Title	Cohomology of discrete subgroups of $\operatorname{Sp}(p, q)$
Author(s)	Konno, Yasuko
Citation	Osaka Journal of Mathematics. 1988, 25(2), p. 299-318
Version Type	VoR
URL	https://doi.org/10.18910/7870
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

COHOMOLOGY OF DISCRETE SUBGROUPS OF $\mathbf{S p}(p, q)$

Dedicated to Professor Shingo Murakami on his sixtieth birthday

Yasuko KONNO

(Received January 19, 1987)

Introduction

Let G be a connected semi-simple Lie group with finite center and no compact factors. Let Γ be a uniform discrete subgroup of G and (ρ, F) be a finite dimensional irreducible representation of G. We are interested in the cohomology space $H^{*}(\Gamma, F)$. The purpose of this paper is to prove a nonvanishing theorem for $H^{*}(\Gamma, F)$ in the case of $G=S p(p, q)(p \geqq q \geqq 1)$.

As it is well-known, we can describe $H^{*}(\Gamma, F)$ in terms of the relative Lie algebra cohomology. Let g be the Lie algebra of G and K be a maximal compact subgroup of G. Denote by \hat{G} the unitary dual of G. For $\left(U, H_{U}\right) \in$ \hat{G}, we denote by H_{U}^{0} the space of K-finite vectors in H_{U}. Then H_{U}^{0} is an irreducible (g, K)-module. Also $m(U, \Gamma)$ denotes the multiplicity with which U occurs in $L^{2}(\Gamma \backslash G)$. Define the subset \hat{G}_{ρ} of \hat{G} as follows;

$$
\hat{G}_{\rho}=\left\{U \in \hat{G} \mid \chi_{U}=\chi_{\rho^{*}}\right\}
$$

where ρ^{*} is the contragradient representation of ρ and χ_{U} (resp. $\chi_{\rho^{*}}$) is the infinitesimal character of U (resp. ρ^{*}). Then, from the formula of Matsu-shima-Murakami ([1], VII, Theorem 6.1), we have

$$
\begin{equation*}
H^{*}(\Gamma, F)=\sum_{v \in \hat{\epsilon}_{\rho}} m(U, \Gamma) H^{*}\left(\mathfrak{g}, K ; H_{U}^{0} \otimes F\right) \tag{0.1}
\end{equation*}
$$

From now on, we assume that G is simple. Depending on Kumaresan's work, Vogan and Zuckerman obtained the following precise vanishing theorem for the (g, K)-cohomology ($[5]$, Theorem 8.1); if U is non-trivial, we have

$$
H^{i}\left(\mathrm{~g}, K ; H_{U}^{0} \otimes F\right)=\{0\} \quad\left(i<r_{G}\right)
$$

where r_{G} is the positive integer determined by G and given by Table 8.2 in [5] for non-complex groups. From this result and (0.1), if F is non-trivial, we have

$$
H^{i}(\Gamma, F)=\{0\} \quad\left(i<r_{G}\right)
$$

Note that r_{G} depends only on G and, in general, $r_{G} \geqq \operatorname{rank}_{\boldsymbol{R}} G$. On the other hand, the vanishing of $H^{i}(\Gamma, F)$ below the \boldsymbol{R}-rank has been obtained in some papers ([1], VII, Proposition 6.4). There are some simple groups such that $r_{G}=\operatorname{rank}_{\boldsymbol{R}} G$. In the case of $G=S U(p, q)(p \geqq q \geqq 1)$, where $r_{G}=q=\operatorname{rank}_{\boldsymbol{R}} G$, Borel and Wallach showed that this vanishing theorem is best possible ([1], VIII, Corollary 5.9).

We concentrate our attention on the case of $G=S p(p, q)$. In this case, $r_{G}=2 q$ and hence $r_{G}>q=\operatorname{rank}_{\boldsymbol{R}} G$. Therefore it is interesting to ask if the above vanishing theorem is best possible for $G=S p(p, q)$. In this paper, we show that, in the case of $G=S p(p, q)$, the first possible non-zero cohomology $H^{*}(\Gamma, F)$ appears indeed at the degree $2 q=r_{G}$. Main results are Theorem 3.4 and Theorem 4.2. In the case that F is trivial and $q=1$, Theorem 3.4 is contained in the results of [3], Theorem 3.2 (see Remark 3.5). Also Theorem 4.2 for trivial F improves a part of the results of [4], Theorem 4.1 (see Remark 4.4.).

Our method is similar to that in [1], VIII and depends heavily on the results there.

1. The imbedding of $S p(p, q)$ into $S p(2 n, R)$

1.1. Throughout this paper, G will denote the $\operatorname{group} S p(p, q)(p \geqq q \geqq 1)$. At first we give our realization of G and provide some notations.

We set $n=p+q$. Let $K_{p, q}$ be the $2 n \times 2 n$ matrix given by

$$
K_{p, q}=\left(\right)
$$

where I_{m} is the $m \times m$ identity matrix. The group G is given by

$$
G=\left\{\left.g \in S p(n, C)\right|^{t} g K_{p, g} \bar{g}=K_{p, q}\right\}
$$

As a maximal compact subgroup of G, we choose $K=G \cap U(2 n)$. Let g (resp. ${ }^{\boldsymbol{t}}$) be the Lie algebra of G (resp. K) and $\mathfrak{g}=\mathfrak{t}+\mathfrak{p}$ be the Cartan decomposition of \mathfrak{g}. For a real Lie algebra \mathfrak{u}, denote by \mathfrak{n}_{c} the complexification of \mathfrak{n}.

Let $E_{i j}$ be the square matrix with 1 in the (i, j)-position and 0 elsewhere. For $1 \leqq i \leqq n$, set

$$
T_{i}=\left(\begin{array}{c|c}
E_{i i} & 0 \\
\hline 0 & -E_{i i}
\end{array}\right)
$$

and define

$$
\mathfrak{t}=\left\{\sum_{j=1}^{n} \mu_{j} T_{j} \mid \mu_{j} \in \sqrt{-1} \boldsymbol{R}\right\}
$$

Then t is a Cartan subalgebra of g such that $\mathfrak{t} \subset \mathfrak{Z}$. Also define $\lambda_{i} \in \mathrm{t}_{\boldsymbol{c}}^{*}(1 \leqq i \leqq n)$ by

$$
\lambda_{i}\left(\sum_{j=1}^{n} \mu_{j} T_{j}\right)=\mu_{i}
$$

The root system Δ (resp. $\left.\Delta_{\mathfrak{f}}\right)$ of the pair $\left(g_{c}, \mathrm{t}_{c}\right)$ (resp. $\left.\left(\boldsymbol{f}_{c}, \mathrm{t}_{c}\right)\right)$ is given by

$$
\begin{gathered}
\Delta=\left\{ \pm \lambda_{i} \pm \lambda_{j} \mid 1 \leqq i, j \leqq n\right\} \\
\left(\text { resp. } \Delta_{\mathrm{f}}=\left\{ \pm \lambda_{i} \pm \lambda_{j} \mid 1 \leqq i, j \leqq p \text { or } p+1 \leqq i, j \leqq p+q\right\}\right)
\end{gathered}
$$

We choose an order of $(\sqrt{-1} \mathrm{t}) *$ so that the set of simple roots in Δ is $\left\{\lambda_{1}-\lambda_{2}\right.$, $\left.\lambda_{2}-\lambda_{3}, \cdots, \lambda_{n-1}-\lambda_{n}, 2 \lambda_{n}\right\}$. Denote by Δ^{+}(resp. Δ_{1}^{+}) the set of positive roots in Δ (resp. $\Delta_{\mathfrak{t}}$). Throughout this paper we fix this order.

For later use, we choose root vectors of g_{c} as follows;

$$
\begin{aligned}
& X_{\lambda_{i}+\lambda_{j}}=\left(\begin{array}{c|c}
0 & F_{i j} \\
\hline 0 & 0
\end{array}\right) \quad(1 \leqq i, j \leqq n) \\
& X_{-\lambda_{i}-\lambda_{j}}=\left(\begin{array}{c|c}
0 & 0 \\
\hline F_{i j} & 0
\end{array}\right) \quad(1 \leqq i, j \leqq n) \\
& X_{\lambda_{i}-\lambda_{j}}=\left(\begin{array}{c|c}
E_{i j} & 0 \\
\hline 0 & -E_{j i}
\end{array}\right) \quad(1 \leqq i, j \leqq n, i \neq j)
\end{aligned}
$$

where $F_{i j}=E_{i j}+E_{j i}$ if $i \neq j$ and $F_{i j}=E_{i i}$ if $i=j$. Then $\left\{T_{i} \mid 1 \leqq i \leqq n\right\} \cup$ $\left\{X_{\alpha} \mid \alpha \in \Delta\right\}$ is a basis of \mathfrak{g}_{c}.
1.2. Now we construct an imbedding of G into $S p(2 n, \boldsymbol{R})$. Our imbedding is obtained by composing an imbedding of G into $S U(2 p, 2 q)$ and an imbedding of $S U(2 p, 2 q)$ into $S p(2 n, \boldsymbol{R})$. From now on, G^{\prime} denotes the group $S U(2 p, 2 q)$. As a maximal compact subgroup of G^{\prime}, we choose $K^{\prime}=G^{\prime} \cap U(2 n)$. Let g^{\prime} be the Lie algebra of G^{\prime}.

The group G is naturally imbedded into the uintary group of the hermitian form on $\boldsymbol{C}^{2 n}$ defined by $K_{p, q}$. We put

$$
Z=\left(\right)
$$

Then ${ }^{t} Z K_{p, q} Z$ gives the standard hermitian form with signature $(2 p, 2 q)$. So, if we define

$$
\psi(g)={ }^{t} Z g Z \quad(g \in G),
$$

we obtain an imbedding $\psi ; G \rightarrow G^{\prime}$. Clearly we have $\psi(K) \subset K^{\prime}$.
Moreover we will imbed G^{\prime} into $S p(2 n, \boldsymbol{R})$. Naturally we consider $G L(2 n, \boldsymbol{C})$, and hence G^{\prime}, as to be the subgroups of $G L(4 n, \boldsymbol{R})$. Define the orthogonal matrix Z^{\prime} by

$$
Z^{\prime}=\left(\begin{array}{c|c|c}
I_{2 p} & 0 & \\
\hline 0 & -I_{2 q} & 0 \\
\hline 0 & I_{2 n}
\end{array}\right)
$$

Then it is easily checked that, if we define

$$
\psi^{\prime}(g)={ }^{t} Z^{\prime} g Z^{\prime} \quad\left(g \in G^{\prime}\right)
$$

we obtain an imbedding $\psi^{\prime} ; G^{\prime} \rightarrow S p(2 n, \boldsymbol{R})$. This is the same imbedding that is constructed in [1], VIII, § 2.

In this way we obtain the imbedding

$$
\iota=\psi^{\prime} \circ \psi ; G \rightarrow S p(2 n, \boldsymbol{R}) .
$$

These imbeddings ψ, ψ^{\prime} and ι induce the imbeddings of Lie algebras and we use the same letters for them;

$$
\begin{aligned}
\psi ; \mathfrak{g}_{c} & \rightarrow \mathfrak{g}_{c}^{\prime} \\
\psi^{\prime} ; \mathfrak{g}_{c}^{\prime} & \rightarrow \mathfrak{F p}(2 n, \boldsymbol{C}) \\
\iota ; \mathfrak{g}_{c} & \rightarrow \mathfrak{g p}(2 n, \boldsymbol{C})
\end{aligned}
$$

1.3. Here we give the explicit form of the image of ι. It will be used in $\S 2$. For this, we choose a basis of $\mathfrak{p}(2 n, \boldsymbol{C})$ as follows;

$$
S_{i}=\sqrt{-1}\left(\begin{array}{c|c}
0 & E_{i i} \\
\hline-E_{i i} & 0
\end{array}\right) \quad(1 \leqq i \leqq 2 n)
$$

$$
\begin{array}{ll}
Y_{i j}^{+}=\frac{1}{2}\left(\begin{array}{c|c}
F_{i j} & -\sqrt{-1} F_{i j} \\
\hline-\sqrt{-1} F_{i j} & -F_{i j}
\end{array}\right) & (1 \leqq i, j \leqq 2 n) \\
Y_{\bar{i} j}^{-}=\frac{1}{2}\left(\begin{array}{c|c}
F_{i j} & \sqrt{-1} F_{i j} \\
\hline \sqrt{-1} F_{i j} \mid-F_{i j}
\end{array}\right) & (1 \leqq i, j \leqq 2 n) \\
Z_{i j}^{+}=\frac{1}{2}\binom{E_{i j}-E_{j i} \mid \sqrt{-1} F_{i j}}{\hline-\sqrt{-1} F_{i j} \mid E_{i j}-E_{j i}} & (1 \leqq i<j \leqq 2 n) \\
Z_{\bar{i} j}=\frac{1}{2}\left(\frac{E_{j i}-E_{i j} \mid \sqrt{-1} F_{j i}}{-\sqrt{-1} F_{j i} \mid E_{j i}-E_{i j}}\right) & (1 \leqq i<j \leqq 2 n)
\end{array}
$$

where $F_{i j}=E_{i j}+E_{j i}$ if $i \neq j$ and $F_{i j}=E_{i i}$ if $i=j$. By straightforward computations we obtain the following explicit description for the image of ι; for $1 \leqq$ $i<j \leqq p$ and $p+1 \leqq k<l \leqq p+q$,

$$
\left\{\begin{array}{l}
\iota\left(T_{i}\right)=S_{i}-S_{p+i} \tag{1.1}\\
\iota\left(T_{k}\right)=-S_{p+k}+S_{p+q+k} \\
\iota\left(X_{ \pm\left(\lambda_{i}+\lambda_{j}\right)}\right)=Z_{i, p+j}^{ \pm}+Z_{j, p+i}^{ \pm} \\
\left.\iota\left(X_{ \pm \lambda_{i}+\lambda_{k}}\right)\right)=-Y_{i, p+q+k}^{ \pm}+Y_{p+i, p+k}^{\mp} \\
\iota\left(X_{ \pm\left(\lambda_{k}+\lambda_{l}\right.}\right)=-Z_{p+k, p+q+l}^{\mp}-Z_{p+l, p+q+k}^{\mp} \\
\iota\left(X_{ \pm 2 \lambda_{i}}\right)=Z_{i, p+i}^{ \pm} \\
\iota\left(X_{ \pm \lambda_{k}}\right)=-Z_{p+k, p+q+k}^{\mp} \\
\left.\iota\left(X_{ \pm \lambda_{i}-\lambda_{j}}\right)\right)=Z_{i, j}^{ \pm}-Z_{p+i, p+j}^{\mp} \\
\iota\left(X_{ \pm\left(\lambda_{i}-\lambda_{k}\right)}\right)=-Y_{i, p+k}^{ \pm}+Y_{p+i, p+q+k}^{\mp} \\
\iota\left(X_{ \pm\left(\lambda_{k}-\lambda_{l}\right)}\right)=-Z_{p+k, p+l}^{\mp}+Z_{p+q+k, p+q+l}^{ \pm}
\end{array}\right.
$$

2. The construction of unitary representations

In this section, we construct a certain series of irreducible unitary representations of G. In [1] Borel and Wallach constructed some irreducible representations of G^{\prime} by using the oscillator representation. Our representations are obtained from these representations through the imbedding $\psi ; G \rightarrow G^{\prime}$. We will often use the results and notations in [1], VIII.
2.1. First we sketch briefly the results in [1], VIII, § 2. Let $M p(2 n, \boldsymbol{R})$ be the Metaplectic group and ($W, L^{2}\left(\boldsymbol{R}^{2 n}\right)$) be the oscillator representation of
$M p(2 n, \boldsymbol{R})$. The imbedding $\psi^{\prime} ; G^{\prime} \rightarrow S p(2 n, \boldsymbol{R})$ lifts to an injective homomorphism $\tilde{\psi}^{\prime} ; G^{\prime} \rightarrow M p(2 n, \boldsymbol{R})([1]$, VIII, Lemma 2.9). Define the unitary representation $\left(V, L^{2}\left(\boldsymbol{R}^{2 n}\right)\right)$ of G^{\prime} by

$$
V(g)=W\left(\tilde{\psi}^{\prime}(g)\right) \quad\left(g \in G^{\prime}\right)
$$

Then ($V, L^{2}\left(\boldsymbol{R}^{2 n}\right)$) decomposes into the direct sum of irreducible representations of G^{\prime}. In fact, for $r \in \boldsymbol{Z}$, define the subspace H_{r} of $L^{2}\left(\boldsymbol{R}^{2 n}\right)$ by

$$
H_{r}=\left\{\phi \in L^{2}\left(\boldsymbol{R}^{2 n}\right) \mid W\left(\operatorname{Exp} t J_{2 p, 2 q}\right)(\phi)=\exp (-\sqrt{-1}(p-q+\boldsymbol{r}) t) \phi\right\}
$$

where Exp is the exponential mapping of $\mathfrak{g p}(2 n, \boldsymbol{R})$ into $M p(2 n, \boldsymbol{R})$ and

$$
J_{2 p, 2 q}=\left(\right) \in \mathfrak{Z p}(2 n, \boldsymbol{R})
$$

Then H_{r} is stable under G^{\prime} and so we put

$$
V_{r}(g)=\left.V(g)\right|_{H_{r}} \quad\left(g \in G^{\prime}\right)
$$

From [1], VIII, Lemma 2.8, for each $r \in \boldsymbol{Z},\left(V_{r}, H_{r}\right)$ is an irreducible unitary representation of G^{\prime} and we have

$$
L^{2}\left(\boldsymbol{R}^{2 n}\right)=\underset{r \in \boldsymbol{Z}}{ } H_{r}
$$

In the remainder of this section, we fix $r \in \boldsymbol{Z}$. Denote by $\mathcal{S}\left(\boldsymbol{R}^{2 n}\right)$ the Schwartz space on $\boldsymbol{R}^{2 n}$ with the Schwartz topology and set $H_{r}^{\infty}=H_{r} \cap \mathcal{S}\left(\boldsymbol{R}^{2 n}\right)$. Then H_{r}^{∞} is the space of C^{∞}-vectors for V_{r} in H_{r} ([1], VIII. Lemma 1.11). Also, we denote by H_{r}^{0} the space of K^{\prime}-finite vectors for V_{r} in H_{r}. The space H_{r}^{0} is an irreducible admissible ($\mathrm{g}^{\prime}, K^{\prime}$)-module.

In order to choose an orthogonal basis of H_{r}^{0}, we need some notations. Let ($x_{1}, \cdots, x_{2 n}$) be the coordinates of $\boldsymbol{R}^{2 n}$. Following [1], VIII, 1.16, for $1 \leqq$ $j \leqq 2 n$, define the operator D_{j} and $A_{j}^{ \pm}$by

$$
D_{j}=\frac{1}{2}\left(\frac{\partial^{2}}{\partial x_{j}^{2}}-x_{j}^{2}\right), \quad A_{j}^{ \pm}=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}} \pm x_{j}\right) .
$$

Denote by \boldsymbol{Z}_{+}the set of non-negative integers. For $m=\left(m_{1}, \cdots, m_{2 n}\right) \in\left(\boldsymbol{Z}_{+}\right)^{2 n}$, we set

$$
\phi_{m}=\left(A_{1}^{-}\right)^{m_{1}}\left(A_{2}^{-}\right)^{m_{2}} \cdots\left(A_{\overline{2 n}}\right)^{m_{2 n}} \phi_{0}
$$

where ϕ_{0} is the C^{∞}-function on $\boldsymbol{R}^{2 n}$ defined by

$$
\phi_{0}(x)=(2 \pi)^{-n} \exp \left(-\frac{1}{2} \sum_{i=1}^{2 n} x_{i}^{2}\right) \quad\left(x \in \boldsymbol{R}^{2 n}\right)
$$

(Note that ϕ_{m} is equal to ψ_{m} in [1]. VIII 1.16, up to the multiplication by a constant.) Then, by [1], VIII, Lemma 1.17, $\left\{\phi_{m} \mid m \in\left(\boldsymbol{Z}_{+}\right)^{2 n}\right\}$ are mutually orthogonal in $L^{2}\left(\boldsymbol{R}^{2 n}\right)$ and we have

$$
\begin{equation*}
H_{r}^{0}=\underset{m \in \Phi_{r}}{\oplus} \boldsymbol{C} \boldsymbol{\phi}_{\boldsymbol{m}} \tag{2.1}
\end{equation*}
$$

where $\Phi_{r}=\left\{m \in\left(\boldsymbol{Z}_{+}\right)^{2 n} \mid \sum_{i=1}^{2 p} m_{i}-\sum_{i=2 p+1}^{2 n} m_{i}=r\right\}$.
2.2. Now we construct unitary representations of G. Using the imbedding $\psi ; G \rightarrow G^{\prime}$, we define

$$
U_{r}(g)=V_{r}(\psi(g)) \quad(g \in G)
$$

Then we obtain the unitary representation $\left(U_{r}, H_{r}\right)$ of G. Clearly, the subspace H_{r}^{0} of H_{r} is included in the space of K-finite vectors for U_{r} in H_{r} and stable under \mathfrak{g} and K. Thus H_{r}^{0} is a (\mathfrak{g}, K)-module. The infinitesimal representation of g_{c} on H_{r}^{0} induced from U_{r} is denoted by the same letter U_{r}.

We will examine the (g, K)-module H_{r}^{0} in detail. First we consider the infinitesimal representation $\left(W, \mathcal{S}\left(\boldsymbol{R}^{2 n}\right)\right.$) of $\mathfrak{p p}(2 n, \boldsymbol{C})$ induced from ($W, L^{2}\left(\boldsymbol{R}^{2 n}\right)$). By [2], p. 232, Theorem 5.4, the action of $\mathfrak{p p}(2 n, \boldsymbol{C})$ on $\mathcal{S}\left(\boldsymbol{R}^{2 n}\right)$ is explicitly given as follows;

$$
\begin{cases}W\left(S_{i}\right)=D_{i} & (1 \leqq i \leqq 2 n) \tag{2.2}\\ W\left(Y_{i j}^{ \pm}\right)= \pm 2 A_{i}^{ \pm} A_{j}^{ \pm} & (1 \leqq i, j \leqq 2 n, i \neq j) \\ W\left(Y_{i i}^{ \pm}\right)= \pm A_{i}^{ \pm} A_{i}^{ \pm} & (1 \leqq i \leqq 2 n) \\ W\left(Z_{i j}^{ \pm}\right)=2 A_{i}^{ \pm} A_{j}^{\mp} & (1 \leqq i<j \leqq 2 n)\end{cases}
$$

Using the relation formulas among D_{j} and $A_{j}^{ \pm}$in [1], VIII, 1.16, we obtain

$$
\left\{\begin{array}{l}
D_{j}\left(\phi_{m}\right)=-\frac{1}{2}\left(2 m_{j}+1\right) \phi_{m_{1}, \cdots, m_{2 n}} \tag{2.3}\\
A_{i}^{+} A_{j}^{+}\left(\phi_{m}\right)=\frac{1}{4} m_{i} m_{j} \phi_{m_{1}, \cdots, m_{i}-1, \cdots, m_{j}-1, \cdots, m_{2 n}} \\
A_{i}^{+} A_{i}^{+}\left(\phi_{m}\right)=\frac{1}{4} m_{i}\left(m_{i}-1\right) \phi_{m_{1}, \cdots, m_{i}-2, \cdots, m_{2 n}} \\
A_{i}^{-} A_{j}^{-}\left(\phi_{m}\right)=\phi_{m_{1}, \cdots, m_{i}+1, \cdots, m_{j+1}, \cdots, m_{2 n}} \\
A_{i}^{-} A_{i}^{-}\left(\phi_{m}\right)=\phi_{m_{1}, \cdots, m_{i}+2, \cdots, m_{2 n}} \\
A_{i}^{+} A_{j}^{-}\left(\phi_{m}\right)=-\frac{1}{2} m_{i} \phi_{m_{1}, \cdots, m_{i}-1, \cdots, m_{j}+1, \cdots m_{2 n}}
\end{array}\right.
$$

where $m \in\left(Z_{+}\right)^{2 n}, 1 \leqq i<j \leqq 2 n$ and $\phi_{k_{1}, \cdots, k_{2 n}}$ is considered to be 0 if $k_{i}<0$ for some i. Therefore, combining (1.1), (2.2) and (2.3), we have the following formulas; for $1 \leqq i, j \leqq p$ and $p+1 \leqq k, l \leqq p+q$,

$$
\begin{align*}
& \left\{\begin{array}{l}
U_{r}\left(T_{i}\right)\left(\phi_{m}\right)=\left(m_{p+i}-m_{i}\right) \phi_{m} \\
U_{r}\left(T_{k}\right)\left(\phi_{m}\right)=\left(m_{p+k}-m_{p+q+k}\right) \phi_{m}
\end{array}\right. \tag{2.4}
\end{align*}
$$

$$
\begin{align*}
& \left\{\begin{aligned}
U_{r}\left(X_{\lambda_{i}+\lambda_{k}}\right)\left(\phi_{m}\right)= & -\frac{1}{2} m_{i} m_{p+q+k} \phi_{m_{1}, \cdots, m_{i}-1, \cdots, m_{p+q+k}-1, \cdots, m_{2 n}} \\
& +2 \phi_{m_{1}, \cdots, m_{p+i}+1, \cdots, m_{p+k}+1, \cdots, m_{2 n}} \\
U_{r}\left(X_{\lambda_{i}-\lambda_{k}}\right)\left(\phi_{m}\right)= & -\frac{1}{2} m_{i} m_{p^{+k}} \phi_{m_{1}, \cdots, m_{i-1}, \cdots, m_{p+k}-1, \cdots, m_{2 n}} \\
& -2 \phi_{m_{1}, \cdots, m_{p+i+1, \cdots, m_{p+q+k}+1, \cdots, m_{2 n}}}
\end{aligned}\right. \tag{2.7}\\
& \left\{\begin{aligned}
U_{r}\left(X_{-\lambda_{i}-\lambda_{k}}\right)\left(\phi_{m}\right)= & -\frac{1}{2} m_{p+i} m_{p+k} \phi_{m_{1}, \cdots, m_{p+i}-1, \cdots, m_{p+k}-1, \cdots, m_{2 n}} \\
& +2 \phi_{m_{1}, \cdots, m_{i}+1, \cdots, m_{p+q+k}+1, \cdots, m_{2 n}}
\end{aligned}\right. \tag{2.8}
\end{align*}
$$

$$
\begin{aligned}
U_{r}\left(X_{-\lambda_{i}+\lambda_{k}}\right)\left(\phi_{m}\right)= & \frac{1}{2} m_{p+i} m_{p+q+k} \phi_{m_{1}, \cdots, m_{p+i}-1, \cdots, m_{p+q+k}-1, \cdots, m_{2 n}} \\
& +2 \phi_{m_{1}, \cdots, m_{i}+1, \cdots, m_{p+k}+1, \cdots, m_{2 n}}
\end{aligned}
$$

Of course, in these formulas, $\phi_{k_{1}, \cdots, k_{2 n}}$ should be considered as to be 0 if $k_{i}<0$ for some i.

Now we can determine the set of weights of the \mathfrak{g}_{c}-module H_{r}^{0}. Let ϕ_{m} be in H_{r}^{0}. By (2.4) we have

$$
U_{r}\left(\sum_{i=1}^{n} \mu_{i} T_{i}\right)\left(\phi_{m}\right)=\left\{\sum_{i=1}^{p}\left(m_{p+i}-m_{i}\right) \mu_{i}+\sum_{k=p+1}^{p+q}\left(m_{p+k}-m_{p+q+k}\right) \mu_{k}\right\} \phi_{m}
$$

From this, the following lemma immediately follows.
Lemma 2.1. Let $m=\left(m_{1}, \cdots, m_{2 n}\right)$ be in Φ_{r}. In the g_{c}-module H_{r}^{0}, ϕ_{m} is a weight vector corresponding to the weight

$$
\Lambda_{m}=\sum_{i=1}^{p}\left(m_{p+i}-m_{i}\right) \lambda_{i}+\sum_{k=p+1}^{p+q}\left(m_{p+k}-m_{p+q+k}\right) \lambda_{k} .
$$

We remark that the multiplicity of Λ_{m} in H_{0}^{r} is not finite.
2.3. Here we determine the K-spectrum of H_{r}^{0}. Let \hat{K} be the set of all equivalence classes of irreducible representations of K. Define the subset D_{K} of t_{c}^{*} by

$$
D_{K}=\left\{\begin{array}{l|l}
\lambda=\sum_{i=1}^{n} a_{i} \lambda_{i} & \begin{array}{l}
a_{i} \in \boldsymbol{Z} \\
a_{1} \geqq a_{2} \geqq \cdots \geqq a_{p} \geqq 0 \\
a_{p+1} \geqq a_{p+2} \geqq \cdots \geqq a_{n} \geqq 0
\end{array}
\end{array}\right\} .
$$

Then there is the bijective correspondence between \hat{K} and D_{K}. That is, $\lambda \in D_{K}$ corresponds to the irreducible K-module with highest weight λ. We denote by E_{λ} this K-module.

Let $s \in \boldsymbol{Z}_{+}$and $s \geqq-r$. We define the finite dimensional subspace $H_{r, s}^{0}$ of H_{r}^{0} by

$$
H_{r, s}^{0}=\underset{m \in \Phi_{r, s}}{\oplus} \boldsymbol{C} \boldsymbol{\phi}_{m}
$$

where the subset $\Phi_{r, s}$ of Φ_{r} is given by

$$
\Phi_{r, s}=\left\{m \in\left(\boldsymbol{Z}_{+}\right)^{2 n} \mid \sum_{i=1}^{2 p} m_{i}=r+s, \sum_{i=2 p+1}^{2 n} m_{i}=s\right\}
$$

From (2.1), we have

$$
H_{r}^{0}=\underset{s \in \boldsymbol{Z}_{+}, s \geq-r}{\oplus} H_{r, s}^{0}
$$

Proposition 2.2. Let $s \in \boldsymbol{Z}_{+}$and $s \geqq-r$. Then $H_{r, s}^{0}$ is the irreducible $K-$ submodule of H_{r}^{0} with highest weight $(r+s) \lambda_{1}+s \lambda_{p+1} \in D_{K}$. Hence we have

$$
H_{r}^{0}=\bigoplus_{s \in Z_{+}, s \geq-r} E_{(r+s) \lambda_{1}+s \lambda_{p+1}}
$$

as K-modules.
Proof. Put $E_{s}=E_{\left(r+s \lambda_{1}+s \lambda_{p+1}\right.}$. Let X be in \mathfrak{f}_{c}. By (2.4), (2.5) and (2.6), $U_{r}(X)\left(\phi_{m}\right)$ is a linear combination of $\phi_{m^{\prime}}=\phi_{m_{1}^{\prime}, \ldots, m_{2 n}^{\prime}}$ such that

$$
\sum_{i=1}^{2 p} m_{i}^{\prime}=\sum_{i=1}^{2 p} m_{i}, \quad \sum_{i=2 p+1}^{2 n} m_{i}^{\prime}=\sum_{i=2 p+1}^{2 n} m_{i} .
$$

Therefore $H_{r, s}^{0}$ is stable under \boldsymbol{t}_{c}.
Now we put $\phi=\phi_{0, \cdots, 0, r+s, 0, \cdots, 0, s, 0, \cdots, 0}$, where $r+s$ (resp. s) appears in the ($p+1$)-th (resp. $(2 p+1)$-th) position. Then $\phi \in H_{r, s}^{0}$ and, by Lemma 2.1, ϕ is a weight vector corresponding to the weight $(r+s) \lambda_{1}+s \lambda_{p+1}$. It is easy to see that this weight is the highest among all the weights for $H_{r, s}^{0}$. Hence E_{s} certainly occurs in $H_{r, s}^{0}$.

We compare the dimension of $H_{r, s}^{0}$ with that of E_{s}. Since $\left\{\phi_{m} \mid m \in \Phi_{r, s}\right\}$ is a basis of $H_{r, s}^{0}$, we have

$$
\begin{aligned}
\operatorname{dim} H_{r, s}^{0} & =\# \Phi_{r, s} \\
& =\binom{2 p+r+s-1}{r+s} \cdot\binom{2 q+s-1}{s} \\
& =\frac{(2 p+r+s-1)!(2 q+s-1)!}{(2 p-1)!(r+s)!(2 q-1)!s!}
\end{aligned}
$$

On the other hand, Weyl's dimension formula gives the dimension of E_{s}. Denote by (, $)_{\mathrm{t}}$ the inner product in $(\sqrt{-1} \mathrm{t})^{*}$ induced from the Killing form of f_{c}. Recall that

$$
\begin{aligned}
& \left(\lambda_{i}, \lambda_{j}\right)_{\mathrm{q}}=0 \\
& \left(\lambda_{i}, \lambda_{i}\right)_{\mathrm{q}}= \begin{cases}(4 p+4)^{-1} & \text { if } 1 \leqq i \leqq p \\
(4 q+4)^{-1} & \text { if } \quad p+1 \leqq i \leqq p+q\end{cases}
\end{aligned}
$$

Also put $\delta_{\mathrm{r}}=\frac{1}{2} \sum_{\alpha \in \Delta_{\mathrm{t}}^{+}} \alpha$. Then we have

$$
\delta_{\mathrm{p}}=\sum_{i=1}^{p}(p-i+1) \lambda_{i}+\sum_{k=p+1}^{p+q}(p+q-k+1) \lambda_{k} .
$$

From these formulas, easy calculations yield

$$
\begin{aligned}
\operatorname{dim} E_{s} & =\frac{\prod_{\alpha \in \Delta_{\mathfrak{l}}^{+}}\left((r+s) \lambda_{1}+s \lambda_{p+1}+\delta_{\mathfrak{q}}, \alpha\right)_{\mathfrak{l}}}{\prod_{\alpha \in \Delta_{\mathfrak{l}}^{+}}\left(\delta_{\mathfrak{p}}, \alpha\right)_{\mathfrak{q}}} \\
& =\frac{(2 p+r+s-1)!(2 q+s-1)!}{(2 p-1)!(r+s)!(2 q-1)!s!} \\
& =\operatorname{dim} H_{r, s}^{0} .
\end{aligned}
$$

Hence $H_{r, s}^{0}$ is equivalent to E_{s}.
2.4. In this stage, we must determine the space of K-finite vectors in H_{r} for U_{r}.

Lemma 2.3. The space of K-finite vectors in H_{r} for U_{r} coincides with H_{r}^{0}.
Proof. For $\tau \in \hat{K}$, let $H_{r}(\tau)$ be the isotypic K-submodule of H_{r} of type τ. Clearly H_{r}^{0} is stable under K and $H_{r}^{0} \subset \underset{\tau \in \hat{K}}{\oplus} H_{r}(\tau)$. Hence we have $H_{r}^{0}=\underset{\tau \in \hat{K}}{ } H_{r}^{0} \cap$ $H_{r}(\tau)$. Since H_{r}^{0} is dense in H_{r}, by [7], Chapter 4, Proposition 4.4.3.4, the closure of $H_{r}^{0} \cap H_{r}(\tau)$ is $H_{r}(\tau)$. By Proposition 2.2, $H_{r}^{0} \cap H_{r}(\tau)$ is finite dimensional. Therefore we have $H_{r}^{0} \cap H_{r}(\tau)=H_{r}(\tau)$ and hence $H_{r}^{0}=\oplus_{\hat{\hat{K}}} H_{r}(\tau)$. The lemma is proved.

Together with Proposition 2.2, this lemma shows that $\left(U_{r}, H_{r}\right)$ is admissible. Moreover we have the following proposition.

Proposition 2.4. For $r \in Z$, the unitary representation $\left(U_{r}, H_{r}\right)$ of G is irreducible.

Proof. From [7], Chapter 4, Theorem 4.5.5.4, it is sufficient to prove that the g -module H_{r}^{0} is algebraically irreducible. Let H be a non-zero g stable subspace of H_{r}^{0}. Since H is stable under \mathfrak{f}, by Proposition 2.2, we have

$$
H=\bigoplus_{s \in S(H)} H_{r, s}^{0}
$$

where $S(H)$ is a non-empty subset of $\boldsymbol{Z}_{+} . \quad$ Suppose $s_{0} \in S(H)$, that is, $H_{r, s_{0}}^{0} \subset H$. We take a particular element

$$
\phi=\phi_{0, \cdots, \cdots, r+s_{0}, 0, \cdots, 0, s_{0}, 0, \cdots, 0}
$$

in $H_{r, s_{0}}^{0}$, where $r+s_{0}\left(\right.$ resp. $\left.s_{0}\right)$ appears in the $(p+1)$-th (resp. $(2 p+1)$-th) position. Then, by (2.7), we have

$$
U_{r}\left(X_{\lambda_{1}+\lambda_{p+1}}\right)(\phi)=2 \phi_{0, \cdots, 0, r+s_{0}+1,0, \cdots, \cdots, s_{0}+1,0 \cdots, 0} .
$$

Here the left hand side belongs to H and the right hand side belongs to $H_{r, s_{0}+1}^{0}$.

This implies $H \cap H_{r, s_{0}+1}^{0} \neq\{0\}$. Therefore we have $H_{r, s_{0}+1}^{0} \subset H$, that is, $s_{0}+1 \in$ $S(H)$.

Similarly, if $s_{0}>\max \{0,-r\}$, we have

$$
\begin{aligned}
U_{r}\left(X_{-\lambda_{1}-\lambda_{p+1}}\right)(\phi)= & -\frac{1}{2}\left(r+s_{0}\right) s_{0} \phi_{0, \cdots, 0, r+s_{0}-1,0, \cdots, 0, s_{0}-1,0, \cdots, 0} \\
& +2 \phi_{1,0, \cdots, 0, r+s_{0}, 0, \cdots, 0, s_{0}, 0, \cdots, \cdots, 1,0, \cdots, 0}
\end{aligned}
$$

where 1 appears in the first and $(2 p+q+1)$-th position. In this formula, the first term of the right hand side belongs to $H_{r, s_{0-1}}^{0}$ and the second term belongs to $H_{r, s_{0}+1}^{0}$. Since $H_{r, s_{0}+1}^{0} \subset H$, we have $H \cap H_{r, s_{0}-1}^{0} \neq\{0\}$ and hence $s_{0}-1 \in S(H)$.

By the induction, we have $S(H)=\left\{s \in Z_{+} \mid s \geqq-r\right\}$, that is, $H=H_{r}^{0}$. This proves the proposition.

After all we obtain a series of irreducible unitary representations of $G ;\left\{\left(U_{r}, H_{r}\right) \mid r \in \boldsymbol{Z}\right\}$.

3. The (g, K)-cohomology

In this section, we study the (g, K)-cohomology space of the (\mathfrak{g}, K)module $H_{r}^{0}(r \in \boldsymbol{Z})$.
3.1. First of all we recall a known result which is our starting point. Let (U, H_{U}) be in \hat{G} and (ρ, F) be a finite dimensional irreducible representation of G. Denote by $\mathfrak{U}(\mathfrak{g})$ the universal enveloping algebra of \mathfrak{g}_{c}. The representation of $\mathfrak{U}(\mathfrak{g})$ induced by U (resp. ρ) is denoted by the same letter U (resp. ρ). Let C be the Casimir element of g_{c}. Then both the operators $U(C)$ and $\rho(C)$ are the scalar operators. Put $U(C)=c_{U} \cdot$ Id and $\rho(C)=c_{\rho} \cdot$ Id, where $c_{U}, c_{\rho} \in \boldsymbol{C}$ and Id denotes the identity operator. If we note that K is connected, we have the following lemma.

Lemma 3.1. ([1], II, Proposition 3.1)
(1). If $c_{U} \neq c_{\rho}$, then $H^{j}\left(\mathfrak{g}, K ; H_{U}^{0} \otimes F\right)=\{0\}$ for all $j \in Z_{+}$.
(2). If $c_{U}=c_{\rho}$, then $H^{j}\left(\mathfrak{g}, K ; H_{U}^{0} \otimes F\right)=\operatorname{Hom}_{K}\left(\wedge^{j} \mathfrak{p}, H_{U}^{0} \otimes F\right)$ for all $j \in \boldsymbol{Z}_{+}$.
3.2. For $\left(U_{r}, H_{r}\right) \in \hat{G}$, we will calculate the operator $U_{r}(C)$.

Proposition 3.2. For $r \in Z$, we have

$$
U_{r}(C)=(4 n+4)^{-1}(r+2 p)(r-2 q) \cdot \mathrm{Id}
$$

Proof. We use a concrete realization of C and calculate explicitly the action of $U_{r}(C)$ on a particular element in H_{r}^{0}.

Recall that the Killing form of g_{c} is given by

$$
(X, Y)=2(n+1) \operatorname{Tr} X Y \quad\left(X, Y \in \mathrm{~g}_{c}\right)
$$

Using the basis of g_{c} in 1.1., we have

$$
\begin{aligned}
4(n+1) C= & \sum_{i=1}^{n} T_{i} T_{i}+\sum_{1 \leqq i<j \leqq n}\left(X_{\lambda_{i}+\lambda_{j}} X_{-\lambda_{i}-\lambda_{j}}+X_{-\lambda_{i}-\lambda_{j}} X_{\lambda_{j}+\lambda_{j}}\right) \\
& +2 \sum_{i=1}^{n}\left(X_{2 \lambda_{i}} X_{-2 \lambda_{i}}+X_{-2 \lambda_{i}} X_{2 \lambda_{j}}\right) \\
& +\sum_{1 \leqq i<j \leqq n}\left(X_{\lambda_{i}-\lambda_{j}} X_{\lambda_{j}-\lambda_{i}}+X_{\lambda_{j}-\lambda_{j}} X_{\lambda_{i}-\lambda_{j}}\right)
\end{aligned}
$$

First we consider the case that $r \geqq 0$. Take a particular element $\phi=\phi_{r, 0, \cdots, 0} \in H_{r}^{0}$. Using (2.4), $\cdots,(2.8)$, we calculate straightforwardly $4(n+1) U_{r}(C)(\phi)$. Some terms turn out to vanish and the other terms are given as follows;

$$
\begin{aligned}
& \sum_{i=1}^{n} U_{r}\left(T_{i} T_{i}\right)(\phi)=r^{2} \phi \\
& U_{r}\left(X_{\lambda_{i} \pm \lambda_{k}} X_{-\lambda_{i} \mp \lambda_{k}}\right)(\phi)=\left\{\begin{array}{lll}
-(r+1) \phi \pm 4 \phi^{\prime} & \text { if } & i=1 \\
-\phi \pm 4 \phi^{\prime \prime} & \text { if } & i \neq 1
\end{array}\right. \\
& U_{r}\left(X_{-\lambda_{i} \mp \lambda_{j}} X_{\lambda_{i} \pm \lambda_{j}}\right)(\phi)=\left\{\begin{array}{lll}
r \phi & \text { if } & i=1 \\
0 & \text { if } & i \neq 1
\end{array}\right. \\
& U_{r}\left(X_{-\lambda_{i} \mp \lambda_{k}} X_{\lambda_{i} \pm \lambda_{k}}\right)(\phi)=\left\{\begin{array}{lll}
-\phi \pm 4 \phi^{\prime} & \text { if } & i=1 \\
-\phi \pm 4 \phi^{\prime \prime} & \text { if } & i \neq 1
\end{array}\right. \\
& 2 U_{r}\left(X_{-2 \lambda_{i}} X_{2 \lambda_{i}}\right)(\phi)=\left\{\begin{array}{lll}
2 r \phi & \text { if } & i=1 \\
0 & \text { if } & i \neq 1
\end{array}\right.
\end{aligned}
$$

where $1 \leqq i<j \leqq p, p+1 \leqq k \leqq p+q$ and $\phi^{\prime}, \phi^{\prime \prime}$ are certain elements in H_{r}^{0} determined by ϕ. From these formulas, we can easily show that

$$
4(n+1) U_{r}(C)(\phi)=(r+2 p)(r-2 q) \phi
$$

In the case that $r<0$, if we take $\phi=\phi_{0, \cdots, 0,-r} \in H_{r}^{0}$, similar calculations yield the above formula. Thus the proposition is proved.
3.3. Now we will show the non-vanishing of the (g, K)-cohomology of H_{r}^{0}. For this, we need the following lemma.

Lemma 3.3. For $2 q \lambda_{1} \in D_{K}$, we have

$$
\operatorname{dim} \operatorname{Hom}_{K}\left(\wedge^{2 q} \mathfrak{p}, E_{2 q \lambda_{1}}\right)=1
$$

Proof. Any weight of $\wedge^{2 q} \mathfrak{p}_{c}$ is the sum of $2 q$ distinct non-compact roots of \mathfrak{g}_{c}. Since we have

$$
2 q \lambda_{1}=\sum_{k=p+1}^{p+q}\left\{\left(\lambda_{1}+\lambda_{k}\right)+\left(\lambda_{1}-\lambda_{k}\right)\right\}
$$

$2 q \lambda_{1}$ is a weight of $\wedge^{2 q} \mathfrak{p}_{c}$ with multiplicity 1 . It is easy to see that $2 q \lambda_{1}$ is the
highest among all the weights of $\wedge^{2 q} \mathfrak{p}_{c}$. The lemma is proved.
For $l \in \boldsymbol{Z}_{+}, l \lambda_{1}$ is a dominant integral form for $\left(g_{c}, \mathrm{t}_{c}\right)$. Denote by $\left(\rho_{l}, F_{l}\right)$ the irreducible finite dimensional representation of G with highest weight $l \lambda_{1}$; that is, $\left(\rho_{l}, F_{l}\right)$ is the l-th symmetric tensor product of the standard representation of G on $\boldsymbol{C}^{2 n}$. Let $\left(\rho_{l}^{*}, F_{l}^{*}\right)$ be the contragradient representation of $\left(\rho_{l}, F_{l}\right)$.

Theorem 3.4. If $r \geqq 2 q$, then we have

$$
H^{2 q}\left(\mathrm{~g}, K ; H_{r}^{0} \otimes F_{r-2 q}^{*}\right) \neq\{0\} .
$$

Proof. As it is well-known, the operator $\rho_{r-2 q}^{*}(C)$ is given by

$$
\rho_{r-2 q}^{*}(C)=\left\{\left((r-2 q) \lambda_{1}+\delta,(r-2 q) \lambda_{1}+\delta\right)-(\delta, \delta)\right\} \cdot \mathrm{Id},
$$

where $($,$) is the inner product in (\sqrt{-1} t) *$ induced from the Killing form of g_{c} and $\delta=\frac{1}{2} \sum_{\alpha \in \Delta^{+}} \alpha$. Note that

$$
\begin{aligned}
& \delta=\sum_{i=1}^{n}(n-i+1) \lambda_{i}, \\
& \left(\lambda_{i}, \lambda_{j}\right)=(4 n+4)^{-1} \delta_{i j} \quad(1 \leqq i, j \leqq n) .
\end{aligned}
$$

By easy computations, we have

$$
\rho_{r-2 q}^{*}(C)=(4 n+4)^{-1}(r+2 p)(r-2 q) \cdot \mathrm{Id} .
$$

From this and Proposition 3.2, $U_{r}(C)$ and $\rho_{r-2 q}^{*}(C)$ act as the multiplication by the same scalar. Hence Lemma 3.1 implies that

$$
\begin{aligned}
\operatorname{dim} H^{2 q}\left(\mathfrak{g}, K ; H_{r}^{0} \otimes F_{r-2 q}^{*}\right) & =\operatorname{dim} \operatorname{Hom}_{K}\left(\wedge^{2 q} \mathfrak{p}, H_{r}^{0} \otimes F_{r-2 q}^{*}\right) \\
& =\operatorname{dim} \operatorname{Hom}_{K}\left(\bigwedge^{2 q} \mathfrak{p} \otimes F_{r-2 q}, H_{r}^{0}\right) .
\end{aligned}
$$

On the other hand, by Proposition 2.2, we have

$$
\begin{equation*}
\operatorname{dim} \operatorname{Hom}_{K}\left(E_{r \lambda_{1}}, H_{r}^{0}\right)=1 \tag{3.1}
\end{equation*}
$$

Also, since $r \lambda_{1}=2 q \lambda_{1}+(r-2 q) \lambda_{1}$, Lemma 3.3 implies that

$$
\begin{equation*}
\operatorname{dim} \operatorname{Hom}_{K}\left(E_{r \lambda_{1}}, \wedge^{2 q} \mathfrak{p} \otimes F_{r-2 q}\right) \neq 0 \tag{3.2}
\end{equation*}
$$

Therefore, combining (3.1) and (3.2), we have

$$
\operatorname{dim} \operatorname{Hom}_{K}\left(\wedge^{2 q} p \otimes F_{r-2 q}, H_{r}^{0}\right) \neq 0
$$

This proves the theorem.
Remark 3.5. By Theorem 1.4 in [5], there is at most one irreducible unitary representation $\left(U, H_{U}\right)$ such that $U(C)$ acts by the same scalar as
$\rho_{r-2 q}^{*}(C)$ and $E_{r \lambda_{1}}$ occurs in H_{U}^{0}. Our representation $\left(U_{r}, H_{r}\right)$ is this very representation. Therefore we can determine the position of U_{r} in the Langlands' classification. In the case of $q=1,\left(U_{2}, H_{2}\right)$ is equivalent to the Langlands' representation $J_{1,2}$ in [3], Theorem 3.2.

4. The imbedding of U_{r} into $L^{2}(\Gamma \backslash G)$

In this section, we fix $r \in \boldsymbol{Z}$. We will construct a certain uniform discrete subgroup Γ of G such that $m\left(U_{r}, \Gamma\right) \neq 0$. Together with Theorem 3.4 and (0.1), this will prove the non-vanishing of the cohomology of Γ. The results in this section depend heavily on the results in [1], VIII, § 5.
4.1. Our discrete subgroup will be constructed arithmetically. First we realize G and G^{\prime} as subgroups of linear algebraic groups.

Let k be a totally real finite extension of \boldsymbol{Q} and d be the degree of k over \boldsymbol{Q}. Assume that $d \geqq 2$. Let $\Sigma=\left\{\sigma_{1}, \cdots, \sigma_{d}\right\}$ be the set of isomorphisms of k into \boldsymbol{R}. We regard k as a subfield of \boldsymbol{R} so that σ_{1} is the identity mapping. Put $k^{\prime}=k(\sqrt{-1})$. We extend $\sigma \in \Sigma$ to the imbedding of k^{\prime} into \boldsymbol{C} which leaves $\sqrt{-1}$ fixed. If \boldsymbol{H} is a linear algebraic group in $G L(l, \boldsymbol{C})$ defined over k or \boldsymbol{Q} and \boldsymbol{B} is a subfield of \boldsymbol{C}, we put $\boldsymbol{H}(\boldsymbol{B})=\boldsymbol{H} \cap G L(l, \boldsymbol{B})$.

Denote by $E_{k^{\prime}}$ the vector space $\left(k^{\prime}\right)^{2 n}$. We can choose $a \in k$ so that a is positive and the conjugates ${ }^{\sigma} a$ by $\sigma \in \Sigma\left(\sigma \neq \sigma_{1}\right)$ are all negative. Fix such a. Let h (resp. b) be a non-degenerate hermitian form (resp. a non-degenerate skewsymmetric bilinear form) on $E_{k^{\prime}}$ defined by the matrix

Then h is an indefinite hermitian form with signature $(2 p, 2 q)$ but the conjugates ${ }^{\sigma} h$ by $\sigma\left(\sigma \neq \sigma_{1}\right)$ are positive definite.

Using h and b, we can construct the linear algebraic group \boldsymbol{G} defined over k such that

$$
\boldsymbol{G}(k)=\left\{g \in S L\left(2 n, k^{\prime}\right) \left\lvert\, \begin{array}{l}
h(g z, g w)=h(z, w) \\
b(g z, g w)=b(z, w)
\end{array} \quad\left(z, w \in E_{k^{\prime}}\right)\right.\right\}
$$

Then $\boldsymbol{G}(\boldsymbol{R})$ is isomorphic to G over \boldsymbol{R}. Similarly, using only h, we obtain the linear algebraic group \boldsymbol{G}^{\prime} defined over k such that

$$
\boldsymbol{G}^{\prime}(k)=\left\{g \in S L\left(2 n, k^{\prime}\right) \mid h(g z, g w)=h(z, w) \quad\left(z, w \in E_{k^{\prime}}\right)\right\} .
$$

Also, $\boldsymbol{G}^{\prime}(\boldsymbol{R})$ is isomorphic to G^{\prime} over \boldsymbol{R}.
Naturally, we have the rational imbedding of \boldsymbol{G} into \boldsymbol{G}^{\prime} defined over k. We denote by $\psi ; \boldsymbol{G} \rightarrow \boldsymbol{G}^{\prime}$ this imbedding. It should be noted that, up to conjugation over $\boldsymbol{R},\left.\psi\right|_{\boldsymbol{G}(\boldsymbol{R})} ; \boldsymbol{G}(\boldsymbol{R}) \rightarrow \boldsymbol{G}^{\prime}(\boldsymbol{R})$ coincides with the imbedding $\psi ; G \rightarrow G^{\prime}$ in 1.2.
4.2. Now we denote by $\operatorname{Res}_{k / Q}$ the functor of the restriction of scalars from k to \boldsymbol{Q}. Let $\mathcal{G}=\operatorname{Res}_{k / Q} \boldsymbol{G}$ and $\mathcal{G}^{\prime}=\operatorname{Res}_{k / \boldsymbol{Q}} \boldsymbol{G}^{\prime}$. Then we have the canonical imbedding $\operatorname{Res}_{k / Q} \psi ; \mathcal{G} \rightarrow \mathcal{G}^{\prime}$ defined over \boldsymbol{Q}. Put $\Psi=\operatorname{Res}_{k / Q} \psi$.

Over \boldsymbol{R}, we have the following isomorphisms ([2], 7.16);

$$
\begin{aligned}
& \mathcal{G} \cong{ }^{\sigma_{1} \boldsymbol{G}} \times \times^{\sigma_{2} \boldsymbol{G}} \times \cdots \times \cdots{ }^{\sigma_{d} \boldsymbol{G}} \\
& \mathcal{G}^{\prime} \cong{ }^{\sigma_{1} \boldsymbol{G}^{\prime} \times{ }^{\sigma_{2}} \boldsymbol{G}^{\prime} \times \cdots \times{ }^{\sigma_{d} \boldsymbol{G}^{\prime}},}
\end{aligned}
$$

where, for $\sigma \in \Sigma,{ }^{\sigma} \boldsymbol{G}$ (resp. ${ }^{\sigma} \boldsymbol{G}^{\prime}$) denotes the conjugate of \boldsymbol{G} (resp. \boldsymbol{G}^{\prime}) by σ. So we have

$$
\begin{align*}
& \mathcal{G}(\boldsymbol{R}) \cong G \times S p(n) \times \cdots \times S p(n) \tag{4.1}\\
& \mathcal{G}^{\prime}(\boldsymbol{R}) \cong G^{\prime} \times S U(2 n) \times \cdots \times S U(2 n) . \tag{4.2}
\end{align*}
$$

Under these isomorphisms, the imbedding Ψ is the product of the conjugations $\sigma_{i} \psi ;{ }^{\sigma}{ }_{\boldsymbol{i}} \boldsymbol{G} \rightarrow{ }_{i} \boldsymbol{G}^{\prime}(1 \leqq i \leqq d)$ of ψ.

As in [1], VIII, 5.3, \mathcal{G}^{\prime} is naturally imbedded into $S p_{N}$ over \boldsymbol{Q} where $N=$ 2nd. In fact, consider $E_{k^{\prime}}$ as to be a $4 n$-dimensional vector space over k and write E_{k} instead of $E_{k^{\prime}}$. We define the skew-symmetric k-bilinear form β on E_{k} by

$$
h(z, w)=\mu(z, w)+\sqrt{-1} \beta(z, w) \quad\left(z, w \in E_{k}\right) .
$$

Then \boldsymbol{G}^{\prime} is imbedded into the symplectic group $S p_{2 n}$ defined by β over k. Further, if we consider $E_{Q}=\operatorname{Res}_{k / Q} E_{k}$ and $\beta_{Q}=\operatorname{Res}_{k / Q} \beta$, G^{\prime} is naturally imbedded into the group $S p_{N}$ defined by β_{Q} over \boldsymbol{Q}. Denote by $\Psi^{\prime} ; \mathcal{G}^{\prime} \rightarrow S p_{N}$ this imbedding.

Thus we obtain the imbedding $\Psi^{\prime} \circ \Psi ; \mathcal{G} \rightarrow S p_{N}$ defined over \boldsymbol{Q}. We choose a basis of E_{Q} so that β_{Q} is of standard form. With respect to this basis, we consider $S p_{N}$ as to be the subgroup of $G L(2 N, C)$. Define

$$
\begin{aligned}
& \mathcal{G}(\boldsymbol{Z})=\left\{g \in \mathcal{G}(\boldsymbol{Q}) \mid\left(\Psi^{\prime} \circ \Psi\right)(g) \in S p(N, \boldsymbol{Z})\right\} \\
& \mathcal{G}^{\prime}(\boldsymbol{Z})=\left\{g \in \mathcal{G}^{\prime}(\boldsymbol{Q}) \mid \Psi^{\prime}(g) \in S p(N, \boldsymbol{Z})\right\} .
\end{aligned}
$$

Then $\mathcal{G}(\boldsymbol{Z})$ (resp. $\mathcal{G}^{\prime}(\boldsymbol{Z})$) is an arithmetic subgroup of $\mathcal{G}(\boldsymbol{R})$ (resp. $\mathcal{G}^{\prime}(\boldsymbol{R})$) ([2], 7.11, 7.12). By a standard argument about arithmetic subgroups, $\mathcal{G}(\boldsymbol{Z})$ (resp. $\mathcal{G}^{\prime}(\boldsymbol{Z})$) turns out to be a uniform discrete subgroup of $\mathcal{G}(\boldsymbol{R})$ (resp. $\mathcal{G}^{\prime}(\boldsymbol{R})$)
([1], VIII, 5.4). In the direct product (4.1) (resp. (4.2)), denote by $p_{1} ; \mathcal{G}(\boldsymbol{R}) \rightarrow$ G (resp. $\left.p_{1}^{\prime} ; \mathcal{G}^{\prime}(\boldsymbol{R}) \rightarrow G^{\prime}\right)$ the projection to the first component. Define

$$
\Gamma_{0}=p_{1}(\mathcal{G}(\boldsymbol{Z})), \quad \Gamma_{0}^{\prime}=p_{1}^{\prime}\left(\mathcal{G}^{\prime}(\boldsymbol{Z})\right)
$$

Then Γ_{0} (resp. Γ_{0}^{\prime}) is a uniform discrete subgroup of G (resp. G^{\prime}) ([1], VIII, 5.5). Clearly we have

$$
\psi\left(\Gamma_{0}\right) \subset \Gamma_{0}^{\prime}
$$

As for the group G^{\prime} and its representation $\left(V_{r}, H_{r}\right)$, Borel and Wallach obtained the following theorem.

Theorem 4.1 ([1], VIII, Corollary 5.8). There is a subgroup Γ^{\prime} of finite index in Γ_{0}^{\prime} such that $m\left(V_{r}, \Gamma^{\prime}\right) \neq 0$, where $m\left(V_{r}, \Gamma^{\prime}\right)$ is the multiplicity of V_{r} in $L^{2}\left(\Gamma^{\prime} \backslash G^{\prime}\right)$.

As the proof of this theorem in [1] shows, Γ^{\prime} is indeed a congruence subgroup of Γ_{0}^{\prime}; that is, Γ^{\prime} is given by

$$
\Gamma^{\prime}=p_{1}^{\prime}\left(\Omega^{\prime}\right)
$$

where Ω^{\prime} is a congruence subgroup of $\mathcal{G}^{\prime}(\boldsymbol{Z})$. Using this subgroup Γ^{\prime}, we can construct our desired subgroup of G.

Theorem 4.2. There is a subgroup Γ of finite index in Γ_{0} such that $m\left(U_{r}, \Gamma\right)$ $\neq 0$.

Proof. Let Γ^{\prime} and Ω^{\prime} be as above. There is a congruence subgroup Ω of $\mathcal{G}(\boldsymbol{Z})$ such that $\Psi(\Omega) \subset \Omega^{\prime}([2], 7.12)$. Put $\Gamma=p_{1}(\Omega)$. Then Γ is a subgroup of finite index in Γ_{0} and we have

$$
\begin{equation*}
\psi(\Gamma) \subset \Gamma^{\prime} \tag{4.3}
\end{equation*}
$$

In the following, we will prove that $m\left(U_{r}, \Gamma\right) \neq 0$. As in 2.1, let H_{r}^{∞} be the space of C^{∞}-vectors in H_{r} for the representation $\left(V_{r}, H_{r}\right)$ of G^{\prime}. Since $m\left(V_{r}, \Gamma^{\prime}\right)$ $\neq 0$, by [1], VIII, Theorem 4.3, there is a non-trivial continuous linear functional λ of H_{r}° such that

$$
\lambda \circ V_{r}(\gamma)=\lambda
$$

for all $\gamma \in \Gamma^{\prime}$. Using λ, we want to construct a non-trivial intertwining operator of H_{r} into $L^{2}(\Gamma \backslash G)$. For $\phi \in H_{r}^{\infty}$, define a function $A^{\prime}(\phi) ; G^{\prime} \rightarrow \boldsymbol{C}$ by

$$
A^{\prime}(\phi)(g)=\lambda\left(V_{r}(g) \phi\right) \quad\left(g \in G^{\prime}\right)
$$

Then $A^{\prime}(\phi)$ is a C^{∞}-function on G^{\prime} and left Γ^{\prime}-invariant. Since G is imbedded into G^{\prime} by ψ as a Lie subgroup, $A^{\prime}(\phi) \circ \psi ; G \rightarrow \boldsymbol{C}$ is a C^{∞}-function on G. Also,
by (4.3), $A^{\prime}(\phi) \circ \psi$ is left Γ-invariant. So we can define a linear mapping $A ; H_{r}^{\infty} \rightarrow C^{\infty}(\Gamma \backslash G)$ by

$$
\begin{aligned}
A(\phi)(\Gamma g) & =A^{\prime}(\phi)(\psi(g)) \\
& =\lambda\left(U_{r}(g) \phi\right) \quad\left(\phi \in H_{r}^{\infty}, g \in G\right)
\end{aligned}
$$

Clearly we have

$$
A\left(U_{r}(g) \phi\right)=U_{\Gamma}(g) A(\phi) \quad\left(\phi \in H_{r}^{\infty}, g \in G\right)
$$

where U_{Γ} is the right regular representation of G on $L^{2}(\Gamma \backslash G)$. Moreover, from the continuity of λ, we have

$$
\begin{equation*}
A\left(U_{r}(X) \phi\right)=U_{\Gamma}(X) A(\phi) \quad\left(X \in \mathrm{~g}, \phi \in H_{r}^{\infty}\right) \tag{4.4}
\end{equation*}
$$

Let $\langle\rangle,\left(\right.$ resp. $\left.\langle,\rangle_{\Gamma}\right)$ be the inner product on $H_{r}\left(\operatorname{resp} . L^{2}(\Gamma \backslash G)\right)$. For K-finite vectors $\phi_{1}, \phi_{2} \in H_{r}^{0}$, set

$$
\begin{equation*}
\left(\phi_{1}, \phi_{2}\right)=\left\langle A\left(\phi_{1}\right), A\left(\phi_{2}\right)\right\rangle_{\Gamma} \tag{4.5}
\end{equation*}
$$

Then (,) defines a \mathfrak{g}-invariant hermitian form on the (g, K)-module H_{r}^{0}. Here, by Proposition 2.2, H_{r}^{0} decomposes into the sum of the isotypic K-submodules;

$$
H_{r}^{0}=\underset{s \in \mathbb{Z}_{+}, s \geq-r}{\oplus} H_{r, s}^{0}
$$

Since $\left.A\right|_{H_{r}^{0}} ; H_{r}^{0} \rightarrow L^{2}(\Gamma \backslash G)$ is K-equivariant, this decomposition is the orthogonal direct sum with respect to (,), too. Also, each $H_{r, s}^{0}$ is finite dimensional. From these facts, it is easy to see that there is a linear mapping $B ; H_{r}^{0} \rightarrow H_{r}^{0}$ such that

$$
\begin{equation*}
\left(\phi_{1}, \phi_{2}\right)=\left\langle B \phi_{1}, \phi_{2}\right\rangle \quad\left(\phi_{1}, \phi_{2} \in H_{r}^{0}\right) . \tag{4.6}
\end{equation*}
$$

Then, by (4.4), we have

$$
B\left(U_{r}(X) \phi\right)=U_{r}(X)(B(\phi)) \quad\left(X \in \mathfrak{g}, \phi \in H_{r}^{0}\right)
$$

Since H_{r}^{0} is an irreducible (g, K)-module, B is a scalar operator $\nu \cdot$ Id where $\nu \in \boldsymbol{R}$ and $\nu \geqq 0$. Combining (4.5) and (4.6), we have

$$
\left\langle A\left(\phi_{1}\right), A\left(\phi_{2}\right)\right\rangle_{\Gamma}=\nu\left\langle\phi_{1}, \phi_{2}\right\rangle \quad\left(\phi_{1}, \phi_{2} \in H_{r}^{0}\right) .
$$

This implies that $\left.A\right|_{H_{r}^{0}}$ is continuous with respect to the topology of H_{r}^{0} in H_{r}. Hence the operator $\left.A\right|_{H_{r}^{0}}$ extends to a bounded operator

$$
\bar{A} ; H_{r} \rightarrow L^{2}(\Gamma \backslash G)
$$

Note that H_{r}^{0} consists of analytic vectors for U_{r} and G is connected. Then (4.4) implies that

$$
\bar{A}\left(U_{r}(g) \phi\right)=U_{\Gamma}(g) \bar{A}(\phi) \quad\left(\phi \in H_{r}, g \in G\right)
$$

and hence \bar{A} is an intertwining operator of (U_{r}, H_{r}) into ($U_{\Gamma}, L^{2}(\Gamma \backslash G)$).
On the other hand, λ is non-trivial. From the density of H_{r}^{0} in $H_{r}^{\infty},\left.\lambda\right|_{H_{r}^{0}}$ is non-trivial. Hence \bar{A} is non-trivial. The theorem is proved.

Corollary 4.3. For $l \in Z_{+}$, there is a uniform discrete subgroup Γ of G such that

$$
H^{2 q}\left(\Gamma, F_{l}^{*}\right) \neq\{0\}
$$

Proof. Theorem 3.4 implies that

$$
H^{2 q}\left(\mathrm{~g}, K ; H_{l+2 q}^{0} \otimes F_{l}^{*}\right) \neq\{0\} .
$$

Then, by [1], I, Theorem 5.3, the infinitesimal character of $H_{l+2 q}$ is equal to that of F_{l}. Applying Theorem 4.2 to $U_{l+2 q}$, we obtain a uniform discrete subgroup Γ such that $m\left(U_{l+2 q}, \Gamma\right) \neq 0$. Then, by (0.1), we have

$$
H^{2 q}\left(\Gamma, F_{l}^{*}\right) \neq\{0\} .
$$

Remark 4.4. In the above corollary, we consider the case $l=0$. Then we have

$$
H^{2 q}(\Gamma, \boldsymbol{C}) \neq\{0\}
$$

More precisely, $H^{2 q}(\Gamma, \boldsymbol{C})$ contains a cohomology class which corresponds to a non-trivial automorphic representation. This improves the result in [4]. In [4], Millson and Raghunathan showed that, for some $\Gamma, H^{i}(\Gamma, \boldsymbol{C})$ contains such a class for any i strictly between 0 and $4 p q$ and divisible by either $4 p$ or $4 q$ ([4], Theorem 4.1).

References

[1] A. Borel, N. Wallach: Continuous cohomology, discrete subgroups and representations of reductive groups, Ann. Math. Studies, No. 94, Princeton University Press, 1980.
[2] A. Borel: Introduction aux groupes arithmetiques, Hermann, 1969.
[3] D.H. Collingwood: A note on continuous cohomology for semi-simple Lie groups, Math. Z. 189 (1985), 65-70.
[4] J.J. Millson, M.S. Raghunathan: Geometric construction of homology for arithmetic groups I, Geometry and analysis, Indian Academy of Sciences and Tata Institute of Fundamental Research, Springer, 1981, 103-123.
[5] D.A. Vogan, Jr, G.J. Zuckerman: Unitary representations with non-zero cohomology, Compositio Math. 53 (1984), 51-90.
[6] N. Wallach: Symplectic geometry and Fourier analysis, Math. Sci. Press, Boston, 1977.
[7] G. Warner: Harmonic analysis on semi-simple Lie groups I, Grund. Math. Wiss. 188, Springer, 1972.

Department of Integrated Arts and Sciences
University of Osaka Prefecture
Sakai, Osaka 591
Japan

