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Bare Higgs mass and potential at ultraviolet cutoff

Yuta Hamada and Hikaru Kawai
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

Kin-ya Oda
Department of Physics, Osaka University, Osaka 560-0043, Japan

We first review the current status of the top mass determination paying attention to the difference
between the MS and pole masses. Then we present our recent result on the bare Higgs mass at a
very high ultraviolet cutoff scale.

I. INTRODUCTION

It is more and more likely that the 125 GeV particle discovered at the Large Hadron Collider (LHC) [1, 2] is
the Standard Model (SM) Higgs. Its couplings to the W and Z gauge bosons, to the top and bottom quarks,
and to the tau lepton are all consistent to those in the SM within one standard deviation even though their
values vary two orders of magnitude, see e.g. Ref. [3]. No hint of new physics beyond the SM has been found so
far at the LHC up to 1 TeV. It is important to examine to what scale the SM can be a valid effective description
of nature.

In Ref. [4], Froggatt and Nielsen have predicted the top and Higgs masses to be 173±5 GeV and 135±9 GeV,
respectively, based on the assumption that the SM Higgs potential must have another minimum at the Planck
scale and that its height is order-of-magnitude-wise degenerate to the SM one. (This assumption is equivalent
to the vanishing Higgs quartic coupling and its beta function at the Planck scale.) The success of this prediction
indicates that at least the top-Higgs sector of the SM is not much altered up to a very high ultraviolet (UV)
cutoff scale.

As all the parameters in the SM are fixed by the Higgs mass determination, we can now obtain the bare
parameters at the UV cutoff scale, which then become important inputs for a given UV completion of the SM.
If the UV theory fails to fit them, it is killed.

The parameters in the SM are dimensionless except for the Higgs mass (or equivalently its vacuum expectation
value (VEV)). The dimensionless bare coupling constants can be approximated by the running ones at the UV
cutoff scale, see e.g. Appendix of Ref. [5]. The latter can be evaluated through the standard renormalization
group equations (RGEs) once the low energy inputs are given. After fixing all the dimensionless bare couplings,
the last remaining one is the bare Higgs mass which is the main subject of this work.

II. TOP QUARK YUKAWA COUPLING AT TOP MASS SCALE

The largest ambiguity for the Higgs mass parameter is coming from the low energy input of the top Yukawa
coupling at the top mass scale. Let us review the present status of its determination. Important point is
the distinction between the modified minimal subtraction (MS) mass and the pole one, which are utilized,
respectively, in the MS and on-shell schemes.

Currently the most accurate value of the top quark mass is obtained from combination of the Tevatron data,
basically reconstructed as an invariant mass of its decay products [6]:

MTevatron
t = 173.20± 0.87 GeV, (1)

whereas the similar analysis of the LHC data gives [7, 8]: MLHC
t = 173.3 ± 1.4 GeV. (If we naively combine

these two results, we get M inv
t = 173.2± 0.7 GeV, which is of 0.4% accuracy.) However, the authors of Ref. [9]

criticize that the top quark mass, measured at the Tevatron and LHC via kinematical reconstruction from the
top quark decay products and comparison to Monte Carlo simulations, is not necessarily the pole mass Mt but
is merely the mass parameter in the Monte Carlo program which does not resort to any given renormalization
scheme. The point is that the mass of the colored top quark is reconstructed from the color singlet final states.1

1 Note however that the pole mass of the colored quark is well defined to all orders in perturbation theory and that its infrared
renormalon ambiguity appears only at the non-perturbative level of order ΛQCD.
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To circumvent this problem, they propose to determine the MS top quark mass directly from the dependence
of the inclusive tt̄ cross section on it. In Ref. [9], the observed values at Tevatron:

σ(pp̄→ tt̄+X) = 7.56+0.63
−0.56 pb (D0) and 7.50+0.48

−0.48 pb (CDF) (2)

are combined and fit by the theoretical prediction, which is obtained by using four different parton distribution
functions (PDFs) at the NNLO and by including the NNLO QCD contributions to σ(pp̄ → tt̄ + X). The
resultant value of the MS running top mass at the top mass scale becomes [9]:

mQCD
t (Mt) = 163.3± 2.7 GeV. (3)

In the above computation, the NLO electroweak (EW) radiative corrections (∝ ααs) to σ(pp̄ → tt̄ + X) are
neglected. The ratio of the sum of such EW corrections to the tt̄ total cross section at the Tevatron in the on-shell
scheme is shown to be less than 0.2% for the Higgs mass 120–200 GeV and the top pole mass 165–180 GeV [10].

Theoretically the MS mass in Eq. (3) is related to the pole mass Mt by

mQCD
t (Mt) = Mt

(
1 + δQCD

t (Mt)
)
, (4)

where up to the NNLO QCD corrections of O(α3
s), see e.g. Ref. [11],

δQCD
t (Mt) = −4

3

αs(Mt)

π
− 9.125

(
αs(Mt)

π

)2

− 80.405

(
αs(Mt)

π

)3

, (5)

with αs(µ) = g2
s(µ)/4π being the strong coupling in the six flavor MS scheme. This relation result in the pole

mass [9]

Mt = 173.3± 2.8 GeV. (6)

In Ref. [9] the pole mass of the top quark Mt is also directly extracted from the NNLO theory prediction using
the on-shell scheme. The resultant central value varies 169.9–172.7 GeV, depending on the PDF, with the error
less than 2.4 GeV for each. These values are consistent to Eq. (6). To summarize, the derived pole mass is close
to the experimentally obtained invariant mass (1).

It is customary to define the MS running VEV v(µ) in such a way that

−m2(µ) = λ(µ) v2(µ) (7)

holds for the potential

V = m2φ†φ+ λ
(
φ†φ

)2
, (8)

with 〈φ〉 = v/
√

2. Then the MS top mass is commonly defined as, see e.g. Ref. [11],

mt(µ) =
yt(µ) v(µ)√

2
. (9)

This definition of the MS mass leads to [11]

mt(Mt) = mQCD
t (Mt) +Mt ∆EW

t (Mt), (10)

where, taking into account up to NLO EW contributions of O(ααs),

∆EW
t (Mt) = 0.0664− 0.00115

(
MH

GeV
− 125

)
. (11)

This discrepancy (11) is due to the definition of the MS top mass via Eq. (9), and is dominantly coming from the

tadpole contribution to the shift of v(µ). If we instead use the definition of the MS mass mQCD
t (µ) = yt(µ)V/

√
2

with V =
(√

2Gµ
)−1/2

= 246.22 GeV, where Gµ = 1.1663787(6)×10−5 GeV−2 is the Fermi constant determined
from the muon life time, then we would get the one given in Eq. (4).
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Plugging [15]

gs(Mt) = 1.1645 + 0.0031

(
αs(MZ)− 0.1184

0.0007

)
− 0.00046

(
Mt

GeV
− 173.15

)
(12)

into Eq. (10), we get

mt(Mt) = Mt

[
1.00658− 0.00041

(
αs(MZ)− 0.1184

0.0007

)
+ 0.00006

(
Mt

GeV
− 173.15

)
− 0.00115

(
MH

GeV
− 125

)]
.

(13)

The MS mass (10) becomes larger than the top quark pole mass Mt [11].
Let us review the derivation of ∆EW

t (Mt) more in detail. First the MS running VEV v(µ) is obtained and
then it is multiplied to the MS running Yukawa yt(µ) in order to obtain the running mass mt(µ) in Eq. (10).

v(µ) can be read from the Fermi constant GF (µ) = 1/
√

2v2(µ):

Gµ = GF (µ) (1 + ∆GF ,α + ∆GF ,ααs + · · · ) = GF (µ)

[
1 +

α2(µ)

4π

m4
t (µ)

m2
W (µ)m2

H(µ)

(
6− 12 ln

mt(µ)

µ

)
+ · · ·

]
.

(14)

The O(α) and O(ααs) contributions ∆GF ,α and ∆GF ,ααs
are given in Eqs. (A.3) and (A.6) in Ref. [12]. The

dominant tadpole contribution is picked up in the last step in Eq. (14) for explicitness. The resultant MS VEV
is v(Mt) ∼ 260 GeV at the top mass scale. On the other hand, the MS Yukawa coupling is given by [13]

yt(µ) =
Mt√
2V

(
1 + δQCD

t (µ) + δQED
t,α (µ) + δWt,α(µ) + δEW

t,ααs
(µ) + · · ·

)
, (15)

where the O(α) corrections are

δQED
t,α (µ) =

Q2
tα(µ)

4π

(
6 log

Mt

µ
− 4

)
, (16)

δWt,α(µ) =
Gµm

2
t (µ)

8π2
√

2

[
− (2Nc + 3) ln

Mt

µ
+
Nc
2

+ 4− r + 2r (2r − 3) ln(4r)− 8r2

(
1

r
− 1

)3/2

arccos
√
r

]
,

(17)

with Qt = 2/3, Nc = 3, and r = M2
H/4M

2
t . The resultant explicit analytic formula of ∆EW

t (Mt) is given in
Ref. [14] that takes into account up to the NLO EW corrections of O(ααs). The tiny O(ααs) correction to the
Yukawa coupling, δEW

t,ααs
(µ) in Eq. (15), can be read off from ∆EW

t,ααs
by subtracting the tadpole contribution to

v(µ). In Ref. [15], numerical value of Eq. (15) is evaluated as

yt(Mt) = 0.93587 + 0.00557

(
Mt

GeV
− 173.15

)
− 0.00003

(
MH

GeV
− 125

)
− 0.00041

(
αs(MZ)− 0.1184

0.0007

)
± 0.00200th.

(18)

Multiplying Eq. (18) by the running VEV v(µ) that is read from Eq. (14), we obtain ∆EW
t , and hence the

running mass (13).

III. BARE PARAMETERS AT HIGH SCALE

In this proceedings we show our result [5] based on Eq. (18) with the pole mass (6). In Figure 1, we show a
plot with the two loop RGEs, summarized in Ref. [5], for the dimensionless SM couplings, with the low energy
boundary condition for the top Yukawa as explained above, namely with yt(Mt) = 0.93587. βλ is the beta
function for the Higgs quartic coupling: βλ = dλ/d lnµ. m2

B/I1 is explained in the following.
In the bare perturbation theory, the renormalized Higgs mass squared parameter is given at the one loop level

by

m2
R = m2

B,1-loop +

(
6λB +

3

4
g2
Y B +

9

4
g2

2B − 6y2
tB

)
I1 + δm2, (19)
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FIG. 1: RGE running of the SM couplings and of the beta function for the quartic coupling βλ, except for m2
B which

is not a running mass but is the (quadratically divergent part of) bare Higgs mass parameter, obtained by taking each
scale on the horizontal axis to be the cutoff Λ. I1 = Λ2/16π2 is the one loop integral.

where I1 =
∫ Λ

d4p/(2π)4p2 = Λ2/16π2 is the quadratically divergent one loop integral over the Euclidean
momentum. In obtaining the expression (19), we assume existence of an underlying gauge invariant regular-
ization, such as string theory, and freely shift the integrated momenta. The requirement that the sum in the
parentheses in Eq. (19) to be zero is the celebrated Veltman condition. In a mass independent renormalization
scheme, including the dimensional regularization, the bare mass squared m2

B is chosen in such a way that the
renormalized mass parameter becomes zero, m2

R = 0, when δm2 = 0; and then non-zero δm2 is introduced as a
perturbation. (This choice of the bare mass m2

B to cancel the quadratic divergence is automatic in the dimen-
sional regularization scheme.) Consequently the bare mass m2

B contains a quadratic divergence: Λ2, whereas
the running mass δm2 only logarithmic one: log Λ. Note that this cancellation of Λ2 by m2

B is done once and
for all, and then we never see Λ2. Bardeen has argued that therefore the quadratic divergence is not a real
problem, see e.g. Ref. [16] for a recent review. However, e.g. in obtaining a low energy effective field theory
from string theory, this procedure of matching Λ2 by m2

B is not a fake, and we focus on this largest part m2
B in

the bare Lagrangian, neglecting the subleasing δm2 ∝ v2 log Λ.
In Ref. [5] we have obtained the bare Higgs mass at two loop orders in the bare perturbation theory:

m2
B, 2-loop = −

{
9y4
tB + y2

tB

(
− 7

12
g2
Y B +

9

4
g2

2B − 16g2
3B

)
+

77

16
g4
Y B +

243

16
g4

2B + λB
(
−18y2

tB + 3g2
Y B + 9g2

2B

)
− 10λ2

B

}
I2,

(20)

which realizes m2
R = 0 for δm2 = 0 at this order, where

I2 =

∫
d4p

(2π)4

∫
d4q

(2π)4

1

p2q2(p+ q)2
(21)

is the quadratically divergent two loop integral over the Euclidean momenta. As a non-trivial check of
the consistency of our treatment, we have confirmed that the coefficients of the infrared divergent integral∫

d4p
(2π)4p4

∫
d4q

(2π)4q2 cancel out in each gauge invariant set of diagrams. We note that our two loop computation

is for the quadratically divergent part m2
B and is irrelevant to the higher loop result ∝ (log Λ)

n
Λ2, obtained in

Ref. [17] and used in Ref. [18, 19], which would correspond to the effects of the RGE running of the dimensionless
couplings in our language.

In obtaining the two-loop corrected bare mass m2
B = m2

B,1-loop +m2
B,2-loop, one needs a relation between the

one- and two-loop integrals I1 and I2, which is necessarily regularization scheme dependent. When we employ∫
d4p

p2
=

∫ ∞
ε

dα

∫
d4p e−αp

2

, (22)
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FIG. 2: The blue solid (dashed) line corresponds to the one-plus-two-loop (one-loop) bare mass m2
B (m2

B, 1-loop) in units

of M2
Pl/16π2 for Λ = MPl. For comparison, we also plot the quartic coupling λ at the Planck scale with the red dotted

line.

we get

I2 =
I1

16π2
ln

26

33
' 0.005I1. (23)

With the blue solid line in Fig. (2), we plot m2
B/I1 when the UV cutoff is at the Planck scale, that is, when

I1 = M2
P /16π2. The blue dashed line is the same with the 1-loop only bare mass m2

B,1-loop/I1. We see that
the two-loop correction is small, so is the regularization dependence. For comparison, we also plot the quartic
coupling λ at the Planck scale with the red dotted line. We see that both become small for Mt ' 170 GeV.

IV. SUMMARY

We have computed two loop correction to the quadratically divergent part of the bare SM Higgs mass in the
bare perturbation theory. We have found that in generic regularizations the two loop correction to the bare
mass is small. Therefore the regularization dependence is not large. Both the resultant bare Higgs mass and
quartic coupling can become small if the top quark pole mass is around 170 GeV. Possible consequences of this
result will be presented elsewhere.
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