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Abstract

The recent up to ∼ 2 fb−1 of data from the ATLAS and CMS experiments at the CERN
Large Hadron Collider at 7 TeV put an upper bound on the production cross section of a
Higgs-like particle. We translate the results of the H →WW → lνlν and H → γγ as well as
the combined analysis by the ATLAS and CMS into an allowed region for the Kaluza-Klein
(KK) mass MKK and the Higgs mass MH for all the known Universal Extra Dimension (UED)
models in five and six dimensions. Our bound is insensitive to the detailed KK mass splitting
and mixing and hence complementary to all other known signatures.
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1 Introduction

The ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC) have presented
their latest results for the . 2 fb−1 of data at the center of mass energy 7 TeV at the XXV
International Symposium on Lepton Photon Interactions at High Energies (Lepton Photon 11),
Mumbai, India, 22–27 August 2011. One of the most remarkable among them is the bound on
the Higgs mass in the Standard Model (SM). A combined analysis of the ATLAS experiment
excludes the existence of the SM Higgs in mass ranges 146 GeV < MH < 232 GeV, 256 GeV <
MH < 282 GeV, and 296 GeV < MH < 466 GeV within the 95% Confidence Level (CL) based
on 1.0–2.3 fb−1 data [1] and that of the CMS experiment excludes 145 GeV < MH < 216 GeV,
226 GeV < MH < 288 GeV, and 310 GeV < MH < 400 GeV within the 95% CL based on 1.1–
1.7 fb−1 data [2]. Further the production cross section of a Higgs-like particle, a particle that
decays the same way as the SM Higgs, is severely constrained by these data in the still-allowed
regions, namely light 115 GeV < MH < 145 GeV, middle 288 GeV < MH < 296 GeV, and heavy
MH > 466 GeV windows.

In this Letter, we translate the above constraint on the production cross section into that on
the Kaluza-Klein (KK) scale of various 5-Dimensional (5D) and 6D Universal Extra Dimension
(UED) models, namely the minimal UED (mUED) [3] and the Dirichlet Higgs (DH) [4, 5] models
in 5D and the 6D UED models on T 2/Z2 [3], T 2/Z4 [6, 7], T 2/(Z2 ×Z ′2) [8], RP 2 [9], S2/Z2 [10],
Projective Sphere (PS) [11], and S2 [12].1 Concretely, we bound the UED parameter space of
MKK (first-level KK mass) and MH (zero mode Higgs mass) based on the leading ATLAS and
CMS constraints on the total cross section and on that of each channel [1, 2].

One of the biggest advantages of the UED models is the existence of a natural Dark Matter
(DM) candidate, the Lightest KK Particle (LKP) [13]. The 6D UED models have further ad-
vantages of the requirement of the number of generations to be (zero modulo) three [14] and the
assurance of the proton stability [15].

There exist several bounds on the 5D mUED model, within which the brane-localized interac-
tions are assumed to be vanishing at the 5D Ultra-Violet (UV) cutoff scale Λ5D. The latest analysis
on DM relic abundance including the effects from second KK resonances gives the preferred KK
scale at around MKK ∼ 1.3 TeV [16]. It is noted that the first KK charged Higgs becomes the
LKP when MH & 240–300 GeV, depending on the KK scale [17]. The electroweak precision
data suggests that the KK scale should be MKK & 800 GeV (300 GeV . MKK . 400 GeV) at
the 95% CL for MH = 115 (700) GeV [18, 19, 20]. The observed branching ratio of Bd → Xsγ
confines the KK scale as MKK > 600 GeV [21] at the 95% CL. Recent study puts a constraint
MKK > 600 GeV for 10 < Λ5D/MKK < 40 at the 95% CL {} [22], from the ATLAS SUSY search
result in multijet+Emiss

T with 1 fb−1 data [23].2 We see that current LHC bound from jets plus
missing ET is not severe even for the most constraint mUED. This is because we have typically
smaller mass splitting between the LKP and other new particles than the one between the lightest
supersymmetric particle and other sparticle in the minimal supersymmetric standard model.

We note that all of these bounds are strongly dependent on the mass splitting and mixing
within the first KK level and therefore on the boundary mass structure which is derived from the
above-mentioned assumption that all of them are zero at the 5D UV cutoff scale. The bound on
the KK scale put in this Letter is complementary to them in the sense that this is depending only
on the Higgs mass. That is, our bound is insensitive to the boundary masses if they are smaller
than the KK scale, as is necessary to have a higher dimensional picture at all.

1 In [11] the terminology “real projective plane” is employed for a sphere with its antipodal points being identified.
In order to distinguish [11] from [9], we call the former the Projective Sphere (PS). We note that the PS and S2

UED models have no orbifold fixed point and hence no localized interaction on it.
2 Inclusion of the decay channel into KK Higgs, if allowed, might significantly affect the result. We thank K.

Tobioka on this point.
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2 Procedure to obtain the bound

The ATLAS and CMS groups have shown the results for the combined analyses for the ratio
σ95%
pp→H/σ

SM
pp→H as a function of the Higgs mass MH , where σ95%

pp→H is an upper bound on the
production cross section of a particle that decays the same as the SM Higgs, at the 95% CL [1, 2].
In our case the constrained production cross section is that of the UED Higgs. In UED models,
a process can be affected by KK-loops when it is loop-induced in the SM. In particular, the
dominant Higgs production channel via the gluon fusion process can be greatly enhanced, see [12]
and references therein. For middle and heavy Higgs mass regions, the constraint is mainly from the
H → WW and ZZ channels, which are dominated by the tree-level SM processes and therefore
the result of the combined analysis can be applied directly.

For the light Higgs mass region, the severest bound on σ95%
pp→H/σ

SM
pp→H comes from H →

WW → lνlν or H → γγ. The latter is loop-induced in the SM and can be affected by the KK-
loops. Further, the loop-induced decay into gluons is not negligible in this region in computation
of the total decay width. Therefore, we cannot trust the combined analysis which assumes that
the branching ratios are not changed from the SM. In the light mass range, we apply the CMS
bounds on σ95%

pp→H→γγ/σ
SM
pp→H→γγ and σ95%

pp→H→WW /σ
SM
pp→H→WW [2].

For the Higgs production, we focus on the the gluon fusion process via the (KK) top quark loops,
which is the dominant Higgs production channel in the SM and the UED models [12, 24, 25, 26].
The parton level cross section of each model σ̂model

gg→H is

σ̂model
gg→H(ŝ) =

π2

8MH
Γmodel
H→gg(MH) δ(ŝ−M2

H), (1)

where ŝ is the parton level center-of-mass-energy-squared and Γmodel
H→gg is the partial decay width

into a pair of gluons in each model:

Γmodel
H→gg(MH) = K

α2
s

8π3

M3
H

v2EW

∣∣Jmodel
t

(
M2
H

)∣∣2 , (2)

where αs is the QCD coupling strength and vEW is the Higgs vacuum expectation value ' 246 GeV
and K is the K-factor to take into account the higher order QCD corrections, whose NNLO value is
' 1.9 at the relevant energies, see e.g. Ref. [27]. When we consider a ratio such as σ95%

pp→H/σ
SM
pp→H

from the gluon fusion process, the overall K-factor does not influence the result. However it
contributes to the decay branching ratios of the light Higgs boson non-negligibly.

For each model, the loop function Jmodel
t describes the contributions of all the zero and KK

modes for the top quark in the triangle loops:

JSM
t (ŝ) = I

(
m2
t

ŝ

)
, (3)

JmUED
t (ŝ) =

{
I

(
m2
t

ŝ

)
+ 2

∞∑
n=1

(
mt

mt(n)

)2

I

(
m2
t(n)

ŝ

)}
, (4)

JDH
t (ŝ) =

√
2ε1

∣∣∣∣∣I
(
m2
t

ŝ

)
+ 2

∞∑
n=1

(
mt

mt(n)

)2

I

(
m2
t(n)

ŝ

)∣∣∣∣∣
2

+

∣∣∣∣∣2
∞∑
n=1

(
mt

mt(n)

)2

Ĩ

(
m2
t(n)

ŝ

)∣∣∣∣∣
2
1/2

,

(5)
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J
T 2/Z2

t (ŝ) = JRP
2

t (ŝ) =

I
(
m2
t

ŝ

)
+ 2

∑
m+n≥1

or m=−n≥1

(
mt

mt(m,n)

)2

I

(
m2
t(m,n)

ŝ

) , (6)

J
T 2/Z4

t (ŝ) =

I
(
m2
t

ŝ

)
+ 2

∑
m≥1,n≥0

(
mt

mt(m,n)

)2

I

(
m2
t(m,n)

ŝ

) , (7)

J
T 2/(Z2×Z′2)
t (ŝ) =

I
(
m2
t

ŝ

)
+ 2

∑
m≥0,n≥0,

(m,n) 6=(0,0)

(
mt

mt(m,n)

)2

I

(
m2
t(m,n)

ŝ

) , (8)

J
S2/Z2

t (ŝ) =

I
(
m2
t

ŝ

)
+ 2

∑
j≥1

(
mt

mt(j)

)2

nS
2/Z2(j) I

(
m2
t(j)

ŝ

) , (9)

JPS
t (ŝ) = JS

2

t (ŝ) =

I
(
m2
t

ŝ

)
+ 2

∑
j≥1

(
mt

mt(j)

)2

(2j + 1) I

(
m2
t(j)

ŝ

) , (10)

where I and Ĩ are given by

I(λ) = −2λ+ λ(1− 4λ)

∫ 1

0

dx

x
ln

[
x(x− 1)

λ
+ 1− iε

]
, (11)

Ĩ(λ) = (+λ)

∫ 1

0

dx

x
ln

[
x(x− 1)

λ
+ 1− iε

]
, (12)

the nmodel(j) counts the number of degeneracy:

nS
2/Z2(j) =

{
j + 1,

j,
nPS
even(j) =

{
2j + 1,

0,
nPS
odd(j) =

{
0, for j = even,

2j + 1, for j = odd,
(13)

and we write the KK top and W masses (X = t,W )

mX(n) ≡
√
m2
X +

n2

R2
=
√
m2
X + n2M2

KK, (14)

mX(m,n) ≡
√
m2
X +

m2 + n2

R2
=
√
m2
X + (m2 + n2)M2

KK, (15)

mX(j) ≡
√
m2
X +

j(j + 1)

R2
=

√
m2
X +

j(j + 1)M2
KK

2
, (16)

with MKK being the first KK mass: MKK = 1/R for the S1/Z2 (mUED), an interval (DH), and T 2-
based compactifications (namely T 2/Z2, T 2/(Z2×Z ′2), T 2/Z4 and RP 2) and being MKK =

√
2/R

for the S2-based ones (namely S2/Z2, PS and S2). The range of the KK summation reflects the
structure of each extra dimensional background.3

The factor
√

2ε1 in Eq. (5) is equal to 2
√

2/π ∼ 0.90. Readers who want more explanations
on the above expressions should consult Ref. [12].

As is mentioned above, we compute the decay rate into a photon pair, following [26]. The
result is

Γmodel
H→γγ(MH) =

GF

8
√

2π
M3
H ·

α2

π2

∣∣∣∣Jmodel
W

(
M2
H

)
+

4

3
Jmodel
t

(
M2
H

)∣∣∣∣2 , (17)

3 The origin of the factor 2 in front of each KK summation is the fact that there are both left and right handed
(namely, vector-like) KK modes for each chiral quark zero mode corresponding to a SM quark.
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where

JSM
W (M2

H) = L

(
1

2
, 3, 3, 6, 0;

M2
W

M2
H

,
M2
W

M2
H

)
, (18)

JmUED
W (M2

H) = JSM
W (M2

H) +

∞∑
n=1

L

(
1

2
, 4, 4, 8, 1;

M2
W

M2
H

,
M2
W (n)

M2
H

)
, (19)

J
T 2/Z4

W (M2
H) = JSM

W (M2
H) +

∑
m≥1,n≥0

L

(
1

2
, 5, 4, 10, 1;

M2
W

M2
H

,
M2
W (m,n)

M2
H

)
, (20)

J
T 2/(Z2×Z′2)
W (M2

H) = JSM
W (M2

H) +
∑

m≥0,n≥0
(m,n)6=(0,0)

L

(
1

2
, 5, 4, 10, 1;

M2
W

M2
H

,
M2
W (m,n)

M2
H

)
, (21)

J
T 2/Z2

W (M2
H) = JSM

W (M2
H) +

∑
m+n≥1

or m=−n≥1

L

(
1

2
, 5, 4, 10, 1;

M2
W

M2
H

,
M2
W (m,n)

M2
H

)
, (22)

JRP
2

W (M2
H) = JSM

W (M2
H) +

A∑
(m,n)

L

(
1

2
, 4, 4, 8, 1;

M2
W

M2
H

,
M2
W (m,n)

M2
H

)
+

B∑
(m,n)

L

(
0, 1, 0, 2, 0;

M2
W

M2
H

,
M2
W (m,n)

M2
H

)
,

(23)

J
S2/Z2

W (M2
H) = JSM

W (M2
H) +

∑
j≥1

nS
2/Z2(j)L

(
1

2
, 5, 4, 10, 1;

M2
W

M2
H

,
M2
W (j)

M2
H

)
, (24)

JS
2

W (M2
H) = JSM

W (M2
H) +

∑
j≥1

(2j + 1)L

(
1

2
, 5, 4, 10, 1;

M2
W

M2
H

,
M2
W (j)

M2
H

)
, (25)

JPS
W (M2

H) = JSM
W (M2

H) +
∑
j≥1

[
nPS
even(j)L

(
1

2
, 4, 4, 8, 1;

M2
W

M2
H

,
M2
W (j)

M2
H

)

+ nPS
odd(j)L

(
0, 1, 0, 2, 0;

M2
W

M2
H

,
M2
W (j)

M2
H

)]
, (26)

with

L(a, b, c, d, e;λ1, λ2) = a+ bλ1 − [λ1(c− dλ2)− eλ2]

∫ 1

0

dx

x
ln

[
x(x− 1)

λ2
+ 1− iε

]
. (27)

The A-summation for RP 2 are over the region that satisfies both m ≥ 1 and n ≥ 1 as well as
over the ranges (m,n) = (0, 2), (0, 4), (0, 6), . . . and (m,n) = (2, 0), (4, 0), (6, 0), . . . . Similarly,
the B-summation are over m ≥ 1 and n ≥ 1 as well as over (m,n) = (0, 1), (0, 3), (0, 5), . . . and
(m,n) = (1, 0), (3, 0), (5, 0), . . . . The Dirichlet Higgs model only allows the heavy mass region in
which H → γγ is irrelevant and hence we do not compute the process for it.

In six dimensional UED models, KK summation in Eqs. (6)–(10) and (20)–(26) must be ter-
minated by a UV cutoff, for which we take the maximum and minimum possible values consistent
with the Naive Dimensional Analysis (NDA), shown in Table 1. Let us briefly explain this treat-
ment hereafter. For more details, see Ref. [12]. Since the electroweak symmetry is broken by the
Higgs mechanism in the SM and UED models (except for the DH model), the gluon fusion process
is described by a dimension-six operator at lowest in 4D point of view after KK expansion. This
means that the calculation is UV logarithmic-divergent (convergent) in six (five) dimensions.4

4 Of course 5D UED is non-renormalizable and we have to introduce a cutoff scale in theory. However, this does
not appear in our analysis because we can calculate the gluon fusion process with no UV divergence in 5D UEDs.
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T 2-based S2-based
max min max min

KK index m2 + n2 < 28 m2 + n2 ≤ 10 j(j + 1) ≤ 90 j(j + 1) ≤ 30
UV cutoff Λ6D ∼ 5MKK Λ6D ∼ 3MKK Λ6D ∼ 7MKK Λ6D ∼ 4MKK

Table 1: Our choices of maximum and minimum upper bounds for KK indices and for the corre-
sponding UV cutoff scale.

Therefore we need to put an upper limit of the summation over KK indices in 6D. We do it by
adopting the NDA. In both the T 2 and S2-based geometries, the most stringent bound turns out
to be the one from the perturbativity of the U(1)Y gauge interaction, which results in the following
allowed regions of KK indices [12]:

m2 + n2 . 30, for T 2-case

(
m2

(m,n) =
m2 + n2

R2

)
, (28)

j . 9, for S2-case

(
m2

(j,m) =
j(j + 1)

R2

)
, (29)

where the index m for the S2-case discriminates the degenerate states of each j-th level. The
cutoff scale of 6D UED theory Λ6D must be lower than that in Eq. (28) or (29). In Table 1, we
list the values that we take.

Based on the knowledge sketched above, we can evaluate the total cross section of the Higgs
production of the UED models σmodel

pp→H and the ratio to that of the SM σmodel
pp→H/σ

SM
pp→H to be

compared to the experimental result.

3 Results

First, we show our results for the light region: 115 GeV < MH < 145 GeV. We apply the CMS
bounds on H → γγ and H → WW channels that are dominant in this range. In Fig. 1, we
list the contour plots for the excluded region in the MKK-MH plane for various UED models
in 5 and 6 dimensions. Plots for the maximum and minimum choices of the UV cutoff scale
are presented for the 6D UED models. In general, UED models enhance Higgs production via
gluon fusion and reduce the Higgs decay into a pair of photons. Therefore, σUED

pp→H→γγ receives
nontrivial contributions from such effects. Typically, the enhancement of Higgs production cross
section overcomes the suppression of the di-photon branching ratio in the H → γγ excluded range
(with orange and red colors), whereas the region for smaller MKK is not excluded because of the
suppression of the di-phton branching ratio. (For example, in the case of S2 UED, the di-photon
cross section is suppressed for MKK . 400 GeV.) We find that all the suppressed region is already
excluded by WW channel. It is natural that the lower the cutoff scale becomes, the more the
allowed parameter region is enlarged since smaller numbers of KK tops contribute to the process.
In 6D, we have more light KK top quarks running in the loop, and get stronger constraints than
in 5D. The BR(H →WW ) is also affected by the enhancement of the total Higgs decay rate due
to the increase of H → gg.

Second, we move on to the middle region: 288 GeV < MH < 296 GeV. The Standard Model
is still allowed in this range whereas we find that all the UED models below MKK = 1.4 TeV is
excluded.

Finally, let us discuss the heavy region: MH > 446 GeV. We choose severer bound on
σ95%
pp→H/σ

SM
pp→H between ATLAS and CMS data for each MH . That is, we use ATLAS and CMS

bounds for MH < 500 GeV and MH ≥ 500 GeV, respectively. In Fig. 2 we plot our results. We
note that in all the allowed region, we get MH < 2MKK and hence the Higgs does not decay into
a pair of KK particles.
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Now let us comment on the DH model. In this model, the bound is put only on MKK (= MH)
and the theoretical value of the ratio σDH

pp→H/σ
SM
pp→H decreases when one increases MKK, while

the experimental upper bound σ95%/σSM is an increasing function of MH in the high-mass region.
The cross-over occurs at MKK = 480 GeV which gives σDH

pp→H/σ
SM
pp→H ' 1.2 and we conclude that

the allowed parameter region of MKK is:

MKK > 480 GeV (95% CL in Dirichlet Higgs model). (30)

In the MKK region of 110 GeV < MKK < 149 GeV and 206 GeV < MKK < 300 GeV, the value of
σDH
pp→H/σ

SM
pp→H grows significantly and thereby these regions are rejected by the CMS result at the

95% CL. Noting that the indirect electroweak constraint gives 430 GeV < MKK < 500 GeV at the
90% CL [4], the allowed region of MKK roughly lies between 480 GeV .MKK . 500 GeV.

4 Summary and Discussions

In this Letter we have constrained the UED models in 5D and 6D by use of the latest ATLAS and
CMS bounds on the Higgs production cross section. The bound on 6D UED is severer than that
on 5D UED because 6D KK mass spectrum is denser than that in 5D and therefore the KK top
modes contribute to the gluon fusion process larger. The KK (Higgs) mass of the Dirichlet Higgs
model is pinned down at around 500 GeV.

In the light mass range 115 GeV < MH < 145 GeV, one of the dominant constrains on the
Higgs production cross section is coming from the H → γγ decay, which is reduced when KK scale
is not large, due to the interference between the SM gauge boson and KK top loops, with some
corrections from SM top and KK gauge bosons. We have taken into account the CMS constraints
from H → γγ and H →WW → lνlν instead of the combined analysis. We find in this light region
that the Higgs mass above 140 GeV is already excluded in the 5D and 6D T 2/Z4 UED models,
while the mass above 130 GeV is ruled out in other 6D UED models, both within a reasonably
small KK scale < 1.4 TeV.

Our analyses on the 6D UED models cannot evade ambiguities from the NDA, but the plots
in Figs. 1 and 2 imply that the dependence on the cutoff is rather mild . 10%. For a low cutoff
scale, there can also be contributions from higher dimensional operators that must be taken into
account. We have ignored these possible contributions in our analysis.

In both 5D and 6D cases, the bound is insensitive to the detailed boundary mass structure. In
this sense this constraint is complementary to other ones such as the relic abundance of the LKP
and the MT2 analysis of the decay of the colored KK into the LKP.

When the KK scale is not much heavier than the weak scale ' 246 GeV, the UED models tend
to prefer much heavier Higgs mass than in the SM in order to cancel the KK top loops in the
T -parameter. (This contribution has the same origin as the gluon fusion process discussed in this
Letter.) In this regard it would be important to put an experimental bound for the Higgs mass
beyond 600 GeV.

There is the triviality bound if the Higgs is heavy and the UED scale is light which are being
studied by the authors, along with the vacuum stability bound for the case of light Higgs, and will
be presented in a separate publication.
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Figure 1: Excluded regions in MKK-MH plane by the CMS constraints on
σ95%
pp→H→WW /σ

SM
pp→H→WW and σ95%

pp→H→γγ/σ
SM
pp→H→γγ for the light Higgs. The bound from WW

channel (cyan and blue respectively for minimum and maximum UV cutoffs, former of which is
superimposed on the latter) is superimposed on that from γγ channel (orange and red, the same
as above) leaving its outline. The UV cutoff scales of our choice are summarized in Table 1.
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Figure 2: Constraints from the combined analysis from each ATLAS and CMS experiment in the
heavy mass region, drawn the same as Fig. 1 with maximum UV cutoff (blue) being superimposed
by the minimum UV cutoff (cyan).
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