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Abstract

We review the six dimensional universal extra dimension models compactified on the
sphere S2, the orbifold S2/Z2, and the projective sphere, which are based on the
spontaneous compactification mechanism on the sphere. In particular, we spell out
the application of the Newman-Penrose eth-formalism on these models with some
technical details on the derivation of the Kaluza-Klein modes and their interactions,
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1 Introduction
The universal extra dimension (UED) scenario is an interesting possibility, where the
Kaluza-Klein (KK) scale of the compactified extra dimension(s) can be as small as TeV,
without contradicting the electroweak precision test thanks to the fact that all the fields
are propagating in the bulk of the extra dimensional space [1, 2]. In the model, lightest
KK particle is stable and provides a good candidate for the dark matter [3, 4, 5]; see the
recent review for general topics [6].1

The six dimensional (6D) UED models are of particular interest since the three number
of the matter generation is required in order to cancel the global SU(2) anomaly cancel-
lation [30]. Proposed models are on two-torus, T 2/Z2 [1], T 2/Z4 (chiral square) [31, 32],
T 2/(Z2 × Z ′2) [33], on two-sphere S2/Z2 [34], on S2 with a Stückhelbarg field [35, 36], and
on the nonorientable spaces, the real projective plane RP 2 [37] and the projective sphere
(PS) [38].

Among them, the models on the sphere-based space [34, 38, 35, 36] share the feature
that the compactification radius is spontaneously stabilized by the monopole configuration
of the extra U(1)X gauge field [39]. The monopole background naturally leads to a four
dimensional (4D) chiral fermion as a KK zero mode of the 6D fermion, thanks to the
non-vanishing spin connection under the curved spacetime background [39].

However, this U(1)X gauge field yields a KK zero mode which necessarily couple to the
Standard Model (SM) fermions in order to let them have the chiral zero modes [38]. In
this article, we critically reconsider how this problem is treated in the sphere-based models,
also providing some technical details which have not been spelled out in the literature.

The UED models are formulated as a gauge theory in the higher dimensions, and hence
they are necessarily effective field theories, being cut off at a high scale Λ. If Λ is too
close to the KK scale, then the meaning of the higher dimensional theory is lost. Also
there can be dangerous contribution of the higher dimensional operators to the S and T
parameters.2 Therefore it is important how large Λ can be. The most stringent upper
bound on Λ is obtained from the vacuum stability of the Higgs potential [46]; see also
Refs. [49, 50, 51, 52, 53, 54, 55] for the stability analysis on the five dimensional model
and/or the T 2/Z4 model.3 We give more detailed explanation on the theoretical background
of the vacuum stability argument in Ref. [46].

This article is organized as follows. In Section 2, we provide a basic tools for the
formulation of the sphere-based UED models. In Section 3, we review the KK expansions
under the U(1)X monopole background with some technical details which have not been
spelled out so far. In Section 4, we critically review the known UED models compactified

1 Other possibilities of generalization of these models by an introduction of the bulk mass term and/or
the brane-localized Lagrangians have been studied in Refs. [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29].

2 The constraint on UED models via the LHC Higgs search has also been discussed in Refs. [40, 41, 42,
43, 44, 45, 46, 47, 48].

3 The renormalization group evolutions of parameters in UED models have been studied in Refs. [56,
57, 58, 59, 60, 54, 61, 62, 55].
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on the sphere-based space, S2, S2/Z2, and PS. We show that they need some modification
in order to remove the U(1)X zero mode, except for the PS model. In Section 5, we explain
the theoretical background on the previous vacuum stability analysis. In the last section,
we summarize this article.

2 Basic formulation
In this section, we present general framework for the KK expansions on sphere, under the
U(1)X monopole configuration that is necessary for the spontaneous compactification.

2.1 Spontaneous compactification

Let us first review the spontaneous compactification mechanism on two-sphere S2 [39].
The starting metric ansatz is:

ds2 = gMNdzMdzN = ηµνdxµdxν +R2
(
dθ2 + sin2 θ dφ2

)
, (1)

where (ηµν)µ,ν=0,1,2,3 = diag (−1, 1, 1, 1). Throughout this paper, lower case greek indices
µ, ν, . . . run for 0, 1, 2, 3, while upper case roman ones M,N, . . . for 0, 1, 2, 3, θ, φ.

By this metric, the vacuum Einstein equation cannot be satisfied except for a trivial
solution with R → ∞. In order to stabilize the radius R, Randjbar-Daemi, Salam and
Strathdee have introduced a classical monopole configuration of a U(1)X gauge field X =
XMdzM in the S2 extra dimensions [63, 39]:

X
N
S =

n

2gX
(cos θ ∓ 1) dφ, (2)

where the integer n is the monopole number and gX is the U(1)X coupling constant.
Throughout this paper, superscripts N and S stand for north and south charts containing
θ = 0 and π, respectively, and correlate with ± signs when indicated. The transition
function for the U(1)X gauge field is

XS
φ = Ut

(
XN
φ −

i

gX
∂φ

)
U †t , (3)

with Ut = e−inφ.
The field strength XMN := ∂MXN − ∂NXM reads

Xθφ = −Xφθ = − n

2gX
sin θ, others = 0. (4)

The energy momentum tensor TMN = −1
4
gMNFKLF

KL + FMKFN
K becomes

Tµν = − n2

8g2
XR

4
ηµν , Tθθ =

n2

8g2
XR

2
, Tφφ =

n2

8g2
XR

2
sin2 θ, others = 0. (5)
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Under this monopole configuration, the Einstein equation can be satisfied by tuning
the cosmological constant, and the radius is fixed to be

R =

√
8πG6 |n|
2gX

, (6)

where G6 is the six dimensional (6D) Newton constant.
As the volume of the extra dimension is 4πR2, the 4D Planck scale and gauge coupling

becomeMP = 1/
√

8πG =
√

4πR/
√

8πG6 (= 2.4×1018 GeV) and gX4 = gX/
√

4πR, respec-
tively. With Eq. (6), we get gX4 = |n| /2RMP . If the Kalza-Klein (KK) scale is around
TeV, then RMP ∼ 1015, and the 4D U(1)X coupling: gX4 ∼ 10−15 |n| must be very small
unless the monopole number |n| is huge.4

2.2 Newman-Penrose eth formalism

Let us review the Newman-Penrose eth-formalism to get the spin-weighted spherical har-
monics [67]. Consider a rotation by an angle α of an orthonormal basis of the tangent
space at a point on S2. A quantity η has spin weight s if it transforms under the rotation
as

η′ = eisαη. (7)

If η has a spin weight s, its complex conjugate η̄ has spin weight −s. A product of two
quantities with spin weights s and s′ has the spin weight s+ s′. A derivative of a quantity
with a definite spin weight may not have a well-defined spin weight. However if η has a
spin weight s, the following quantities have well-defined spin weights

ðη = − (sin θ)s [(eθ + ieφ) ·L] (sin θ)−sη = −
[
∂

∂θ
+ i csc θ

∂

∂φ
− s cot θ

]
η, (8)

ðη = + (sin θ)−s [(eθ − ieφ) ·L] (sin θ)sη = −
[
∂

∂θ
− i csc θ

∂

∂φ
+ s cot θ

]
η, (9)

where

L := −i
(
−eφ

∂

∂θ
+ eθ csc θ

∂

∂φ

)
, (10)

is the angular momentum operator. ð and ð are read “eth” and “eth bar”, respectively. One
can find that ðη has spin weight s + 1 and ðη has s − 1. That is, ð (ð) raise (lower) the
spin weight by unity.

4 The weak gravity conjecture [64] suggests an existence of a UV cutoff of the U(1)X gauge theory in
four dimensions: Λ . gX4MP ∼ TeV, and also in six dimensions [65, 66]: Λ .

√
gX4

MPR
MP ∼ TeV. We

note that the vacuum stability gives us a similar bound Λ ∼ few/R [46].
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Using eth(-bar) operators, spherical harmonic Yjm can be generalized to the spin-
weighted spherical harmonics:

sYjm :=


√

(j−s)!
(j+s)!

ðs Yjm for 0 ≤ s ≤ j,

(−1)s
√

(j+s)!
(j−s)! ð

−s
Yjm for −j ≤ s ≤ 0.

(11)

The (spin-weighted) spherical harmonics Yjm (sYjm) has a spin weight 0 (s). The concrete
form of spin-weighted spherical hamonics is

sYjm = (−1)m
√

2j + 1

4π
(j +m)! (j −m)! (j + s)! (j − s)!

×
min{j−s, j−m}∑
k=max{0,−m−s}

(−1)k
(
sin 1

2
θ
)m+s+2k (

cos 1
2
θ
)2j−m−s−2k

k! (j −m− k)! (j − s− k)! (m+ s+ k)!
eimφ. (12)

We see that this expression for sYjm properly reduces to the ordinary spherical harmonics
Yjm for s = 0. Note that for a fixed s, {sYjm} form a complete orthonormal basis on sphere
S2 and any function with spin weight s defined on it can be expanded by them. The inner
product of two spin-weighted spherical harmonics satisfies the following orthonormality
condition: ∫

dΩ [sYjm(θ, φ)]∗ sYj′m′(θ, φ) = δjj′δmm′ , (13)

where dΩ := sin θ dθ dφ. Following relations are useful:

[sYjm(θ, φ)]∗ = (−1)(m+s)
−sYj,−m(θ, φ), (14)

sYjm(π − θ, φ+ π) = (−1)j −sYjm(θ, φ) = (−1)j−s+m [sYj,−m(θ, φ)]∗ , (15)

sYjm(π − θ,−π) = (−1)j−s sYj,−m(θ, φ), (16)

sYjm(0, φ) =

{
0 for m 6= −s,
(−1)−s

√
2j+1

4π
e−isφ for m = −s,

(17)

sYjm(π, φ) =

{
0 for m 6= s,

(−1)j
√

2j+1
4π

eisφ for m = s.
(18)

In particular for the s = 0 mode,∫
dΩYjm(θ, φ)Yj′m′(θ, φ) = (−1)mδjj′δm+m′ , (19)

where δm+m′ follows the notation:

δM =

{
1 (M = 0),

0 (M 6= 0).
(20)
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Each renormalizable interaction term in the Lagrangian consists of three or four fields,
a KK-expanded 4D interaction includes three or four spin-weighted spherical harmonics.
When calculating three and four point interactions, we use, respectively,∫

dΩ s1Yj1m1(θ, φ) s2Yj2m2(θ, φ) s3Yj3m3(θ, φ)

=

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

4π

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j3

−s1 −s2 −s3

)
, (21)∫

dΩ s1Yj1m1(θ, φ) s2Yj2m2(θ, φ) s3Yj3m3(θ, φ) s4Yj4m4(θ, φ)

=

j1+j2∑
J=|j1−j2|

(−1)m1+m2+s1+s2(2J + 1)

4π

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1)

×
(
j1 j2 J
m1 m2 −(m1 +m2)

)(
j1 j2 J
−s1 −s2 s1 + s2

)
×
(

J j3 j4

m1 +m2 m3 m4

)(
J j3 j4

−(s1 + s2) −s3 −s4

)
, (22)

where all j, m and s are integers and(
j1 j2 j3

m1 m2 m3

)
:=

1√
2j3 + 1

(−1)j1−j2−m3 〈j1j2;m1m2|j3,−m3〉 , (23)

is the Wigner’s 3j symbol with 〈j1j2;m1m2|j3,−m3〉 being the Clebsch-Gordan coefficient.
Further details can be found in Ref. [68, 69].

We also write ðs (ðs) when we want to make explicit the spin weight s of the quantity
on which the eth(-bar) operator act. For quantities ηs and κs′ with spin weights s and s′,
respectively, we have

ðs+s′ (ηsκs′) = ηsðs′κs′ + κs′ðsηs. (24)

Let us define the following “K-operator”:

Ks := −ðs+1 ðs + s(s+ 1) = −ðs−1 ðs + s(s− 1)

= −(csc θ ∂θ sin θ ∂θ + csc2 θ ∂2
φ + 2is csc θ cot θ ∂φ − s2 csc2 θ), (25)

which satisfies

Ks sYjm(θ, φ) = j(j + 1) sYjm(θ, φ), (26)
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for −j ≤ m ≤ j. More explicitly,

ðs+1ðs = ∂2
θ − (2s+ 1) cot θ ∂θ + 2i csc θ ∂θ∂φ − 2i (s+ 1) csc θ cot θ ∂φ

− csc2 θ ∂2
φ + s csc2 θ + s (s+ 1) cot2 θ,

ðs−1ðs = ∂2
θ + (2s− 1) cot θ ∂θ − 2i csc θ ∂θ∂φ − 2i (s− 1) csc θ cot θ ∂φ

− csc2 θ ∂2
φ − s csc2 θ + s (s− 1) cot2 θ,

ðs+1ðs = csc θ ∂θ sin θ ∂θ + csc2 θ ∂2
φ + 2is csc θ cot θ ∂φ − s2 csc2 θ + s(s+ 1),

ðs−1ðs = csc θ ∂θ sin θ ∂θ + csc2 θ ∂2
φ + 2is csc θ cot θ ∂φ − s2 csc2 θ + s(s− 1). (27)

We also define generalized eth, eth-bar, and K operators for later use:

ðχs ηs := −e−i(s+1)χ

[
∂

∂θ
+ i csc θ

∂

∂φ
− s cot θ

] (
eisχηs

)
, (28)

ðχs ηs := −e−i(s−1)χ

[
∂

∂θ
− i csc θ

∂

∂φ
+ s cot θ

] (
eisχηs

)
, (29)

Kχ
s := −ðχs+1 ð

χ
s + s(s+ 1) = −ðχs−1 ð

χ

s + s(s− 1)

= −e−isχ
(
csc θ ∂θ sin θ ∂θ + csc2 θ ∂2

φ + 2is csc θ cot θ ∂φ − s2 csc2 θ
)
eisχ, (30)

where χ is an arbitrary regular function of θ and φ. The generalized K-operator satisfies

Kχ
s

(
sYjm(θ, φ) e−is χ(θ,φ)

)
= j(j + 1)

(
sYjm(θ, φ) e−is χ(θ,φ)

)
. (31)

2.3 Six dimensional gauge theory

In general, the 6D action for a gauge field Â = ÂM dzM = ÂaMT
a dzM is written as

SA =

∫
d6z
√−g

[
−1

2
tr
(
F̂MN F̂

MN
)]

, (32)

where indices M , N , . . . are raised and lowered by the metric (1) and

F̂MN = ∂M ÂN − ∂N ÂM + igA[ÂM , ÂN ], (33)

with gA being the 6D gauge coupling constant. Throughout this paper, “tr” is replaced
by 1/2 for a U(1) case. Note that since we are working in a torsion free space we have
∇M ÂN − ∇N ÂM = ∂M ÂN − ∂N ÂM , where ∇M ÂN = ∂M ÂN − ΓLMN ÂL is the general
covariant derivative.

Following the background field method, we separate the gauge field into the classical and
quantum parts A and A, respectively, ÂM = AM +AM .5 We also define the classical field

5 Throughout this paper, curly and normal letters denote a classical background and a quantum fluc-
tuation, respectively.
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strength FMN := ∂MAN − ∂NAM + igA[AM ,AN ] and the background-covariant derivative
DM := ∂M + igA[AM , · ] so that

F̂MN = FMN + DMAN −DNAM + igA[AM , AN ]. (34)

The actions linear and quadratic in the quantum part AM become

Slinear
A = −

∫
d6z
√−g tr

[
FMN (DMAN −DNAM)

]
, (35)

Squad
A = −

∫
d6z
√−g tr

[
igA F

MN [AM , AN ] +
1

2

(
DMAN −DNAM

)
(DMAN −DNAM)

]
.

(36)

We see that the linear term vanishes for a pure gauge configuration FMN = 0. In contrast,
the monopole configuration (2) gives Fθφ 6= 0, and more careful treatment is necessary. We
will come back to this point in Section 3.3.

For the gauge fixing action,

Sf = −
∫

d6z
√−g 1

ξ
tr (ff) , (37)

we choose the following gauge fixing function

f = gµν (∇µAν + igA[Aµ, Aν ]) + ξ
[
gθθ (∇θAθ + igA[Aθ, Aθ]) + gφφ (∇φAφ + igA[Aφ, Aφ])

]
= gµν DµAν + ξ

[
gθθDθAθ + gφφ

(
DφAφ − ΓMφφAM

)]
. (38)

The infinitesimal gauge transformation of AM :

δAM = DMε− igA [ε, AM ] , δAM = 0, (39)

gives the ghost Lagrangian:

Sgh =

∫
d6z 2

√−g tr

(
ω̄

[
δf

δAM

]
(DMω + igA [AM , ω])

)
, (40)

where ω and ω̄ are the ghost and anti-ghost fields and the factor −1 in (39) is absorbed
by normalization of ghost field.

3 KK expansion

3.1 Free scalar on sphere

The general quadratic action for scalar, relevant to its KK expansion, is:

SΦ = −
∫

d6z
√−g

[
(DMΦ)†

(
DMΦ

)
+M2

ΦΦ†Φ
]
, (41)
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DM := ∂M + igXQΦXM , (42)

where QΦ is the U(1)X charge of Φ. On the north and south charts,

SΦ :=

∫
d6z
√−gΦ†

[
2−

{
1

R2

(
K∓φnQΦ/2

−
(
nQΦ

2

)2
)

+M2
Φ

}]
Φ, (43)

where upper and lower signs are for north and south charts, respectively. We see that we
have the spin-weight sΦ := nQΦ/2 and χ = ∓φ. The KK-expansion of Φ on the north and
south charts are, respectively,

Φ
N
S (x, θ, φ) =

∞∑
j=|sΦ|

j∑
m=−j

φj,m(x)

R
sΦYjm(θ, φ)e±isΦφ. (44)

From this expression, we find that the four-dimensional free action is

SΦ, free =

∫
d4x

∞∑
j=|sΦ|

j∑
m=−j

φ†jm(x)
(
2−m2

φ, j

)
φjm(x), (45)

m2
φ, j =

j(j + 1)

R2
+M2

Φ −
|sΦ|2
R2

. (46)

Especialy, for the lowest j = |sΦ| mode, the mass squared is

m2
φ, |sΦ| =

|sΦ|
R2

+M2
Φ. (47)

Therefore, there is no massless mode even if MΦ = 0, unless the scalar field is neutral
under U(1)X .

The following transition of scalar field between the north and south charts makes the
action invariant:

ΦS = e−2isΦφΦN . (48)

3.2 Free spinor on sphere

Let us review the KK expansion of spinors on sphere. We summarize the Clifford algebra
and Lorentz transformation properties of spinor field in six dimensions in Appendix B. The
free spinor action under the U(1)X background on the sphere is:

S = S+ + S−, S± = −
∫

d6z
√−g Ψ±

[
ΓM (∂M + igXQ±XM + ΩM)

]
Ψ±, (49)

where Ψ± are 6D spinors with plus and minus chiralities, Q± are their U(1)X charges, ΓM

are 6D gamma matrices, and ΩM are spin-connections; see Appendix B for details. We
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note that the 6D theory is chiral and that the spinors Ψ+ and Ψ− are independent of each
other.6 Putting the classical configuration Xφ

N
S = n

2gX
(cos θ∓1), the free spinor action can

be recasted into the following form:

S = −
∫

d6z
√−g

{
Ψ+

[
Γµ ∂µ +

i

R
ð∓φs+R Γ+ − i

R
ð∓φs+L Γ−

]
Ψ+

+ Ψ−

[
Γµ ∂µ +

i

R
ð∓φs−L Γ+ − i

R
ð∓φs−R Γ−

]
Ψ−

}
, (50)

where the upper and lower signs are for north and south charts, respectively; we have also
defined the integers N± := nQ±, the half integers

s+L :=
N+ + 1

2
, s+R :=

N+ − 1

2
, s−L :=

N− − 1

2
, s−R :=

N− + 1

2
, (51)

and the combinations of the six dimensional gamma matrices

Γ+ :=
Γ5 + iΓ6

2
=

[
PL

−PR

]
, Γ− :=

Γ5 − iΓ6

2
=

[
−PR

PL

]
, (52)

where PL = (1 + γ5)/2 and PR = (1− γ5)/2 are the 4D chirality projections. In terms of
the four component spinors ψ± given in Eq. (148) in Appendix B, we can rewrite

S = −
∫

d6z
√−g

[
ψ+

{
/∂ − i

R

(
ð∓φs+L PL + ð∓φs+R PR

)}
ψ+ + ψ−

{
/∂ +

i

R

(
ð∓φs−R PR + ð∓φs−L PL

)}
ψ−

]
.

(53)

Further with the two component spinors

ψ =

(
χL
χR

)
, (54)

we get

S =

∫
d6z
√−g

[{
i (χ+L)† σµ∂µχ+L + i (χ+R)† σµ∂µχ+R +

i

R

(
(χ+L)† ð∓φs+Rχ+R + (χ+R)† ð∓φs+Lχ+L

)}

+

{
i (χ−L)† σµ∂µχ−L + i (χ−R)† σµ∂µχ−R −

i

R

(
(χ−L)† ð∓φs−Rχ−R + (χ−R)† ð∓φs−Lχ−L

)}]
,

(55)

where again upper and lower signs are for the north and south charts, respectively.
6 In principle, we can put a bulk mass term between Ψ+ and Ψ− if both has completely the same

charges, but it is not the case in our application.
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The KK expansion is given by

χ±L(R)
N(x, θ, φ) =

∞∑
j=|s±L(R)|

j∑
m=−j

χjm±L(R)(x)

R
s±L(R)

Yjm(θ, φ) eis±L(R)φ, (56)

χ±L(R)
S(x, θ, φ) =

∞∑
j=|s±L(R)|

j∑
m=−j

χjm±L(R)(x)

R
s±L(R)

Yjm(θ, φ) e−is±L(R)φ, (57)

for the north and south charts, respectively, where the upper and lower signs are the 6D
chiralities which are uncorrelated with charts. The resultant action is

S =

∫
d4x

[{
∞∑

j=|s+L|

j∑
m=−j

i
(
χjm+L

)†
σµ∂µχ

jm
+L +

∞∑
j=|s+R|

j∑
m=−j

i
(
χjm+R

)†
σµ∂µχ

jm
+R

+
∞∑

j=s+max

j∑
m=−j

imj
+

{(
χjm+L

)†
χjm+R −

(
χjm+R

)†
χjm+L

}}

+

{
∞∑

j=|s−L|

j∑
m=−j

i
(
χjm−L

)†
σµ∂µχ

jm
−L +

∞∑
j=|s−R|

j∑
m=−j

i
(
χjm−R

)†
σµ∂µχ

jm
−R

+
∞∑

j=s−max

j∑
m=−j

imj
−

{(
χjm−L

)†
χjm−R −

(
χjm−R

)†
χjm−L

}}]
, (58)

where s±max := max {|s±L| , |s±R|} and

mj
± =

√(
j + 1

2

)2 −
(
N±
2

)2

R
. (59)

The lowest-j mode of the spinor Ψ± is given by the half integer

j±min = min {|s±L| , |s±R|} =

∣∣∣∣ |N±| − 1

2

∣∣∣∣ . (60)

For a general mode j = j±min + ` with an integer ` ≥ 0, we get

mj
± =


√
`(`+|N±|)
R

for |N±| ≥ 1,√
(`+1)(`+1−|N±|)

R
for 0 ≤ |N±| ≤ 1,

(61)

for each 6D chirality. We see that Ψ± can have a zero mode when and only when |N±| = 1.
When N+ = 1 (−1) for Ψ+, we have a zero mode at s+R = 0 (s+L = 0); when N− = 1
(−1) for Ψ−, we have a zero mode at s−L = 0 (s−R = 0).
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Let us check the equivalence of spinor actions in north and south charts. We see that
the KK-expanded two-components spinor in both charts are related by

χS±L(R) = e−2is±L(R)φχN±L(R). (62)

Defining the spin-weght operator Ŝ := N̂/2− iΣ56 with N̂Ψ± = N±Ψ±, we get

ŜΨ =


s+L χ+L

s+R χ+R

s−L χ−L
s−R χ−R

 , (63)

where the local Lorentz generator Σ56 is defined in Eq. (141) in Appendix B. Therefore,
we can write the transition function between north and south charts in terms of the eight
component spinor as

ΨS = e−2iφŜΨN . (64)

The transition of spinors is given by the combination of local U(1)X gauge transformation
and the local Lorentz transformation in 5-6 plane.

In the realistic model construction, we assume N± = −1 so that s+L = 0, s+R = −1,
s−L = −1, and s−R = 0 and that Ψ+ (Ψ−) has a 4D left (right) zero mode.7 The four-
dimensional Dirac mass of an integer j ≥ 0 mode is now

mj =

√
j(j + 1)

R
. (65)

In terms of the four component spinors, we get

S+ = −
∫
d4x

[
ψ00

+Lγ
µ∂µψ

00
+L +

∞∑
j=1

j∑
m=−j

ψjm+
(
γµ∂µ + iγ5mj

)
ψjm+

]
, (66)

S− = −
∫
d4x

[
ψ00
−Rγ

µ∂µψ
00
−R +

∞∑
j=1

j∑
m=−j

ψjm−
(
γµ∂µ + iγ5mj

)
ψjm−

]
. (67)

As usual, the iγ5 can be removed by a chiral rotation. Details can be found in Appendix C.

3.3 Free vector on sphere

Up to this point, the formalism is applicable for any metric and background configuration
AM . From now on, let us specify the space-time background to be that of the sphere (1)
and assume Aµ = 0 on physical ground. The gauge fixing function (38) becomes

f = ηµνDµAν +
ξ

R2 sin θ
Dθ sin θAθ +

ξ

R2 sin2 θ
DφAφ, (68)

7 We note that we need the same number of degrees of freedom for the plus and minus chiralities in
order to cancel the gravitational anomaly in 6D [30].
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In obtaining the KK expansions, it is convenient to rewrite the action in terms of the
tangent space vectors AM := eNM AN , namely

Aµ = δνµAν , Aθ =
Aθ
R
, Aφ =

Aφ
R sin θ

. (69)

The relation of the 4D part is trivial, and we do not distinguish Aµ and Aµ hereafter.
Under the metric (1), we obtain8

Squad
A+f =

∫
d6z
√−g tr

{
Aµ

[
ηµν
(
2 +

1

R2 sin θ
Dθ sin θDθ +

1

R2 sin2 θ
D2
φ

)
−
(

1− 1

ξ

)
∂µ∂ν

]
Aν

+ 2A−

[
2 +

1

R2

(
1

sin θ
Dθ sin θDθ +

1

sin2 θ

(
D2
φ − 1

)
+

2i cos θ

sin2 θ
Dφ

)]
A+

+
(ξ − 1)

R2

[
1

2
A+

(
D2
θ + cot θDθ −

1

sin2 θ

(
D2
φ + 1

)
− 2i

sin θ
DθDφ

)
A+

+
1

2
A−

(
D2
θ + cot θDθ −

1

sin2 θ

(
D2
φ + 1

)
+

2i

sin θ
DθDφ

)
A−

+ A−

(
1

sin θ
Dθ sin θDθ +

1

sin2 θ

(
D2
φ − 1

)
+

2i cos θ

sin2 θ
Dφ

)
A+

]

− 2gA
R2 sin θ

Fθφ [A+, A−]

}
, (70)

where we have defined the new tangent space vectors: A± := (Aθ ± iAφ)/
√

2.
With a non-Abelian gauge field, the linear term (35) does not vanish under the monopole

configuration (2), and hence such a non-Abelian monopole configuration leads to a classical
instability [70]. Therefore we assume that the only U(1)X gauge field develops the monopole
VEV (2). Later, we will see that the linear term vanishes for the U(1)X gauge field.

For a U(1) gauge field, we have [AM , AN ] = 0 and can replace DM by ∂M ; for a non-
Abelian gauge field, we do not consider the monopole configuration as said above, that is,
AM = 0. In both cases, the background covariant derivative is replaced by the ordinary
derivative, and we get

Squad
A+f =

∫
d6z
√−g tr

{
Aµ

[
ηµν
(
2 +

1

R2
ð1ð0

)
−
(

1− 1

ξ

)
∂µ∂ν

]
Aν

+ 2A−

[
2 +

1

R2
ð0ð1

]
A+

+
ξ − 1

R2

[
1

2
A+ð0ð1A+ +

1

2
A−ð0ð−1A− + A−ð0ð1A+

]}
. (71)

8 In deriving Eq. (70), following identity is useful: Dθ
1

sin θDθ sin θ = 1
sin θDθ sin θDθ − 1

sin2 θ
.
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We see that Aµ and A± have spin weights 0 and ±1, respectively.
Since ð1ð0 = −K0 and K0Yjm = j (j + 1)Yjm, we can trivially expand the four dimen-

sional component Aµ in terms of the ordinary spherical harmonics:

Aµ(x, θ, φ) =
∞∑
j=0

j∑
m=−j

1

R
Ajmµ (x)Yjm(θ, φ). (72)

As the six dimensional field Aµ is real, the complex fields Ajmµ (x) subject to the reality
condition:

(−1)mAj,−m†µ (x) = Ajmµ (x). (73)

In particular, m = 0 modes become real due to the reality condition:

Aj0†µ (x) = Aj0µ (x). (74)

Putting this expansion into the quadratic action, we get

Squad, vector
A+f =

∞∑
j=0

∫
d4x tr

{
Aj0µ D

µνAj0ν
}

+
∞∑
j=0

j∑
m=1

∫
d4x tr

{
2Ajm†µ

(
Dµν − ηµν j (j + 1)

R2

)
Ajmν

}
,

(75)

where Dµν = ηµν2−
(

1− 1
ξ

)
∂µ∂ν .

Let us move on to the scalar part. For a general gauge parameter ξ, we may rewrite
the action by using a complex scalar field ΞA defined by

A+ =: −ið0Ξ†A, A− =: ið0ΞA. (76)

Note that ΞA has the spin weight s = 0. The action is now

Squad, scalar
A+f =

∫
d6z
√−g tr

[
2Ξ†AK0

(
2− 1

R2
K0

)
ΞA

+
ξ − 1

R2

(
1

2
ΞA (K0)2 ΞA +

1

2
Ξ†A (K0)2 Ξ†A − Ξ†A (K0)2 ΞA

)]
,

(77)

where we have integrated by parts:∫
dΩf ∗s ðs−1gs−1 = −

∫
dΩ (ð−sf ∗s ) gs−1, (78)∫

dΩf ∗s ðs+1gs+1 = −
∫

dΩ
(
ð−sf ∗s

)
gs+1. (79)
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Decomposing ΞA into the real and imaginary parts,

ΞA :=
ΦA + iΘA√

2
, (80)

we get

Aθ = ∂θΘA − csc θ ∂φΦA, (81)
Aφ = ∂θΦA + csc θ ∂φΘA. (82)

We note that ΦA and ΘA are the same as φ1/R and φ2/R defined in Eqs. (74) and (75),
respectively, in Ref. [34]. We can write the action in terms of ΦA and ΘA as

Squad, scalar
A+f =

∫
d6z
√−g tr

[
ΦAK0

(
2− 1

R2
K0

)
ΦA + ΘAK0

(
2− ξ

R2
K0

)
ΘA

]
. (83)

From ξ dependence, we see that ΦA and ΘA are the physical and Nambu-Goldstone modes,
respectively.

Analogously to the KK expansion of the vector, we expand as

ΦA(x, θ, φ) =
∞∑
j=1

j∑
m=−j

1

R
√
j (j + 1)

φjmA (x)Yjm(θ, φ),

ΘA(x, θ, φ) =
∞∑
j=1

j∑
m=−j

1

R
√
j (j + 1)

θjmA (x)Yjm(θ, φ), (84)

where φjmA and θjmA are four dimensional adjoint scalars subject to the reality condition,
the same as in Eq. (73). Note that j = 0 mode drops out because of the overall K0 in the
action (83). The extra factor 1/

√
j (j + 1) in the above expansion is to adjust the overall

normalization. We note that A± has the spin weight ±1, and hence have a φ-dependence
at north and south poles; some of the KK modes of A± are not single valued there; see
Eq. (18). Therefore we should regard ΦA and ΘA as the fundamental degrees of freedom,
rather than A±.

Let us now check that the linear term (35) vanishes for the U(1)X gauge field X̂M =
XM +XM with the classical configuration (2). The linear action (35) reads

Slinear =

∫
d4x dΩ

in

2
√

2gXR

(
ð1X+ − ð−1X−

)
, (85)

where X± := (Xθ ± iXφ)/
√

2. Putting again as in Eq. (76), we get

Slinear =

∫
d4x dΩ

n

2
√

2gXR

(
ð1ð0Ξ†X + ð−1ð0ΞX

)
. (86)
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Noting that ð1ð0 = ð−1ð0 = −K0 and that ΞX only has j ≥ 1 mode in the expansion (80)
and (84), we see that the angular integral in Eq. (86) always gives∫

dΩY00Yj 6=0,m = 0, (87)

and hence the linear term (86) vanishes.
Finally, we spell out the KK expansions of the ghost field Ω. Since the only U(1)X

gauge field has the background configuration, we can write both for Abelian and non-
Abelian cases:

Squad
gh =

∫
d6z
√−g 2 tr

{
Ω̄

[
2− ξ

R2
K0

]
Ω

}
. (88)

Recall that “tr” reads 1/2 for a U(1) field throughout this note. We see that the ghost
fields can be expanded exactly the same as the gauge fields:

Ω(x, θ, φ) =
∞∑
j=0

j∑
m=−j

1

R
ωjm(x)Yjm(θ, φ), Ω̄(x, θ, φ) =

∞∑
j=0

j∑
m=−j

1

R
ω̄jm(x)Y ∗jm(θ, φ), (89)

where the reality condition reads

(−1)m ωj,−m†(x) = ωjm(x), (−1)m ω̄j,−m†(x) = ω̄jm(x). (90)

The KK expanded action for ghost is

Squad
gh =

∫
d4x 2 tr

{
∞∑
j=0

j∑
m=−j

ω̄jm
(
2− ξ j (j + 1)

R2

)
ωjm

}
. (91)

4 Six-dimensional UED models on sphere
As shown above, the compactification on two-sphere automatically yields the chiral fermion
zero mode. Therefore, it is tempting to use this to realize a universal extra dimension
(UED) model on it. An obstacle is the existence of the massless U(1)X gauge boson. Since
it must have a Yukawa coupling to each pair of the SM fermion zero modes in order to
make them chiral, it necessarily transmits a long range force among them; see e.g. Ref. [71].
Therefore this possibility is excluded unless we somehow project out the massless U(1)X
gauge boson or make it massive.

The former possibility is realized in Ref. [38] by applying a projection on the sphere:
(θ, φ) ∼ (π−θ, φ+π). The resultant manifold is nothing but the real projective plane, but
in order to distinguish with the UED model based on torus [37], we call it the projective
sphere (PS) here.

On the other hand, the latter possibility is considered in Ref. [34] where the U(1)X is
broken by an anomaly (induced by chiral bulk fermions) and the gauge boson is supposed to
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acquire a mass of the order of a UV cutoff scale Λ via the Green-Schwarz mechanism [72].9
As another solution, one may also imagine to realize the gauge boson mass via the Stück-
elberg mechanism; see Sec. C.2 (or 2.3.2 in the preprint version) of Ref. [36]. We note
however that both cases have pathology:

• Even if we assume that the anomaly indeed generates the bulk mass term Λ2X̂MX̂
M ,

it changes the equation of motion for the classical monopole configuration by of the
order of Λ and spoils the spontaneous compactification mechanism itself, as is pointed
out in Ref. [38].

• Suppose one adds the Stückelberg mass mX

∆S =

∫
d6z
√−g

[
−1

2

(
∂M χ̂+mXX̂M

)(
∂M χ̂+mXX̂

M
)]

, (92)

where χ̂ is the Stückelberg field.10 Under the presence of the field configuration (2)
and the vanishing classical background, χ = 0, this mass term gives extra contribution
to the classical stress-energy tensor:

(∆TMN)
N
S =

(
−gMN

2
gφφ + δφMδ

φ
N

)
m2
X

(
n

2gX

)2

(cos θ ∓ 1)2 . (93)

The stress-energy tensor is a physical quantity, and is unacceptable to depend on
charts. It is nontrivial whether there can be a modified monopole solution to the
Einstein-Maxwell equation with the Stückelberg extension (92).11

Therefore, the model with the U(1)X anomaly (S2/Z2 model) or the one with the Stück-
elberg mass (S2 model) should be treated with caution.

4.1 S2 UED Model with a Stückelberg Field

First we briefly comment on the S2 UED model, where the U(1)X gauge field is made
massive by the Stückelberg mechanism [75, 76] as in Eq. (92). The Stückelberg field χ
behaves as the Nambu-Goldstone boson which is absorbed by the U(1)X gauge field, and
makes it massive.

We note that the the KK-modes of each 6D field are not modified from those in Section 3
by the Stückelberg field. The only difference is that each KK mass of the U(1)X gauge
field is lifted up by the Stückelberg mass term.

9 The orbifold Z2 projection in the model [34] does not remove the U(1)X zero mode, contrary to the
Z2 in the projective sphere model which is discussed in Section 4.3.

10 The mass induced by the anomaly can be viewed as the Stückelberg mass; see e.g. Ref. [73].
11 This problem would reside in the analysis [74] too. We thank Muneto Nitta and Makoto Sakamoto

for illuminating discussions on this matter.
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Figure 1: S2/Z2 orbifold and PS manifold for left and right panels, respectively, when
we take the fundamental domain as 0 ≤ φ ≤ π. Arrows denote the identification on the
boundary. Dots on the left panel indicate the orbifold fixed points.

4.2 S2/Z2 Orbifold UED Model

Let us review the orbifold S2/Z2 UED model [34]. In the S2/Z2 model, a point (θ, φ) on
the two sphere is identified with the point (π− θ,−φ). There are two fixed points (π/2, 0)
and (π/2, π) in contrast to the S2 and PS UED models which are compactified on smooth
backgrounds. See the left panel in Fig. 1 for a schematic view.

In the S2/Z2 model, we can add the localized terms at the orbifold fixed points:

∆S =

∫
d6z
√−g

[
δ
(
θ − π

2

)
δ(φ)L(π/2,0)(x) + δ

(
θ − π

2

)
δ(φ− π)L(π/2,π)(x)

]
. (94)

This situation is the same as in the 5D UED model compactified on the orbifold S1/Z2.
In the minimal version of the 5D model, the localized terms are assumed to be zero at the
UV cutoff scale Λ, and are generated via the RGE running at lower scales. Recently, the
one-loop mass correction under the same assumption is obtained for the 6D S2/Z2 orbifold
UED [77].

The KK-mode function of spin-weight s becomes

f
(j,m)
s,t (θ, φ)

N
S =


1

2R

[
sYjm(θ, φ) + (−1)j−ssYj−m(θ, φ)

]
e±isφ for t = +1,

1

2R

[
sYjm(θ, φ)− (−1)j−ssYj−m(θ, φ)

]
e±isφ for t = −1,

(95)

where t = ±1 is the Z2 parity. The mode function f (j,m)
s,t has the Z2 symmetry:

f
(j,m)
s,t=±1(π − θ,−φ)

N
S = ±f (j,m)

s,t=±1(θ, φ)
S
N . (96)

The number of degrees of freedom for each KK mode is reduced by the Z2-symmetry,
namely, the independent m modes are not −j ≤ m ≤ j but 0 ≤ m ≤ j for each j-th level.
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Under the translation (θ, φ)→ (θ, φ+ π), the KK-mode functions transform as

f
(j,m)
s=0,t=+1(θ, φ+ π)

N
S = (−1)mf

(j,m)
s=0,t=+1(θ, φ)

N
S ,

f
(j,m)
s=±1,t=−1(θ, φ+ π)

N
S = −(−1)mf

(j,m)
s=±1,t=−1(θ, φ)

N
S . (97)

We find that each KK-mode has the KK-parity (−1)m, which is the remnant of the KK
angular momentum conservation.

Let us consider the m = 0 modes of each j-th KK-level. The m = 0 modes of a field
with spinweight s = 0,±1 are

f
(j,m=0)
s=0, t=+1(θ, φ)

N
S =

1

2R

(
1 + (−1)j

)
0Yj0(θ, φ), (98)

f
(j,m=0)
s=+1, t=−1(θ, φ)

N
S =

1

2R

(
1 + (−1)j

)
1Yj0(θ, φ) e±iφ, (99)

f
(j,m=0)
s=−1, t=−1(θ, φ)

N
S =

1

2R

(
1 + (−1)j

)
−1Yj0(θ, φ) e∓iφ. (100)

We find that the m = 0 mode appears only in an even j-th level and that the degeneracy
number of each KK-level is

j + 1 for j : even,
j for j : odd. (101)

4.3 Projective Sphere UED Model (PS)

Let us review the 6D UED model compactified on the Projective Sphere (PS) [38], which
is the manifold obtained by the identification of the antipodal points

(θ, φ) ∼ (π − θ, φ+ π) (102)

from the two-sphere S2; see Fig. 1. PS has no fixed points unlike the S2/Z2 described
above, and is non-orientable. The KK mass spectra of the gauge and scalar fields are
distinctive from other compactifications as we will see below. We will see that as a result
of the identification condition, the zero-mode of the U(1)X gauge field is eliminated.

Let us see how the antipodal identification (102) relates the fields on the north and south
charts. We first note that the identification must leave the monopole configuration (2)
intact. For that, it suffices to identify them with the twist of the 6D CP-transformation:

X̂N
M(x, π − θ, φ+ π) =

[
X̂S
M(x, θ, φ)

]CP
, (103)

where [
X̂M

]CP
= (−1)×

{
X̂M (M 6= θ),

−X̂M (M = θ).
(104)
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More concretely,

X̂N
µ (x, π − θ, φ+ π) = −X̂S

µ (x, θ, φ),

X̂N
θ (x, π − θ, φ+ π) = X̂S

θ (x, θ, φ),

X̂N
φ (x, π − θ, φ+ π) = −X̂S

φ (x, θ, φ). (105)

We note that the chart dependence exists only for X̂φ; see Eq. (3), where the classical
part X and the total field X̂ should obey the same gauge transformation; in particular,
X̂N
µ (θ, φ) = X̂S

µ (θ, φ).
As we have seen, the existence of the zero-mode of U(1)X gauge field was the major

problem of the sphere-based UED models. It is important that the identification (105)
removes the zero mode of the Xµ field: The gauge field is expanded as Eq. (72), and hence
X̂00
µ (x) = −X̂00

µ (x) = 0 because Y00(π − θ, φ + π) = Y00(θ, φ). Surviving modes are odd
ones: Xjm

µ (x) with j = 1, 3, 5, . . . and −j ≤ m ≤ j; see Eq. (15) with s = 0. The result is
shown in Fig. 2.

The standard model fermion is realized as a zero mode of a 6D fermion. Note that the
6D fermion with chirality plus (minus) yields a 4D left (right) handed Weyl fermions as a
massless zero mode, as shown in Section 3.2. We assign the following 6D chiralities to the
6D spinor fields for anomaly cancellation:

Q+, U−, D−, L+, E−, N−. (106)

Q and L are SU(2)L quark and lepton doublets, respectively; U,D and E,N are SU(2)L
singlet (up, down) quarks and (charged, neutral) leptons, respectively. It is remarkable that
three generations of fermions are required by the cancellation of the 6D gravitational and
SU(2)L global anomalies [30], which cannot be removed by the Green-Schwarz mechanism.

In order to allow a zero mode, the fermion must couple to U(1)X ; see Eq. (61). Since
the U(1)X field is identified with the 6D CP twist (103), it is natural to identify the fermion
the same way:

ΨN(x, π − θ, φ+ π) =
[
ΨS(x, θ, φ)

]CP
, (107)

where the 6D CP transformation is summarized in Appendix B. Note that the 6D CP
transformation alters the 6D chirality; see Eq. (159). In order to let fermions have 6D CP
invariant gauge interaction with U(1)X , we introduce “mirror fermions”

Q−, U+, D+, L−, E+, N+, (108)

which have the opposite 6D chiralities and opposite SM and U(1)X charges compared to
original fermions (106).12 Note that we identify these mirror fermions with the original
ones under the antipodal projection:

QN
+ (x, π − θ, φ+ π) =

[
QS−(x, θ, φ)

]CP
, (109)

12 For fermions, the curly letters are used for mirrors and not for a classical configuration.
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6D field U(1)X SU(3)C SU(2)W U(1)Y zero mode
Q+ −1 3 2 1/6 qL
U− −1 3 1 2/3 uR
D− −1 3 1 −1/3 dR
L+ −1 1 2 −1/2 lL
N− −1 1 1 0 νR
E− −1 1 1 −1 eR

Q− −1 3∗ 2∗ −1/6 −(qL)c

U+ −1 3∗ 1 −2/3 (uR)c

D+ −1 3∗ 1 1/3 (dR)c

L− −1 1 2∗ 1/2 −(lL)c

N+ −1 1 1 0 (νR)c

E+ −1 1 1 1 (eR)c

H 0 1 2 1/2 H00

Table 1: Assignment of charges and zero mode. The upper six spinors are physically
independent fields and lower ones are mirrors. ± denotes the 6D chirality, while c denotes
4D charge conjugation which interchanges four-dimensional chiralities L and R.

and similarly for others. Therefore these mirrors do not lead to extra degrees of freedom.
Contrary to U(1)X , there must remain the zero-modes of the SM gauge fields. Therefore

the identification conditions of these two classes of gauge fields must be different from each
other. This difference implies that the gauge interactions of the spinor fields to the U(1)X
and SM gauge fields must be different too. We impose the following identification for the
SM gauge fields:

ÂNM(x, π − θ, φ+ π) =
[
ÂSM(x, θ, φ)

]P
, (110)

where [
ÂM

]P
=

{
ÂM (M 6= θ),

−ÂM (M = θ).
(111)

More Concretely,

ÂNµ (x, π − θ, φ+ π) = ÂSµ(x, θ, φ),

ÂNθ (x, π − θ, φ+ π) = −ÂSθ (x, θ, φ),

ÂNφ (x, π − θ, φ+ π) = ÂSφ(x, θ, φ). (112)

The zero mode survives under this projection.
The covariant derivative on the SM fermion (106) is

DM = ∂M + igÂM + igXQXX̂M + ΩM , (113)
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Figure 2: Tree level KK mass spectrum for the spinor, SM gauge, U(1)X gauge, and scalar
fields. The mass splitting due to the electroweak symmetry breaking is neglected.

where ΩM is the spin connection (163), g and ÂM are the SM gauge coupling and field,
respectively, and QX is the U(1)X charge which we have taken QX = −1/n; see Section 3.2.
On the other hand, the covariant derivative on the mirror fermion (108) is

DM = ∂M + ig
[
ÂM

]C
+ igXQXX̂M + ΩM , (114)

where [
ÂaMT

a
]C

= ÂaM (−T a)T , (115)

as usual. The extra 6D charge conjugation is put so that the identification (110) leads to
the CP transformation that matches Eq. (109). We summarize our charge assignment in
Table 1.

The SM Higgs field must have a zero-mode, and we impose the identification:

ĤN(x, π − θ, φ+ π) = ĤS(x, θ, φ). (116)

It is obvious that there remains a zero-mode.
The Yukawa interaction is given by

LYukawa = −
[
yD

(
Q+HD− − QC−HDC

+

)
+ yU

(
Q+εH

∗U− − QC−εH
∗UC

+

)
+yE

(
L+HE− − LC

−HEC+

)
+ h.c.

]
, (117)
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where yx are Yukawa couplings for the field x. The invariance under the antipodal projec-
tion follows from

QN
+ (x, π − θ, φ+ π)HN(x, π − θ, φ+ π)DN

− (x, π − θ, φ+ π)

= −(QS−)
C

(x, θ, φ)HS(x, θ, φ)
(
DS

+

)C
(x, θ, φ), (118)

etc.
We have spelled out the KK modes for the U(1)X gauge field and the SM particles,

namely, the Higgs boson, fermions, and the SM gauge bosons. Only the KK-modes with
odd (even) j survive the antipodal projection for the U(1)X gauge (SM gauge and Higgs)
boson. On the other hand, no fermion KK modes are projected out because we have
doubled the number of modes by introducing the mirror fermions. As the result, the
number of fermion degrees of freedom is the same as the S2 UED model. In Fig. 2, we
summarize the KK spectrum of the PS model.

5 Vacuum stability constraint
The vacuum stability leads to the most stringent upper bound on the ultraviolet cutoff
scale Λ of the UED models [46]. Since the idea is only briefly sketched in Ref. [46], we
clarify the argument more in detail here.

In D space-time dimensions, the Higgs action is written as

S =

∫ √−g dDx [− (DMH)†DMH − V (H)
]
, (119)

with

V = m2 |H|2 +
λ̂

ΛD−4
|H|4 +

λ̂′

Λ2D−6
|H|6 + · · · , (120)

where the hatted λ̂, λ̂′, . . . are dimensionless coupling constants. We note that λ̂ contains
linear (quadratic) divergence in the 5D (6D) model. At the one-loop level:

λ̂(µ) =

{
λB,1 Λ + b ln µ

Λ
+ c (D = 5),

λB,2 Λ2 + λB,1 Λ + b ln µ
Λ

+ c (D = 6),
(121)

where the mass dimension of the field and the bare couplings is [H] = (D − 2) /2 and
[λB,n] = −n, respectively.

The zero mode Higgs h is constant in the extra dimension if neglect the electroweak
symmetry breaking effects, and hence

H =
h√
vol

+ · · · , (122)
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where vol is the volume of the extra dimension(s), with mass dimension [vol] = 4 − D.
Therefore the 4D potential for the zero mode is

V4D = m2 |h|2 +
λ̂

(vol) ΛD−4
|h|4 +

λ̂′

(vol)2 Λ2D−6
|h|6 + · · · . (123)

We see that the four dimensional Higgs quartic coupling λ4D is given by

λ4D(Λ) =
λ̂(Λ)

(vol) ΛD−4
=


λB,1
vol

+
c

(vol) Λ
for D = 5,

λB,2
vol

+
λB,1

(vol) Λ
+

c

(vol) Λ2
for D = 6.

(124)

The left hand side can be estimated from the low energy inputs through the 4D renormal-
ization group running, that is, from the running coupling λ(µ) at the scale µ = Λ.

Even though we can never know the bare coupling λB,i from the low energy data, what
matters for the stability of the potential is the quantity λ̂, which can be evaluated within
the low energy (KK reduced) 4D effective theory.13 The bare constants are screened from
the effective potential in the low energy theory at the scales µ < Λ; see e.g. Appendix B
in Ref. [78].

If we have negative λ4D(µ) at some scale µ, then it necessarily requires the higher
dimensional terms λ̂′ etc. suppressed by Λ ∼ µ, in order to avoid the unbounded potential.
Therefore we can read off the cutoff Λ from the scale where the running quartic coupling
λ4D(µ) becomes negative.

6 Summary
We have presented a review on the 6D UED models compactified on sphere, namely on
S2, S2/Z2, and PS. We have spelled out the basic techniques to treat the fields on sphere
in terms of the Newman-Penrose eth formalism. KK expansion of the scalar, spinor, and
vector fields are given. We have reviewed how the various fields are projected on the
S2/Z2 orbifold and on the PS. We have critically reconsidered the U(1)X problem of the
sphere-based UED models. We point out that the S2 and the orbifold S2/Z2 models need
a modification. We have explained the conceptual background of our previous work on the
vacuum stability bound.
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Appendix

A Sphere metric
From the metric (1), the non-zero components of the Christoffel symbol,

ΓMNL :=
gMK

2
(−∂KgNL + ∂NgLK + ∂LgKN), (125)

are

Γθφφ = − cos θ sin θ, Γφθφ = Γφφθ = cot θ. (126)

The Riemann tensor

RM
NKL :=− ∂LΓMNK + ∂KΓMNL − ΓPNKΓMLP + ΓPNLΓMKP (127)

has the non-zero components:

Rθ
φθφ = −Rθ

φφθ = sin2 θ, Rφ
θφθ = −Rφ

θθφ = 1. (128)

The Ricci tensor RMN := RK
MKN are

Rθθ = 1, Rφφ = sin2 θ, others = 0. (129)

The Ricci scalar R := RM
M reads

R = 2/R2. (130)

B Six-dimensional spinor on sphere
In this section, we summarize our notations on the 6D spinor on sphere which we use in
Section 3. We write the vielbein as[

eM
N
]
M=0,...,3,θ,φ;N=0,...,3,θ,φ

= diag(1, 1, 1, 1, R,R sin θ) . (131)

Underlined indices M,N, . . . run for 0, . . . , 3; θ, φ on tangent space. Using the vielbein
1-form

eM = eMNdzN , (132)
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we define the following new basis:(
e5

e6

)
=

(
cosφ ± sinφ
∓ sinφ cosφ

)(
eφ

eθ

)
, (133)

where the upper and lower signs are for the north and south charts, respectively. We
impose the 6D Clifford algebra on the gamma matrices on the new basis:{

ΓA,ΓB
}

= 2ηAB, (134)

where A,B, . . . run for 0, . . . , 3; 5, 6, and the flat space metric is[
ηAB

]
A,B=0,...,3;5,6

=
[
ηAB

]
A,B=0,...,3;5,6

= diag(−1, 1, . . . , 1) . (135)

Our choice for 6D gamma matrices are

Γµ := γµ ⊗ σ1 =

[
γµ

γµ

]
,

Γ5 := γ5 ⊗ σ1 =

[
γ5

γ5

]
,

Γ6 := I4 ⊗ σ2 =

[
−iI4

iI4

]
, (136)

where In is the n× n identity matrix and the 4D gamma matrices are given by

γµ := −i
(

σµ

σµ

)
, γ5 := −iγ0γ1γ2γ3 =

(
I2
−I2

)
, (137)

(
σµ
)
µ=0,...,3

=
(
I2, σ1, σ2, σ3

)
,

(
σµ
)
µ=0,...,3

= (I2,−σ1,−σ2,−σ3) , (138)

with σ1, σ2, σ3 being the Pauli matrices. A slot left blank is understood to be filled with
0. Recall that under the infinitesimal local Lorentz transformation

ΛA
B(z) = δAB + ωAB(z), (139)

the 6D spinor transforms as

Ψ(z)→ S(Λ(z))Ψ(z) =

[
1 +

1

2
ωAB(z)ΣAB

]
Ψ(z), (140)

where

ΣAB :=
1

4

[
ΓA,ΓB

]
, (141)

26



are the local Lorentz generators. The gamma matrices on the original basis is dependent
on chart, in particular on the coordinate φ:(

Γφ(φ)
Γθ(φ)

)
=

(
cosφ ∓ sinφ
± sinφ cosφ

)(
Γ5

Γ6

)
, (142)

where the upper and lower signs are for the north and south charts, respectively. These
gamma matrices also satisfy the Clifford algebra in both charts:{

ΓM(φ),ΓN(φ)
}

= 2ηMN . (143)

In this notation, the 6D chirality operator

Γ7 := −Γ0Γ1Γ2Γ3Γ5Γ6 =

[
I4
−I4

]
, (144)

commutes with all the local Lorentz generators:[
Γ7,ΣAB

]
=
[
Γ7,ΣMN(φ)

]
= 0 (145)

in both charts, where

ΣMM(φ) :=
1

4

[
ΓM(φ),ΓM(φ)

]
. (146)

The eigenspinors of Γ7:

Ψ± :=
I8 ± Γ7

2
Ψ, Γ7Ψ± = ±Ψ± (147)

form an irreducible representation of the 6D Lorentz group so that

Ψ+ =

[
ψ+

]
, Ψ− =

[
ψ−

]
, (148)

are independent of each other.
The 6D Dirac adjoint spinors are defined as

Ψ := Ψ†B =
(
ψ− ψ+

)
, (149)

with

B := iΓ0 =

(
β

β

)
, β := iγ0 =

(
I2

I2

)
, (150)

which transforms as

Ψ(z)→ Ψ(z)S−1(Λ(z)) . (151)
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Note that

S−1(Λ(z)) ΓA S (Λ(z)) = ΛA
B(z) ΓB. (152)

The 6D charge conjugation of a spinor field ΨC := ηΨCΨ∗ is defined so that it transforms
as

ΨC(z)→ S(Λ(z)) ΨC(z), (153)

where |ηΨ| = 1 is the intrinsic charge conjugation parity and C should satisfy C
(
ΣAB

)∗
=

ΣABC to realize the transformation (153). One can check that

C := ηΓ2Γ5 = η


ε

ε
ε

ε

 , (154)

satisfies the requirement, where η is an arbitrary phase factor, |η| = 1, and ε is the
antisymmetric matrix

ε :=

(
0 1
−1 0

)
. (155)

Hereafter, we take η = 1. Note that the 6D charge conjugation does not change the
6D chirality

(
ΨC
)
± = (Ψ±)C =: ΨC

±, unlike the four-dimensional charge conjugation:
(ψL)c = (ψc)R.

We can for example choose the parity transformation of the 6D fermion as

ΨP = ξΨΓ5Ψ, (156)

where |ξΨ| = 1 is the intrinsic parity, so that we get

[
ΨΓAΨ

]P
=

{
+ΨΓAΨ (A 6= 5),

−ΨΓAΨ (A = 5).
(157)

Then the CP transformation becomes

ΨCP = ξΨΓ5ΨC = ξΨηΨΓ5CΨ = −ξΨηΨΓ2Ψ. (158)

Note that the 6D CP transformation alters the 6D chirality (as well as P does):

(Ψ±)CP =
(
ΨCP)

∓ . (159)

We define the spin-connection

ΩM :=
1

2
ΩMABΣAB, (160)
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where

ΩMA
B := eNA∇MeN

B = eNA
(
∂MeN

B − ΓLMNeL
B
)
. (161)

In our notations,

Ωφ5
6 = −Ωφ6

5 = cos θ ∓ 1, others = 0, (162)

that is,

Ωφ = (cos θ ∓ 1) Σ56 =
i

2
(cos θ ∓ 1) γ5 ⊗ σ3, others = 0, (163)

where upper and lower signs are for north and south charts, respectively.

C Six-dimensional Bulk Dirac mass and The Higgs Mech-
anism

Finally, we consider the bulk Dirac mass term. Even in the 6D case, spinors with plus and
minus 6D chiralities Ψ+ and Ψ− can have a Dirac mass if both of them have equal charges
to each other for all the unbroken gauge interactions, similar to the four-dimensional case:

S := −
∫

d6z
√−gMΨ

(
Ψ+Ψ− + Ψ−Ψ+

)
= −

∫
d4x

∞∑
j=jmin

j∑
m=−j

MΨ

(
ψjm+,4Dψ

jm
−,4D + ψjm−,4Dψ

jm
+,4D

)
. (164)

We can diagonalize the mass matrix of the KK-modes,

L4D jm
mass = −

(
ψjm+,4D ψjm−,4D

)(imjγ
5 MΨ

MΨ imjγ
5

)(
ψjm+,4D
ψjm−,4D

)

= −
(
ψjm1,4D ψjm2,4D

)−√m2
j +M2

Ψ

+
√
m2
j +M2

Ψ

(ψjm1,4D
ψjm2,4D

)
, (165)

(
ψjm+,4D
ψjm−,4D

)
=

(
e
π
4
iγ5

cosαj −eπ4 iγ5
sinαj

e−
π
4
iγ5

sinαj e−
π
4
iγ5

cosαj

)(
ψjm1,4D
ψjm2,4D

)
, tan 2αj := −MΨ

mj

. (166)

We have obtained mass eigen-values ±
√
mj

2 +M2
Ψ.
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