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Introduction

Let G be a connected semi-simple Lie group with finite center and no
compact factors. Let T" be a uniform discrete subgroup of G and (p, F) be
a finite dimensional irreducible representation of G. We are interested in the
cohomology space H*(T', F). The purpose of this paper is to prove a non-
vanishing theorem for H*(T, F) in the case of G=Sp(p, q) (p=q=1).

As it is well-known, we can describe H*(T", F) in terms of the relative Lie
algebra cohomology. Let g be the Lie algebra of G and K be a maximal
compact subgroup of G. Denote by G the unitary dual of G. For (U, Hy)e
G, we denote by HY the space of K-finite vectors in Hy. Then HY is an
irreducible (g, K)-module. Also m(U, T") denotes the multiplicity with which
U occurs in LAT'\G). Define the subset G, of G as follows;

G, = {UEG|Xy=Xp}

where p* is the contragradient representation of p and Xy (resp. X,) is the
infinitesimal character of U (resp. p*). Then, from the formula of Matsu-
shima-Murakami ([1], VII, Theorem 6.1), we have

(0.1) HXT, F)= 3 m(U, T)H*(g, K; HyQF).

Teb,

From now on, we assume that G is simple. Depending on Kumaresan’s
work, Vogan and Zuckerman obtained the following precise vanishing theorem
for the (g,K)-cohomology ([5], Theorem 8.1); if U is non-trivial, we have

Hi(g, K; HyQF) = {0}  (i<r)

where 7; is the positive integer determined by G and given by Table 8.2 in
[5] for non-complex groups. From this result and (0.1), if F is non-trivial, we
have

HiT, F)= {0}  (i<ro).
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Note that 7, depends only on G and, in general, 7;=rank, G. On the other
hand, the vanishing of HY(T', F) below the R-rank has been obtained in some
papers ([1], VII, Proposition 6.4). There are some simple groups such that
re=rankp G. In the case of G=SU(p, q) (p=g=1), where 7o =g=rankg G,
Borel and Wallach showed that this vanishing theorem is best possible ([1],
VIII, Corollary 5.9).

We concentrate our attention on the case of G=Sp(p, q). In this case,
r¢=2q and hence 7;>q=rank, G. Therefore it is interesting to ask if the above
vanishing theorem is best possible for G=Sp(p, q). In this paper, we show
that, in the case of G=Sp(p, q), the first possible non-zero cohomology H*(T', F)
appears indeed at the degree 2g=r;. Main results are Theorem 3.4 and
Theorem 4.2. In the case that F is trivial and ¢=1, Theorem 3.4 is contained
in the results of [3], Theorem 3.2 (see Remark 3.5). Also Theorem 4.2 for
trivial F improves a part of the results of [4], Theorem 4.1 (see Remark 4.4.).

Our method is similar to that in [1}, VIII and depends heavily on the
results there.

1. The imbedding of Sp(p, q) into Sp(2n, R)

1.1. Throughout this paper, G will denote the group Sp(p, q) (p=¢=1).
At first we give our realization of G' and provide some notations.
We set n=p-q. Let K, , be the 2nX 2n matrix given by

where 1,, is the m X m identity matrix. The group G is given by
G ={gSp(n, C)'¢K, & = K, i} -

As a maximal compact subgroup of G, we choose K=G N U(2n). Let g (resp. f)
be the Lie algebra of G (resp. K) and g=f+p be the Cartan decomposition of g.
For a real Lie algebra u, denote by 1, the complexification of 1.

Let E;; be the square matrix with 1 in the (7, j)-position and 0 elsewhere.
For 1=5i<n, set

E. ‘ 0
T,'=
—E,
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and define
t= {3 pT;ln,€V ~1R}.
i=

Then t is a Cartan subalgebra of g such that tCf. Also define \;et* (1<i<n)
by

M(j;‘ wiTy) = ;i .
The root system A (resp. A,) of the pair (g., t.) (resp. (L, t,)) is given by
A={tNEN1=,j<n}
(resp. Ay = {ENEN 1S4, j<p or p+1=<i,j=<p+q}).

We choose an order of (1/—1t)* so that the set of simple roots in A is {\,—2,,
Az—Ng; ***s Agoy— Ay 205}, Denote by A* (resp. Ay) the set of positive roots in
A (resp. Ay). Throughout this paper we fix this order.

For later use, we choose root vectors of g, as follows;

0| Fy
XA.‘+Aj il e E— (1§i; J=n)
00
0,0
X—M—Aj =\ (1§i1 ]én)
Ffj O
E;| O
XM—M = (1§l’ j=mn, 14:.7)
0 |-B,

Where F,,=EU+E], if i*j and Fiszii if i:j. Thcn {T,Iléién}u
{X,|as A} is a basis of g..

1.2. Now we construct an imbedding of G into Sp(2n, R). Our im-
bedding is obtained by composing an imbedding of G into SU(2p, 2¢) and an im-
bedding of SU(2p, 2q) into Sp(2n, R). From now on, G’ denotes the group
SU(2p, 2g). Asamaximal compact subgroup of G’, we choose K'=G'N U(2n).
Let g’ be the Lie algebra of G'.

The group G is naturally imbedded into the uintary group of the hermitian
form on C* defined by K,,. We put
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Ll 0o |0 \
01|
Z=| 0 0
Lo
0| o0 |1,

Then ‘ZK,  Z gives the standard hermitian form with signature (2p, 2q). So,
if we define

v(g)="2gZ (g€06),

we obtain an imbedding yr; G—G'. Clearly we have y«(K)CK'.

Moreover we will imbed G’ into Sp(2n, R). Naturally we consider
GL(2n, C), and hence G’, as to be the subgroups of GL(4n, R). Define the
orthogonal matrix Z’ by

/12, 0
Z'=| 0 | —1L,

0 1,

Then it is easily checked that, if we define
v(g) ='2¢Z" (g€G),
we obtain an imbedding y»'; G'— Sp(2n, R). This is the same imbedding that

is constructed in [1], VIII, § 2.
In this way we obtain the imbedding

¢ = 'op; G— Sp(2n, R).

These imbeddings 4, ¥+’ and ¢ induce the imbeddings of Lie algebras and we
use the same letters for them;

LV A 4
V'; 8. — 8p(2n, C)
2 ; gc—-) g‘p(zn) C) *

1.3. Here we give the explicit form of the image of ¢. It will be used
in § 2. For this, we choose a basis of 8p(2n, C) as follows;

0 ’E,-,-
8= v=i|— 1

(1=i<2n),

—Ey| 0
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Y= (1<i, j<2n)
—V _lFU -F'J
[ Fa [VEIR,
Y= 5| —— (1<i, j<2n)
V—1F, —F,
1 Eij_Eji \/_—lFij
Zi = | —— (1=i<j=<2n)
1| Ei—E; V—1Fy
Zh = (1<i< j<2n)

where F;;=E;;+E;; if i=j and F;;=E;; if i=j. By straightforward computa-
tions we obtain the following explicit description for the image of ¢; for 1=

i<j<pand p+1=<k<I<p+q,

L(T;) = Si‘Sp+i
L(Tk) = _Sp+k+Sp+q+k
L(Xi(;\;ﬂ;)) = Zﬁpu‘i‘zfﬂi

. _
U Xeopmap) = — Yiprarrt Yiei pas

11 ‘(Xj:<x,,+>.,)) = —ZFihprari—ZL i1 prask
(1.1) U Xary) = Zl:'.pﬂ‘
‘(X:tzm.) = —Zfik.prart

‘(X:t(x,--x,-)) = Zii.i —Zf+i.p+i

L(X;t(x,-—x,,)) = - Y}—",,,”+ Yf+i.p+q+k

F +
‘(Xi(xk—x,)) = ‘“Z;'+k.p+l+zp_+q+k.p+q+l .

2. The construction of unitary representations

In this section, we construct a certain series of irreducible unitary repre-
sentations of G. In [1] Borel and Wallach constructed some irreducible repre-
sentations of G’ by using the oscillator representation. Our representations
are obtained from these representations through the imbedding +; G—G’.
We will often use the results and notations in [1], VIII.

2.1. First we sketch briefly the results in [1], VIII, § 2. Let Mp(2n, R)
be the Metaplectic group and (W, L*(R*)) be the oscillator representation of
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Mp(2n, R). The imbedding ++'; G'— Sp(2n, R) lifts to an injective homomor-
phism v+'; G’ — Mp(2n, R) ([1], VIII, Lemma 2.9). Define the unitary repre-
sentation (V, L R*™)) of G’ by

V(e)=WP'(g) (¢€6).

Then (V, L R™)) decomposes into the direct sum rof irreducible representations
of G'. In fact, for &€ Z, define the subspace H, of L}(R™) by

H, = {p € LAR™)| W(Exp t]5,,,)($) = exp(— V' —1(p—g+7)1)$}
where Exp is the exponential mapping of 8p(27, R) into Mp(2n, R) and

—IL,| 0
0
0 | I,
Jor2a = esph(2n, R).
L,| 0
— 0
0 |—1,

Then H, is stable under G’ and so we put

Vi) =V(&ls, (8€G).

From [1], VIII, Lemma 2.8, for each r&Z, (V, ,H,) is an irreducible unitary
representation of G’ and we have

LZ(RZ:I) = ’GEBZH’, .

In the remainder of this section, we fix r&Z. Denote by S(R™) the
Schwartz space on R with the Schwartz topology and set Hy=H,N S(R™).
Then H7 is the space of C~-vectors for V, in H, ([1], VIII. Lemma 1.11). Also,
we denote by H? the space of K'-finite vectors for V, in H,. The space H} is
an irreducible admissible (g’, K’)-module.

In order to choose an orthogonal basis of H}, we need some notations.
Let (x,, -*+, x,,) be the coordinates of R?. Following [1], VIII, 1.16, for 1=
J =2n, define the operator D; and A7 by

D;= l( o xz-), A7 = %(—a—:}:xj).

2\ox2 ox;

Denote by Z, the set of non-negative integers. For m=(m,, -+, m,,) E(Z,)™,
we set

bm = (A7)"(A7)"2 ++ (A7) "2rdho
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where ¢, is the C~-function on R* defined by
do(%) = (2n) " exp (——;— ‘ZV:,‘ x ) (x=sR™).
i=1

(Note that ¢,, is equal to 4, in [1] VIII 1.16, up to the multiplication by a
constant.) Then, by [1], VIII, Lemma 1.17, {¢,|m & (Z,)*"} are mutually
orthogonal in L?(R**) and we have

(2.1) H!= & C4,

med
where ®,= {mE(Z_F)Z”IzZp m;— ‘Z‘ my=r}.
i=1 i=2p+1

2.2. Now we construct unitary representations of G. Using the imbedd-
ing Yr; G—G’, we define

Ulg) = V.(¥(g)) (2€6).

Then we obtain the unitary representation (U,, H,) of G. Clearly, the subspace
H? of H, is included in the space of K-finite vectors for U, in H, and stable
under g and K. Thus H? isa(g, K)-module. The infinitesimal representation
of g. on H} induced from U, is denoted by the same letter U,.

We will examine the (g, K)-module H} in detail. First we consider the
infinitesimal representation (W, S(R™)) of 8p(2n, C) induced from (W, LA R™)).
By [2], p. 232, Theorem 5.4, the action of 8p(2n, C) on S(R?™) is explicitly given
as follows;

W(S;) = D; (1=i=2n)
W(YH) = £24F4F  (1=i, j<2n, i+))
W(YE) = LAFAF  (1=5i<2n)

W(Z%) = 24847 (ISi<js2n).

Using the relation formulas among D; and 47 in [1], VIII, 1.16, we obtain

2.2)

Di(en) = —%(2m,.+1)¢,,1,...,,,,”

1
At A} (pw) = Tm,‘m,-g[),,,,,...,,,,,._1_...,,,,1._1,...,,,,2,l

+ g4+ 1
(2.3) Ai Af (pm) = Tmi(mi"1)¢mh...,,,,,-_2....,,,,2"

A,—AJ_ ((ﬁ,,,) = ¢’mx,"‘.m+l.---.mf'+1."'.'nz,.

As- A: (¢m) = ¢m1,u-,mi+2-"""'2n

v A 1
A,‘ A, (¢m) = —7m;¢,,,‘,...,,,,,._1,..._,,,1-4.1,...,,,2“
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where me&(Z,)”, 1<5i<j=<2n and ¢;,,..,,, is considered to be 0 if k<0 for
some i. Therefore, combining (1.1), (2.2) and (2.3), we have the
formulas; for 1=4, j<p and p+1=k, I< p-+q,

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

{

U(T:)( ) = (Mpsi— )b
UAT3)($m) = (Mpsr—Mpsg48)Prm
U,(XMH,-)(qb,,,) = —m ¢m1.---.mi—l-"'-mﬁ+i+1."‘.m2n
M Py e =1,y L 2
U Xn)(Pm) = —m; L I D g
U (Xsy2,)(Pm) = Mps gt Pomgyooesmpy stLresmps g4 =Ly
+Myy g gb,,,l,...,,,,l,ﬂﬂ,...,,,,pﬂ“_I,A..,,,,z”
U X)) (D) = My gk Pmgsoesmp s sty g 4=1omzn
U Xyi-r))(Pm) = — M Py ccomim1,esm 41,0,y
+Mmyy; ¢m1,--',ml,+;+l.“-,mp+j-1.~~-,m2n
Ul Xnga)(Pm) = Myt Ponoimp s b1 smpy =1,z
T Mptgtk ¢m1-“"’"p+q+ Bl mpyg gt mey
U (X pio2;) (@) = —Mpii Ponyoesmjtt, o impy im1,esmzn
My Pon oot 1y mp g = 1o s iz
U (X _2)(Pm) = —Mpii Pou e mit 1, mp =12
Ul X oryn ) (D) = Mpsy ngemp s =1, smp g 4 1 iz
+ My ¢,,,l,...,m“,,_1,...,,,,““,,,1,...,,,,2”
U, (X_2,)(Pm) = My kP oemp g 4= Lves M g 5+, s M2y
U X _3n;)(Pm) = —Mibp o mitr, e imj=1,,m2n
+Mpy; ¢,,,1,...,,,,M,._l,...,m“jﬂ,...,,,,,m
U X at2,)(Pm) = My Dongyoeompy g1, esmpy 141,120

—'mp+q+l¢ml,~~,m,+q ekl My g =1, M2y

1
U, (Xni42,) (D) = 5 M Mg gtk Doy mim 1, mp g gy h=1,ns M2,

+2¢m1,-~~,mp+,-+1,~--,m_b+ g+l mzy,

1
Ur(in—M)(d’m) = —?mimﬁ*’k ¢m1"",mi‘1»""’"ﬁ+h‘1~"'-’”2n
_2¢m1."‘n’”p+i+1."'.”’p+q+k+1."'.m2"
1
Ur(X-M—A,,)(d’m) = _—z_mﬁﬂ'mﬁ*‘k ¢m1»"'.mp+i-l."'.mp+lc’1:"'.m2n

+2¢m1,--'.mi+l.-~~.m;+g w L M2y

following
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1
U"(X'As"*'Ak) (¢m) = ~2_ mﬁ""i mﬁ+4+k¢m1.“'.mﬁ+i‘l»"':"‘p.p.q +h=1, M2y

+2¢M1,~~,m+l.-~.m,+ g1, may,

Of course, in these formulas, ¢, .. s, should be considered as to be 0 if 2<0
for some 1.

Now we can determine the set of weights of the g,-module H). Let ¢,
be in HY. By (2.4) we have

b+q

U,(3Y () = {2 (Mpri—m)psi T 33 (Mys— g )ik b

From this, the following lemma immediately follows.

Lemma 2.1. Let m=(my, ---,m,,) be in ®,. In the g.-module H), ¢, is
a weight vector corresponding to the weight

P p+aq
Ay = g (mjm'’“mi))w"‘kzzj:‘;ux (Mpsr— My grr)Ni -

We remark that the multiplicity of A,, in Hj is not finite.

2.3. Here we determine the K-spectrum of H). Let K be the set of all
equivalence classes of irreducible representations of K. Define the subset Dy
of t¥ by

a,€Z
Dy = (v =an | a2a,2 - 24,20
- Ay ZApyy = 24, 20

Then there is the bijective correspondence between K and D,. That is, reDy
corresponds to the irreducible K-module with highest weight n. We denote
by E, this K-module.
Let s&€Z, and s=—r. We define the finite dimensional subspace H?  of
H? by
H 2-5 = @ Cd)m 3

med
7,8

where the subset @, , of @, is given by

D,, = {mE(Z,u)Z”l% m=rts, 3% m; = s} .
i=1 i=2p+1
From (2.1), we have

H(:: @ Hg.s-

s€z+,sg—r
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Proposition 2.2. Let s€Z, and s=—r. Then H) ; is the irreducible K-
submodule of H? with highest weight (r+s)\;+s\,+;EDg. Hence we have

0
H; = S} E(r+s)}\1+s}\p+1

SEZ+,sg—r

as K-modules.

Proof. Put E=E( g +a,,,- Let X bein f. By (24), (2.5) and (2.6),
U,(X)(¢nm) is a linear combination of ¢,/= ..., m;, Such that

20 , 20 2n , 2n
Simi=>m;, > mi= >} m;.
i=1 i=1 i=2p+1 i=2p+1

Therefore H? , is stable under ..

Now we put ¢=dy... 0,450,000 Where r4s (resp.s) appears in the
(p+1)-th (resp. (2p+1)-th) position. Then p=H? ; and, by Lemma 2.1, ¢ is
a weight vector corresponding to the weight (r4§)A;+sh,4;. It is easy to see
that this weight is the highest among all the weights for H? ;. Hence E; certainly
occurs in H? ..

We compare the dimension of H{ ; with that of E,. Since {¢,|mE®, } is
a basis of H? ;, we have

dim H? ; = §®, ,
_ ( 2p—f—;—::——1 )( 2q-}—ss—l )

_ (2pFr+s—1)1(2g+s—1)!
2p—D)lr+9)1(2g—1)ls!

On the other hand, Weyl’s dimension formula gives the dimension of E,.

Denote by ( , ), the inner product in (v/—1t)* induced from the Killing
form of £.. Recall that

(s Ai)y= 0 if Q=]

(s M)y = (4g+4)1 i p+I<isptq.

+

Also put 8r=% EA a. Then we have
as t

b= 33 (p—i+ Dt 33 (p+a—k+ D

From these formulas, easy calculations yield
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ug+((r+s)7\‘l+s7\'p+l+ 8,, a)[
dim E, = =1
m s ¢g+(ar’ a)r
t
_ @ptr+s—1)(2¢+s—1)!

2p—1)\(r+5)!2g—1)1s!
=dimH} .

Hence H) ; is equivalent to E,.

2.4. In this stage, we must determine the space of K-finite vectors in
H, for U,.

Lemma 2.3. The space of K-finite vectors in H, for U, coincides with H?.

Proof. For €K, let H,(7) be the isotypic K-submodule of H, of type .
Clearly H? is stable under Kand H )C s> H,(7). Hence we have H)= @ H!N

TEK TEK

H(r). Since H} is dense in H,, by [7], Chapter 4, Proposition 4.4.3.4, the
closure of Hy N H,(r) is H,(7). By Proposition 2.2, HYN H,(r) is finite dimen-
sional. Therefore we have H7N H,(r)=H,(7) and hence H}= @ H,(r). The
lemma is proved. rek

Together with Proposition 2.2, this lemma shows that (U,, H,) is admis-
sible. Moreover we have the following proposition.

Proposition 2.4. For rEZ, the unitary representation (U,, H,) of G is
irreducible.

Proof. From [7], Chapter 4, Theorem 4.5.5.4, it is sufficient to prove
that the g-module H?} is algebraically irreducible. Let H be a non-zero g-
stable subspace of H). Since H is stable under ¥, by Proposition 2.2, we
have

H= @ Hg,s,

seSH)

where S(H) is a non-empty subset of Z,. Suppose s,ES(H), that is, H} , CH.
We take a particular element

95 = ¢o.-~-,o,r+so,o,~-~,o,s°.o.~~-.o

in H} ., where r+s, (resp. s,) appears in the (p+1)-th (resp. (2p+1)-th) posi-
tion. Then, by (2.7), we have

Ur(XA1+A,+1)(¢) = 2¢o.---.o.r+so+1,o.---,o.so+1,o~--,o .
Here the left hand side belongs to H and the right hand side belongs to H?; ,,.
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This implies H N H?,; 4, % {0}. Therefore we have H? ;.1 CH, that is, s,+1€
S(H).

Similarly, if s,>max {0, —r}, we have

Ur(X—xl-xH 1)(4)) = —% (7+50)% P, -,0,7+59=1,0,,0,56=1,0, *,0

F261,0,+,0,7+50,0,7,0,50,0,+,0,1,0,,0 >

where 1 appears in the first and (2p+¢-+1)-th position. In this formula, the first
term of the right hand side belongs to H7 , _, and the second term belongs to
7.sg+1- Since HY .1 CH, we have H N H? .13 {0} and hence s,—1&S(H).
By the induction, we have S(H)={s€Z,|s=—r}, that is, H=H;. This
proves the proposition.

After all we obtain a series of irreducible unitary representations of

G; (U, H)|rez}.

3. The (g, K)-cohomology

In this section, we study the (g, K)-cohomology space of the (g, K)-
module H? (re Z).

3.1. First of all we recall a known result which is our starting point. Let
(U, Hy) be in G and (p, F) be a finite dimensional irreducible representation of
G. Denote by (g) the universal enveloping algebra of g.. The representation
of U(g) induced by U (resp. p) is denoted by the same letter U (resp. p). Let C
be the Casimir element of g.. Then both the operators U(C) and p(C) are the
scalar operators. Put U(C)=c¢y-Id and p(C)=c,-1d, where ¢, c,&C and Id
denotes the identity operator. If we note that K is connected, we have the
following lemma.

Lemma 3.1. ([1], II, Proposition 3.1)
(1). If cy=c,, then Hi(g, K; HyQF)=A{0} for all jEZ,.
(2). If cy=c,, then H(g, K; HyQF)=Homy(A’'p, HyQF) for all j€Z,.

3.2. For (U,, H,) €@, we will calculate the operator U,(C).
Proposition 3.2. For r&Z, we have
U,(C) = (4n+4)"(r+2p)(r—29)-1d .

Proof. We use a concrete realization of C' and calculate explicitly the
action of U,(C) on a particular element in H?.
Recall that the Killing form of g, is given by

X, Y)=2+)Tr XY (X,YeEg,).
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Using the basis of g, in 1.1., we have
Hot)C =TT 3 (Ko Xnon,+ Xonien, X
+2 33 (Xo, X+ X0 Xon)

2 (XA;—AjXAj—A;+XA,’—MXA,-—)\,') .

1Si<isn

First we consider the case that 7=0. Take a particular element ¢p=¢,,.. ;€ H?.
Using (2.4), -+, (2.8), we calculate straightforwardly 4(n+1) U, (C)(¢). Some
terms turn out to vanish and the other terms are given as follows;

3 UAT,T)(@) = 7'

U'(X’\iiMX‘AFM)(‘P) = { —(r+ 1)¢j:4¢’ if 7=1

Ay i i1
UKo i) = { 7 -
N N B
20X X)) = { o * ot

where 1<i<j<p, p+1=<k=p+q and ¢’, ¢” are certain elements in H? de-
termined by ¢. From these formulas, we can easily show that

Hn+1)U(C)(¢) = (r+2p)(r—29)¢ -

In the case that 7<<0, if we take ¢p=,,..o,-,EH, similar calculations yield the
above formula. Thus the proposition is proved.

3.3. Now we will show the non-vanishing of the (g, K)-cohomology of
H?. For this, we need the following lemma.

Lemma 3.3. For 29\, € Dy, we have
dim Homy (A%*p, E,, ) = 1.

Proof. Any weight of A%p, is the sum of 2¢ distinct non-compact roots
of g.. Since we have

2gn, =h§1 {2 +0—20)}

2g), is a weight of A%p, with multiplicity 1. It is easy to see that 2¢x, is the
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highest among all the weights of A%p,. The lemma is proved.

ForleZ,, I\, is a dominant integral form for (g,, t.). Denote by (p;, F;)
the irreducible finite dimensional representation of G with highest weight Ix;;
that is, (p;, F;) is the /-th symmetric tensor product of the standard representation
of G on C*. Let (pf, F¥) be the contragradient representation of (p,, F;).

Theorem 3.4. If r=2gq, then we have
H*(g, K; HIQF¥.2)% {0}
Proof. As it is well-known, the operator p¥ ,,(C) is given by
pF-24(C) ={((r—29)\+8, (r—29\,+8)— (8, 8)} -1d,,
where ( , ) is the inner product in (v/—1t)* induced from the Killing form of
g, and 8=%m§+a. Note that

8 =31 (n—it+- D,

N Aj) = (dn+4)718;; (1=4,j=<n).
By easy computations, we have

pF-24(C) = (4n+4)"X(r+2p)(r—29)-1d .

From this and Proposition 3.2, U,(C) and p¥ »,(C) act as the multiplication
by the same scalar. Hence Lemma 3.1 implies that

dim H?(g, K; H'QF% ,,) — dim Homg (A%p, HXQF%.,,)
= dim Homg (A*pQF,_,,, H}).

On the other hand, by Proposition 2.2, we have
3.1) dim Homy (E,,, H}) = 1.
Also, since A, =2g\,+(r—2¢)A,, Lemma 3.3 implies that
(3.2) dim Homy (E,, , A*PQF,_,,)*0.
Therefore, combining (3.1) and (3.2), we have

dim Homy (A*pQF,_,,, H?)=+0.
This proves the theorem.

Remark 3.5. By Theorem 1.4 in [5], there is at most one irreducible
unitary representation (U, H,) such that U(C) acts by the same scalar as
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p¥ 2(C) and E,, occurs in Hy. Our representation (U,, H,) is this very repre-
sentation. Therefore we can determine the position of U, in the Langlands’
classification. In the case of g=1, (U,, H,) is equivalent to the Langlands’ repre-
sentation ], , in [3], Theorem 3.2.

4. The imbedding of U, into L} T\G)

In this section, we fix r&€Z. We will construct a certain uniform discrete
subgroup T’ of G such that m(U,, I")#0. Together with Theorem 3.4 and
(0.1), this will prove the non-vanishing of the cohomology of I'. The results
in this section depend heavily on the results in [1], VIII, § 5.

4.1. Our discrete subgroup will be constructed arithmetically. First we
realize G and G’ as subgroups of linear algebraic groups.

Let k be a totally real finite extension of @ and d be the degree of k
over Q. Assume that d =2. Let S={oy, -**, o,} be the set of isomorphisms of
kinto R. We regard k as a subfield of R so that o, is the identity mapping.
Put k'=k(v/—1). We extend o €3, to the imbedding of 2’ into C which leaves
v/ —1 fixed. If H is a linear algebraic group in GL(/, C) defined over k or @
and B is a subfield of C, we put H(B)=HNGL(l, B).

Denote by E,. the vector space (k')*. We can choose a€k so that a is
positive and the conjugates ‘a by ¢ €X, (0 30,) are all negative. Fix such a.
Let A (resp. b) be a non-degenerate hermitian form (resp. a non-degenerate skew-
symmetric bilinear form) on E}, defined by the matrix

| o 1| o

0| —al,| 0 al
(resp. :
L o —I,,i 0

q

|
—l 0
0 | —al, 0 I——a[ I

Then £ is an indefinite hermitian form with signature (2p, 2g) but the conjugates
°h by o (o%0,) are positive definite.

Using & and b, we can construct the linear algebraic group G defined over
k such that

(

G(k) = g€ SL(2n, K) h(gz, gw) = h(z, w)

b(gz, gw) = b(z, w)

(2, wEEk/)} .

Then G(R) is isomorphic to G over R. Similarly, using only %, we obtain
the linear algebraic group G’ defined over % such that
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Gl(k) = {gESL(Zn) k,)lh(gz’ gw) = h(z’ w) (2, wEEk’)} .

Also, G’(R) is isomorphic to G’ over R.

Naturally, we have the rational imbedding of G into G’ defined over k. We
denote by yr; G—G' this imbedding. It should be noted that, up to conjugation
over R, V| ¢my; G(R)—G'(R) coincides with the imbedding 4»; G—G” in 1.2.

4.2. Now we denote by Res,q the functor of the restriction of scalars from
kto Q. Let G=Res,q G and G'=Resyq G'. Then we have the canonical im-
bedding Res,/q ¥r; G— &’ defined over Q. Put W=Resq .

Over R, we have the following isomorphisms ([2], 7.16);

G = "1GX2GX - X G
g)lg O"G/XcrzG/X vee XO.JG, s

where, for o €3, °G (resp. °G’) denotes the conjugate of G (resp. G') by o. So
we have

4.1) G(R) = G x Sp(n) X -+ X Sp(n)
4.2) G'(R) = G'xSU(2n)x +- x SU(2n) .

Under these isomorphisms, the imbedding ¥ is the product of the conjugations
Tinfp; TG — "G (1=i<d) of .

As in [1], VIII, 5.3, &’ is naturally imbedded into Spy over @ where N=
2nd. In fact, consider E;, as to be a 4n-dimensional vector space over k& and
write E, instead of E,,. We define the skew-symmetric k-bilinear form @8 on
E, by

h(z: w) = u(z, w)+ \/:_1-18(2: w) (2, wEE).

Then G’ is imbedded into the symplectic group Sp,, defined by @ over k.
Further, if we consider Eq=Res;/q E, and Bo=Res, o B, &’ is naturally imbe-
dded into the group Spy defined by B over @. Denote by ¥'; ' — Sp, this
imbedding.

Thus we obtain the imbedding ¥'oW; ¢—Spy defined over @ We choose
a basis of Eq so that B¢ is of standard form. With respect to this basis, we
consider Spy as to be the subgroup of GL(2N, C). Define

4Z) = {gc4@)|(¥'-¥)(ESp(N, Z)}
9(Z2) = {gc2' (@)Y (9)ESp(N, Z)} .

Then G(Z) (resp. §'(Z)) is an arithmetic subgroup of G(R) (resp. G'(R))
([2], 7.11, 7.12). By a standard argument about arithmetic subgroups, G(Z)
(resp. @'(Z)) turns out to be a uniform discrete subgroup of G(R) (resp. &'(R))
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([1], VIII, 5.4). In the direct product (4.1) (resp. (4.2)), denote by p,; G(R)—
G (resp. p1; G@'(R)—G’) the projection to the first component. Define

Lo =p(4(2)), To=pi(d'(Z)).

Then T, (resp. I'g) is a uniform discrete subgroup of G (resp. G') ([1], VIII,
5.5). Clearly we have

W) C T

As for the group G’ and its representation (V,, H,), Borel and Wallach
obtained the following theorem.

Theorem 4.1 ([1], VIII, Corollary 5.8). There is a subgroup TV of finite
index in T4 such that m(V,, TV)=%0, where m(V,, TV) is the multiplicity of V, in
LA(T\G).

As the proof of this theorem in [1] shows, I'' is indeed a congruence sub-
group of I'g; that is, T'' is given by
I’ = pi(Q)

where Q' is a congruence subgroup of ¢’(Z). Using this subgroup IV, we can
construct our desired subgroup of G.

Theorem 4.2. There is a subgroup T' of finite index in Ty such that m(U,, T)
+0.

Proof. Let I'" and Q' be as above. There is a congruence subgroup Q of
G(Z) such that ¥(Q)cQ'([2], 7.12). Put I'=p,(Q). Then I'is a subgroup of
finite index in T'j and we have

(4.3) Y(T)CT".

In the following, we will prove that m(U,, T")=0. Asin 2.1, let H; be the
space of C=-vectors in H, for the representation (V,, H,) of G’. Since m(V,, T"')
=0, by [1], VIII, Theorem 4.3, there is a non-trivial continuous linear functional
A of Hy such that

AoV ()=

for all yeIV. Using A, we want to construct a non-trivial intertwining operator
of H, into LT\G). For ¢ =Hy, define a function 4'(¢); G'—C by

A'(9)(8) =MV()p)  (2€6)).

Then A’(¢) is a C=-function on G’ and left I'"-invariant. Since G is imbedded
into G’ by ) as a Lie subgroup, 4'(¢)eyr; G— C is a C=-function on G. Also,
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by (4.3), A'(¢)oyr is left T-invariant. So we can define a linear mapping
A; Hy — C=(T'\G) by
A($)(Tg) = A'($)(¥(2)
=MU/(2)¢) (p€H?, g€6).
Clearly we have

A(U(e)¢) = Un(9)A($) (¢€HT, 2 €0)

where Uy is the right regular representation of G on LAT'\G). Moreover, from
the continuity of A, we have

(4.4) AU(X)$) = Urn(X)A($) (X Eg, p€HT).

Let <, > (resp. {, Dr) be the inner product on H, (resp. LAT\G)). For K-finite
vectors ¢, p,EH?, set

(4.3) (b1 $2) = <A($1), APl -

Then ( , ) defines a g-invariant hermitian form on the (g, K)-module H]. Here,
by Proposition 2.2, H? decomposes into the sum of the isotypic K-submodules;

Hg: @ Hg,s-

sEZ+ =7

Since 4| go; H}—L*T'\G) is K-equivariant, this decomposition is the orthogonal
direct sum with respect to ( , ), too. Also, each H?} ; is finite dimensioral.
From these facts, it is easy to see that there is a linear mapping B; H}— H? such
that

(4.6) (b1, ¢2) = <B¢1) ¢2> (1 ¢2EH2) .
Then, by (4.4), we have
B(U(X)$) = U(X)(B($)) (X€g, p€H;).

Since H? is an irreducible (g, K)-module, B is a scalar operator v-Id where
vER and »=0. Combining (4.5) and (4.6), we have

CA(¢y), A(do)>r = vy, P (¢1s ¢ZEH9) .

This implies that 4|0 is continuous with respect to the topology of H} in H,.
Hence the operator 4|9 extends to a bounded operator

4; H, — [AT\G).

Note that H? consists of analytic vectors for U, and G is connected. Then
(4.4) implies that
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AUS9)¢) = Un(g)A(¢) (¢€H, g€G)

and hence 4 is an intertwining operator of (U,, H,) into (U, L(T\G)).
On the other hand, A is non-trivial. From the density of H{ in Hy, A | )
is non-trivial. Hence 4 is non-trivial. The theorem is proved.

Corollary 4.3. For I Z,, there is a uniform discrete subgroup T' of G
such that

H™(T, F¥)=+ {0}
Proof. Theorem 3.4 implies that
qu(g) K; H?+2q®F T)#_‘ {O} .

Then, by [1], I, Theorem 5.3, the infinitesimal character of H,,,, is equal to
that of F;. Applying Theorem 4.2 to U,,,,, we obtain a uniform discrete sub-
group I' such that m(U,,,,, T")#=0. Then, by (0.1), we have

H™(T, F¥)+ {0}.

REMARK 4.4. In the above corollary, we consider the case /=0. Then we
have

HX(T, €)= {0}.

More precisely, H*(T', C') contains a cohomology class which corresponds to
a non-trivial automorphic representation. This improves the result in [4]. In
[4], Millson and Raghunathan showed that, for some T', H(T', C') contains
such a class for any ¢ strictly between 0 and 4pq and divisible by either 4p or
4q ([4], Theorem 4.1).
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