

Title	Cohomology of discrete subgroups of Sp(p,q)
Author(s)	Konno, Yasuko
Citation	Osaka Journal of Mathematics. 1988, 25(2), p. 299–318
Version Type	VoR
URL	https://doi.org/10.18910/7870
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

COHOMOLOGY OF DISCRETE SUBGROUPS OF Sp(p, q)

Dedicated to Professor Shingo Murakami on his sixtieth birthday

YASUKO KONNO

(Received January 19, 1987)

Introduction

Let G be a connected semi-simple Lie group with finite center and no compact factors. Let Γ be a uniform discrete subgroup of G and (ρ, F) be a finite dimensional irreducible representation of G. We are interested in the cohomology space $H^*(\Gamma, F)$. The purpose of this paper is to prove a non-vanishing theorem for $H^*(\Gamma, F)$ in the case of G=Sp(p, q) $(p \ge q \ge 1)$.

As it is well-known, we can describe $H^*(\Gamma, F)$ in terms of the relative Lie algebra cohomology. Let \mathfrak{g} be the Lie algebra of G and K be a maximal compact subgroup of G. Denote by \hat{G} the unitary dual of G. For $(U, H_U) \in$ \hat{G} , we denote by H_U^0 the space of K-finite vectors in H_U . Then H_U^0 is an irreducible (\mathfrak{g}, K) -module. Also $m(U, \Gamma)$ denotes the multiplicity with which U occurs in $L^2(\Gamma \setminus G)$. Define the subset \hat{G}_{ρ} of \hat{G} as follows;

$$\hat{G}_{\rho} = \{ U \in \hat{G} | \chi_{U} = \chi_{\rho^{*}} \}$$

where ρ^* is the contragradient representation of ρ and χ_U (resp. χ_{ρ^*}) is the infinitesimal character of U (resp. ρ^*). Then, from the formula of Matsushima-Murakami ([1], VII, Theorem 6.1), we have

(0.1)
$$H^*(\Gamma, F) = \sum_{\upsilon \in \hat{\mathcal{G}}_p} m(U, \Gamma) H^*(\mathfrak{g}, K; H^0_{\upsilon} \otimes F).$$

From now on, we assume that G is simple. Depending on Kumaresan's work, Vogan and Zuckerman obtained the following precise vanishing theorem for the (\mathfrak{g}, K) -cohomology ([5], Theorem 8.1); if U is non-trivial, we have

$$H^{i}(\mathfrak{g}, K; H^{\mathfrak{o}}_{U} \otimes F) = \{0\} \qquad (i < r_{G})$$

where r_G is the positive integer determined by G and given by Table 8.2 in [5] for non-complex groups. From this result and (0.1), if F is non-trivial, we have

$$H^{i}(\Gamma, F) = \{0\}$$
 $(i < r_{G}).$

Note that r_G depends only on G and, in general, $r_G \ge \operatorname{rank}_R G$. On the other hand, the vanishing of $H^i(\Gamma, F)$ below the **R**-rank has been obtained in some papers ([1], VII, Proposition 6.4). There are some simple groups such that $r_G = \operatorname{rank}_R G$. In the case of G = SU(p, q) $(p \ge q \ge 1)$, where $r_G = q = \operatorname{rank}_R G$, Borel and Wallach showed that this vanishing theorem is best possible ([1], VIII, Corollary 5.9).

We concentrate our attention on the case of G=Sp(p,q). In this case, $r_G=2q$ and hence $r_G>q=\operatorname{rank}_R G$. Therefore it is interesting to ask if the above vanishing theorem is best possible for G=Sp(p,q). In this paper, we show that, in the case of G=Sp(p,q), the first possible non-zero cohomology $H^*(\Gamma, F)$ appears indeed at the degree $2q=r_G$. Main results are Theorem 3.4 and Theorem 4.2. In the case that F is trivial and q=1, Theorem 3.4 is contained in the results of [3], Theorem 3.2 (see Remark 3.5). Also Theorem 4.2 for trivial F improves a part of the results of [4], Theorem 4.1 (see Remark 4.4.).

Our method is similar to that in [1], VIII and depends heavily on the results there.

1. The imbedding of Sp(p, q) into Sp(2n, R)

1.1. Throughout this paper, G will denote the group Sp(p, q) $(p \ge q \ge 1)$. At first we give our realization of G and provide some notations.

We set n=p+q. Let $K_{p,q}$ be the $2n \times 2n$ matrix given by

$$K_{p,q} = \begin{pmatrix} I_{p} & 0 \\ 0 & -I_{q} \\ 0 \\ 0 & I_{p} & 0 \\ 0 & 0 & -I_{q} \end{pmatrix}$$

where I_m is the $m \times m$ identity matrix. The group G is given by

$$G = \{g \in Sp(n, \mathbf{C}) \mid {}^{t}gK_{p,q}\overline{g} = K_{p,q}\}.$$

As a maximal compact subgroup of G, we choose $K=G \cap U(2n)$. Let \mathfrak{g} (resp. \mathfrak{k}) be the Lie algebra of G (resp. K) and $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be the Cartan decomposition of \mathfrak{g} . For a real Lie algebra \mathfrak{u} , denote by \mathfrak{u}_e the complexification of \mathfrak{u} .

Let E_{ij} be the square matrix with 1 in the (i, j)-position and 0 elsewhere. For $1 \leq i \leq n$, set

$$T_i = \left(\begin{array}{c|c} E_{ii} & 0 \\ \hline 0 & -E_{ii} \end{array} \right)$$

and define

$$\mathbf{t} = \{\sum_{j=1}^n \mu_j T_j | \mu_j \in \sqrt{-1} \mathbf{R} \}.$$

Then t is a Cartan subalgebra of g such that $t \subset t$. Also define $\lambda_i \in t_c^*$ $(1 \le i \le n)$ by

$$\lambda_i(\sum_{j=1}^n \mu_j T_j) = \mu_i \, .$$

The root system Δ (resp. Δ_t) of the pair $(\mathfrak{g}_c, \mathfrak{t}_c)$ (resp. $(\mathfrak{t}_c, \mathfrak{t}_c)$) is given by

$$\Delta = \{\pm \lambda_i \pm \lambda_j | 1 \le i, j \le n\}$$

(resp. $\Delta_{\mathbf{l}} = \{\pm \lambda_i \pm \lambda_j | 1 \le i, j \le p \text{ or } p+1 \le i, j \le p+q\}$).

We choose an order of $(\sqrt{-1}t)^*$ so that the set of simple roots in Δ is $\{\lambda_1 - \lambda_2, \lambda_2 - \lambda_3, \dots, \lambda_{n-1} - \lambda_n, 2\lambda_n\}$. Denote by Δ^+ (resp. Δ_t^+) the set of positive roots in Δ (resp. Δ_t). Throughout this paper we fix this order.

For later use, we choose root vectors of g_c as follows;

$$\begin{aligned} X_{\lambda_i+\lambda_j} &= \left(\begin{array}{c|c} 0 & F_{ij} \\ \hline 0 & 0 \end{array} \right) & (1 \leq i, j \leq n) \\ X_{-\lambda_i-\lambda_j} &= \left(\begin{array}{c|c} 0 & 0 \\ \hline F_{ij} & 0 \end{array} \right) & (1 \leq i, j \leq n) \\ X_{\lambda_i-\lambda_j} &= \left(\begin{array}{c|c} E_{ij} & 0 \\ \hline 0 & -E_{ji} \end{array} \right) & (1 \leq i, j \leq n, i \neq j) \end{aligned}$$

where $F_{ij} = E_{ij} + E_{ji}$ if $i \neq j$ and $F_{ij} = E_{ii}$ if i = j. Then $\{T_i \mid 1 \leq i \leq n\} \cup \{X_{\alpha} \mid \alpha \in \Delta\}$ is a basis of g_c .

1.2. Now we construct an imbedding of G into $Sp(2n, \mathbb{R})$. Our imbedding is obtained by composing an imbedding of G into SU(2p, 2q) and an imbedding of SU(2p, 2q) into $Sp(2n, \mathbb{R})$. From now on, G' denotes the group SU(2p, 2q). As a maximal compact subgroup of G', we choose $K'=G' \cap U(2n)$. Let g' be the Lie algebra of G'.

The group G is naturally imbedded into the uintary group of the hermitian form on C^{2n} defined by $K_{p,q}$. We put

$$Z = \begin{pmatrix} I_{p} & 0 & 0 \\ 0 & I_{q} & 0 \\ 0 & I_{p} & 0 \\ 0 & 0 & I_{q} \end{pmatrix}$$

Then ${}^{t}ZK_{p,q}Z$ gives the standard hermitian form with signature (2p, 2q). So, if we define

$$\psi(g) = {}^{t}ZgZ \qquad (g \in G),$$

we obtain an imbedding ψ ; $G \rightarrow G'$. Clearly we have $\psi(K) \subset K'$.

Moreover we will imbed G' into $Sp(2n, \mathbf{R})$. Naturally we consider $GL(2n, \mathbf{C})$, and hence G', as to be the subgroups of $GL(4n, \mathbf{R})$. Define the orthogonal matrix Z' by

$$Z' = \left(\begin{array}{c|c} I_{2p} & 0 \\ 0 \\ \hline I_{2n} \end{array} \right)$$

Then it is easily checked that, if we define

$$\psi'(g) = {}^tZ'gZ' \qquad (g \in G'),$$

we obtain an imbedding ψ' ; $G' \rightarrow Sp(2n, \mathbf{R})$. This is the same imbedding that is constructed in [1], VIII, § 2.

In this way we obtain the imbedding

$$\iota = \psi' \circ \psi; G \to Sp(2n, \mathbf{R}).$$

These imbeddings ψ , ψ' and ι induce the imbeddings of Lie algebras and we use the same letters for them;

$$\begin{split} \psi \ ; \ \mathfrak{g}_c \to \mathfrak{g}'_c \\ \psi' \ ; \ \mathfrak{g}'_c \to \mathfrak{Sp}(2n, \ \mathbf{C}) \\ \iota \ ; \ \mathfrak{g}_c \to \mathfrak{Sp}(2n, \ \mathbf{C}) \end{split}$$

1.3. Here we give the explicit form of the image of ι . It will be used in §2. For this, we choose a basis of $\mathfrak{sp}(2n, \mathbb{C})$ as follows;

$$S_i = \sqrt{-1} \left(\begin{array}{c|c} 0 & E_{ii} \\ \hline -E_{ii} & 0 \end{array} \right) \qquad (1 \leq i \leq 2n),$$

COHOMOLOGY OF DISCRETE SUBGROUPS OF Sp(p,q)

$$\begin{split} Y_{ij}^{+} &= \frac{1}{2} \left(\frac{F_{ij} \quad | -\sqrt{-1}F_{ij} |}{-\sqrt{-1}F_{ij} \mid -F_{ij}} \right) & (1 \leq i, j \leq 2n) \\ Y_{ij}^{-} &= \frac{1}{2} \left(\frac{F_{ij} \quad | \sqrt{-1}F_{ij} |}{\sqrt{-1}F_{ij} \mid -F_{ij}} \right) & (1 \leq i, j \leq 2n) \\ Z_{ij}^{+} &= \frac{1}{2} \left(\frac{E_{ij} - E_{ji} \quad | \sqrt{-1}F_{ij} |}{-\sqrt{-1}F_{ij} \mid E_{ij} - E_{ji}} \right) & (1 \leq i < j \leq 2n) \\ Z_{ij}^{-} &= \frac{1}{2} \left(\frac{E_{ji} - E_{ij} \quad | \sqrt{-1}F_{ji} |}{-\sqrt{-1}F_{ji} \mid E_{ji} - E_{ij}} \right) & (1 \leq i < j \leq 2n) \end{split}$$

where $F_{ij} = E_{ij} + E_{ji}$ if $i \neq j$ and $F_{ij} = E_{ii}$ if i = j. By straightforward computations we obtain the following explicit description for the image of ι ; for $1 \leq i < j \leq p$ and $p+1 \leq k < l \leq p+q$,

(1.1)
$$\begin{pmatrix} \iota(T_{i}) = S_{i} - S_{p+i} \\ \iota(T_{k}) = -S_{p+k} + S_{p+q+k} \\ \iota(X_{\pm(\lambda_{i}+\lambda_{j})}) = Z_{i,p+j}^{\pm} + Z_{j,p+i}^{\pm} \\ \iota(X_{\pm(\lambda_{i}+\lambda_{j})}) = -Y_{i,p+q+k}^{\pm} + Y_{p+i,p+k}^{\mp} \\ \iota(X_{\pm(\lambda_{k}+\lambda_{j})}) = -Z_{p+k,p+q+l}^{\mp} - Z_{p+l,p+q+k}^{\mp} \\ \iota(X_{\pm 2\lambda_{i}}) = Z_{i,p+i}^{\pm} \\ \iota(X_{\pm 2\lambda_{k}}) = -Z_{p+k,p+q+k}^{\mp} \\ \iota(X_{\pm(\lambda_{i}-\lambda_{j})}) = Z_{i,j}^{\pm} - Z_{p+i,p+j}^{\mp} \\ \iota(X_{\pm(\lambda_{i}-\lambda_{k})}) = -Y_{i,p+k}^{\pm} + Y_{p+i,p+q+k}^{\mp} \\ \iota(X_{\pm(\lambda_{k}-\lambda_{l})}) = -Z_{p+k,p+l}^{\mp} + Z_{p+q+k,p+q+l}^{\pm} \\ \end{pmatrix}$$

2. The construction of unitary representations

In this section, we construct a certain series of irreducible unitary representations of G. In [1] Borel and Wallach constructed some irreducible representations of G' by using the oscillator representation. Our representations are obtained from these representations through the imbedding ψ ; $G \rightarrow G'$. We will often use the results and notations in [1], VIII.

2.1. First we sketch briefly the results in [1], VIII, § 2. Let $Mp(2n, \mathbf{R})$ be the Metaplectic group and $(W, L^2(\mathbf{R}^{2n}))$ be the oscillator representation of

 $Mp(2n, \mathbf{R})$. The imbedding ψ' ; $G' \to Sp(2n, \mathbf{R})$ lifts to an injective homomorphism $\tilde{\psi}'$; $G' \to Mp(2n, \mathbf{R})$ ([1], VIII, Lemma 2.9). Define the unitary representation $(V, L^2(\mathbf{R}^{2n}))$ of G' by

$$V(g) = W(\tilde{\psi}'(g)) \qquad (g \in G') \,.$$

Then $(V, L^2(\mathbb{R}^{2n}))$ decomposes into the direct sum of irreducible representations of G'. In fact, for $r \in \mathbb{Z}$, define the subspace H_r of $L^2(\mathbb{R}^{2n})$ by

$$H_r = \{\phi \in L^2(\mathbb{R}^{2n}) \mid W(\operatorname{Exp} t J_{2p,2q})(\phi) = \exp(-\sqrt{-1}(p-q+r)t)\phi\}$$

where Exp is the exponential mapping of $\mathfrak{Sp}(2n, \mathbf{R})$ into $Mp(2n, \mathbf{R})$ and

$$J_{2p,2q} = \begin{pmatrix} 0 & \frac{|-I_{2p}| & 0}{|0| & |I_{2q}|} \\ \hline & & \\ 0 & |-I_{2q}| & 0 \\ \hline & & \\ \end{pmatrix} \in \mathfrak{Sp}(2n, \mathbb{R}).$$

Then H_r is stable under G' and so we put

$$V_r(g) = V(g)|_{H_r} \qquad (g \in G').$$

From [1], VIII, Lemma 2.8, for each $r \in \mathbb{Z}$, (V_r, H_r) is an irreducible unitary representation of G' and we have

$$L^2(\mathbf{R}^{2n}) = \bigoplus_{r \in \mathbf{Z}} H_r$$
.

In the remainder of this section, we fix $r \in \mathbb{Z}$. Denote by $\mathcal{S}(\mathbb{R}^{2n})$ the Schwartz space on \mathbb{R}^{2n} with the Schwartz topology and set $H_r^{\infty} = H_r \cap \mathcal{S}(\mathbb{R}^{2n})$. Then H_r^{∞} is the space of \mathbb{C}^{∞} -vectors for V_r in H_r ([1], VIII. Lemma 1.11). Also, we denote by H_r^0 the space of K'-finite vectors for V_r in H_r . The space H_r^0 is an irreducible admissible (\mathfrak{g}', K')-module.

In order to choose an orthogonal basis of H_r^0 , we need some notations. Let (x_1, \dots, x_{2n}) be the coordinates of \mathbb{R}^{2n} . Following [1], VIII, 1.16, for $1 \leq j \leq 2n$, define the operator D_j and A_r^{\pm} by

$$D_j = rac{1}{2} \Big(rac{\partial^2}{\partial x_j^2} - x_j^2 \Big), \quad A_j^{\pm} = rac{1}{2} \Big(rac{\partial}{\partial x_j} \pm x_j \Big).$$

Denote by Z_+ the set of non-negative integers. For $m=(m_1, \dots, m_{2n}) \in (Z_+)^{2n}$, we set

$$\phi_{m} = (A_{1}^{-})^{m_{1}} (A_{2}^{-})^{m_{2}} \cdots (A_{2n}^{-})^{m_{2n}} \phi_{0}$$

where ϕ_0 is the C^{∞} -function on \mathbb{R}^{2n} defined by

$$\phi_0(x) = (2\pi)^{-n} \exp\left(-\frac{1}{2}\sum_{i=1}^{2n} x_i^2\right) \qquad (x \in \mathbb{R}^{2n}).$$

(Note that ϕ_m is equal to ψ_m in [1] VIII 1.16, up to the multiplication by a constant.) Then, by [1], VIII, Lemma 1.17, $\{\phi_m | m \in (\mathbb{Z}_+)^{2n}\}$ are mutually orthogonal in $L^2(\mathbb{R}^{2n})$ and we have

where $\Phi_r = \{m \in (\mathbb{Z}_+)^{2n} | \sum_{i=1}^{2p} m_i - \sum_{i=2p+1}^{2n} m_i = r \}.$

2.2. Now we construct unitary representations of G. Using the imbedding ψ ; $G \rightarrow G'$, we define

$$U_r(g) = V_r(\psi(g)) \qquad (g \in G).$$

Then we obtain the unitary representation (U_r, H_r) of G. Clearly, the subspace H_r^0 of H_r is included in the space of K-finite vectors for U_r in H_r and stable under g and K. Thus H_r^0 is a (g, K)-module. The infinitesimal representation of g_e on H_r^0 induced from U_r is denoted by the same letter U_r .

We will examine the (g, K)-module H^0_r in detail. First we consider the infinitesimal representation $(W, S(\mathbb{R}^{2n}))$ of $\mathfrak{Sp}(2n, \mathbb{C})$ induced from $(W, L^2(\mathbb{R}^{2n}))$. By [2], p. 232, Theorem 5.4, the action of $\mathfrak{Sp}(2n, \mathbb{C})$ on $S(\mathbb{R}^{2n})$ is explicitly given as follows;

(2.2)
$$\begin{cases} W(S_i) = D_i & (1 \le i \le 2n) \\ W(Y_{ij}^{\pm}) = \pm 2A_i^{\pm}A_j^{\pm} & (1 \le i, j \le 2n, i \ne j) \\ W(Y_{ii}^{\pm}) = \pm A_i^{\pm}A_i^{\pm} & (1 \le i \le 2n) \\ W(Z_{ij}^{\pm}) = 2A_i^{\pm}A_j^{\mp} & (1 \le i < j \le 2n) . \end{cases}$$

Using the relation formulas among D_j and A_j^{\pm} in [1], VIII, 1.16, we obtain

(2.3)
$$\begin{pmatrix}
D_{j}(\phi_{m}) = -\frac{1}{2}(2m_{j}+1)\phi_{m_{1},\cdots,m_{2n}} \\
A_{i}^{+}A_{j}^{+}(\phi_{m}) = \frac{1}{4}m_{i}m_{j}\phi_{m_{1},\cdots,m_{i}-1,\cdots,m_{j}-1,\cdots,m_{2n}} \\
A_{i}^{+}A_{i}^{+}(\phi_{m}) = \frac{1}{4}m_{i}(m_{i}-1)\phi_{m_{1},\cdots,m_{i}-2,\cdots,m_{2n}} \\
A_{i}^{-}A_{j}^{-}(\phi_{m}) = \phi_{m_{1},\cdots,m_{i}+1,\cdots,m_{2n}} \\
A_{i}^{-}A_{i}^{-}(\phi_{m}) = \phi_{m_{1},\cdots,m_{i}+2,\cdots,m_{2n}} \\
A_{i}^{+}A_{j}^{-}(\phi_{m}) = -\frac{1}{2}m_{i}\phi_{m_{1},\cdots,m_{i}-1,\cdots,m_{j}+1,\cdots,m_{2n}}
\end{cases}$$

where $m \in (\mathbb{Z}_+)^{2n}$, $1 \leq i < j \leq 2n$ and $\phi_{k_1, \dots, k_{2n}}$ is considered to be 0 if $k_i < 0$ for some *i*. Therefore, combining (1.1), (2.2) and (2.3), we have the following formulas; for $1 \leq i, j \leq p$ and $p+1 \leq k, l \leq p+q$,

COHOMOLOGY OF DISCRETE SUBGROUPS OF Sp(p,q)

$$\left(\begin{array}{c} U_{r}(X_{-\lambda_{i}+\lambda_{k}})(\phi_{m}) = \frac{1}{2} m_{p+i} m_{p+q+k} \phi_{m_{1},\cdots,m_{p+i}-1,\cdots,m_{p+q+k}-1,\cdots,m_{2i}} \\ + 2\phi_{m_{1},\cdots,m_{i}+1,\cdots,m_{p+k}+1,\cdots,m_{2n}} \end{array} \right)$$

Of course, in these formulas, $\phi_{k_1,\dots,k_{2n}}$ should be considered as to be 0 if $k_i < 0$ for some *i*.

Now we can determine the set of weights of the g_c -module H_r^0 . Let ϕ_m be in H_r^0 . By (2.4) we have

$$U_{r}(\sum_{i=1}^{n} \mu_{i} T_{i})(\phi_{m}) = \left\{\sum_{i=1}^{p} (m_{p+i} - m_{i})\mu_{i} + \sum_{k=p+1}^{p+q} (m_{p+k} - m_{p+q+k})\mu_{k}\right\}\phi_{m}$$

From this, the following lemma immediately follows.

Lemma 2.1. Let $m=(m_1, \dots, m_{2n})$ be in Φ_r . In the \mathfrak{g}_c -module H_r^0 , ϕ_m is a weight vector corresponding to the weight

$$\Lambda_m = \sum_{i=1}^p (m_{p+i} - m_i) \lambda_i + \sum_{k=p+1}^{p+q} (m_{p+k} - m_{p+q+k}) \lambda_k.$$

We remark that the multiplicity of Λ_m in H_0^r is not finite.

2.3. Here we determine the K-spectrum of H_r^0 . Let \hat{K} be the set of all equivalence classes of irreducible representations of K. Define the subset D_K of t_c^* by

$$D_{K} = \left\{ \lambda = \sum_{i=1}^{n} a_{i} \lambda_{i} \middle| \begin{array}{l} a_{i} \in \mathbb{Z} \\ a_{1} \ge a_{2} \ge \cdots \ge a_{p} \ge 0 \\ a_{p+1} \ge a_{p+2} \ge \cdots \ge a_{n} \ge 0 \end{array} \right\}.$$

Then there is the bijective correspondence between \hat{K} and D_K . That is, $\lambda \in D_K$ corresponds to the irreducible K-module with highest weight λ . We denote by E_{λ} this K-module.

Let $s \in \mathbb{Z}_+$ and $s \ge -r$. We define the finite dimensional subspace $H^0_{r,s}$ of H^0_r by

$$H^0_{r,s} = \bigoplus_{m \in \Phi_{r,s}} C \phi_m ,$$

where the subset $\Phi_{r,s}$ of Φ_r is given by

$$\Phi_{r,s} = \{m \in (\mathbf{Z}_+)^{2n} | \sum_{i=1}^{2p} m_i = r + s, \sum_{i=2p+1}^{2n} m_i = s\}.$$

From (2.1), we have

$$H^0_r = \bigoplus_{s \in \mathbb{Z}_+, s \ge -r} H^0_{r,s} .$$

Proposition 2.2. Let $s \in \mathbb{Z}_+$ and $s \ge -r$. Then $H^0_{r,s}$ is the irreducible K-submodule of H^0_r with highest weight $(r+s)\lambda_1+s\lambda_{p+1}\in D_K$. Hence we have

$$H^0_r = \bigoplus_{s \in \mathbb{Z}_+, s \geq -r} E_{(r+s)\lambda_1 + s\lambda_{p+1}}$$

as K-modules.

Proof. Put $E_s = E_{(r+s)\lambda_1+s\lambda_{p+1}}$. Let X be in \mathbf{t}_c . By (2.4), (2.5) and (2.6), $U_r(X)(\phi_m)$ is a linear combination of $\phi_{m'} = \phi_{m'_1,\cdots,m'_{2n}}$ such that

$$\sum_{i=1}^{2p} m'_i = \sum_{i=1}^{2p} m_i , \quad \sum_{i=2p+1}^{2n} m'_i = \sum_{i=2p+1}^{2n} m_i .$$

Therefore $H_{r,s}^0$ is stable under t_c .

Now we put $\phi = \phi_{0,\dots,0,r+s,0,\dots,0,s,0,\dots,0}$, where r+s (resp. s) appears in the (p+1)-th (resp. (2p+1)-th) position. Then $\phi \in H^0_{r,s}$ and, by Lemma 2.1, ϕ is a weight vector corresponding to the weight $(r+s)\lambda_1+s\lambda_{p+1}$. It is easy to see that this weight is the highest among all the weights for $H^0_{r,s}$. Hence E_s certainly occurs in $H^0_{r,s}$.

We compare the dimension of $H^0_{r,s}$ with that of E_s . Since $\{\phi_m | m \in \Phi_{r,s}\}$ is a basis of $H^0_{r,s}$, we have

$$\dim H^{0}_{r,s} = \# \Phi_{r,s}$$

$$= \binom{2p + r + s - 1}{r + s} \cdot \binom{2q + s - 1}{s}$$

$$= \frac{(2p + r + s - 1)!(2q + s - 1)!}{(2p - 1)!(r + s)!(2q - 1)!s!}.$$

On the other hand, Weyl's dimension formula gives the dimension of E_s . Denote by $(,)_t$ the inner product in $(\sqrt{-1}t)^*$ induced from the Killing form of t_c . Recall that

$$\begin{aligned} &(\lambda_i, \lambda_j)_{\mathfrak{k}} = 0 & \text{if } i \neq j, \\ &(\lambda_i, \lambda_i)_{\mathfrak{k}} = \begin{cases} (4p+4)^{-1} & \text{if } 1 \leq i \leq p, \\ (4q+4)^{-1} & \text{if } p+1 \leq i \leq p+q. \end{cases} \end{aligned}$$

Also put $\delta_{\mathbf{f}} = \frac{1}{2} \sum_{\alpha \in \Delta_{\mathbf{f}}^+} \alpha$. Then we have

$$\delta_{t} = \sum_{i=1}^{p} (p-i+1)\lambda_{i} + \sum_{k=p+1}^{p+q} (p+q-k+1)\lambda_{k}.$$

From these formulas, easy calculations yield

COHOMOLOGY OF DISCRETE SUBGROUPS OF Sp(p,q)

$$\dim E_s = \frac{\prod\limits_{\substack{\alpha \in \Delta_{\mathfrak{l}}^+ \\ \mathfrak{l}}} ((r+s)\lambda_1 + s\lambda_{p+1} + \delta_{\mathfrak{l}}, \alpha)_{\mathfrak{l}}}{\prod\limits_{\substack{\alpha \in \Delta_{\mathfrak{l}}^+ \\ \mathfrak{l}}} (\delta_{\mathfrak{l}}, \alpha)_{\mathfrak{l}}} \\ = \frac{(2p+r+s-1)!(2q+s-1)!}{(2p-1)!(r+s)!(2q-1)!s!} \\ = \dim H^0_{r,s}.$$

Hence $H_{r,s}^0$ is equivalent to E_s .

2.4. In this stage, we must determine the space of K-finite vectors in H_r for U_r .

Lemma 2.3. The space of K-finite vectors in H, for U, coincides with H_r^0 .

Proof. For $\tau \in \hat{K}$, let $H_r(\tau)$ be the isotypic K-submodule of H_r of type τ . Clearly H_r^0 is stable under K and $H_r^0 \subset \bigoplus_{\substack{\tau \in \hat{K} \\ \tau \in \hat{K}}} H_r(\tau)$. Hence we have $H_r^0 = \bigoplus_{\substack{\tau \in \hat{K} \\ \tau \in \hat{K}}} H_r^0 \cap H_r(\tau)$. Since H_r^0 is dense in H_r , by [7], Chapter 4, Proposition 4.4.3.4, the closure of $H_r^0 \cap H_r(\tau)$ is $H_r(\tau)$. By Proposition 2.2, $H_r^0 \cap H_r(\tau)$ is finite dimensional. Therefore we have $H_r^0 \cap H_r(\tau) = H_r(\tau)$ and hence $H_r^0 = \bigoplus_{\substack{\tau \in \hat{K} \\ \tau \in \hat{K}}} H_r(\tau)$. The lemma is proved.

Together with Proposition 2.2, this lemma shows that (U_r, H_r) is admissible. Moreover we have the following proposition.

Proposition 2.4. For $r \in \mathbb{Z}$, the unitary representation (U_r, H_r) of G is irreducible.

Proof. From [7], Chapter 4, Theorem 4.5.5.4, it is sufficient to prove that the g-module H_r^0 is algebraically irreducible. Let H be a non-zero g-stable subspace of H_r^0 . Since H is stable under \mathfrak{k} , by Proposition 2.2, we have

$$H = \bigoplus_{s \in \mathcal{S}(\mathcal{H})} H^{0}_{r,s} ,$$

where S(H) is a non-empty subset of \mathbb{Z}_+ . Suppose $s_0 \in S(H)$, that is, $H^0_{r,s_0} \subset H$. We take a particular element

$$\phi = \phi_{0,\dots,0,r+s_0,0,\dots,0,s_0,0,\dots,0}$$

in H^0_{r,s_0} , where $r+s_0$ (resp. s_0) appears in the (p+1)-th (resp. (2p+1)-th) position. Then, by (2.7), we have

$$U_{r}(X_{\lambda_{1}+\lambda_{p+1}})(\phi) = 2\phi_{0,\dots,0,r+s_{0}+1,0,\dots,0,s_{0}+1,0\dots,0}.$$

Here the left hand side belongs to H and the right hand side belongs to $H_{r,s_{o+1}}^0$.

This implies $H \cap H^0_{r,s_0+1} \neq \{0\}$. Therefore we have $H^0_{r,s_0+1} \subset H$, that is, $s_0+1 \in S(H)$.

Similarly, if $s_0 > \max\{0, -r\}$, we have

$$U_r(X_{-\lambda_1-\lambda_{p+1}})(\phi) = -rac{1}{2}(r+s_0)s_0\phi_{0,\cdots,0,r+s_0-1,0,\cdots,0,s_0-1,0,\cdots,0} + 2\phi_{1,0,\cdots,0,r+s_0,0,\cdots,0,s_0,0,\cdots,0,1,0,\cdots,0},$$

where 1 appears in the first and (2p+q+1)-th position. In this formula, the first term of the right hand side belongs to H^0_{r,s_0-1} and the second term belongs to H^0_{r,s_0+1} . Since $H^0_{r,s_0+1} \subset H$, we have $H \cap H^0_{r,s_0-1} \neq \{0\}$ and hence $s_0 - 1 \in S(H)$.

By the induction, we have $S(H) = \{s \in \mathbb{Z}_+ | s \ge -r\}$, that is, $H = H_r^0$. This proves the proposition.

After all we obtain a series of irreducible unitary representations of G; $\{(U_r, H_r) | r \in \mathbb{Z}\}$.

3. The (g, K)-cohomology

In this section, we study the (\mathfrak{g}, K) -cohomology space of the (\mathfrak{g}, K) -module $H^{\mathfrak{g}}_r$ $(r \in \mathbb{Z})$.

3.1. First of all we recall a known result which is our starting point. Let (U, H_v) be in \hat{G} and (ρ, F) be a finite dimensional irreducible representation of G. Denote by $\mathfrak{U}(\mathfrak{g})$ the universal enveloping algebra of \mathfrak{g}_c . The representation of $\mathfrak{U}(\mathfrak{g})$ induced by $U(\operatorname{resp.} \rho)$ is denoted by the same letter $U(\operatorname{resp.} \rho)$. Let C be the Casimir element of \mathfrak{g}_c . Then both the operators U(C) and $\rho(C)$ are the scalar operators. Put $U(C) = c_v \cdot \operatorname{Id}$ and $\rho(C) = c_p \cdot \operatorname{Id}$, where $c_v, c_\rho \in C$ and Id denotes the identity operator. If we note that K is connected, we have the following lemma.

Lemma 3.1. ([1], II, Proposition 3.1) (1). If $c_U \neq c_p$, then $H^j(\mathfrak{g}, K; H^0_U \otimes F) = \{0\}$ for all $j \in \mathbb{Z}_+$. (2). If $c_U = c_p$, then $H^j(\mathfrak{g}, K; H^0_U \otimes F) = \operatorname{Hom}_K(\wedge^{j}\mathfrak{p}, H^0_U \otimes F)$ for all $j \in \mathbb{Z}_+$. **3.2.** For $(U_r, H_r) \in \hat{G}$, we will calculate the operator $U_r(C)$.

(0, 1) = (

Proposition 3.2. For $r \in \mathbb{Z}$, we have

$$U_r(C) = (4n+4)^{-1}(r+2p)(r-2q) \cdot \mathrm{Id}$$
.

Proof. We use a concrete realization of C and calculate explicitly the action of $U_r(C)$ on a particular element in H_r^0 .

Recall that the Killing form of g_e is given by

$$(X, Y) = 2(n+1) \operatorname{Tr} XY \qquad (X, Y \in \mathfrak{g}_c).$$

Using the basis of g_e in 1.1., we have

$$4(n+1)C = \sum_{i=1}^{n} T_i T_i + \sum_{1 \le i < j \le n} (X_{\lambda_i + \lambda_j} X_{-\lambda_i - \lambda_j} + X_{-\lambda_i - \lambda_j} X_{\lambda_i + \lambda_j}) + 2 \sum_{i=1}^{n} (X_{2\lambda_i} X_{-2\lambda_i} + X_{-2\lambda_i} X_{2\lambda_i}) + \sum_{1 \le i < j \le n} (X_{\lambda_i - \lambda_j} X_{\lambda_j - \lambda_i} + X_{\lambda_j - \lambda_i} X_{\lambda_i - \lambda_j}).$$

First we consider the case that $r \ge 0$. Take a particular element $\phi = \phi_{r,0,\dots,0} \in H_r^0$. Using (2.4), ..., (2.8), we calculate straightforwardly $4(n+1)U_r(C)(\phi)$. Some terms turn out to vanish and the other terms are given as follows;

$$\sum_{i=1}^{n} U_{r}(T_{i}T_{i})(\phi) = r^{2}\phi$$

$$U_{r}(X_{\lambda_{i}\pm\lambda_{k}}X_{-\lambda_{i}\mp\lambda_{k}})(\phi) = \begin{cases} -(r+1)\phi\pm4\phi' & \text{if } i=1\\ -\phi\pm4\phi'' & \text{if } i=1\\ 0 & \text{if } i=1\\ -\phi\pm4\phi' & \text{if } i=1\\ -\phi\pm4\phi'' & \text{if } i=1\\ -\phi\pm4\phi'' & \text{if } i=1\\ 0 & \text{if } i=1\\ 0$$

where $1 \le i < j \le p$, $p+1 \le k \le p+q$ and ϕ' , ϕ'' are certain elements in H_r^0 determined by ϕ . From these formulas, we can easily show that

$$4(n+1)U_{r}(C)(\phi) = (r+2p)(r-2q)\phi.$$

In the case that r < 0, if we take $\phi = \phi_{0,\dots,0,-r} \in H_r^0$, similar calculations yield the above formula. Thus the proposition is proved.

3.3. Now we will show the non-vanishing of the (g, K)-cohomology of H_r^0 . For this, we need the following lemma.

Lemma 3.3. For $2q\lambda_1 \in D_K$, we have

dim Hom_K ($\wedge^{2q}\mathfrak{p}, E_{2q\lambda_1}$) = 1.

Proof. Any weight of $\wedge^{2q}\mathfrak{p}_c$ is the sum of 2q distinct non-compact roots of \mathfrak{g}_c . Since we have

$$2q\lambda_1 = \sum_{k=p+1}^{p+q} \{(\lambda_1+\lambda_k)+(\lambda_1-\lambda_k)\},$$

 $2q\lambda_1$ is a weight of $\wedge^{2q}\mathfrak{p}_c$ with multiplicity 1. It is easy to see that $2q\lambda_1$ is the

highest among all the weights of $\wedge^{2q}\mathfrak{p}_c$. The lemma is proved.

For $l \in \mathbb{Z}_+$, $l\lambda_1$ is a dominant integral form for $(\mathfrak{g}_e, \mathfrak{t}_e)$. Denote by (ρ_l, F_l) the irreducible finite dimensional representation of G with highest weight $l\lambda_1$; that is, (ρ_l, F_l) is the *l*-th symmetric tensor product of the standard representation of G on \mathbb{C}^{2n} . Let (ρ_l^*, F_l^*) be the contragradient representation of (ρ_l, F_l) .

Theorem 3.4. If $r \ge 2q$, then we have

 $H^{2q}(\mathfrak{g}, K; H^0_r \otimes F^*_{r-2q}) \neq \{0\}.$

Proof. As it is well-known, the operator $\rho_{r-2q}^*(C)$ is given by

$$\rho_{r-2q}^*(C) = \{((r-2q)\lambda_1 + \delta, (r-2q)\lambda_1 + \delta) - (\delta, \delta)\} \cdot \mathrm{Id},$$

where (,) is the inner product in $(\sqrt{-1}t)^*$ induced from the Killing form of g_e and $\delta = \frac{1}{2} \sum_{\alpha \in \Delta^+} \alpha$. Note that

$$egin{aligned} \delta &= \sum\limits_{i=1}^n (n\!-\!i\!+\!1)\lambda_i \ , \ &(\lambda_i,\,\lambda_j) = (4n\!+\!4)^{-1}\delta_{ij} \qquad (1\!\leq\!i,j\!\leq\!n) \ . \end{aligned}$$

By easy computations, we have

$$ho_{r-2q}^*(C) = (4n+4)^{-1}(r+2p)(r-2q) \cdot \mathrm{Id}$$
.

From this and Proposition 3.2, $U_r(C)$ and $\rho_{r-2q}^*(C)$ act as the multiplication by the same scalar. Hence Lemma 3.1 implies that

$$\dim H^{2q}(\mathfrak{g}, K; H^{\mathfrak{g}}_{r} \otimes F^{*}_{r-2q}) = \dim \operatorname{Hom}_{\kappa} \left(\wedge^{2q} \mathfrak{p}, H^{\mathfrak{g}}_{r} \otimes F^{*}_{r-2q} \right)$$
$$= \dim \operatorname{Hom}_{\kappa} \left(\wedge^{2q} \mathfrak{p} \otimes F_{r-2q}, H^{\mathfrak{g}}_{r} \right).$$

On the other hand, by Proposition 2.2, we have

(3.1)
$$\dim \operatorname{Hom}_{K}(E_{r\lambda_{1}}, H_{r}^{0}) = 1.$$

Also, since $r\lambda_1 = 2q\lambda_1 + (r-2q)\lambda_1$, Lemma 3.3 implies that

(3.2)
$$\dim \operatorname{Hom}_{K}(E_{r\lambda_{1}}, \wedge^{2q}\mathfrak{p}\otimes F_{r-2q}) \neq 0.$$

Therefore, combining (3.1) and (3.2), we have

$$\dim \operatorname{Hom}_{K}(\wedge^{2q}\mathfrak{p}\otimes F_{r-2q}, H^{0}_{r}) \neq 0.$$

This proves the theorem.

REMARK 3.5. By Theorem 1.4 in [5], there is at most one irreducible unitary representation (U, H_v) such that U(C) acts by the same scalar as

313

 $\rho_{r-2q}^*(C)$ and $E_{r\lambda_1}$ occurs in H_U^0 . Our representation (U_r, H_r) is this very representation. Therefore we can determine the position of U_r in the Langlands' classification. In the case of q=1, (U_2, H_2) is equivalent to the Langlands' representation $J_{1,2}$ in [3], Theorem 3.2.

4. The imbedding of U_r into $L^2(\Gamma \setminus G)$

In this section, we fix $r \in \mathbb{Z}$. We will construct a certain uniform discrete subgroup Γ of G such that $m(U_r, \Gamma) \neq 0$. Together with Theorem 3.4 and (0.1), this will prove the non-vanishing of the cohomology of Γ . The results in this section depend heavily on the results in [1], VIII, § 5.

4.1. Our discrete subgroup will be constructed arithmetically. First we realize G and G' as subgroups of linear algebraic groups.

Let k be a totally real finite extension of Q and d be the degree of k over Q. Assume that $d \ge 2$. Let $\Sigma = \{\sigma_1, \dots, \sigma_d\}$ be the set of isomorphisms of k into R. We regard k as a subfield of R so that σ_1 is the identity mapping. Put $k'=k(\sqrt{-1})$. We extend $\sigma \in \Sigma$ to the imbedding of k' into C which leaves $\sqrt{-1}$ fixed. If H is a linear algebraic group in GL(l, C) defined over k or Q and B is a subfield of C, we put $H(B)=H \cap GL(l, B)$.

Denote by $E_{k'}$ the vector space $(k')^{2n}$. We can choose $a \in k$ so that a is positive and the conjugates σa by $\sigma \in \Sigma$ ($\sigma \neq \sigma_1$) are all negative. Fix such a. Let h (resp. b) be a non-degenerate hermitian form (resp. a non-degenerate skew-symmetric bilinear form) on $E_{k'}$ defined by the matrix

$$\begin{pmatrix} I_{p} & 0 & & \\ \hline 0 & -aI_{q} & 0 \\ \hline 0 & & I_{p} & 0 \\ \hline 0 & & 0 & -aI_{q} \end{pmatrix} (\text{resp.} \begin{pmatrix} 0 & & I_{p} & 0 \\ \hline 0 & & 0 & aI_{q} \\ \hline -I_{p} & 0 & & \\ \hline 0 & & -aI_{q} & 0 \end{pmatrix}).$$

Then h is an indefinite hermitian form with signature (2p, 2q) but the conjugates ^sh by σ ($\sigma \neq \sigma_1$) are positive definite.

Using h and b, we can construct the linear algebraic group G defined over k such that

$$\boldsymbol{G}(k) = \left\{ g \in SL(2n, k') \middle| \begin{array}{l} h(gz, gw) = h(z, w) \\ b(gz, gw) = b(z, w) \end{array} \right. \quad (z, w \in E_{k'}) \right\}.$$

Then $G(\mathbf{R})$ is isomorphic to G over \mathbf{R} . Similarly, using only h, we obtain the linear algebraic group G' defined over k such that

$$G'(k) = \{g \in SL(2n, k') | h(gz, gw) = h(z, w) \quad (z, w \in E_{k'})\}$$

Also, G'(R) is isomorphic to G' over R.

Naturally, we have the rational imbedding of G into G' defined over k. We denote by ψ ; $G \rightarrow G'$ this imbedding. It should be noted that, up to conjugation over R, $\psi|_{G(R)}$; $G(R) \rightarrow G'(R)$ coincides with the imbedding ψ ; $G \rightarrow G'$ in 1.2.

4.2. Now we denote by $\operatorname{Res}_{k/Q}$ the functor of the restriction of scalars from k to Q. Let $\mathcal{Q} = \operatorname{Res}_{k/Q} G$ and $\mathcal{Q}' = \operatorname{Res}_{k/Q} G'$. Then we have the canonical imbedding $\operatorname{Res}_{k/Q} \psi$; $\mathcal{Q} \to \mathcal{Q}'$ defined over Q. Put $\Psi = \operatorname{Res}_{k/Q} \psi$.

Over \mathbf{R} , we have the following isomorphisms ([2], 7.16);

$$\begin{aligned} \mathcal{Q} &\simeq {}^{\sigma_1} G \times {}^{\sigma_2} G \times \cdots \times {}^{\sigma_d} G \\ \mathcal{Q}' &\simeq {}^{\sigma_1} G' \times {}^{\sigma_2} G' \times \cdots \times {}^{\sigma_d} G' \end{aligned}$$

where, for $\sigma \in \Sigma$, ${}^{\sigma}G$ (resp. ${}^{\sigma}G'$) denotes the conjugate of G (resp. G') by σ . So we have

(4.1)
$$\mathcal{G}(\mathbf{R}) \simeq G \times Sp(n) \times \cdots \times Sp(n)$$

$$(4.2) \qquad \qquad \mathcal{G}'(\mathbf{R}) \simeq G' \times SU(2n) \times \cdots \times SU(2n) \, .$$

Under these isomorphisms, the imbedding Ψ is the product of the conjugations ${}^{\sigma_i}\psi$; ${}^{\sigma_i}G \rightarrow {}^{\sigma_i}G'$ $(1 \leq i \leq d)$ of ψ .

As in [1], VIII, 5.3, \mathcal{Q}' is naturally imbedded into Sp_N over Q where N= 2nd. In fact, consider $E_{k'}$ as to be a 4*n*-dimensional vector space over k and write E_k instead of $E_{k'}$. We define the skew-symmetric k-bilinear form β on E_k by

$$h(z, w) = \mu(z, w) + \sqrt{-1}\beta(z, w) \qquad (z, w \in E_k).$$

Then G' is imbedded into the symplectic group Sp_{2n} defined by β over k. Further, if we consider $E_Q = \operatorname{Res}_{k/Q} E_k$ and $\beta_Q = \operatorname{Res}_{k/Q} \beta$, \mathcal{Q}' is naturally imbedded into the group Sp_N defined by β_Q over Q. Denote by Ψ' ; $\mathcal{Q}' \to Sp_N$ this imbedding.

Thus we obtain the imbedding $\Psi' \circ \Psi$; $\mathcal{Q} \to Sp_N$ defined over Q. We choose a basis of E_Q so that β_Q is of standard form. With respect to this basis, we consider Sp_N as to be the subgroup of $GL(2N, \mathbb{C})$. Define

$$\begin{aligned} \mathcal{G}(\boldsymbol{Z}) &= \{ g \in \mathcal{G}(\boldsymbol{Q}) | (\Psi' \circ \Psi)(g) \in Sp(N, \boldsymbol{Z}) \} \\ \mathcal{G}'(\boldsymbol{Z}) &= \{ g \in \mathcal{G}'(\boldsymbol{Q}) | \Psi'(g) \in Sp(N, \boldsymbol{Z}) \} . \end{aligned}$$

Then $\mathcal{Q}(\mathbf{Z})$ (resp. $\mathcal{Q}'(\mathbf{Z})$) is an arithmetic subgroup of $\mathcal{Q}(\mathbf{R})$ (resp. $\mathcal{Q}'(\mathbf{R})$) ([2], 7.11, 7.12). By a standard argument about arithmetic subgroups, $\mathcal{Q}(\mathbf{Z})$ (resp. $\mathcal{Q}'(\mathbf{Z})$) turns out to be a uniform discrete subgroup of $\mathcal{Q}(\mathbf{R})$ (resp. $\mathcal{Q}'(\mathbf{R})$)

([1], VIII, 5.4). In the direct product (4.1) (resp. (4.2)), denote by $p_1; \mathcal{G}(\mathbf{R}) \rightarrow G$ (resp. $p'_1; \mathcal{G}'(\mathbf{R}) \rightarrow G'$) the projection to the first component. Define

$$\Gamma_0 = p_1(\mathcal{G}(\boldsymbol{Z})), \quad \Gamma'_0 = p'_1(\mathcal{G}'(\boldsymbol{Z})).$$

Then Γ_0 (resp. Γ'_0) is a uniform discrete subgroup of G (resp. G') ([1], VIII, 5.5). Clearly we have

$$\psi(\Gamma_0) \subset \Gamma'_0$$
.

As for the group G' and its representation (V_r, H_r) , Borel and Wallach obtained the following theorem.

Theorem 4.1 ([1], VIII, Corollary 5.8). There is a subgroup Γ' of finite index in Γ'_0 such that $m(V_r, \Gamma') \neq 0$, where $m(V_r, \Gamma')$ is the multiplicity of V_r in $L^2(\Gamma' \setminus G')$.

As the proof of this theorem in [1] shows, Γ' is indeed a congruence subgroup of Γ'_0 ; that is, Γ' is given by

$$\Gamma' = p_1'(\Omega')$$

where Ω' is a congruence subgroup of $\mathcal{G}'(\mathbf{Z})$. Using this subgroup Γ' , we can construct our desired subgroup of G.

Theorem 4.2. There is a subgroup Γ of finite index in Γ_0 such that $m(U_r, \Gamma) \neq 0$.

Proof. Let Γ' and Ω' be as above. There is a congruence subgroup Ω of $\mathcal{G}(\mathbf{Z})$ such that $\Psi(\Omega) \subset \Omega'([2], 7.12)$. Put $\Gamma = p_1(\Omega)$. Then Γ is a subgroup of finite index in Γ_0 and we have

(4.3)
$$\psi(\Gamma) \subset \Gamma'$$
.

In the following, we will prove that $m(U_r, \Gamma) \neq 0$. As in 2.1, let H_r^{∞} be the space of C^{∞} -vectors in H_r for the representation (V_r, H_r) of G'. Since $m(V_r, \Gamma') \neq 0$, by [1], VIII, Theorem 4.3, there is a non-trivial continuous linear functional λ of H_r^{∞} such that

$$\lambda \circ V_r(\gamma) = \lambda$$

for all $\gamma \in \Gamma'$. Using λ , we want to construct a non-trivial intertwining operator of H_r into $L^2(\Gamma \setminus G)$. For $\phi \in H_r^{\infty}$, define a function $A'(\phi)$; $G' \to C$ by

$$A'(\phi)(g) = \lambda(V_r(g)\phi) \qquad (g \in G').$$

Then $A'(\phi)$ is a C^{∞} -function on G' and left Γ' -invariant. Since G is imbedded into G' by ψ as a Lie subgroup, $A'(\phi) \circ \psi$; $G \to C$ is a C^{∞} -function on G. Also,

by (4.3), $A'(\phi) \circ \psi$ is left Γ -invariant. So we can define a linear mapping A; $H_r^{\infty} \to C^{\infty}(\Gamma \setminus G)$ by

$$\begin{aligned} A(\phi)(\Gamma g) &= A'(\phi)(\psi(g)) \\ &= \lambda(U_r(g)\phi) \qquad (\phi \in H_r^{\infty}, g \in G) \,. \end{aligned}$$

Clearly we have

$$A(U_r(g)\phi) = U_{\Gamma}(g)A(\phi) \qquad (\phi \in H_r^{\infty}, g \in G)$$

where U_{Γ} is the right regular representation of G on $L^2(\Gamma \setminus G)$. Moreover, from the continuity of λ , we have

(4.4)
$$A(U_r(X)\phi) = U_{\Gamma}(X)A(\phi) \qquad (X \in \mathfrak{g}, \phi \in H_r^{\infty}).$$

Let \langle , \rangle (resp. $\langle , \rangle_{\Gamma}$) be the inner product on H_r (resp. $L^2(\Gamma \setminus G)$). For K-finite vectors $\phi_1, \phi_2 \in H^0_r$, set

$$(4.5) \qquad \qquad (\phi_1, \phi_2) = \langle A(\phi_1), A(\phi_2) \rangle_{\mathbf{F}}.$$

Then (,) defines a g-invariant hermitian form on the (g, K)-module H_r^0 . Here, by Proposition 2.2, H_r^0 decomposes into the sum of the isotypic K-submodules;

$$H^0_r = \bigoplus_{s \in \mathbb{Z}_+, s \geq -r} H^0_{r,s} .$$

Since $A|_{H^0_r}$; $H^0_r \to L^2(\Gamma \setminus G)$ is K-equivariant, this decomposition is the orthogonal direct sum with respect to (,), too. Also, each $H^0_{r,s}$ is finite dimensional. From these facts, it is easy to see that there is a linear mapping B; $H^0_r \to H^0_r$ such that

$$(4.6) \qquad \qquad (\phi_1, \phi_2) = \langle B\phi_1, \phi_2 \rangle \qquad (\phi_1, \phi_2 \in H^0_r) \,.$$

Then, by (4.4), we have

$$B(U_r(X)\phi) = U_r(X)(B(\phi)) \qquad (X \in \mathfrak{g}, \phi \in H^0_r).$$

Since H_r^0 is an irreducible (\mathfrak{g}, K) -module, B is a scalar operator $\nu \cdot \mathrm{Id}$ where $\nu \in \mathbf{R}$ and $\nu \ge 0$. Combining (4.5) and (4.6), we have

This implies that $A|_{H^0_r}$ is continuous with respect to the topology of H^0_r in H_r . Hence the operator $A|_{H^0_r}$ extends to a bounded operator

$$\bar{A}; H_r \to L^2(\Gamma \backslash G)$$
.

Note that H_r^0 consists of analytic vectors for U_r and G is connected. Then (4.4) implies that

COHOMOLOGY OF DISCRETE SUBGROUPS OF Sp(p,q)

$$\bar{A}(U_r(g)\phi) = U_{\Gamma}(g)\bar{A}(\phi) \qquad (\phi \in H_r, g \in G)$$

and hence \overline{A} is an intertwining operator of (U_r, H_r) into $(U_{\Gamma}, L^2(\Gamma \setminus G))$.

On the other hand, λ is non-trivial. From the density of H_r^0 in H_r^∞ , $\lambda|_{H_r^0}$ is non-trivial. Hence \overline{A} is non-trivial. The theorem is proved.

Corollary 4.3. For $l \in \mathbb{Z}_+$, there is a uniform discrete subgroup Γ of G such that

$$H^{2q}(\Gamma, F_{l}^{*}) \neq \{0\}.$$

Proof. Theorem 3.4 implies that

$$H^{2q}(\mathfrak{g}, K; H^0_{l+2g} \otimes F^*_{l}) \neq \{0\}$$

Then, by [1], I, Theorem 5.3, the infinitesimal character of H_{l+2q} is equal to that of F_l . Applying Theorem 4.2 to U_{l+2q} , we obtain a uniform discrete subgroup Γ such that $m(U_{l+2q}, \Gamma) \neq 0$. Then, by (0.1), we have

$$H^{2q}(\Gamma, F_{i}^{*}) \neq \{0\}.$$

REMARK 4.4. In the above corollary, we consider the case l=0. Then we have

$$H^{2q}(\Gamma, \mathbf{C}) \neq \{0\}.$$

More precisely, $H^{2q}(\Gamma, C)$ contains a cohomology class which corresponds to a non-trivial automorphic representation. This improves the result in [4]. In [4], Millson and Raghunathan showed that, for some Γ , $H^i(\Gamma, C)$ contains such a class for any *i* strictly between 0 and 4pq and divisible by either 4p or 4q ([4], Theorem 4.1).

References

- A. Borel, N. Wallach: Continuous cohomology, discrete subgroups and representations of reductive groups, Ann. Math. Studies, No. 94, Princeton University Press, 1980.
- [2] A. Borel: Introduction aux groupes arithmetiques, Hermann, 1969.
- [3] D.H. Collingwood: A note on continuous cohomology for semi-simple Lie groups, Math. Z. 189 (1985), 65-70.
- [4] J.J. Millson, M.S. Raghunathan: Geometric construction of homology for arithmetic groups I, Geometry and analysis, Indian Academy of Sciences and Tata Institute of Fundamental Research, Springer, 1981, 103-123.
- [5] D.A. Vogan, Jr, G.J. Zuckerman: Unitary representations with non-zero cohomology, Compositio Math. 53 (1984), 51-90.
- [6] N. Wallach: Symplectic geometry and Fourier analysis, Math. Sci. Press, Boston, 1977.

[7] G. Warner: Harmonic analysis on semi-simple Lie groups I, Grund. Math. Wiss. 188, Springer, 1972.

> Department of Integrated Arts and Sciences University of Osaka Prefecture Sakai, Osaka 591 Japan