits Lats kinases and promotes cell growth

as well as Lats2-KD (Nishioka et al., 2009). Thus, the abnormal

growth of Lats1DN/DN MEFs is believed to be caused by the N-

terminal deletion of Lats1, because the kinase activity of Lats1

was unaffected by its N-terminal deletion (see Fig. 6D).

N-terminally truncated Lats1 promotes tumorigenesis

To examine whether the abnormal growth of Lats1DN/DN MEFs

contributed to tumorigenesis, Lats1DN/DN MEFs were injected

subcutaneously into nude mice. As expected, all four of the

Lats1DN/DN MEFs-injected mice produced tumors, whereas a

Lats1+/+ MEFs-injected mouse did not (Fig. 3A). Interestingly, the

tumor size of Lats1DN/DN MEFs in nude mice increased very slowly

(about two times slower than ordinary epithelial cancer cells)

(Fig. 3B). Similar results were obtained in three independent

experiments. These results suggest that the N-terminus of Lats1 is

required for the suppression of tumorigenesis.

Lats1DN/DN MEFs exhibit centrosomal overduplication

Centrosomal aberrations and genomic instability are frequently

observed in association with tumor progression in many human

cancers (reviewed in Nigg, 2002; Nigg and Raff, 2009). Because

Lats1 and Lats2 coordinately regulate mitosis by localizing to the

centrosome and mitotic apparatus (Hirota et al., 2000; Toji et al.,

2004; Yabuta et al., 2007; Yabuta et al., 2011), we investigated

the impact of the N-terminal deletion of Lats1 on the centrosomal

integrity by indirect immunofluorescence analysis using an

antibody against c-tubulin, a component of the PCM. The

number of Lats1DN/DN cells with more than two c-tubulin foci per

single nucleus increased during interphase, whereas Lats1+/+

MEFs normally possessed one or two c-tubulin foci (Fig. 4A).

Cells with more than two centrosomes were four times more

abundant in Lats1DN/DN than in Lats1+/+ MEFs (Fig. 4B).

The above finding raises the possibility that the N-terminal

deletion of Lats1 leads to centrosomal overduplication (i.e. PCM

is amplified with the centriole) or fragmentation (i.e. PCM, but

not the centriole, is amplified). Immunofluorescence staining of

centrin, a core component of the centriole, showed that all of the

amplified c-tubulin foci colocalized with centrin signals in a

single Lats1DN/DN cell (Fig. 4C). Because c-tubulin colocalized

with centrin in 84% of all Lats1DN/DN MEFs, the phenomenon

was due to centrosomal overduplication and not centrosomal

fragmentation (Fig. 4D). Interestingly, centrosomal

overduplication in Lats1DN/DN MEFs gradually diminished

during successive passages up to PDL (population doubling

level) 58, which indicates that centrosomal overduplication is

suppressed by long-term passage in Lats1DN/DN MEFs (Fig. 4E,

Fig. 3. Lats1DN/DN MEFs produce tumors when injected

subcutaneously into nude mice. (A) Photographs of

representative nude mice at 68 days after injection of Lats1+/+

or Lats1DN/DN MEFs. White arrowheads indicate tumors at the

injected site of 16106 cells in nude mice. (B) Tumor size was

measured at the indicated times. Means and s.d. were derived

from the tumor sizes of four individual mice injected with

Lats1DN/DN MEFs.

Journal of Cell Science 126 (2)512
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green bars). Although centrosomal fragmentation was induced in

Lats22/2 MEFs (Yabuta et al., 2007), a similar reduction was

also observed after long-term passage of Lats22/2 MEFs

(supplementary material Fig. S2). These results suggest that

Lats1 negatively regulates centrosomal reduplication through the

N-terminal region.

Lats1DN/DN MEFs exhibit chromosomal misalignment,

multipolar spindle formation, chromosomal bridging and

cytokinesis failure

Centrosomal aberration can promote abnormal spindle formation

and chromosomal missegregation during mitosis (Nigg and Raff,

2009). We detected chromosomal misalignment (Fig. 5A),

multipolar spindle formation (Fig. 5B), and chromosomal

bridging (Fig. 5D) in Lats1DN/DN MEFs. By contrast, condensed

chromosomes were properly aligned in the equatorial plane at

metaphase in Lats1+/+ MEFs and separated equally to the

opposite poles at anaphase (Fig. 5A,D, upper panels). Misaligned

chromosomes (46.3%) and multipolar spindles (23.1%) were

conspicuous in metaphase in Lats1DN/DN MEFs (Fig. 5C).

Chromosomal bridging was frequently (58.4%) observed at

anaphase in Lats1DN/DN MEFs (Fig. 5E). We also observed

cytokinesis failure in Lats1DN/DN MEFs, which led to a 4.3-fold

increased number of multinucleated cells (Fig. 5F,G). These

results suggest that loss of the N-terminal region of Lats1 causes

chromosomal instability.

Yap protein stability is increased in Lats1DN/DN MEFs in a

cell density independent manner

Once the Hippo pathway is activated in a cell density-dependent

manner, activated Lats1/2 kinases phosphorylate at least five

functional sites of the Yap transcriptional coactivator, thereby

negatively regulating its oncogenic activity to promote cell

proliferation even under conditions of cell contact inhibition

(Zhao et al., 2007). The Lats1/2-mediated inhibitory mechanisms

of the Yap protein are well-characterized, and involve two of the

five phosphorylation sites on human Yap. In particular, (1)

phosphorylation of Ser-127 (S127, corresponding to S112 of

mouse Yap) leads to cytoplasmic retention of Yap through 14-3-3

binding (Zhao et al., 2007), and (2) phosphorylation of Ser-381

(S381, corresponding to S366 of mouse Yap) leads to

phosphodegron-mediated degradation of Yap (Zhao et al., 2010).

Because Lats1DN/DN MEFs exhibited continued cell

proliferation, even under conditions of high cell density and

anchorage-independent growth, we investigated the impact of N-

terminally truncated Lats1 on the phosphorylation and protein

Fig. 4. Lats1DN/DN MEFs exhibit centrosomal

overduplication. (A) Lats1+/+ and Lats1DN/DN MEFs were

immunostained with anti-c-tubulin (as a PCM marker, red)

and anti-a-tubulin (as a microtubule marker, green)

antibodies and counterstained with Hoechst 33258 for DNA

(blue). Arrowheads indicate increased c-tubulin foci.

(B) Frequencies of Lats1+/+ (orange bar) and Lats1DN/DN

(red bar) MEFs with more than two centrosomes and a

nucleus. Data represent the means and s.d. of three

independent experiments. (C) Lats1DN/DN MEFs were fixed

with cold-methanol/acetone (1:1), immunostained with anti-

centrin (as a centriole marker, red) and anti-c-tubulin

(green) antibodies and counterstained with Hoechst 33258

(DNA, blue). (D) Frequency of Lats1DN/DN MEFs with more

than two c-tubulin spots that colocalized (red bar) or not

(green bar) with centrin. Data represent the averages of three

independent experiments. (E) Percentage of cells with one,

two or more than two centrosomes (c-tubulin foci) at the

indicated passages for Lats1+/+ (PDL36, 46 and 52) and

Lats1DN/DN (PDL32, 46 and 58) MEFs. Cells were

immunostained with anti-c-tubulin antibody as described

above. Data represent the mean and s.d. of three independent

experiments. In each experiment, .100 cells were counted.

Scale bars: 10 mm.
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stability of Yap. Lats1+/+ and Lats1DN/DN MEFs were cultured

under high cell density conditions, treated with cycloheximide

(CHX) for a specified period, and fractionated into nuclear and

cytoplasmic extracts. Consistent with previous reports using

NIH3T3 cells and normal MEFs (Zhao et al., 2010), western blot

analysis with a commercially available anti-Yap antibody [Yap

(CST)] showed that most Yap resided in the cytoplasmic fraction.

The Yap protein level was markedly decreased in Lats1+/+ MEFs

when de novo protein synthesis was blocked by CHX treatment

(Fig. 6A, top panel, lanes 1–5). Unlike wild-type MEFs, Yap

protein levels remained stable in the cytoplasm of Lats1DN/DN

MEFs, even under high cell density conditions (Fig. 6A, top

panel, lanes 11–15). Some protein was also detected in the

nuclear fraction of Lats1DN/DN MEFs (Fig. 6A, top panel, lanes

16–20).

We confirmed these results using a novel anti-Yap polyclonal

antibody [Yap (GS)] against an antigen different from that

recognized by the available Yap (CST) antibody (see Materials

and Methods). Both Yap antibodies recognized mouse and human

Yap (supplementary material Fig. S3A). Similar results were

obtained with the new Yap (GS) antibody (Fig. 6A, second panel).

Notably, Yap proteins in Lats1+/+ MEFs were unstable even at low

cell density (although their instability was not as remarkable as that

at high cell density), whereas Yap in Lats1DN/DN MEFs was

relatively stable under the same condition (supplementary material

Fig. S3B, top panel). These results suggest that, in Lats1DN/DN

MEFs, the stability of Yap proteins is independent of cell density,

and that most Yap protein is retained in the cytoplasm, with the

exception of a small fraction that is localized to the nucleus.

The above findings suggest that the Yap-S112 phosphorylation

(pS112) driving cytoplasmic retention may be defective in

Lats1DN/DN MEFs. However, the phosphorylation level of

cytoplasmic Yap-S112 was not significantly reduced in

Lats1DN/DN MEFs compared with Lats1+/+ MEFs, which was

Fig. 5. Lats1DN/DN MEFs exhibit chromosomal misalignment,

multipolar spindle formation, chromosome bridging and

cytokinesis failure. (A,B,D,F) Immunofluorescent images show

typical cells with misaligned chromosomes (A, arrowheads),

multipolar spindles (B, chromosome bridging; D, arrowheads),

and multinuclei (F, arrowheads) in Lats1DN/DN MEFs. Lats1+/+

and Lats1DN/DN MEFs were stained with anti-c-tubulin (red) and

anti-a-tubulin antibodies (green) and counterstained with

Hoechst for DNA (white or blue). Scale bars: 10 mm.

(C) Number of cells at metaphase with normal (yellow bars),

multipolar spindle (green bars) and misaligned chromosomes

(red bars) in Lats1+/+ and Lats1DN/DN MEFs. Data represent the

average of three independent experiments. In each experiment,

.40 metaphase cells were counted. (E) Number of cells at

anaphase with normal (yellow bars) and bridging chromosomes

(red bars) in Lats1+/+ and Lats1DN/DN MEFs. Data represent the

average of three independent experiments. In each experiment,

.20 anaphase cells were counted. (G) Number of cells at

interphase with bi- and multinuclei in Lats1+/+ (yellow bar) and

Lats1DN/DN (red bar) MEFs. Data represent the average of three

independent experiments. In each experiment, .200 cells were

counted. Error bars represent s.d.

Journal of Cell Science 126 (2)514



J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e

correlated with the total Yap protein level (Fig. 6A, third panel).

Interestingly, phosphorylation of Yap at S112 in Lats22/2 MEFs

was almost similar to that in Lats2+/+ MEFs (supplementary

material Fig. S3C,D). The phosphorylation of S112 was

decreased in Lats22/2 MEFs in which Lats1 expression was

knocked-down by siRNA (supplementary material Fig. S3E).

These results suggest that Lats1 and Lats2 can compensate for

each other in respect to Yap-S112 phosphorylation, and that only

by decreasing levels of both Lats proteins does pS112 decrease.

Since Lats1-DN protein may possess sufficient kinase activity to

phosphorylate Yap at S112 (supplementary material Fig. S3F), it

is likely that the level of pS112 is similar in both Lats1+/+ and

Lats1DN/DN MEFs. In Lats1DN/DN MEFs, the stabilized Yap

protein might be too abundant to be caught-up by S112-

phosphorylation, which allows a portion of Yap to maintain its

nuclear localization.

To confirm the contribution of the Lats1 N-terminus to Yap

destabilization, we examined whether abnormal stabilization of

Yap in Lats1DN/DN MEFs was rescued by re-expressing full-

length Lats1. As expected, destabilization of the Yap protein was

completely rescued by re-expressing full-length Lats1, but not

vector alone, under high cell density conditions (Fig. 6B,C).

Because phosphorylation of Yap at S366 is essential for Yap

destabilization, we examined whether Lats1-DN protein

potentially possesses sufficient kinase activity to phosphorylate

Yap on S366. In vitro kinase assays were performed using Lats1-

immunoprecipitates (wild-type, kinase-dead and DN) as kinases

and two kinds of mutated Yap as substrates. All of the Lats-

mediated serine-phosphorylation sites of Yap (including S366)

were substituted with alanine (4A/S366A), and four of the serine

sites of Yap (excluding S366) were substituted with alanine (4A).

Unexpectedly, immunoprecipitates of Lats1-DN incorporated

radioactive phosphate into Yap-4A as well as into Yap-WT,

but not into Yap-4A/S366A, and the incorporation was more

efficient than that observed in Lats1-WT immunoprecipitates

(Fig. 6D, top panel; supplementary material Fig. S3G).

Consistent with this, Lats1-DN associated with Yap, and Mob1

interacted more efficiently with Lats1-DN than with Lats1-WT,

Fig. 6. Yap protein is stabilized in Lats1DN/DN

MEFs. (A) Lats1+/+ and Lats1DN/DN MEFs were

cultured under high density (7 days after fully

confluent), treated with cycloheximide (CHX) for

the indicated period and separated into cytoplasmic

(Cyt.) and nuclear (Nuc.) fractions. Fractionated

lysates were analyzed by western blotting with the

indicated antibodies. Lamin A/C and Orc2 are

nuclear and DNA replication markers, respectively.

a-tubulin was used as a cytoplasmic marker.

(B) Stability of Yap protein in Lats1DN/DN MEFs was

cancelled by adding back full-length Lats1.

Lats1DN/DN MEF clones stably expressing full-length

Lats1 wild-type (WT) or vector alone (pCX4bsr)

were cultured under high density (7 days after fully

confluent) and treated with CHX for the indicated

period. Fractionated cytoplasmic lysates were

analyzed by western blotting with the indicated

antibodies. Arrow indicates endogenous Yap.

(C) Ratio of each normalized Yap band intensity by

a-tubulin band intensity. Data were obtained from B

and measured with ImageJ software. (D) N-

terminally truncated Lats1 potentially

phosphorylates Yap at Ser366 as well as wild-type

Lats1. In vitro Lats1-kinase assay with 6Myc-Lats1

immunoprecipitates (as kinases) and GST-Yap

proteins (as substrates) in the presence of

[c-32P]ATP (top panel). Reaction products were

analyzed with the indicated antibodies. Lats1-DN

(6M) is an N-terminally truncated Lats1 protein,

which is translated from its own sixth internal

methionine. Arrows, black arrowhead and white

arrowhead show Yap, full-length Lats1 and Lats1-

DN proteins, respectively.
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suggesting that the kinase activity of Lats1-DN is stronger than

that of Lats1-WT (supplementary material Fig. S4A,B).

Together, these results suggest that Lats1-DN prevents Yap
protein destabilization, although Lats1-DN is potentially able to
interact with and phosphorylate Yap, thereby accelerating

abnormal cell growth.

Lats1 N-terminal region and kinase activity are required for
Lats2 expression in MEFs

Lats1DN/DN MEFs expressing Lats1-DN exhibited Yap protein
stability. Because S112 and S366 of Yap are co-operatively
phosphorylated by both Lats1/2 kinases, and Lats1-DN maintains

its kinase activity, Lats2 kinase signaling may be responsible for
Yap dysregulation in Lats1DN/DN MEFs. To address this
hypothesis, we compared the expression profiles of genes,

including Yap-targets and Lats2, in Lats1+/+ and Lats1DN/DN

MEFs under high and low cell density conditions using cDNA
microarrays. Scatter plots showed that the mRNA level of Ctgf

(cysteine-rich protein connective tissue growth factor), a Yap-

target gene, was strongly repressed in Lats1+/+ MEFs after
changing to high cell density conditions (the ratio of high/low
cell density showed a 260.9-fold change, P50.0346), whereas

the Ctgf level in Lats1DN/DN MEFs was only slightly repressed
under high cell density conditions (the ratio of high/low cell
density showed a 23.3-fold change, P50.0139) (supplementary

material Fig. S5A,B, black spots). These results indicate that the
Yap activity inhibition at high cell density was prevented in
Lats1DN/DN MEFs. Moreover, the aberrant transcription of Ctgf

was apparently reduced by the expression of wt Lats1 under both
low and high cell density conditions (supplementary material Fig.
S5C,D), suggesting that expression of wt Lats1 rescued the
aberrant transcription of Ctgf in Lats1DN/DN MEFs. However, the

mRNA levels of other well-known Yap-induced genes, Birc2 and
Birc5/survivin, were not affected by differences in cell density or
cell type (e.g. Lats1+/+ or Lats1DN/DN MEFs) (supplementary

material Fig. S5E,F), which is consistent with a previous report
that Birc2 and Birc5 are not downregulated in the Yap2/2 mouse
embryo (Ota and Sasaki, 2008). Microarray analysis showed that

the Lats2 expression level was dramatically suppressed in
Lats1DN/DN MEFs under both high and low cell density
conditions compared with that in Lats1+/+ MEFs (Fig. 7A,B).
RT-PCR and western blot analyses revealed that Lats2 expression

was suppressed at the mRNA and protein levels in Lats1DN/DN

MEFs, whereas their expression levels were normal in Lats1+/+

MEFs (Fig. 7C,D). However, epigenetic analyses demonstrated

that the contribution of epigenetic regulation to Lats2 expression
in Lats1DN/DN MEFs was minimal (supplementary material Fig.
S6A–D).

Exogenous re-expression of full-length Lats1-WT suppressed

Yap dysregulation under high cell density conditions and blocked
aberrant overgrowth of Lats1DN/DN MEFs. If the downregulation
of Lats2 expression is responsible for these abnormal phenotypes

of Lats1DN/DN MEFs, then the re-expression of full-length Lats1-
WT may restore the Lats2 expression level in Lats1DN/DN MEFs
to the standard level. We examined the Lats2 mRNA

transcription level in Lats1DN/DN MEFs expressing full-length
Lats1-WT by RT-PCR analysis. The Lats2 expression level in
Lats1DN/DN MEFs was completely rescued by re-expression of

full-length Lats1-WT, but not Lats1-KD or vector alone
(Fig. 7E,F). Western blot analysis revealed similar findings for
the rescue of the Lats2 protein level (Fig. 7G; supplementary

material; Fig. S4C). These results indicate that the N-terminus

and kinase activity of Lats1 are required for transcription of
Lats2, and suggest that Lats1 stringently regulates Lats2
expression. On the other hand, the expression of Lats1 was not

defective in Lats22/2 MEFs, suggesting that Lats1 expression is
not regulated by Lats2 (supplementary material Fig. S5G). Proper
expression levels of both Lats kinases may cooperatively regulate
the precise subcellar localization and stability of Yap protein in

MEFs. Consistent with our hypothesis, the deficiency of Lats2
kinase may be responsible for the abnormal stabilization of Yap
in Lats1DN/DN MEFs.

Finally, we addressed why Lats1DN/DN mice (,14% of all born
mice) often (but not always) successfully completed fetal
development without early embryonic lethality and showed
healthy growth, albeit with mild retardation until 4 weeks after

birth, despite the abnormal cell growth and chromosomal
instability of cultured MEFs from these mice. We examined
the expression level of Lats2 protein in lysates from normally-

developed Lats1DN/DN embryos at E16.5. Surprisingly, Lats2
protein was expressed in Lats1DN/DN embryos at the same level as
that in Lats1+/+ and Lats1+/DN embryos (Fig. 7H), which

indicated that Lats2 expression was differentially regulated by
nonidentical mechanisms in embryos (and probably adult organs;
Fig. 7I) and cultured MEFs. Therefore, it is likely that the low

expression level of Lats2 through transcriptional dysregulation by
N-terminally truncated Lats1 was responsible for the aberrant cell
growth and chromosomal instability of Lats1DN/DN MEFs,
whereas the Lats2 levels of Lats1DN/DN embryos or organs were

virtually assured by the embryogenesis- or organ development-
specific mechanisms mediated by the Hippo pathway, such as a
linkage between regulation of cell polarity, cell adhesion, and cell

growth (Feigin et al., 2009).

Discussion
Lats1 and Lats2 kinases are pivotal effectors of the Hippo

pathway and proper mitotic progression, including mitotic exit
and cytokinesis (Bothos et al., 2005; Yabuta et al., 2007; Pan,
2010). Using knockout mice expressing N-terminally truncated

Lats1 protein (Lats1DN/DN), we demonstrated that the N-terminal
region (aa 1–117) of mouse Lats1 containing LCD1 was required
for destabilization of the Yap protein via transcriptional
regulation of Lats2 expression, in which anchorage-independent

cell growth and tumorigenesis in a xenograft model were
suppressed.

Our results allow us to propose a possible model for this

process (supplementary material Fig. S7). In wild-type MEFs
under Hippo pathway-activated conditions, Lats1 and Lats2
cooperatively phosphorylate both S127 and S381 (S112 and S366
in mouse, respectively) of almost all Yap protein without

leakage, which promotes its cytoplasmic retention through
14-3-3 protein binding and polyubiquitylation-dependent
degradation, prevents its nuclear accumulation, and represses

the transcription of proliferation-related genes (e.g. Ctgf). In
parallel, Lats1 might upregulate Lats2 transcription by activating
an uncharacterized transcription factor (X) through putative

association with the N-terminal domain (LCD1) of Lats1 and
Lats1-dependent phosphorylation(s) (P), thereby maintaining
sufficient levels of functional Lats2 protein. On the other hand,

N-terminally truncated Lats1 protein in Lats1DN/DN MEFs
phosphorylates Yap on both sites, but cannot upregulate Lats2

transcription owing to dissociation from the transcription factor
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(X). Because cellular Lats2 protein levels are drastically reduced,

it is impossible to maintain the inhibitory phosphorylation

of Yap. Consequently, unphosphorylated (activated) Yap

accumulates in the nucleus, where it promotes the transcription

of proliferation-related genes and the cell growth, even under

contact inhibition.

Our model reveals a linkage between Lats1 and Lats2 (at least

in MEFs), i.e. Lats1 regulates the expression of Lats2. Lats1

overexpression might upregulate Lats2 protein levels, thereby

having a synergetic effect on the negative regulation of Yap.

Zhang et al. found that YAP-induced epithelial-mesenchymal

transition (EMT) (including cell migration, soft-agar colony

formation, and upregulation of the mesenchymal markers N-

cadherin and fibronectin) in MCF10A breast cancer cells was

more effectively suppressed by the enforced overexpression of

Lats1 than by that of Lats2 alone, suggesting that Lats1 is the

primary kinase that downregulates YAP-induced EMT (Zhang

et al., 2008). However, because the phenotype of Lats1DN/DN

MEFs is similar, but not identical, to that of Lats22/2 MEFs,

Lats1 potentially possesses other individual functions that do not

involve Lats2.

Although two conserved N-terminal domains (LCD1 and

LCD2) of Lats2 reportedly play an important role in inhibiting

NIH3T3/v-ras cell growth and soft-agar colony formation (Li

et al., 2003), the molecular mechanism underlying this inhibition

remains to be characterized. We demonstrated that the N-

terminal region of Lats1, especially LCD1, was responsible for

Lats2 expression in MEFs. Because it is unlikely that Lats1

aggressively contributes to the epigenetic regulation of Lats2

expression (supplementary material Fig. S6), Lats1 might directly

phosphorylate and regulate transcription factor(s) or modulator(s)

through the binding of its LCD1. Lats kinases regulate some

transcription factors, including p53, Taz, AR (androgen receptor),

Snail1 and Yap (Powzaniuk et al., 2004; Lei et al., 2008; Aylon

et al., 2010; Zhang et al., 2011). A recent study shows that

ASPP1 promotes the nuclear translocation of Yap, which binds to

the LATS2 promoter and prevents p53-mediated LATS2

expression in the human cancer cell lines, U2OS and HCT116

Fig. 7. N-terminal region of Lats1 is required for

Lats2 expression in MEFs. (A,B) Scatter plots of

DNA microarray data. Samples were obtained from

Lats1+/+ (A) and Lats1DN/DN (B) MEFs cultured at

low (horizontal axis) or high density (vertical axis).

The mRNA level of Lats2 is shown by black spots.

Red circled dots are the signal from Lats2 showing a

negligible amount of expression. (C) Expression

level of Lats2 mRNA in Lats1+/+ and Lats1DN/DN

MEFs was analyzed by RT-PCR. The indicated

amounts of total RNA from each MEF were used as

templates. GAPDH is a loading control. M, size

marker. (D) Expression level of Lats2 protein in

Lats1+/+ or Lats1DN/DN MEFs was detected by

western blot analysis with the indicated antibodies. a-

tubulin as used as a loading control. Asterisk

indicates a nonspecific band. (E) Lats2 mRNA level

was rescued by re-expressing full-length Lats1 wild-

type (WT) in Lats1DN/DN MEFs. RT-PCR analysis

was performed as for C. Lats1+/+ MEFs re-expressing

vector alone (+ Vec.) were used as negative controls.

(F) Lats2 mRNA level was not rescued by re-

expressing full-length Lats1-KD in Lats1DN/DN

MEFs. RT-PCR analysis was performed as for E.

(G) Lats2 protein level was rescued by re-expressing

full-length Lats1-WT, but not Lats1-KD, in Lats1DN/

DN MEFs. Lats2 and Lats1 were detected by western

blot analysis with anti-Lats2 antibody (Bethyl). a-

tubulin was used as a loading control. Asterisks

indicate nonspecific bands. (H) Lats2 proteins were

equally expressed in Lats1+/+, Lats1+/DN and

Lats1DN/DN embryos at E16.5. Lats2 and Lats1 were

detected by western blot analysis with anti-Lats2

(Bethyl) and anti-Lats1 (CST, C66B5) antibodies,

respectively. a-tubulin was used as a loading control.

Asterisk indicate nonspecific bands. (I) Lats2 mRNA

expression in liver and stomach was similar in

Lats1+/+ and Lats1DN/DN mice. RT-PCR analysis was

performed as for C.
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(Vigneron and Vousden, 2011). However, we were unable to find

any putative p53-responsive elements in the mouse Lats2

promoter. Moreover, depletion of Yap by siRNA did not

restore Lats2 expression in Lats1DN/DN MEFs (supplementary

material Fig. S5H). Thus, even if the accumulated nuclear Yap

binds to the mouse Lats2 promoter and inhibits Lats2 expression

in MEFs (similar to human cancer cells) this activity would

probably involve a transcription factor other than p53.

Interestingly, the transcription factor FOXP3 binds to the

human LATS2 promoter and contributes to Yap phosphorylation

upon LATS2 expression in mammary epithelial cells, and LATS2

expression is defective in human breast and prostate cancers (Li

et al., 2011). However, if any transcription factors interact with

the LCD1 of Lats1 or Lats2, they have not yet been identified.

In aggressive human breast cancers, the promoter regions of

LATS1 and LATS2 are hypermethylated and their mRNA

expression levels are downregulated (Takahashi et al., 2005).

Because Lats1DN/DN MEFs can promote tumor progression in

nude mice, we examined whether viable Lats1DN/DN mice

develop spontaneous breast tumors. As expected, Lats1DN/DN

mice did not develop spontaneous breast tumors (supplementary

material Table S1). Moreover, Lats1DN/DN mice did not develop

tumors in other organs, such as liver and stomach (supplementary

material Fig. S1H; data not shown). Lats2 was highly expressed

in healthy developing embryos (Fig. 7H) and adult organs

(Fig. 7I) from Lats1DN/DN mice, but not in MEFs (Fig. 7D).

Consistent with the observation in clinical human breast cancers,

these results suggest that the downregulation of both Lats1 and

Lats2 is significantly associated with tumor progression.

We found significant differences in Lats2 expression levels

between embryos and Lats1DN/DN MEFs (Fig. 7). However, the

detailed mechanisms by which Lats1DN/DN embryos compensate

for insufficient Lats2 expression remain unknown. Cell type-

dependent variations of the Hippo pathway have been observed

between organs and cultured MEFs. For instance, Yap is

efficiently inhibited by Lats1/2-mediated phosphorylation in

MEFs, but is cooperatively inhibited by Lats1/2 and other

unknown kinase(s) in the mouse liver (Zhou et al., 2009).

Because the Hippo pathway regulates cell polarity, adhesion, and

growth, the mechanisms of Lats2 expression may show cell type-

dependent variation through the Hippo pathway.

Taken together, our results suggest that Lats1 coordinates

accurate cell growth control and chromosomal stability through

Lats2 expression and Yap stability in the Hippo pathway of MEFs.

Materials and Methods
Generation of the Lats1 targeted allele

Gene targeting (supplementary material Fig. S1) and genotyping were performed
as described previously (Yabuta et al., 2007).

Plasmids

Mouse kinase-dead Lats1 (MmLats1-KD; K733M), Lats2 (MmLats2-KD;
K655A), and the N-terminally truncated MmLats1-DN (6M, aa 118–1129) were
generated by a PCR-based method. These cDNAs were subcloned into the
pCX4bsr vector (Akagi et al., 2003). Mouse YAP and human YAP were subcloned
by PCR from cDNA libraries of mouse 10T1/2 cells and human uterine muscle,
respectively. Mouse full-length YAP mutants (3A, 4A, 4A/S366A, 4A* and 4A*/
S112A) were cloned into pGST6P.

Cell culture and transfection

Primary MEFs were obtained from mouse embryos at 12.5 days postcoitus and
transfections were performed as described previously (Yabuta et al., 2007). Stably
expressing clones were selected and maintained in the presence of 5 mg/ml of
blasticidin S (Invivogen, San Diego, CA) for 2 weeks.

RT-PCR analysis

Total RNA was extracted from MEFs with an RNeasy Mini kit according to the

manufacturer’s instructions (Qiagen, Hilden, Germany). The cDNAs were

synthesized from 3 mg (Fig. 1B; Fig. 7C,E,F,I; supplementary material Fig.

S5G) or 0.3 mg (supplementary material Fig. S6) of RNA using the High-

Capacity cDNA Archive Kit (Applied Biosystems, Foster City, CA). PCR was

performed as described previously (Yabuta et al., 2007). The primers used here are

shown in supplementary material Table S2.

Antibodies

Generation and purification of rabbit polyclonal antibody against the N-terminal

region (aa 91–104) of human Yap2 [anti-Yap (GS)] were supported by GenScript

Corporation (Piscataway, NJ).

Monoclonal (mAb) and polyclonal (pAb) antibodies against the following

proteins were used: from Sigma, centrin pAb, c-tubulin pAb/mAb, a-tubulin mAb,

and FLAG-tag pAb/mAb; from Cell Signaling (Beverly, MA), Lats1 rabbit mAb

(C66B5), YAP pAb, phospho-YAP (Ser127) pAb, and Lamin A/C mAb; from

Bethyl Laboratories (Montgomery, TX), Lats2 pAb; from MBL (Nagoya, Japan),
Myc-tag mAb (PL14) and pAb; from Research Diagnostics (Flanders, NJ),

GAPDH mAb. Anti-Lats2 (LA-2) pAb, anti-GST mAb (4D8), and anti-Orc2 pAb

were described previously (Yabuta et al., 2000; Yabuta et al., 2011).

Anchorage-independent growth assays

For the soft-agar colony formation assay, MEFs (16103 cells/dish) were cultured

in 4 ml of 0.33% top agar/MEF medium on 5 ml of 0.5% base agar/MEF medium

in 6-cm culture dishes. After 36 days, cells were observed under a microscope

(model IX71, Olympus). A 3D cell culture assay using collagen gels and

NanoCulture plates (Scivax) was performed as described (Mizushima et al., 2009).

Collected cells were counted in three independent experiments.

Tumorigenesis in nude mice

All animal experiments were performed with the approval of the Animal Experiments

Committee of Osaka University (permit number: BikenA-H19-36-0 and BikenA-

H19-37-0). BALB/c Slc-nu/nu female nude mice (4 weeks old; Japan SLC) were
injected subcutaneously with 16106 cells in 100 ml of MEF medium. Tumor growth

was monitored every 2 or 3 days, and tumor size was measured using a caliper square.

Kinase assay, western blotting and immunofluorescence staining

The in vitro Lats1-kinase assay, preparation of whole cell lysates, western blotting,

and indirect immunofluorescence staining were performed as described (Yabuta

et al., 2007; Yabuta et al., 2011). Nuclear-cytoplasmic fractionation of MEFs was

performed as described (Yabuta et al., 2000).

Microarray analysis

Total RNA was extracted from Lats1+/+ and Lats1DN/DN MEFs with an RNeasy Minikit

according to the manufacturer’s instructions (Qiagen). Dye-swapped microarray

analyses were performed as described (Ishii et al., 2005; Funato et al., 2010).

Statistical analysis

All data were expressed as the mean 6 s.d. P-values were calculated by t-tests.
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Fig. S1. Generation of Lats1ΔN/ΔN knockout mice. 
(A) Schematic representation of the Lats1 locus, targeting vector, and targeted locus (Lats1ΔN/ΔN). To disrupt the N-
terminal region of the Lats1 gene, the neomycin selection cassette was replaced by the first coding exon (E2) in the 
targeting vector and Lats1ΔN/ΔN. Black boxes indicate coding exons (E2–E8). Arrows indicate PCR primer positions. 
At the top is shown the targeting strategy used by St. John et al. (1999) for another Lats1 knockout mouse, in which 
the protein sequence corresponding to 756–1130 of human Lats1 was removed. WT, wild-type; KO, knockout. (B) 
PCR analysis of genomic DNA from ES clones. Mutated clones (1B, 4A and 13B) were identified by the amplified 
products (1.7 kb) with primers A and B (shown in A). M, size maker. (C) Southern blot analysis of genomic DNA 
from ES clones. Genomic DNA was digested with MfeI/MscI. The WT (12.3 kb) and mutated fragment (9.7 kb) were 
identified by hybridization with probe A (shown in A). D3 is a negative control. (D) Southern blot analysis of genomic 
DNA from tails of offspring obtained from heterozygote intercrosses. Genomic DNA was digested with MfeI/MscI and 
hybridized with probe A. Fragments corresponding to the WT (12.3 kb) and KO (9.7 kb) are indicated.  (E) Genomic 
PCR analysis of tails of offspring obtained from heterozygote intercrosses using a mixture of primers A, B, and C. 
Amplification products corresponding to the WT (1.9 kb) and KO (1.7 kb) alleles are indicated. (F) Representative 
picture of a Lats1ΔN/ΔN mouse (lower) with a Lats1+/+ mouse (upper). (G) Body weights of Lats1+/+ (white bars), 
Lats1+/ΔN (gray bars), and Lats1ΔN/ΔN (black bars) mice from 1 to 12 weeks after birth. Data represent the average 
body weight of four offspring with each genotype. Error bars represent the SD. *P < 0.001. (H) The liver of Lats1ΔN/ΔN 
mice is normal in size and shows no tumor formation. 



Fig. S2. Centrosomal fragmentation in Lats2 knockout MEFs is suppressed in later passages. 
(A, B) Immunofluorescence showing fragmented centrosomes in Lats2-/- MEFs during interphase. Cells were 
stained with anti-γ-tubulin (green) and anti-α-tubulin antibodies (red) and counterstained with Hoechst 33258 for 
DNA (blue). Arrows indicate fragmented centrosomes. Scale bars, 10 μm. (C–G) Percentage of cells with one, two, 
or more than two centrosomes in passages indicated (PDL7, 20, 30, 40, and 50) for MEFs of Lats2+/+ (gray bars) 
and Lats2-/- (black bars). Cells were immunostained with an anti-γ-tubulin antibody as described above. Data 
represent the average of three independent experiments. In each experiment, >200 cells were counted. Error bars 
represent the SD. 
 



Fig. S3. Protein stability of Yap at low cell density, S112-phosphorylation of Yap, and quality of antibody against Yap. 
(A) A novel anti-Yap polyclonal antibody (GS) recognizes both human and mouse Yap equally as well as a commercially 
available anti-Yap antibody. 293T cells were transfected with 6Myc-tagged human Yap (HsYap2), mouse Yap (MmYap1), and 
6Myc-vector alone. Transfected cells were Western blotted with anti-Yap (GS), commercially available anti-Yap (CST: Cell 
Signaling, #4912), and anti-Myc-tag antibodies. Mr(K), relative molecular mass (kDa). pAb and mAb indicate polyclonal and 
monoclonal antibodies, respectively. (B) Lats1+/+ and Lats1ΔN/ΔN MEFs were cultured under low cell density, treated with 
cycloheximide (CHX) for the indicated period, and separated into cytoplasmic (Cyt.) and nuclear (Nuc.) fractions. Fractionated 
lysates were analyzed by Western blot analysis with the indicated antibodies. Lamin A/C and Orc2 are nuclear and DNA 
replication markers, respectively. α-tubulin was used as a cytoplasmic marker. Mr(K), relative molecular mass (kDa). (C) 
Western blotting of the cell lysates from Lats2+/+ and Lats2-/- MEFs with anti-Lats2 (LA2) and α-tubulin antibodies. (D) Western 
blot analysis of cytoplasmic (C) and nuclear (N) extracts from Lats2+/+ and Lats2-/- MEFs with the pS112-Yap antibody. (E) 
Lats2-/- MEFs were transfected with the indicated siRNA duplex and Lipofectamine 2000 (Invitrogen). GL2 is a negative 
control. Western blot analysis of the lysates with the pS112-Yap antibody. (F) In vitro Lats1-kinase assay with 6Myc-Lats1 
immunoprecipitates (as kinases) and GST-Yap proteins (as substrates) in the presence of [γ-32P]ATP (top panel). All of the 
Lats-mediated serine-phosphorylation sites of Yap (including S112) were substituted with alanine (4A*/S112A), and four of the 
serine sites of Yap (excluding S112) were substituted with alanine (4A*). Simply Blue (Invitrogen) staining shows the loading 
control. (G) In vitro Lats1-kinase assay with 6Myc-Lats1 immunoprecipitates (as kinases) and two kinds of GST-Yap proteins 
(Yap-WT and Yap-3A; as substrates) in the presence of [γ-32P]ATP (top panel). Yap-3A: S46A, S94A, and S149A. 



Fig. S4. Quality of the antibody against Lats2 and interaction of Lats1-ΔN with Yap and Mob1.  
(A) Lats1-ΔN, as well as full length Lats1-WT, associates with Yap. 293T cells were cotransfected with 6Myc-Lats1 
(full length or ΔN) and 3Flag-Yap. The lysate was subjected to immunoprecipitation (IP) with anti-Flag antibody, 
followed by Western blot analysis with anti-Myc and anti-Flag antibodies. Mr(K), relative molecular mass (kDa). (B) 
Mob1A interacts more efficiently with Lats1-ΔN than with Lats1-WT. 293T cells were cotransfected with 6Myc-
Lats1 (full length or ΔN) and 3Flag-Mob1A. The lysate was subjected to immunoprecipitation (IP) with anti-Myc 
antibody, followed by Western blotting with anti-Myc and anti-Flag antibodies. (C) A commercially available anti-
Lats2 antibody cross-reacts with human and mouse Lats1. 293T cells were transfected with 6Myc-tagged human 
(Hs) and mouse (Mm) Lats1 and Lats2, followed by Western blot analysis with a commercially available anti-Lats2 
antibody (Bethyl Laboratories, # A300-479A) and an anti-Myc antibody. 



Fig. S5. Expression of two YAP-target genes, Ctgf and Birc2/5, in Lats1+/+ and Lats1ΔN/ΔN MEFs.  
Scatter plots of DNA microarray data. RNA samples were obtained from Lats1+/+ (A, E) and Lats1ΔN/ΔN (B, 
F) MEFs that were cultured at low (horizontal axis) or high density (vertical axis). The mRNA levels of 
Ctgf (A, B) and Birc2/5 (E, F) are shown by black spots. (C, D) Total RNA was extracted from pCX4bsr-
vec/Lats1ΔN/ΔN and pCX4bsr-Lats1full/ Lats1ΔN/ΔN cells under conditions of low (C) or high (D) cell density. 
The cDNAs were synthesized from 3 μg of RNA. To examine the mRNA levels of Ctgf in these cells, real-
time PCR was performed on an Applied Biosystems 7900 HT FAST Real-Time PCR System using 20 ng 
cDNA and a master mix of SYBR Premix ExTaq II (Tli RNaseH Plus) (TaKaRa Bio, Japan). All 
quantifications were normalized by using the endogenous level of GAPDH. (G) Expression of Lats1 
mRNA in Lats2+/+ and Lats2-/- MEFs was confirmed by RT-PCR analysis. GAPDH was analyzed as a 
loading control. M, size marker. (H) Expression of Lats2 in Yap-depleted Lats1ΔN/ΔN MEFs was examined 
by Western blot analysis with Lats2 antibody (black arrow). GL2 is a negative control. * indicates a 
nonspecific band. 



Fig. S6. DNA or histone methylation and histone deacetylation show little effect on the downregulation of 
Lats2 mRNA in Lats1ΔN/ΔN MEFs.  
(A–D) Expression of Lats2 mRNA was confirmed by RT-PCR analysis. GAPDH was analyzed as a loading 
control. (A) Lats2 transcription level is slightly restored in Lats1ΔN/ΔN MEFs by treatment with a high 
concentration of a DNA methylation inhibitor, 5-Aza-2'-deoxycytidine (5-Aza-2'-dC). Lats1+/+ and Lats1ΔN/ΔN 
MEFs were treated with 5-Aza-2'-dC, at the indicated concentration for 24 h. (B) No recovery of Lats2 
transcription is observed in TSA (trichostatin A, a histone deacetylation inhibitor)-treated Lats1ΔN/ΔN MEFs. MEFs 
were treated with TSA at the indicated concentration for 24 hours. (C) The Lats2 transcription level is slightly 
restored in Lats1ΔN/ΔN MEFs by treatment with both 5-aza-2'-dC and TSA. MEFs were sequentially treated with 
(+) or without (-) 5-Aza-2'-dC (10 μM) for 24 hours and TSA (100 nM) for 24 hours. (D) The Lats2 transcription 
level is slightly restored in Lats1ΔN/ΔN MEFs by treatment with a high concentration of a histone methylation 
inhibitor, BIX-01294 (BIX). MEFs were treated with BIX at the indicated concentration for 24 hours. * indicates 
unexpected bands. M, size marker. 



Fig. S7. Speculative model for the role of Lats1 N-terminal region and kinase activity in the Hippo pathway. 
See Discussion section for details. 

Figure S7. Yabuta & Mukai et al.  



Table S1. No spontaneous breast tumors in Lats1ΔN/ΔN mice 

 

Incidence of spontaneous breast tumors in Lats1 mice 

Genotype Age (weeks) Mouse number Tumor incidence (%) 

Lats1+/+ 0-24 16 0/16  (0%) 

 25-48 14 0/14  (0%) 

 49-72 114 0/114 (0%) 

Lats1+/ΔN 0-24 19 0/19  (0%) 

 25-48 45 0/45  (0%) 

 49-72 80 0/80 (0%) 

Lats1ΔN /ΔN 0-24 2 0/2 (0%) 

 25-48 6 0/6 (0%) 

 49-72 36 0/36 (0%) 



Supplementary Table S2. Yabuta & Mukai et al. 
 
Primer name DNA sequences 
(A)  
Primer A (Lats1 KO con3) 5’-aaactggcaccaggttaatggg-3’ 
Primer B (KS conB) 5’-aggtcgacggtatcgataagc-3’ 
Primer C (Lats1-check2) 5’-ggtacagacagatgaggcctaagac-3’ 
Probe A-Fw  5’-cgcggatccaggttgagtgtaatctagcaagg-3’ 
Probe A-Rv  5’-ggaattctggaaatgtaagcttatcttctagg-3’ 
(B)  
F1 5’-gtgaaaagccagaagggtac-3’ 
R1 5’-cggcttctatgcttctgttattgg-3’ 
F2  5’-gacatggttattcaagctcttc-3’ 
F3  5’-ccaataacagaagcatagaagccg-3’ 
F4 5’-gagttaccaagaccctcgtcg-3’ 
F5 5’-ctgccaggcctattaatgcc-3’ 
F6 5’-gaaaccaggaaatgtgcaac-3’ 
F7  5’-caagcaatggacagagagtg-3’ 
R7  5’-ggtgcacgataaaatcagac-3’ 
R8  5’-ggggagattcgggagattac-3’ 
Lats2-exon5-F 5’-agcaggagcagatgaggaag-3’ 
Lats2-exon5-R 5’-agtgcagaggccaaaatctg-3’ 
mGAPDH-F 5’-tcaccatcttccaggagcgag-3’ 
mGAPDH-R 5’-gctgtagccgtattcattgtc-3’ 
MmCtgf-qRT-Fw 5’-gggcctcttctgcgatttc-3’ 
MmCtgf-qRT-Rv 5’-atccaggcaagtgcattggta-3’ 
(C)  
AscI-HsYap2-s  5’-tatggcgcgcctatggatcccgggcagcagccg-3’ 
HsYap2-PflMI-as 5’-tatgaattcccaagaggtggtcttgttcttatgg-3’ 
HsYap2-PflMI-s 5’-tatggcgcgccccacctcttggctagacccaaggc-3’ 
HsYap2-NotI-as 5’-tatggtaccgcggccgcctataaccatgtaagaaagctttc-3’ 
AscI-MmYap1-s 5’- tatggcgcgcctatggagcccgcgcaacagccg-3’ 
MmYap1-EcoRI-as 5’-tatgaattcatcagcgtctggggcaccg-3’ 
MmYap1-EcoRI-s 5’-tatggcgcgccgaattctgcctcaggacctcttcc-3’ 
MmYap1-NotI-as 5’-tatggtaccgcggccgcctataaccacgtgagaaagctttc-3’ 
BamAsc-mLats1-M1 5’-tatggatccggcgcgcctgccaccatgaagaggggtgaaaagccag-3’ 
BamAsc-mLats1-M6 5’-tatggatccggcgcgcctgccaccatggttattcaagctcttcag-3’ 
mLats1-705-NotXho 5’-tatctcgagcggccgcgttcactctctgtccattgcttg-3’ 
mLats1-K733M-F 5’-gtatgcaacaatgactcttcgaaag-3’ 
mLats1-K733M-R 5’-ctttcgaagagtcattgttgcatac-3’ 
mLats2-K655A-s 5’-acgccatggcgactctcaggaag-3’ 
mLats2-K655A-as 5’-tgagagtcgccatggcgtacag-3’ 
Long arm-AscI (lats1.ko.L1-2)  5’-tgctctagaggcgcgccaacccaggacttttcatatactaagc-3’ 
Long arm-XbaI 
(lats1.ko.L2-2-AS)  

5’-tgctctagatagagttattaatgaagcagttcg-3’ 

Short arm-BamHI 
(lats1.ko.S3-2) 

5’-cgcggatcctttcttttgagaggacttacctg-3’ 

Short arm-NotI 
(lats1.ko.S4.7-2-AS) 

5’-tatggatccgcggccgctgagtcctctggaagagtagc-3’ 

(D)  
GL2 5’-cguacgcggaauacuucgadTdT-3’ 

5’-ucgaaguauuccgcguacgdTdT-3’ 
siMmLats1-1414 5’-gcaagucacucugcuaauudTdT-3’ 

5’-aauuagcagagugacuugcdTdT-3’ 
siMmYap1-909 5’-gcgguugaaacaacaggaauudTdT-3’ 

5’-aauuccuguuguuucaaccgcdTdT-3’ 
 
Table S2 Sequences of oligonucleotide primers used in genotyping (A), RT-PCR (B), 
and plasmid construction (C), and sequences of siRNA duplexes (D). 
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