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1. Introduction

Let B be the open unit ball in Cn and Aut(U) the group of holomorphic
automorphisms of B. When « = 1, B is the unit disc in C and the space Jί?
consisting of holomorphic functions/on B such that

v l / 2

11/11 = '"

is called the Dirichlet space. $C is characterized as the unique Hubert space of
holomorphic functions on the unit disc which is Aut(S) invariant, i.e.,

II/°Φ II = 11/11

for all/e^f and </>eAut(5) [1]. The inner product in 3? is given by

Strictly speaking this is a semi-inner product and jf/C is a Hubert space.
For n > 1, Zhu[5] proved that there exists a unique Hubert space of holomorphic

functions on B which is Aut(J?) invariant. His description is in terms of the power
series expansions of the holomorphic functions, and although several trials of
finding a natural analog of the inner product (*) are made, it is also shown that
none of them generalizes to higher dimensions.

In this paper we give two explicit integral formulas for Aut(£) invariant inner
product, both of them are derived from the analytic continuation of unitary

representations of Aut(J5) as in Wallach [4].

2. Preliminaries

Let G = SU(n,\\ i.e., the Lie group of linear transformations of determinant 1
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in Cn+ί which preserves the hermitian form

Hence the group G consists of all (n -I- 1) x (n + 1) complex matrices g of determinant
1 such that

•fr -J -fr -J
where * denotes the conjugate transpose and \n is the n x n identity matrix. Let us

write geG in block form as g = \ where a, b, c are nxn, «x 1, I x n matrices,
\_c d\

respectively and rfeC Then G consists of all matrices g = \ of determinant
\_c d]

1 such that

(lla) α*α-c*c=ln, a*b = c*d, |d|2-6*ft = l,

or equivalently

(lib) aa*-bb*=l» ac*=bd*9 |J|2-cc*=l,

where (2.1b) is obtained by replacing g by g'1 in (2.1a). Throughout this paper we
regard the points in Cn as column vectors. Then G acts transitively on B by

(2.2) 1 i f £ = | eG.
LC rfj

Holomorphic automorphism groups of bounded symmetric domains are known
(see [2]), and in the case of the unit ball B of Cn we have

Aut (B) = (//(center of G).

Therefore every holomorphic automorphism of B can be represented by g e G. For
other description of Aut (B), see [3].

Let v be Lebesgue measure on Cn, so normalized that v(B) = 1, and let μ be the
measure on B defined by

(13a) dμ(z)= l- -dv(z).
V ' M V ; (l-|z|2r + 1

Then (see [3])

(2.3b) the measure μ is invariant under the action of G.
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For ge G and zeB, let Jac(g,z) denote the holomorphic Jacobian matrix of the
mapping w -» g - w at the point z.

Lemma 2.4. Let g = | \eG and zeB. Then= | \
\_c d\

where g-z is as in (2.2).

Proof. For any column vector αeC", we have

Jac(g,z)v = lim - (g - (z + hv) -g - z)
-

This implies the lemma.

Define J^.GxB-* GL(n9 C) and K^ : B x B -> GL(n, C) by

J(,z = a-(-zc foτ = \ a \εG,

Similarly define J2:GxB^>C*( = GL(1, C)) and AΓ2 : 5 x 5 -> Cx by

= ^ eG,

Note that

this follows from (2.1).

Lemma 2.5. For /=1,2, we

Jteιg2>z) = Λfeι>#2 ' z)JAg2>z) f°r £ι»£2 eG and zεB,

and

Ki(g'z,g vή = Ji(g,z)Ki(z,w)Ji(g,w)* for geG and z,wεB.
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Proof. It follows from (2.1) that

(zb*+a*)(g z) = zd*+c* for g = \ ° \εG and zeB.
\_c d\

The lemma then follows from direct computations.

Lemma 2.6. For every zeB, Kv(z,z) is a positive definite matrix.

Proof. For zeB, choose geG so that z=g 0. Then Lemma 2.5 implies that

Kfaz) = κ,(g - o,g - o) = /ifcoμ^o)*.

Since /ι(g,0) is nonsingular, A^(z,z) is positive definite.

3. Integral formulas for the invariant inner product

For /leC, put

n\

Let H(B,Cn) be the space of holomorphic functions on B with values in Cn. If Fl9

F2εH(B,Cn\ regarding F^(z\ F2(z) as row vectors, let for λeC

f
(3.1) <Fl5F2>A = c(>l) F1(z)(ln-zz^F2(z)*(ί-'\z\2)λdμ(z)

provided the integral converges absolutely. Since dμ(z) = (\ — \z\2)~(n+i)dv(z) and
lπ — zz* is positive definite by Lemma 2.6, it is clear that if λ>n + l and if F is
bounded on B, then </Γ,/Γ>Λ<oo; furthermore the function A^</%jp>A extends to
a holomorphic function on the region {zeC; Re(z)>A}. Let for λeC

Let G be the universal covering group of G with covering map p:G-+G. Since
G x B is simply connected, we can uniquely define, for each λ e C and g G G, the power
J2(p(g),z)λ with J2(p(e),z)λ=l (e = identity element of G) for all zeB. Similarly we
can define K2(z,w)λ so that Λ:2(0,0)Λ=1. For ΛeC, define jλ: GxB^ Cx by

Then in view of Lemma 2.5 we have

(3 2a) Jλ(gιg2>z)



AUTOMORPHISM INVARIANT INNER PRODUCT 231

(3 2b) K2(p(g) z,p(g) w)λ =jJg,

For FeH(B,C") and ge& with p(g)=g, we set

(33) (

Then Lemma 2.5 and (3.2a) imply that Uλ is a(n algebraic) representation of G
on H(B,C").

Lemma 3.4. // Ft,F2 e Hλ(B, C"), then

for all ge&.

Proof. Letting p(g)=g and using Lemma 2.5 and (3.2), we have

= c(λ) ί F1(g-l z)Kl(g-1 z,g-l z)F2(g-1

JB

= c(λ) ί Fv(z}K,(zAF2(z}*K2(z,zΓλdμ(z) by (2.3)
JB

For a holomorphic function /: B -> C, let/'(z) denote the holomorphic Jacobian
matrix of/at z, i.e.,/'(z) = (̂ (̂z), ,£>n/(z)), where Df = θ/flz,. Let ̂ (5) be the space
of holomorphic polynomial functions from B to C Note that if fe&(B) and

Proposition 3.5. Iff^e^B), then the function λ -» </ί/2)λ> wA/cA w initially
defined by a convergent integral for Re(A) > «, extends to a meromorphic function
on C, wA/cA is moreover holomorphic on the region {zeC; Re(z)> — 1}.

Proof. For a multi-index α = (αl5 ,απ) and zeC", define

Let εf be the multi-index that has 1 in the rth place and 0 elsewhere. Then for

multi-indices α and β

(3.6)



232 T. INOUE

If λ>n, we heve (see [5], p.840)

.fα=/?

(3-7)
0

where Γ is the classical gamma function. Therefore if λ>n, (3.1), (3.6) and (3.7) imply
that

x I λ«.?

(3.8α) (since αf(α— ε;)! = α!)

α!|α|

(since Γ(A + |α|)=Γμ-«)ΠW-_1

Bμ+7)).

Likewise if λ>n and ix^β, then

(3.8b) <(z7,(2")'>Λ=0.

Now if/1(z) = Σααt,z',/2(z)=Σ/,V
e^(5)' then by <3 8)

(3.9) </ί/2>Λ= Σ αΛ - — - (finite
\ > \J\\fλ/λ -̂» α α /1 i 1 V T i Λ\ / I i 1^1 1\ V

and the proposition follows.

We define a representation T of G on holomorphic functions on B by

Then the chain rule and Lemma 2.4 imply that
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Hence if ge& with p{g)=g, then by (3.3)

(3.10)

Note that Proposition 3.5 ensures that if /ι/2e^(.β), then lim</ί,/2>λ exists.

Theorem 3.11. If f^e 0>(B), then

<<c ι» 2»-«™ JB ι
z » z1

defines an (a semi-} inner product on 8P(B). Let 3? be the Hubert space completion
of ^(E). Then Jtf consists of holomorphic functions on B and 3tf is a G invariant
Hubert space', that is, T(gYe Jtf for geG,feJtf, and

for all

Proof. Suppose /1(z) = Σαααzα and f2(z) = Σβ bβz
β. Then by (3.1) and (3.9)

(3.12) "*
— α! α

-ΣαA-r-; (finitesum)>

and the first assertion follows.
To show that 3f consists of holomorphic functions, we first show that if

and/(0)=0, then

1 ^1/2

(us) uwίl fϊΓw..

for all zeB, where ||/|| = «/,/»1/2 . Indeed if f(z) = ΣxaΛz*e0>(B), then

Wz)l< Σ kHz"!
|α|>0

o \*\\

Since
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Σ | z f = Σ |L—4 II I ' ' ί—ί 1 ' J I '
|α|>0α!|α| fc=ι/:|α|=kα!

oo 1

= Σ V*

= log-—-

(3.13) follows. Let {/J be a Cauchy sequence in »̂(£). Define ?k€0>(B) by
/k(z)=/fc(z)-Λ(0). Then/ft(0) = 0 and, since ||/J = ||/J for all k, {£} is also a
Cauchy sequence. Since (3.13) shows that the norm convergence implies uniform
convergence on every compact subset of B, there exists a holomorphic function /
on B such that /fc converges uniformly to / on every compact subset of B. Let

_ ^αllαl
f(z) = ΣaaΛz

Λ be the power series expansion and let \\f\\ =Σ\a<*\ > then ||/|| <oo
|α|!

and lim||/-/k||=0. Hence we conclude that

2jΛβr—<oo
α α Oψ

with inner product

v- τα!|α|

for all /1(z)=Σαααz
a

> /2(z) = Σ
Now suppose /j/2e ̂ (5), # eG, and take g eG so thatp(g)=g. Then in view

of Lemma 3.4 and Proposition 3.5, it follows by analytic continuation that

= <(7Wι)',(7W2)'>ι by (3.10).

This shows that 7fe)/eJf for geG,fe0>(B), and «Ί\g)fι,T(g)f2» = «/1/2» for
Since (̂β) is dense in Jf, the theorem follows.

We now turn to another description of the G invariant inner product. For
λeC, put



AUTOMORPHISM INVARIANT INNER PRODUCT 235

If /i and /2 are holomorphic functions on B, let for λeC,

</ι/2>A = 44> f fi
JB

provided the integral converges absolutely. It is clear that if λ > n + 1 and if fe
then </,/>Λ<OO; furthermore the function A-></,/>A extends to a holomorphic
function on the region {zeC; Re(z)>λ}.

Theorem 3.14. Iff^f2e^(B\ then the function λ-* </!/2>A, vvΛ/cΛ is initially
defined by a convergent integral for Re(A)>«, extends to a meromorphic function on C,
wAί'cA w moreover holomorphic on the region (zeC; Re(z)> —1}.
The pairing

«/ι/2» = IMA) f Λ(z)fjz)(l - \z\2)λdμ(z)

defines an (a semi-} inner product on 8P(B). This inner product coincides with
that in Theorem 3.11. Therefore the Hubert space completion is a G invariant
Hubert space that consists of holomorphic functions on B.

Proof. If λ>n, then for multi-indices α and β it follows from (3.7) that

Hence if fl(z) = ΣaaΛz', f2(z)=ΣβbβZ'>e^(B), then

α!
</ι/2>Λ= Σ a-A.. . ~ ' . (finite sum),

and the function A -> </it/a)Λ extends to a meromorphic function on C. Moreover

which coincides with (3.12).
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REMARK. If/is a holomorphic function on B and g e G with p(g) = g, set for A e C

Then by (3.2a) ΓΛ defines a representation of G and

and/2 are holomorphic functions on B, then it follows from (2.3) and (3.2b)

for all geG. Consequently, as in the proof of Theorem 3.11, the G invariance of
the Hubert space in Theorem 3.14 may also be proved directly by analytic
continuation.
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