

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

AUTOMORPHISM INVARIANT INNER PRODUCT IN HILBERT SPACES OF HOLOMORPHIC FUNCTIONS ON THE UNIT BALL OF Cⁿ

Dedicated to Professor Hideki Ozeki on his 60th birthday

TORU INOUE

(Received October 20, 1993)

1. Introduction

Let B be the open unit ball in $Cⁿ$ and $Aut(B)$ the group of holomorphic automorphisms of *B*. When $n=1$, *B* is the unit disc in *C* and the space *H* consisting of holomorphic functions f on B such that

$$
||f|| = \left(\iint_B |f'(z)|^2 dx dy\right)^{1/2} < \infty
$$

is called the Dirichlet space. *\$C* is characterized as the unique Hubert space of holomorphic functions on the unit disc which is $Aut(B)$ invariant, i.e.,

$$
\|f\circ\varphi\|=\|f\|
$$

for all $f \in \mathcal{H}$ and $\varphi \in Aut(B)$ [1]. The inner product in \mathcal{H} is given by

(*)
$$
\langle f_1, f_2 \rangle = \iint_B f'_1(z) \overline{f'_2(z)} dx dy
$$

Strictly speaking this is a semi-inner product and \mathcal{H}/C is a Hilbert space.

For $n > 1$, Zhu^[5] proved that there exists a unique Hilbert space of holomorphic functions on *B* which is $Aut(B)$ invariant. His description is in terms of the power series expansions of the holomorphic functions, and although several trials of finding a natural analog of the inner product $(*)$ are made, it is also shown that none of them generalizes to higher dimensions.

In this paper we give two explicit integral formulas for $Aut(B)$ invariant inner product, both of them are derived from the analytic continuation of unitary representations of Aut(B) as in Wallach [4].

2. Preliminaries

Let $G = SU(n,1)$, i.e., the Lie group of linear transformations of determinant 1

in C^{n+1} which preserves the hermitian form

$$
|z_1|^2 + \cdots + |z_n|^2 - |z_{n+1}|^2.
$$

Hence the group G consists of all $(n + 1) \times (n + 1)$ complex matrices g of determinant 1 such that

$$
g\begin{bmatrix} 1_n & 0 \\ 0 & -1 \end{bmatrix} g^* = \begin{bmatrix} 1_n & 0 \\ 0 & -1 \end{bmatrix}
$$

where $*$ denotes the conjugate transpose and 1_n is the $n \times n$ identity matrix. Let us write $g \in G$ in block form as $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ where a, b, c are $n \times n$, $n \times 1$, $1 \times n$ matrices, respectively and $d \in \mathbb{C}$. Then G consists of all matrices $g = \begin{bmatrix} 0 & 0 \ c & d \end{bmatrix}$ of determinant 1 such that

(2.1a)
$$
a^*a - c^*c = 1_n, \quad a^*b = c^*d, \quad |d|^2 - b^*b = 1,
$$

or equivalently

(2.1b)
$$
aa^* - bb^* = 1_n, ac^* = bd^*, |d|^2 - cc^* = 1,
$$

where (2.1b) is obtained by replacing g by g^{-1} in (2.1a). Throughout this paper we regard the points in C^n as column vectors. Then G acts transitively on B by

(2.2)
$$
z \to g \cdot z = (az + b)(cz + d)^{-1} \quad \text{if } g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in G.
$$

Holomorphic automorphism groups of bounded symmetric domains are known (see [2]), and in the case of the unit ball *B* of *Cⁿ* we have

$$
Aut(B) = G/(center of G).
$$

Therefore every holomorphic automorphism of *B* can be represented by $g \in G$. For other description of $Aut(B)$, see [3].

Let v be Lebesgue measure on $Cⁿ$, so normalized that $v(B) = 1$, and let μ be the measure on *B* defined by

(2.3a)
$$
d\mu(z) = \frac{1}{(1-|z|^2)^{n+1}}dv(z).
$$

Then (see [3])

(2.3b) the measure μ is invariant under the action of *G*.

For $g \in G$ and $z \in B$, let $Jac(g, z)$ denote the holomorphic Jacobian matrix of the mapping $w \rightarrow g \cdot w$ at the point z.

Lemma 2.4. Let
$$
g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in G
$$
 and $z \in B$. Then

$$
Jac(g, z) = (a - (g \cdot z)c)(cz + d)^{-1},
$$

where $g \cdot z$ *is as in* (2.2).

Proof. For any column vector $v \in \mathbb{C}^n$, we have

$$
Jac(g, z)v = \lim_{h \to 0} \frac{1}{h} (g \cdot (z + hv) - g \cdot z)
$$

= $av(cz + d)^{-1} - (az + b)(cz + d)^{-1}cv(cz + d)^{-1}$
= $(a - (g \cdot z)c)(cz + d)^{-1}v$.

This implies the lemma.

Define
$$
J_1: G \times B \to GL(n, C)
$$
 and $K_1: B \times B \to GL(n, C)$ by
\n
$$
J_1(g, z) = a - (g \cdot z)c \text{ for } g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in G,
$$
\n
$$
K_1(z, w) = 1_n - zw^*.
$$

Similarly define J_2 : $G \times B \to C^* (= GL(1, C))$ and K_2 : $B \times B \to C^*$ by

$$
J_2(g, z) = cz + d \quad \text{for } g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in G,
$$

$$
K_2(z, w) = (1 - w^*z)^{-1}.
$$

Note that

$$
J_1(g,z)^{-1} = zb^* + a^*, \quad J_2(g,z)^{-1} = -b^*(g \cdot z) + \overline{d};
$$

this follows from (2.1).

Lemma 2.5. For $i = 1, 2$, we have

$$
J_i(g_1g_2, z) = J_i(g_1, g_2 \cdot z) J_i(g_2, z) \quad \text{for } g_1, g_2 \in G \text{ and } z \in B,
$$

and

$$
K_i(g \cdot z, g \cdot w) = J_i(g, z)K_i(z, w)J_i(g, w)^* \quad \text{for } g \in G \text{ and } z, w \in B.
$$

 \blacksquare

Proof. It follows from (2.1) that

$$
(zb^* + a^*)(g \cdot z) = zd^* + c^* \quad \text{for } g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in G \text{ and } z \in B.
$$

■

The lemma then follows from direct computations.

Lemma 2.6. For every $z \in B$, $K_1(z, z)$ is a positive definite matrix.

Proof. For $z \in B$, choose $g \in G$ so that $z = g \cdot 0$. Then Lemma 2.5 implies that

$$
K_1(z, z) = K_1(g \cdot 0, g \cdot 0) = J_1(g, 0)J_1(g, 0)^*.
$$

Since $J_1(g,0)$ is nonsingular, $K_1(z,z)$ is positive definite.

3. Integral formulas for the invariant inner product

For $\lambda \in \mathbb{C}$, put

$$
c(\lambda) = \frac{1}{n!} \lambda \prod_{i=2}^{n} (\lambda - i) = \frac{1}{n!} \lambda(\lambda - 2)(\lambda - 3) \cdots (\lambda - n).
$$

Let $H(B, C^n)$ be the space of holomorphic functions on *B* with values in C^n . If F_1 , $F_2 \in H(B, C^n)$, regarding $F_1(z)$, $F_2(z)$ as row vectors, let for $\lambda \in C$

(3.1)
$$
\langle F_1, F_2 \rangle_{\lambda} = c(\lambda) \int_B F_1(z) (1_n - zz^*) F_2(z)^* (1-|z|^2)^{\lambda} d\mu(z)
$$

provided the integral converges absolutely. Since $d\mu(z) = (1 - |z|^2)^{-(n+1)}dv(z)$ and $1_n - zz^*$ is positive definite by Lemma 2.6, it is clear that if $\lambda \ge n+1$ and if *F* is bounded on *B*, then $\langle F, F \rangle_{\lambda} < \infty$; furthermore the function $\lambda \to \langle F, F \rangle_{\lambda}$ extends to a holomorphic function on the region $\{z \in \mathbb{C}; \operatorname{Re}(z) > \lambda\}$. Let for $\lambda \in \mathbb{C}$

$$
H_{\lambda}(B,\mathbf{C}^n)=\{F\in H(B,\mathbf{C}^n);\ \langle F,F\rangle_{\mathrm{Re}(\lambda)}<\infty\}.
$$

Let \tilde{G} be the universal covering group of G with covering map $p: \tilde{G} \to G$. Since $\tilde{G} \times B$ is simply connected, we can uniquely define, for each $\lambda \in C$ and $\tilde{g} \in \tilde{G}$, the power $J_2(p(\tilde{g}),z)$ ² with $J_2(p(\tilde{e}),z)$ ² = 1 (\tilde{e} = identity element of \tilde{G}) for all $z \in B$. Similarly we can define $K_2(z, w)$ ^{λ} so that $K_2(0, 0)$ ^{$\lambda = 1$}. For $\lambda \in \mathbb{C}$, define $j_\lambda : \tilde{G} \times B \to \mathbb{C}^\times$ by

$$
j_{\lambda}(\tilde{g},z) = J_2(p(\tilde{g}),z)^{\lambda}.
$$

Then in view of Lemma 2.5 we have

$$
(3.2a) \t\t j\lambda(\tilde{g}1,\tilde{g}2,z)=j\lambda(\tilde{g}1,p(\tilde{g}2)\cdot z)j\lambda(\tilde{g}2,z),
$$

AUTOMORPHISM INVARIANT INNER PRODUCT 231

$$
(3.2b) \t K_2(p(\tilde{g}) \cdot z, p(\tilde{g}) \cdot w)^{\lambda} = j_{\lambda}(\tilde{g}, z) K_2(z, w)^{\lambda} \overline{j_{\lambda}(\tilde{g}, w)}.
$$

For $F \in H(B, C^n)$ and $\tilde{g} \in \tilde{G}$ with $p(\tilde{g}) = g$, we set

(3.3)
$$
(U_{\lambda}(\tilde{g})F)(z) = F(g^{-1} \cdot z)J_1(g^{-1},z)j_{\lambda}(\tilde{g}^{-1},z)^{-1}.
$$

Then Lemma 2.5 and (3.2a) imply that U_{λ} is a(n algebraic) representation of \tilde{G} on *H(B,C").*

Lemma 3.4. *If* $F_1, F_2 \in H_\lambda(B, C^n)$, then

$$
\langle U_{\lambda}(\tilde{g})F_1, U_{\lambda}(\tilde{g})F_2 \rangle_{\lambda} = \langle F_1, F_2 \rangle_{\lambda}
$$

for all $\tilde{g} \in \tilde{G}$.

Proof. Letting $p(\tilde{g})=g$ and using Lemma 2.5 and (3.2), we have

$$
\langle U_{\lambda}(\tilde{g})F_1, U_{\lambda}(\tilde{g})F_2 \rangle_{\lambda}
$$

= $c(\lambda) \int_B F_1(g^{-1} \cdot z)K_1(g^{-1} \cdot z, g^{-1} \cdot z)F_2(g^{-1} \cdot z)^* K_2(g^{-1} \cdot z, g^{-1} \cdot z)^{-\lambda} d\mu(z)$
= $c(\lambda) \int_B F_1(z)K_1(z, z)F_2(z)^* K_2(z, z)^{-\lambda} d\mu(z)$ by (2.3)
= $\langle F_1, F_2 \rangle_{\lambda}$.

For a holomorphic function $f: B \to C$, let $f'(z)$ denote the holomorphic Jacobian matrix of f at z, i.e., $f'(z) = (D_1 f(z), \dots, D_n f(z))$, where $D_i = \partial/\partial z_i$. Let $\mathcal{P}(B)$ be the space of holomorphic polynomial functions from *B* to *C*. Note that if $f \in \mathcal{P}(B)$ and $\lambda \ge n+1$, then $f' \in H_{\lambda}(B, C^{n}).$

Proposition 3.5. *If* $f_1, f_2 \in \mathcal{P}(B)$, then the function $\lambda \rightarrow \langle f'_1, f'_2 \rangle_\lambda$, which is initially *defined by a convergent integral for* $Re(\lambda) > n$, extends to a meromorphic function *on* C, which is moreover holomorphic on the region $\{z \in C, \text{Re}(z) > -1\}$.

Proof. For a multi-index $\alpha = (\alpha_1, \dots, \alpha_n)$ and $z \in \mathbb{C}^n$, define

 $|\alpha| = \alpha_1 + \cdots + \alpha_n$, $\alpha! = \alpha_1! \cdots \alpha_n!$, $z^{\alpha} = z_1^{\alpha_1} \cdots z_n^{\alpha_n}$.

Let ε_i be the multi-index that has 1 in the *i*th place and 0 elsewhere. Then for multi-indices α and *β*

 λ

$$
(z^{\alpha})'(1_{n} - zz^*) (z^{\beta})'^{*} = \sum_{i} \alpha_{i} z^{\alpha - \varepsilon_{i}} \left(\sum_{j} (\delta_{ij} - z_{i} \overline{z}_{j}) \beta_{j} \overline{z}^{\beta - \varepsilon_{j}} \right)
$$

$$
= \sum_{i,j} \alpha_{i} \beta_{j} (z^{\alpha - \varepsilon_{i}} \overline{z}^{\beta - \varepsilon_{j}} \delta_{ij} - z^{\alpha} \overline{z}^{\beta})
$$
(3.6)

 \blacksquare

$$
= \sum_i \alpha_i \beta_i z^{\alpha - \varepsilon_i} \overline{z}^{\beta - \varepsilon_i} - \left(\sum_{i,j} \alpha_i \beta_j \right) z^{\alpha} \overline{z}^{\beta}.
$$

If $\lambda > n$, we heve (see [5], p.840)

(3.7)
$$
\int_{B} z^{\alpha} \overline{z}^{\beta} (1-|z|^2)^{\lambda} d\mu(z) = \begin{cases} \frac{n! \alpha! \Gamma(\lambda-n)}{\Gamma(\lambda+|\alpha|)} & \text{if } \alpha = \beta \\ 0 & \text{if } \alpha \neq \beta, \end{cases}
$$

where Γ is the classical gamma function. Therefore if $\lambda > n$, (3.1), (3.6) and (3.7) imply that

$$
\langle (z^{\alpha})', (z^{\alpha})' \rangle_{\lambda} = c(\lambda)n! \Gamma(\lambda - n)
$$

$$
\times \left(\sum_{i} \alpha_{i}^{2} \frac{(\alpha - \varepsilon_{i})!}{\Gamma(\lambda + |\alpha| - 1)} - (\sum_{i,j} \alpha_{i} \alpha_{j}) \frac{\alpha!}{\Gamma(\lambda + |\alpha|)} \right)
$$

$$
= \frac{c(\lambda)n! \Gamma(\lambda - n)\alpha!}{\Gamma(\lambda + |\alpha|)} (\sum_{i} \alpha_{i}(\lambda + |\alpha| - 1) - |\alpha|^{2})
$$

(3.8α) (since α^f

■

$$
=\frac{c(\lambda)n!\Gamma(\lambda-n)\alpha!|\alpha|(\lambda-1)}{\Gamma(\lambda+|\alpha|)}
$$

=
$$
\frac{\alpha!|\alpha|}{(\lambda+1)(\lambda+2)\cdots(\lambda+|\alpha|-1)}
$$

(since $\Gamma(\lambda + |\alpha|) = \Gamma(\lambda - n)\prod_{j=-n}^{|\alpha|-1}(\lambda + j)$).

Likewise if $\lambda > n$ and $\alpha \neq \beta$, then

$$
\langle (z^{\alpha})'(z^{\beta})' \rangle_{\lambda} = 0.
$$

Now if $f_1(z) = \sum_{\alpha} a_{\alpha} z^{\alpha}$, $f_2(z) = \sum_{\beta} b_{\beta} z^{\beta} \in \mathcal{P}(B)$, then by (3.8) $=\frac{\alpha! |\alpha|}{(\lambda+1)(\lambda+2)\cdots(\lambda+|\alpha|-1)}$

(since $\Gamma(\lambda+|\alpha|)=\Gamma(\lambda-n)\Pi_{j=-n}^{|\alpha|-1}(1-\alpha)$

Likewise if $\lambda > n$ and $\alpha \neq \beta$, then

(3.8b)

(3.9) $\langle f_1(f_2)=\sum_{\alpha} a_{\alpha}z^{\alpha}, f_2(z)=\sum_{\beta} b_{\beta}z^{\beta} \in \mathcal{P}(B)$, then by (3.8)

(3.9) $\langle f_1', f_2'$ $\bigcup_{i} 1 \bigcup_{i} 2 \bigcup_{i} = \bigcup_{i} a_{\alpha} \bigcup_{i} a_{(i+1)} \bigcup_{i} 1 \bigcup_{i} a_{(i+1)} \bigcup_{i} a_{(i+1)} \bigcup_{i} a_{(i+1)}$

and the proposition follows.

We define a representation *T* of G on holomorphic functions on *B* by

$$
(T(g)f)(z) = f(g^{-1} \cdot z).
$$

Then the chain rule and Lemma 2.4 imply that

$$
(T(g)f)'(z) = f'(g^{-1} \cdot z)Jac(g^{-1},z)
$$

AUTOMORPHISM INVARIANT INNER PRODUCT 233

$$
=f'(g^{-1}\cdot z)J_1(g^{-1},z)J_2(g^{-1},z)^{-1}.
$$

Hence if $\tilde{g} \in \tilde{G}$ with $p(\tilde{g})=g$, then by (3.3)

(3.10)
$$
(T(g)f')(z) = (U_1(\tilde{g})f')(z).
$$

Note that Proposition 3.5 ensures that if $f_1, f_2 \in \mathcal{P}(B)$, then $\lim_{\lambda \to 1} \langle f_1', f_2' \rangle_{\lambda}$ exists.

Theorem 3.11. *If* $f_1, f_2 \in \mathcal{P}(B)$, then

$$
\ll f_1, f_2 \gg = \lim_{\lambda \to 1} c(\lambda) \int_B f'_1(z) (1_n - zz^*) f'_2(z)^* (1 - |z|^2)^{\lambda} d\mu(z)
$$

defines an (a semi-) inner product on $\mathcal{P}(B)$ *.* Let \mathcal{H} be the Hilbert space completion *of* $\mathcal{P}(B)$ *. Then* \mathcal{H} *consists of holomorphic functions on B and* \mathcal{H} *is a G invariant Hilbert space; that is, T(g)f* $\in \mathcal{H}$ *for* $g \in G$ *,* $f \in \mathcal{H}$ *, and*

$$
\ll T(g)f_1, T(g)f_2 \gg \; = \; \; \ll f_1, f_2 \gg
$$

for all $g \in G$, $f_1, f_2 \in \mathcal{H}$.

Proof. Suppose $f_1(z) = \sum_{\alpha} a_{\alpha} z^{\alpha}$ and $f_2(z) = \sum_{\beta} b_{\beta} z^{\beta}$. Then by (3.1) and (3.9)

(3.12)
\n
$$
\ll f_1, f_2 \gg = \lim_{\lambda \to 1} \langle f'_1, f'_2 \rangle_{\lambda}
$$
\n
$$
= \sum_{\alpha} a_{\alpha} \overline{b}_{\alpha} \frac{\alpha! |\alpha|}{|\alpha|!} \quad \text{(finite sum)},
$$

and the first assertion follows.

To show that *3f* consists of holomorphic functions, we first show that if $f \in \mathcal{P}(B)$ and $f(0)=0$, then

(3.13)
$$
|f(z)| \leq \left(\log \frac{1}{1-|z|^2}\right)^{1/2} \|f\|
$$

for all $z \in B$, where $||f|| = \ll f, f \gg 1/2$. Indeed if $f(z) = \sum_{\alpha} a_{\alpha} z^{\alpha} \in \mathcal{P}(B)$, then

$$
|f(z)| \leq \sum_{|\alpha| > 0} |a_{\alpha}||z^{\alpha}|
$$
\n
$$
\leq \left(\sum_{|\alpha| > 0} \frac{|\alpha|!}{|\alpha|} |z^{\alpha}|^2\right)^{1/2} \left(\sum_{|\alpha| > 0} |a_{\alpha}|^2 \frac{\alpha! |\alpha|}{|\alpha|!}\right)^{1/2}.
$$

Since

$$
\sum_{|\alpha| > 0} \frac{|\alpha|!}{\alpha! |z^{\alpha}|^2} = \sum_{k=1}^{\infty} \frac{1}{k} \sum_{|\alpha| = k} \frac{|\alpha|!}{\alpha!} |z^{\alpha}|^2
$$
\n
$$
= \sum_{k=1}^{\infty} \frac{1}{k} |z|^{2k}
$$
\n
$$
= \log \frac{1}{1 - |z|^2},
$$

(3.13) follows. Let ${f_k}$ be a Cauchy sequence in $\mathcal{P}(B)$. Define $\tilde{f_k} \in \mathcal{P}(B)$ by $\tilde{f}_k(z) = f_k(z) - f_k(0)$. Then $\tilde{f}_k(0) = 0$ and, since $||f_k|| = ||\tilde{f}_k||$ for all k, $\{\tilde{f}_k\}$ is also a Cauchy sequence. Since (3.13) shows that the norm convergence implies uniform convergence on every compact subset of B , there exists a holomorphic function f on *B* such that f_k converges uniformly to *f* on every compact subset of *B*. Let ∇ ₁₂₁₂ α ¹|α| $f(z) = \sum_{\alpha} a_{\alpha} z^{\alpha}$ be the power series expansion and let $\|f\|^2 = \sum_{\alpha} |a_{\alpha}|^2 \frac{\alpha! |\alpha|}{|\alpha|!}$, then $\|f\| < \infty$

and $\lim ||f - f_k|| = 0$. Hence we conclude that

$$
\mathcal{H} = \left\{ f(z) = \sum_{\alpha} a_{\alpha} z^{\alpha} ; \sum_{\alpha} |a_{\alpha}|^2 \frac{\alpha! |\alpha|}{|\alpha|!} < \infty \right\}
$$

with inner product

$$
\ll f_1 f_2 \gg = \sum_{\alpha} a_{\alpha} \overline{b}_{\alpha} \frac{\alpha! |\alpha|}{|\alpha|!}
$$

for all $f_1(z) = \sum_{\alpha} a_{\alpha} z^{\alpha}$, $f_2(z) = \sum$

Now suppose $f_1, f_2 \in \mathcal{P}(B)$, $g \in G$, and take $\tilde{g} \in \tilde{G}$ so that $p(\tilde{g})=g$. Then in view of Lemma 3.4 and Proposition 3.5, it follows by analytic continuation that

$$
\langle f_1, f_2 \rangle \rangle = \langle f_1' f_2' \rangle_1 (=\langle f_1' f_2' \rangle_1 |_{\lambda=1})
$$

= $\langle U_1(\tilde{g}) f_1', U_1(\tilde{g}) f_2' \rangle_1$
= $\langle (T(g) f_1)', (T(g) f_2)' \rangle_1$ by (3.10).

This shows that $T(g)f \in \mathcal{H}$ for $g \in G, f \in \mathcal{P}(B)$, and $\ll T(g)f_1, T(g)f_2 \gg \ll f_1, f_2 \gg$ for $g \in G, f_1, f_2 \in \mathcal{P}(B)$. Since $\mathcal{P}(B)$ is dense in \mathcal{H} , the theorem follows. ш

We now turn to another description of the *G* invariant inner product. For *λeC,* put

$$
d(\lambda) = \frac{1}{n!} \prod_{i=0}^{n} (\lambda - i) = \frac{1}{n!} \lambda(\lambda - 1) \cdots (\lambda - n).
$$

If f_1 and f_2 are holomorphic functions on *B*, let for $\lambda \in \mathbb{C}$,

$$
\langle f_1, f_2 \rangle_{\lambda} = d(\lambda) \int_B f_1(z) \overline{f_2(z)} (1 - |z|^2)^{\lambda} d\mu(z)
$$

provided the integral converges absolutely. It is clear that if $\lambda \ge n+1$ and if $f \in \mathcal{P}(B)$, then $\langle f, f \rangle_{\lambda} < \infty$; furthermore the function $\lambda \to \langle f, f \rangle_{\lambda}$ extends to a holomorphic function on the region $\{z \in \mathbb{C}; \operatorname{Re}(z) > \lambda\}.$

Theorem 3.14. *If* $f_1, f_2 \in \mathcal{P}(B)$, then the function $\lambda \to \langle f_1, f_2 \rangle_{\lambda}$, which is initially *defined by a convergent integral for* $\text{Re}(\lambda) > n$, *extends to a meromorphic function on* C , which is moreover holomorphic on the region $\{z \in \mathbb{C}; \operatorname{Re}(z) > -1\}.$ *The pairing*

$$
\ll f_1 f_2 \gg = \lim_{\lambda \to 0} d(\lambda) \int_B f_1(z) \overline{f_2(z)} (1 - |z|^2)^{\lambda} d\mu(z)
$$

defines an (a semi-} inner product on 8P(B). This inner product coincides with that in Theorem 3.11. *Therefore the Hubert space completion is a G invariant Hubert space that consists of holomorphic functions on B.*

Proof. If $\lambda > n$, then for multi-indices α and β it follows from (3.7) that

$$
\langle z^{\alpha}, z^{\beta} \rangle_{\lambda} = \frac{d(\lambda)n! \alpha! \Gamma(\lambda - n)}{\Gamma(\lambda + |\alpha|)} \delta_{\alpha\beta}
$$

$$
= \frac{\alpha!}{(\lambda + 1)(\lambda + 2) \cdots (\lambda + |\alpha| - 1)} \delta_{\alpha\beta}
$$

Hence if $f_1(z) = \sum_a a_a z^a$, $f_2(z) = \sum_\beta b_\beta z^\beta \in \mathcal{P}(B)$, then

$$
\langle f_1, f_2 \rangle_{\lambda} = \sum_{|\alpha| > 0} a_{\alpha} \overline{b}_{\alpha} \frac{\alpha!}{(\lambda + 1)(\lambda + 2) \cdots (\lambda + |\alpha| - 1)}
$$
 (finite sum),

and the function $\lambda \to \langle f_1, f_2 \rangle_\lambda$ extends to a meromorphic function on *C*. Moreover

$$
\langle f_1, f_2 \rangle = \lim_{\lambda \to 0} \langle f_1, f_2 \rangle_{\lambda}
$$

$$
= \sum_{\alpha} a_{\alpha} \overline{b}_{\alpha} \frac{\alpha! |\alpha|}{|\alpha|!} \quad \text{(finite sum)},
$$

which coincides with (3.12).

 \blacksquare

REMARK. If f is a holomorphic function on B and $\tilde{g} \in \tilde{G}$ with $p(\tilde{g}) = g$, set for $\lambda \in C$

$$
(T_{\lambda}(\tilde{g})f)(z) = j_{\lambda}(\tilde{g}^{-1},z)^{-1}f(g^{-1}\cdot z).
$$

Then by (3.2a) T_{λ} defines a representation of \tilde{G} and

$$
(T_0(\tilde{g})f)(z) = f(g^{-1} \cdot z) = (T(g)f)(z).
$$

If f_1 and f_2 are holomorphic functions on *B*, then it follows from (2.3) and (3.2b)

$$
\langle T_{\lambda}(\tilde{g})f_1, T_{\lambda}(\tilde{g})f_2 \rangle_{\lambda} = \langle f_1, f_2 \rangle_{\lambda}
$$

for all $\tilde{g} \in \tilde{G}$. Consequently, as in the proof of Theorem 3.11, the G invariance of the Hubert space in Theorem 3.14 may also be proved directly by analytic continuation.

References

- [1] J. Arazy and S. Fisher: *The uniqueness of the Dirichlet space among Mδbius invariant Hubert spaces,* Illinois J. Math. 29 (1985), 449-462.
- [2] W.L. Baily and A. Borel: *Compactification of arithmetic quotients of bounded symmetric domains,* Ann. of Math. 84 (1966), 442-528.
- [3] W. Rudin: Function theory in the unit ball of *C",* Springer, New York, 1980.
- [4] N.R. Wallach: *The analytic continuation of the discrete series.* 7, Trans. Amer. Math. Soc. **251** (1979), $1 - 17$.
- [5] K. Zhu: *Mόbίus invariant Hubert spaves of holomorphic functions in the unit ball of* C", Trans. Amer. Math. Soc. 323 (1991), 823-842.

Department of Mathematics Faculty of Science Yamaguchi University Yamaguchi 753, Japan