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Abstract

Background: IZUMO1 is the only sperm protein which is proven to be essential for sperm-egg fusion. However, the IZUMO1
is a structurally simple protein with single Ig domain and seems not to include either a ‘‘fusogenic peptide’’ or a fusion
machinery domain. This led us to assume the existence of an IZUMO1-interacting protein(s) which makes a functional fusion
machine interacting with IZUMO1.

Methodology/Principal Findings: We produced a transgenic mouse line which expresses His-tagged IZUMO1 in the
Izumo12/2 genetic background. After solubilization of sperm membranes, we purified His-tagged IZUMO1 using anti-His
affinity chromatography and found a protein that interacts with IZUMO1. After being separated on SDS-PAGE gel, the
IZUMO1-interacting protein was subjected to LC-MS/MS analysis and from the partial fragments, we identified the protein
as ACE3. We raised the antibody against ACE3 and found that ACE3 is localized on the acrosomal cap area as in the case of
IZUMO1. However, ACE3 disappeared from sperm after acrosome reaction while IZUMO1 remained on sperm. In order to
investigate the role of ACE3 in vivo, we generated Ace3-deficient mice by homologous recombination and examined the
fertilizing ability of the males. Unexpectedly, the male mice showed no defect in fertilizing ability in in vivo or in an in vitro
fertilization system.

Conclusions/Significance: We identified an IZUMO1-interacting protein in sperm, which we identified as testis specific ACE
homologue ACE3. We produced an Ace3 disrupted mouse line, and found the localization of IZUMO1 spread in a little wider
area on sperm, but the elimination of ACE3 did not result in a loss of sperm fertilizing ability, differing from the case of ACE
disruption.
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Introduction

In mammals, the sperm deposited in the female reproductive

tract start their journey to the ovulated eggs, residing in the

ampullar portion of the oviduct. Sperm must undergo a

physiological change called ‘‘capacitation’’ and a morphological

change called ‘‘acrosome reaction’’. During acrosome reaction,

sperm shed the plasma membrane in their acrosomal cap area and

newly expose the inner- acrosomal membrane. It is known that

only acrosome reacted sperm have an ability to fuse with eggs.

Despite the biological importance of sperm-egg fusion in

fertilization, the molecular mechanism of this step remains

virtually unknown.

Recently, experiments using gene-manipulated animals un-

veiled two proteins as essential factors in sperm-egg fusion in

mouse. First, a tetraspanin family CD9 was serendipitously and

simultaneously found to be essential for eggs to fuse with sperm in

research from 3 independent laboratories [1,2,3]. Then we

identified a novel sperm-specific protein, IZUMO1, as an essen-

tial factor for sperm to fuse with eggs [4]. IZUMO1 is a

transmembrane protein with an extracellular region, a single

transmembrane region and a short cytoplasmic tail. A computer

program domain search revealed no structural motifs in IZUMO1

except one immunoglobulin (Ig)-like domain in the extracellular

region. Ellerman et al. reported that there is a dimerization site

upstream of an Ig-like domain by western blot analysis under

mildly denaturing conditions using different recombinant IZU-

MO1constructs [5]. However, they failed to demonstrate bind-

ing of a recombinant IZUMO1 peptides with the eggs. Since

IZUMO1 has a simple structure compared to other fusion proteins

[6] with no ‘‘fusogenic’’ peptide or ‘‘SNARE’’ like structure in it,

we entertained the possibility that IZUMO1 is one of the

components that form a fusion competent structure on sperm.

Based on these observations, we tried to find an IZUMO1-

interacting protein. To make the purification of the interacting

protein easier, we produced His-tagged IZUMO1 expressing trans-

genic mouse sperm. This mouse line was crossed to Izumo12/2

genetic background, giving rise to a line which produces no

wild-type IZUMO1 but only His-tagged IZUMO1. This strategy

was combined with a purification method using anti-His magnetic

beads and the putative IZUMO1-interacting protein was sub-

jected to LC-MS/MS analysis. Interestingly, the protein was

PLoS ONE | www.plosone.org 1 April 2010 | Volume 5 | Issue 4 | e10301



identified as an angiotensin converting enzyme (ACE) homologue

ACE3. ACE3 has been reported as a novel homologue of testis-

specific ACE (tACE), but only at mRNA level [7]. We demonstrated

the exclusive expression of ACE3 protein in testis and sperm, and

we named it testis-specific ACE3 (tACE3). Although the function of

tACE3 is totally unknown, its homologue somatic ACE (sACE) is a

protein well-known in the regulation of blood pressure. However,

the function of ACE is not limited to cardiovascular homeostasis,

but includes a totally a different function which allows sperm to

migrate into the oviduct and bind to the zona pellucida that

surrounds the egg [8]. Therefore, when ACE was disrupted by

homologous recombination, the male mice became infertile. After

transgenic rescue experiments, it was clarified that tACE (tran-

scribed from testis specific promoter residing 12th intron of sACE)

rather than sACE, actually functions in male fertility [9]. In this

context, it is very interesting that the purified putative IZUMO1-

interacting protein was the tACE3. In the present paper, in order to

elucidate the physiological role of tACE3, we produced an Ace3

disrupted mouse line and analyzed the fertilizing ability of these

mice both in vitro and in vivo.

Results

Identification of IZUMO1-interacting protein
To identify IZUMO1-interacting proteins, we used acrosome

intact sperm lysate prepared from a transgenic mouse line which

had IZUMO1-His in the Izumo12/2 background [10]. These

transgenic lines were fertile, suggesting that the His-tagged

IZUMO1 protein is functionally normal. This His-tagged

IZUMO1 protein was purified by the Miltenyi MACS beads

system using anti-His microbeads. The proteins eluted with boiled

SDS-PAGE sample buffer were separated by SDS-PAGE. Proteins

from wild-type epididymal sperm were used as negative control.

Two specific bands were detected by silver staining (Figure 1A).

The bands from a purification using ,100 mg of protein (10 male

mice) were silver stained, excised, trypsinized, and subjected to

LC/MS/MS analysis. The peptides from the 56-kDa band were

identified as IZUMO1 protein. We also confirmed IZUMO1

protein by western blot analysis with IZUMO1 antibody

(Figure 1A, lower panel). From the 9 peptides in the 80-kDa

band, a functionally unknown protein (ACE3: angiotensin I

converting enzyme 3) was identified (Figure 1B).

Characterization of ACE3
Ace3 mRNA has been described by Rella et al. [7]. They

reported that the Ace3 gene is located on chromosome 11

downstream of the Ace gene, and that Ace3 mRNA is expressed

in heart and testis. In mouse, the predicted protein sequence for

ACE3 has two hydrophobic regions at the C-terminus but no N-

terminal signal peptide [7]. After RT-PCR using total RNA

prepared from testis, we examined Ace3 mRNA alignment by

Figure 1. Identification and characterization of the IZUMO1-interacting protein. (A) The purified IZUMO1 protein complex was separated
by SDS-PAGE and stained with silver. Two specific 80-kDa and 56-kDa bands appeared corresponding to tACE3 and IZUMO1, respectively. Proteins
from wild-type sperm were used as controls. (B) Amino-acid sequences of mouse tACE3. The peptide sequences obtained by LC-MS/MS are shown in
red. The putative signal peptide and transmembrane region are shown in green and orange, respectively. Antigen for producing tACE3-specific
antibody is shown in blue. (C) Reverse transcription-PCR of Ace3 (upper panel) and Gapdh (control; lower panel) from 10 mouse cDNAs. (D) tACE3 was
detected exclusively in testis and sperm by western blotting. All solubilized proteins were loaded at 30 mg on each lane and detected by 1 mg/ml
anti-tACE3 antibody. (E) Interaction between IZUMO1 and tACE3. Total sperm proteins (,100 mg) prepared from wild-type male mice were
immunoprecipitated with anti-IZUMO1 or anti-tACE3 antibodies and blotted with anti-tACE3 or anti-IZUMO1 antibodies, respectively. (F) tACE3
protein exists in Izumo1-deficient sperm.
doi:10.1371/journal.pone.0010301.g001

ACE3-Disrupted Mouse
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sequencing. As a result, we found a new transcript of Ace3 mRNA

(NCBI accession number: AB531024) consisted with 2214

nucleotides which encode a predicted protein of 737 amino acids

(Figure 1B). The predicted amino acid sequence from the

alternative form of Ace3 transcript has a signal peptide

(Figure 1B, shown in green) differing from the originally reported

ACE3. The original form of Ace3 matched completely to the

amino acid sequence from the 31st Asp to the C-terminal amino-

acid in the alternative ACE3 we cloned in this experiment. Among

the ten adult tissues examined, in our hands, only testis had

detectable expression of Ace3 mRNA (Figure 1C). To check the

existence of ACE3 protein, we developed a polyclonal antibody

against amino acids 724–737 (Figure 1B, shown in blue) of the

ACE3 protein. The ACE3 antibody specifically recognized a

single major 80 kDa-band exclusively in testis and sperm

(Figure 1D). We refer to the ACE3 as tACE3 (testis-specific

ACE3) hereafter. Anti-tACE3 antibody immunoprecipitated

IZUMO1 from sperm protein, further confirming the interaction

of the two proteins (Figure 1E). We also examined if the disruption

of Izumo1 induced the aberrant expression of tACE3. However,

the tACE3 was detected in similar amounts on Izumo12/2 and

wild-type sperm (Figure 1F).

Subcellular localization of tACE3
We performed an immunofluorescent staining experiment to

analyze the subcellular localization of tACE3. The tACE3 in fresh

mouse sperm were brightly stained in the acrosomal cap area in

100% EtOH-fixed sperm similar to SP56 and ACROSIN [11,12]

(Figure 2). In order to detect the localization of tACE3 after

acrosome reaction, we incubated sperm in TYH medium for 2 h,

fixed, and incubated with antibodies. To differentiate the

acrosome intact and reacted sperm, we double stained the sperm

with anti-IZUMO1 antibody, because the anti-IZUMO1 antibody

stains acrosomal cap and the entire head regions in acrosome

intact and acrosome reacted sperm, respectively. The tACE3 was

detected only in the acrosomal cap area of acrosome intact sperm

co-localizing with IZUMO1, but disappeared from acrosome

reacted sperm. This indicates that tACE3 protein is released, along

with fused acrosomal vesicle membranes, from the sperm head

during spontaneous acrosome reaction (Figure 2). The localization

of tACE3 was examined in Izumo12/2 sperm, but the staining

pattern remained normal, resembling that of wild-type sperm

(Figure 2).

Generation of tAce3-deficient mice
To clarify the physiological role of tACE3 in vivo, we generated

Ace3-deficient mice by homologous recombination. Previous

reports showed that the mouse Ace3 gene contains 13 exons, and

is located 5.5 kb downstream of the ACE gene [7]. However, the

Ace3 gene consisted 14 exons (Figure 3A). Thus, the Ace3 must be

transcribed from an alternative promoter. The targeting vector

was designed to remove the 1st to the 9th exon of Ace3 (which

corresponds to the 1st to the 8th exon of previous Ace3) (Figure 3A)

and was electroporated into 129Sv ES cells after linearization.

Potentially targeted ES cell clones were separated by positive-

negative selection with G418 and acyclovir. ES clones that had

correctly targeted the Ace3 allele were screened by PCR on both

ends of the targeting vector (Figure 3B). After obtaining chimeric

mice that transferred mutant allele to the next generation, the

heterozygous mutant mice were established. When they were

crossed, the inheritance of the Ace3 disrupted allele yielded the

expected Mendelian ratios. The Ace32/2 mice exhibited normal

development and grew up as healthy adults. The disappearance of

tACE3 in Ace32/2 mice was confirmed by western blot analysis

(Figure 3C). To examine the effect of tACE3 disappearance on the

expression of IZUMO1 protein, we carried out western blot

analysis using epididymal sperm. The amounts of IZUMO1 were

not decreased in Ace32/2 sperm (Figure 3C).

Fertilizing ability of tAce3-deficient sperm
Ace32/2 mice were mated with mice in various combinations

but we could not detect any sign of infertility (Figure 4A). When

sperm were prepared from Ace32/2 male and observed, we found

no difference in their sperm number or the motility compared to

wild-type mice (data not shown). We then analyzed the fertilizing

ability of Ace32/2 sperm in the in vitro fertilization system, where in

some cases the defect can be detected [13]. However, the Ace32/2

sperm showed normal fertilizing ability relative to Ace3+/2 sperm

under the in in vitro fertilization systems using both cumulus-intact

and -free eggs (Figure 4B). The sperm-egg fusion assay using zona-

free eggs also indicated that Ace32/2 sperm possessed normal

fusion ability with eggs (Figure 4C). These results suggest that

tACE3 is not an essential element for fertilizing ability of sperm.

Effect of Ace3 disruption in localization of IZUMO1
Finally, we examined the effect of tACE3 disruption on the

localization of IZUMO1 antigen on sperm by indirect immunoflu-

orescent staining. In this experiment, we could detect a slightly

deformed localization of IZUMO1 in the acrosome cap region

before acrosome reaction. The localization of IZUMO1 in Ace32/2

Figure 2. Subcellular localization of tACE3 protein in mature
sperm. Incubated sperm (left) and Izumo1 knockout sperm (right) were
prepared from cauda epididymis. They were stained with 4 mg/ml anti-
tACE3 (red) and anti-IZUMO1 (green) antibodies. The anti-tACE3
antibody stained acrosome-intact sperm head, but not reacted to
acrosome-reacted sperm (asterisk).
doi:10.1371/journal.pone.0010301.g002

ACE3-Disrupted Mouse
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Figure 3. Targeted disruption of Ace3 gene. (A) Complete structures of the wild-type mouse Ace3 allele. Exons and introns are represented by
boxes and horizontal lines, respectively. For the targeted disruption of mouse Ace3 allele, the first 9 exons (closed boxes) were replaced by the
neomycin-resistant gene (Neor). A herpes simplex virus thymidine kinase gene (tk) was introduced into the targeting construct for negative control.
(B) Genotyping of tail tip DNA by PCR amplification with primers indicated in the figure. (C) Western blotting analysis of sperm lysates from wild-type,
Ace3+/2, Ace32/2, Ace+/2 and Ace2/2 mice.
doi:10.1371/journal.pone.0010301.g003

Figure 4. Fertility analysis of Ace32/2 mice. (A) Fecundity of Ace3+/2 and Ace32/2 males and Ace32/2 females. The numbers in parentheses
indicate the numbers of mating pairs. Values are presented as mean 6 standard error of mean (SEM). (B) in vitro fertilization of sperm from Ace3+/2

and Ace32/2 mice using cumulus-free and –intact eggs (n = 5). (C) Comparison of the fusing ability of Ace3+/2 and Ace32/2 sperm. Average numbers
of fused sperm observed 30 minutes after insemination (n = 5). Values are presented as mean 6 SEM.
doi:10.1371/journal.pone.0010301.g004

ACE3-Disrupted Mouse
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sperm appeared to be broader than that examined in wild-type

sperm (Figure 5A–B). The reason for this difference is not clear but

this slight variation was not critical for sperm to maintain their

fertilizing ability.

Discussion

Although fertilization is a very important biological phenome-

non, the mechanism of sperm-egg interaction is not well

understood. There are many factors that have been reported to

be ‘‘important’’ for fertilization; however, most of them emerged

as inessential following gene knockout experiments [14,15]. As of

today, IZUMO1 is the only sperm protein which is proven to be

essential for sperm-egg fusion. However, the protein structure of

IZUMO1 is rather simple with only one Ig domain in its outer

surface area. There seems to be no ‘‘fusogenic peptide’’ domain or

domains reminiscent of other fusion proteins reported in viruses or

other systems in IZUMO1 [6,16]. Therefore, we tried to search

for an IZUMO1-interacting protein in this experiment and

identified ACE3 as an IZUMO1-interacting protein. The

previously-reported mRNA sequence for Ace3 was slightly different

to the one described in this paper. In our experiment, the initial

methionine started 56-bp upstream of the previously-reported Ace3

and our sequence indicated the existence of an intron in the

previously-reported first exon (Figure 2A). The expression pattern

was also different from the previous report and in our hands, Ace3

was exclusively expressed in sperm. Therefore we referred to our

ACE3 as tACE3 in this manuscript.

The tACE is known to regulate sperm migrating ability into

oviduct and binding ability to zona pellucida of eggs [8,9]. tACE

may not able to interact with IZUMO1 because their localizations

are topologically separated each other in sperm before acrosome

reaction (plasma membrane for tACE and acrosomal membrane

for IZUMO1). However, present experiment revealed that there is

another ACE-related protein on sperm and that this newly found

tACE3 is indicated to interact with IZUMO1. It is reported that

IZUMO1 protein forms a protein complex containing several

large proteins under mildly denaturing conditions on SDS-PAGE

[5]. ACE2 is also known to exist in testis, but the expression site for

ACE2 is limited to Leydig cells in testis [17]. Moreover, no

impairment of fertilizing ability of Ace2-disrupted mice is reported

[18]. Thus the only possible ACE homologue that can interact to

IZUMO1 is the tACE3.

In mouse, rat, cow, and dog, the tACE3 contains an HQMGH

motif. However, the Glu included in this motif was substituted by

Gln in all of these species. Since the Glu residue is 100%

conserved in all other ACE family members and is considered to

be critical for their catalytic activity, tACE3 may not have ACE

protease activity [7]. In 2005, Kondoh et al. reported that tACE

has both peptidase activity (to cleave angiotensinogen) and

glycosylphosphatidylinositol (GPI)-releasing activity, and that this

secondary activity is crucial for sperm fertilizing ability [19,20].

Another paper also suggests that sACE may possess GPI-ase

activity [21]. However, Fuchs S et al. argues against this con-

clusion by providing evidence that sperm from mutant ACE

knock-in male mice, in which HEMGH was altered to KEMGK

to abrogated the peptidase activity, the male mice lost their ZP

binding ability [22]. Since we demonstrated that tACE3, which

is predicted to naturally lack peptidase activity, could be an

IZUMO1-interacting protein, analysis of the phenotype of the

tACE3 disruption was expected to provide important information

regarding the mechanism of fertilization.

However, the disruption of Ace3 resulted in no demonstrable

defect in fertilizing ability. Thus the importance of GPI-ase activity

Figure 5. Immnolocalization of IZUMO1 protein in Ace32/2 sperm. Wild-type and Ace32/2 sperm were immunostained with 4 mg/ml anti-
tACE3 (red) and anti-IZUMO1 (green) antibodies (A). The staining pattern of IZUMO1 in Ace32/2 sperm showed a significantly broader staining area
than that of wild-type sperm (B).
doi:10.1371/journal.pone.0010301.g005

ACE3-Disrupted Mouse
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for tACE protein family function requires further clarification.

The question as to whether IZUMO1 is functioning as a sole

essential factor in fusion, or rather is participating as a part of

protein complex [5], remains unanswered. The only phenotype

found in Ace3-deficient sperm is that the localization of IZUMO1

extended to a broader area than in wild-type sperm. This

difference may be caused by the loss of interaction of tACE3

with IZUMO1 in sperm, but the aberrant distribution caused

by Ace3 disruption was not critical enough to affect the sperm

fertilizing ability.

Considering the published data together with phenotype of

Ace3-disrupted mice described in this paper, it becomes clear that

among ACEs, the essential ACE for sperm fertilizing ability is

solely the tACE. Further study is required to elucidate the

mechanism of fertilization, but the results presented in this paper

help to narrow the path leading to the answer.

Materials and Methods

Animals
IZUMO1-null mice were prepared as indicated in our previous

paper [4]. BDF1 male and female mice were purchased from

CLEA Japan. All of the experiments were performed with the

approval of the Animal Care and Use Committee of Osaka

University (permit number: BikenH20-09-1).

Identification of ACE3
We previously established His-tagged mouse IZUMO1 trans-

genic mouse lines with Izumo12/2 background to evaluate the

requirement for IZUMO1 in fertility [10]. Utilizing these male

mice, mature sperm were collected from cauda epididymis, and

solubilized with 1% Brij 97, 150 mM NaCl, 50 mM Tris-HCl

(pH 8.0) and 1% protease inhibitor cocktail (Nakalai tesque,

Kyoto, Japan). After centrifugation at 15,000 g for 30 min at 4uC,

the insoluble fraction was removed and the supernatant incubated

with anti-His microbeads (mMACS anti-His microbeads; Miltenyi

Biotec, Bergisch Gladbach, Germany). The samples were

prepared following the manufacturer’s instructions. After separa-

tion by SDS-PAGE, protein gels were stained with the silver

staining kit (Nakalai tesque, Kyoto, Japan) to visualize protein

bands. IZUMO1-interacting protein was determined by LC MS/

MS (Figure 1A). Some peptide sequences (Figure 1B, shown in red)

were analyzed and identified as tACE3 protein (NCBI accession

number: XP_110936), whose function was not known [7]. To

confirm the DNA sequence, we amplified (RT-PCR) Ace3 from

mouse testis RNA as a template using primers derived from this

sequence. The polyclonal antibodies against mouse tACE3 were

produced by immunizing KLH-conjugated specific peptides to

rabbits (Figure 1B, shown in blue).

Western blotting
Proteins from various tissues were solubilized with 1% Triton

X-100, 150 mM NaCl, 50 mM Tris-HCl (pH 8.0) and 1%

protease inhibitor cocktail (Nakalai tesque, Kyoto, Japan), and

were centrifuged at 15,000 g for 30 min at 4uC. The supernatants

were denatured by boiling for 5 min in the presence of 1% SDS

with or without 6% 2-mercaptoethanol, separated by SDS-PAGE,

and transferred onto Immobilon-P membranes (Millipore, MA,

USA). After blocking with 10% skim milk, the blots were

incubated with primary antibodies for 2 h and then incubated

with horseradish peroxidase-conjugated secondary antibodies for

1 h. Immunoreactive proteins were detected by an ECL western

blotting detection kit (GE Healthcare, Little Chalfont, England).

Immunoprecipitation
Sperm supernatants (1 ml, 1.5 mg protein per ml) solubilized

with 1% Brij 97, 150 mM NaCl, 50 mM Tris-HCl (pH 8.0)

and 1% protease inhibitor cocktail were rotated overnight at 4uC
with rabbit polyclonal tACE3 and rat monoclonal IZUMO1

antibodies (10 mg/ml). Mixtures with protein G MicroBeads

(50 ml, 1 h, Miltenyi Biotec, Auburn, CA) were loaded on MACS

columns (Miltenyi Biotec, Bergisch Gladbach, Germany), washed

(36200 ml of 25 mM Tris (pH 8.0)/1.0 M NaCl/1% Brij 97), and

eluted with gel loading buffer [50 mM Tris (pH 6.8)/100 mM

DTT/2% (wt/vol) SDS/0.1% bromophenol blue/10% glycerol].

Eluates were separated by denaturing SDS/PAGE, and were

subjected to western blotting. Immunodetection was done with

1 mg/ml of rabbit anti-tACE3 and rat anti-IZUMO1 antibodies.

Secondary antibodies were horseradish-peroxidase-conjugated

goat anti-rabbit or goat anti-rat IgGs (1:10,000, The Jackson

Laboratory, Maine, USA). Chemiluminescent detection was

performed with the enhanced chemiluminescence (ECL) kit (GE

Healthcare, Little Chalfont, England), as instructed.

Immunofluorescence analysis
The spermatozoa prepared from cauda epididymis were washed

twice with PBS, spotted onto slides, air dried, fixed with ice-cold

100% EtOH for 5 min and rinsed briefly in PBS. Nonspecific

protein binding sites were blocked with 10% (wt/vol) Block Ace

(Yukijirushi Co., Tokyo, Japan) and 10% (vol/vol) goat serum–

PBS at room temperature for 30 min. The slides were then

incubated with 4 mg/ml anti-tACE3 or anti-IZUMO1 antibodies

at 4uC overnight. After being washed with PBS, the slides were

incubated in the dark with Alexa Fluor 488 or 546-conjugated

anti-rabbit or anti–rat IgGs, respectively (Invitrogen, California,

USA) at 37uC for 30 min in PBS containing 10% Block Ace and

10% goat serum. After being washed, the slides were mounted in

PBS. The stained cells were observed under a fluorescence

microscope.

Generation of Ace3 knockout mice
A targeting vector was constructed using pNT1.1 containing

Neo-resistance gene (Neor) as a positive selection marker and

herpes simplex virus thymidine kinase gene (tk) as a negative

selection marker. A 1.4-kb Not I-Xho I fragment and a 6.6-kb Asc I-

Pac I fragment were inserted as a short and long arm, respectively.

Embryonic stem cells derived from 129/Sv were electroporated

with Pme I digested linearized DNA. Of 352 G418-resistant clones,

four had undergone homologous recombination correctly. Two

targeted cell lines were injected into C57BL/6 blastocysts,

resulting in the birth of male chimeric mice. These mice were

then crossed with C57BL/6 to obtain heterozygous mutants. Mice

used in the study were the offspring of crosses between F1 and/or

F2 generations. The PCR primer used for genotyping were as

follows: 59-CTCTTCCAAGTTCTATGCAACGGAGTCCTT-

39 and 59-GCTTGCCGAATATCATGGTGGAAAATGGCC-

39 for the short arm side of mutant allele, 59-CTCTTCCAA-

GTTCTATGCAACGGAGTCCTT-39 and 59-CCTGAGCCT-

CGCTGTAGAAATCATCTGCAA-39 for the short arm side of

wild-type allele, 59-TTCTCGGTGTTCTGCGTGACTATCC-

GAATG-39 and 59-TCTGTTGTGCCCAGTCATAGCCGAA-

TAGCC-39 for the long arm side of mutant allele, 59-TTC-

TCGGTGTTCTGCGTGACTATCCGAATG-39 and 59-CCT-

GTTAGGCATTGCCCTGGAGAAG-39 for the long arm side of

wild-type allele. The Ace3 disrupted mouse line was submitted to

RIKEN BioResource Center and is available to the scientific

community.

ACE3-Disrupted Mouse
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In vitro fertilization
Mouse sperm were collected from cauda epididymides and

capacitated in vitro for 2 h in 200 ml drops of TYH medium

covered with paraffin oil. BDF1 female mice (.8 weeks old) were

superovulated with an injection of 5 IU of hCG (human chorionic

gonadotropin) 48 h after a 5 IU injection of eCG (equine

chorionic gonadotropin). The eggs were collected from the oviduct

14 h after the hCG injection. Eggs were placed in a 200 ml drop of

TYH medium. For preparation of cumulus free eggs, eggs were

freed from cumulus cells with 0.01% (w/v) hyaluronidase in

advance. These eggs were incubated with 26105 Ace3+/2 or

Ace32/2 sperm/ml incubated for 2 h at 37uC in 5% CO2, and

unbound sperm were washed away. Eggs were observed 12 h after

insemination for 2-cell formation under a Hoffman modulation

contrast microscope.

Sperm-egg fusion assay
Mouse sperm and eggs were prepared as above. After being

freed from cumulus cells with 0.01% (w/v) hyaluronidase, the

zona pellucida was removed from mouse eggs using a piezo-

manipulator as previously reported [23]. The zona-free eggs were

pre-loaded with Hoechst 33342 by incubating them with 1 mg/ml

of the dye in TYH for 10 min. After washing, the eggs were

incubated with 26105 sperm/ml incubated for 30 min at 37uC in

5% CO2, and unbound sperm were washed away. The eggs were

observed under a fluorescence microscope (UV excitation light)

after fixing with 0.25% glutaraldehyde. This procedure enabled

staining of only fused sperm nucleus by transferring the dye into

sperm after membrane fusion.

Acknowledgments

We are very grateful to Dr. Adam M. Benham for helpful discussion,

critical reading of the manuscript and useful advice. We thank Akiko

Kawai, Yumiko Koreeda, Kiyo Kawata and Yoko Esaki for technical

assistance in producing knockout mouse lines.

Author Contributions

Conceived and designed the experiments: NI MO. Performed the

experiments: NI TK MO. Analyzed the data: NI TK MO. Contributed

reagents/materials/analysis tools: NI TK MI MO. Wrote the paper: NI

MI MO.

References

1. Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, et al. (2000)
Requirement of CD9 on the egg plasma membrane for fertilization. Science 287:

321–324.
2. Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C (2000) Severely

reduced female fertility in CD9-deficient mice. Science 287: 319–321.

3. Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, et al. (2000) The gamete
fusion process is defective in eggs of Cd9-deficient mice. Nat Genet 24: 279–282.

4. Inoue N, Ikawa M, Isotani A, Okabe M (2005) The immunoglobulin
superfamily protein Izumo is required for sperm to fuse with eggs. Nature

434: 234–238.
5. Ellerman DA, Pei J, Gupta S, Snell WJ, Myles D, et al. (2009) Izumo is part of a

multiprotein family whose members form large complexes on mammalian

sperm. Mol Reprod Dev 76: 1188–1199.
6. Martens S, McMahon HT (2008) Mechanisms of membrane fusion: disparate

players and common principles. Nat Rev Mol Cell Biol 9: 543–556.
7. Rella M, Elliot JL, Revett TJ, Lanfear J, Phelan A, et al. (2007) Identification

and characterisation of the angiotensin converting enzyme-3 (ACE3) gene: a

novel mammalian homologue of ACE. BMC Genomics 8: 194.
8. Hagaman JR, Moyer JS, Bachman ES, Sibony M, Magyar PL, et al. (1998)

Angiotensin-converting enzyme and male fertility. Proc Natl Acad Sci U S A 95:
2552–2557.

9. Kessler SP, Rowe TM, Gomos JB, Kessler PM, Sen GC (2000) Physiological
non-equivalence of the two isoforms of angiotensin-converting enzyme. J Biol

Chem 275: 26259–26264.

10. Inoue N, Ikawa M, Okabe M (2008) Putative sperm fusion protein IZUMO and
the role of N-glycosylation. Biochem Biophys Res Commun 377: 910–914.

11. Kim KS, Cha MC, Gerton GL (2001) Mouse sperm protein sp56 is a
component of the acrosomal matrix. Biol Reprod 64: 36–43.

12. Ramalho-Santos J, Moreno RD, Wessel GM, Chan EK, Schatten G (2001)

Membrane trafficking machinery components associated with the mammalian
acrosome during spermiogenesis. Exp Cell Res 267: 45–60.

13. Yamashita M, Honda A, Ogura A, Kashiwabara S, Fukami K, et al. (2008)

Reduced fertility of mouse epididymal sperm lacking Prss21/Tesp5 is rescued by

sperm exposure to uterine microenvironment. Genes Cells 13: 1001–1013.

14. Ikawa M, Inoue N, Benham M, Okabe M (2010) Fertilization: a sperm’s journey

to and interaction with the oocyte. J Clin Invest 120: 984–994.

15. Inoue N, Yamaguchi R, Ikawa M, Okabe M (2007) Sperm-egg interaction and

gene manipulated animals. Soc Reprod Fertil Suppl 65: 363–371.

16. Chen EH, Olson EN (2005) Unveiling the mechanisms of cell-cell fusion.

Science 308: 369–373.

17. Douglas GC, O’Bryan MK, Hedger MP, Lee DK, Yarski MA, et al. (2004) The

novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively

expressed by adult Leydig cells of the testis. Endocrinology 145: 4703–4711.

18. Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, et al. (2002)

Angiotensin-converting enzyme 2 is an essential regulator of heart function.

Nature 417: 822–828.

19. Kondoh G, Tojo H, Nakatani Y, Komazawa N, Murata C, et al. (2005)

Angiotensin-converting enzyme is a GPI-anchored protein releasing factor

crucial for fertilization. Nat Med 11: 160–166.

20. Deguchi E, Tani T, Watanabe H, Yamada S, Kondoh G (2007) Dipeptidase-

inactivated tACE action in vivo: selective inhibition of sperm-zona pellucida

binding in the mouse. Biol Reprod 77: 794–802.

21. Sun X, Wiesner B, Lorenz D, Papsdorf G, Pankow K, et al. (2008) Interaction of

angiotensin-converting enzyme (ACE) with membrane-bound carboxypeptidase

M (CPM) - a new function of ACE. Biol Chem 389: 1477–1485.

22. Fuchs S, Frenzel K, Hubert C, Lyng R, Muller L, et al. (2005) Male fertility is

dependent on dipeptidase activity of testis ACE. Nat Med 11: 1140–1142;

author reply 1142–1143.

23. Yamagata K, Nakanishi T, Ikawa M, Yamaguchi R, Moss SB, et al. (2002)

Sperm from the calmegin-deficient mouse have normal abilities for binding and

fusion to the egg plasma membrane. Dev Biol 250: 348–357.

ACE3-Disrupted Mouse

PLoS ONE | www.plosone.org 7 April 2010 | Volume 5 | Issue 4 | e10301


