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1. Introduction

Let B be the open unit ball in C" and Aut(B) the group of holomorphic
automorphisms of B. When n=1, B is the unit disc in C and the space #
consisting of holomorphic functions f on B such that

1/2
/1= (” |/ @)dx dy) <o
B

is called the Dirichlet space. J# is characterized as the unique Hilbert space of
holomorphic functions on the unit disc which is Aut(B) invariant, i.c.,

Ifopl=IfI
for all fe# and peAut(B) [1]. The inner product in S is given by

() Sufr= Hfi(ﬂm dx dy.

Strictly speaking this is a semi-inner product and s#/C is a Hilbert space.

For n>1, Zhu[5] proved that there exists a unique Hilbert space of holomorphic
functions on B which is Aut(B) invariant. His description is in terms of the power
series expansions of the holomorphic functions, and although several trials of
finding a natural analog of the inner product (%) are made, it is also shown that
none of them generalizes to higher dimensions.

In this paper we give two explicit integral formulas for Aut(B) invariant inner
product, both of them are derived from the analytic continuation of unitary
representations of Aut(B) as in Wallach [4].

2. Preliminaries

Let G=SU(n,1), ie., the Lie group of linear transformations of determinant 1
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in C"*! which preserves the hermitian form
AR R A e P

Hence the group G consists of all (n+ 1) x (n+ 1) complex matrices g of determinant

1 such that
1, 0 « | 1n O
Elo 18 Tlo -1

where * denotes the conjugate transpose and 1, is the n x n identity matrix. Let us

) . a b .
write g€ G in block form as g=[ ] where a, b, ¢ are nxn, nx 1, 1 x n matrices,

(4
. . . b .
respectively and de C. Then G consists of all matrices g=[a d] of determinant
¢
1 such that
(2.1a) a*a—c*c=1,, a*bh=c*d, |d*-b*b=1,
or equivalently
(2.1b) aa*—bb*=1,, ac*=bd* |d*—cc*=1,
where (2.1b) is obtained by replacing g by g~! in (2.1a). Throughout this paper we
regard the points in C" as column vectors. Then G acts transitively on B by
-1 - a b
2.2) z—>g-z=(az+b)cz+d) if g= d €q.
c
Holomorphic automorphism groups of bounded symmetric domains are known
(see [2]), and in the case of the unit ball B of C" we have
Aut (B)=G/(center of G).

Therefore every holomorphic automorphism of B can be represented by ge G. For
other description of Aut(B), see [3].

Let v be Lebesgue measure on C”, so normalized that v(B)=1, and let u be the
measure on B defined by

(2.3a) du(z)= dv(z).

1
(1 _ IZ'Z)n +1
Then (see [3])

(2.3b) the measure p is invariant under the action of G.
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For ge G and ze€ B, let Jac(g,z) denote the holomorphic Jacobian matrix of the
mapping w — g-w at the point z.

Lemma 2.4. Let g=[a

b:|eG and zeB. Then
c d

Jac(g,z)=(a—(g2)cNcz+d) ™},
where g-z is as in (2.2).

Proof. For any column vector ve C", we have
.1
Jac(g,z)v=’lll_{r(1)z(g'(z+hv)—g- 2)

=av(cz+d)~ ' —(az+b)cz+d) cvcz+d) !
=(a—(g- 2)c)cz+d) " to.

This implies the lemma. |

Define J,:Gx B— GL(n,C) and K,:Bx B - GL(n,C) by

Ji(g,z)=a—(g-z)c forg=[a b]eG,
c
K (z,w)=1,—zw*.

Similarly define J,:G x B— C*(=GL(1,C)) and K,: BxB— C* by

Jy(g,z)=cz+d for g=[a b]eG,
c d

Ky(z,w)=(1—w*2)~ .
Note that
Ji(g,2) Y =zb*+a* J,(g,2) '=—bXg 2)+d;
this follows from (2.1).

Lemma 2.5. For i=1,2, we have

Ji(8182,2)=J481,82 2)J{g2,2) for g,,8,€G and z€B,

and

K(g z,g-w)=J{g,2)K{z,w)J{g,w)* for geG and z,weB.
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Proof. It follows from (2.1) that
(zb*+a*) (g z)=zd*+c* for g=[a z]eG and zeB.
c

The lemma then follows from direct computations. [ |
Lemma 2.6. For every ze B, K,(z,z) is a positive definite matrix.

Proof. For ze B, choose geG so that z=g-0. Then Lemma 2.5 implies that
Ki(z,2)=K,(g 0, 0)=J,(g,0)/,(2,0)*.

Since J,(g,0) is nonsingular, K,(z,z) is positive definite. ]

3. Integral formulas for the invariant inner product

For AeC, put
1.7 1
c(A)= n—!li]:[z(l —i)= EA(A —2)(A—=3)---(A—n).

Let H(B,C") be the space of holomorphic functions on B with values in C". If F,,
F, e H(B,C"), regarding F,(z), F,(z) as row vectors, let for Ae C

(3.1) CFi,F3), =C(i)f Fy(2)(1,—zz%F,(2) 1 — ||*)'du(z)
B

provided the integral converges absolutely. Since du(z)=(1—|z|*)~"*Vdw(z) and
1,—zz* is positive definite by Lemma 2.6, it is clear that if A>n+1 and if F is
bounded on B, then {F,F),< co; furthermore the function A —» (F,F), extends to
a holomorphic function on the region {zeC; Re(z)>41}. Let for leC

H,(B,C") ={Fe H(B,C"); {F,Fygez<}-

Let G be the universal covering group of G with covering map p: G — G. Since
G x B is simply connected, we can uniquely define, for each 1€ C and g e G, the power
J,(p(@),z)* with J,(p(@),z)*=1 (é=identity element of &) for all ze B. Similarly we
can define K,(z,w)* so that K,(0,0)*=1. For AeC, define j,;:Gx B— C* by

jz(g,z)=J2(P(§),Z)l-
Then in view of Lemma 2.5 we have

(3.2a) JA81&2:2)=Ji(&1:p(&2) 2Y:(&2:2),
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(3:2b) K5(p(@)- 2.p(8)- w)* =j&,2)Ky(z, W) A& w).
For Fe H(B,C") and ge G with p(§)=g, we set
(33) (UA@F)2)=Fg~ ' 2)J,g" ",2)jg " ',2) 7.

Then Lemma 2.5 and (3.2a) imply that U, is a(n algebraic) representation of G
on H(B,C").

Lemma 34. If F,,F,e H,(B,C"), then

<U1(8~)F1, U).@)F2>).=<F1sF2>A
for all §€G.

Proof. Letting p(§)=g and using Lemma 2.5 and (3.2), we have
CU@F,, U)@F2;

=C('3~)Jv Fl(g—l 2)K,(g™! z,g7! "Z)Fy(g™! 'Z)*Kz(g—l ‘2,8~ 2) " du(2)
B

= CU»)J Fy(2)K(2,2)F,(2) *K,(z,2) " *du(2) by (2.3)
B
=(F,Fy);. |

For a holomorphic function f: B — C, let f'(z) denote the holomorphic Jacobian
matrix of fat z, i.e., /' (z)=(D, f(2), -, D, f(2)), where D;=0/dz;. Let 2(B) be the space
of holomorphic polynomial functions from B to C. Note that if fe Z(B) and
A=>n+1, then f"e H(B,C".

Proposition 3.5. If f,.f, € P(B), then the function A — {f}.f5>,, which is initially
defined by a convergent integral for Re(d)>n, extends to a meromorphic function
on C, which is moreover holomorphic on the region {ze C, Re(z)> —1}.

Proof. For a multi-index a=(ay,--+,a,) and ze C", define
=0ty + - 4o, oad=al-aq,) z¢=zf-..2%

Let ¢ be the multi-index that has 1 in the ith place and O elsewhere. Then for
multi-indices o and

(=1, —zz*(FP) *= Z“iza - ei(Z:(‘Sij - zizj)ﬁjfﬁ - e’)

(36) =Zaiﬂj(za_E‘Eﬂ_ej(sij—zafﬁ)
ij
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= Zaiﬁiz"‘ meighe_ (Zoz,-ﬂ )22,

If A>n, we heve (see [S], p.840)

nla!T(A—n) _p
T(A+af) B

a=B(1 _ |12} —
G.7 LZZ(I |z1*) du(z) 0 fusp,

where I' is the classical gamma function. Therefore if > n, (3.1), (3.6) and (3.7) imply
that

(@, >3 = ()T (A —n)
, la—g) o )
(Z Tar=1 S

c(An'T(A—n)a!
_I’(A—-W_(Z oA+ o — 1) —ol?)
(3.8a) (since afa—eg)=al)
(AT —nyatjol(2— 1)
- T (4 + o)
_ ol
TAHDA+2) A+ o= 1)
(since T(A+ )= T(A—n)TAZL(A+)).

Likewise if A>n and a#p, then

(3.85) (Y ()33=0
Now if f,(2)=Z,a,2", f,(2)=E,b,2 € #(B), then by (3.8)
(39) Sifdi= Y a el (finite sum)

le]> 0 ab a(11+1)(/1+2) A+ o] —1)
and the proposition follows. |

We define a representation T of G on holomorphic functions on B by
(M) N2)=flg™!
Then the chain rule and Lemma 2.4 imply that
(TN (2)=1"g™" 2Maclg™",2)
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=fg™ " 2Wi(g™ ", 2ag™H2) 7
Hence if §eG with p(§)=g, then by (3.3)
(3.10) (TR) ) (2)=(U,@) S ")2).

Note that Proposition 3.5 ensures that if f,,f, € #(B), then }in}( f1:/3) 1 exists.

Theorem 3.11. If f,.f,€ P(B), then
< fuf2» =limd(2) f [1@)(1,—zz% f3(2)*(1 ~ |2*)dp(z)
B

defines an (a semi-) inner product on P(B). Let H# be the Hilbert space completion
of P(B). Then H# consists of holomorphic functions on B and H# is a G invariant
Hilbert space; that is, T(g)fe # for geG, fe #, and

<T@ f1, T®) > = < f1./2>

for all geG, f.f,eH.

Proof. Suppose f(z)=Z2,a,z* and f,(2)=Z;b,z". Then by (3.1) and (3.9)

< fufo» = }1_1’2<f1,’.f2'>l
G.12) '
='Za45a% (finite sum),
. al!

and the first assertion follows.
To show that # consists of holomorphic functions, we first show that if
feP(B) and f(0)=0, then

1 1/2
(3.13) |f(z)i5<10g1*_—|z'|‘5) A1

for all ze B, where ||f||= < f,f>'? . Indeed if f(z)=2X,a,z*€ Z(B), then

A< Y laliz

la|>0

1/2 1/2
<( y |z“|2) ( 3 la |2—°‘”°")
< . .
Jai> oot!|t] la|>0 [oe]?

Since
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Z IaI z Z |°" alz

|a|>ofx'|0€| ko= ka'
o0
=) -|Z|2k
k=1k

1

=lo :
SR

(3.13) follows. Let {f,} be a Cauchy sequence in #(B). Define f,e#?(B) by

F@)=f(2)—f0). Then £(0)=0 and, since |fill=|/l for all k, {f,} is also a
Cauchy sequence. Since (3.13) shows that the norm convergence implies uniform

convergence on every compact subset of B, there exists a holomorphic function f
on B such that f, converges uniformly to f on every compact subset of B. Let

f(2)=X,a,z* be the power series expansion and let ||f]|>= Zl a,)*— l II'I then || f|| < oo

and lim || f—f,||=0. Hence we conclude that

k— oo

{f(z) YEDY lzl';’," }

with inner product

ol

< fifa> —Za Dy—— Ll

fOI‘ all fl(z)=zaaaza, fz(z)=2ﬂbﬂzﬂex.
Now suppose f,,f; € P(B), g€ G, and take e G so that p(g)=g. Then in view
of Lemma 3.4 and Proposition 3.5, it follows by analytic continuation that

< fif2>» =<f1,xf2'>1(=<f1’xf2'>z|z=1)
=U@ /1, U@ 1)1
={Te)f1)s(Tg)f2)>:1 by (3.10).

This shows that T(g)fe # for geG, fe P(B), and «<T(g)f1,T(Q)f>> = < f1./>> for
g€G.,f,,/,€P(B). Since #(B) is dense in #, the theorem follows. [ ]

We now turn to another description of the G invariant inner product. For
AeC, put

1 1
d(2) =5i1=10(/1 —i) =E'W —1)--(A—n).
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If /i and f, are holomorphic functions on B, let for A1eC,
o= d(/l)f [1@ @)1~ |2V du(z)
B

provided the integral converges absolutely. It is clear that if A\>n+1 and if fe 2(B),
then (f,f),<oo; furthermore the function 1 — {f,f), extends to a holomorphic
function on the region {ze C, Re(z)>4}.

Theorem 3.14. If f,.f/> € P(B), then the function A — {f,.f>>,, which is initially
defined by a convergent integral for Re(A)> n, extends to a meromorphic function on C,
which is moreover holomorphic on the region {ze€ C, Re(z)> —1}.

The pairing

< fufo> = limd) f S@FE — e dua)
B

defines an (a semi-) inner product on P(B). This inner product coincides with
that in Theorem 3.11. Therefore the Hilbert space completion is a G invariant
Hilbert space that consists of holomorphic functions on B.

Proof. If A>n, then for multi-indices a and f it follows from (3.7) that

dA)nlo!T(A—n) 5

a BN —
=

o! 5
A+ DA+ (Al —1)

Hence if f1(z)=Z2,a,2% f5(z) =2;byz’ € 2(B), then

<fnf2>1= Z “

a.b, (finite sum),
fso  A+1DA+2)-(A+]|a|—1)

and the function A — {f},f>), extends to a meromorphic function on C. Moreover

< frufy» = }li_f}(l)<f1xf2>1
— oo .
= ZaabaW (finite sum),
p of!

which coincides with (3.12). |
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REMARK. Iffis a holomorphic function on B and g e G with p(3)=g, set for Le C
(TON)=jg™ ")~ g™ " 2).
Then by (3.2a) T, defines a representation of G and
(To@NED) =1 2)=(T®)/ \2).
If /| and f, are holomorphic functions on B, then it follows from (2.3) and (3.2b)

<T1(g~)f1’TA(g~)f2>}.= <f1f2>z

for all §eG. Consequently, as in the proof of Theorem 3.11, the G invariance of
the Hilbert space in Theorem 3.14 may also be proved directly by analytic
continuation.
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