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We clarify and study our previous observation that, under a compact-
ification with boundaries or orbifolding, vacuum expectation value of a
bulk scalar field can have different extra-dimensional wave-function pro-
file from that of the lowest Kaluza—Klein mode of its quantum fluctuation,
under presence of boundary-localized potentials which would be necessar-
ily generated through renormalization group running. For concreteness,
we analyze the Universal Extra Dimension model compactified on orbifold
S1/Zy, with brane-localized Higgs potentials at the orbifold fixed points.
We compute the Kaluza—Klein expansion of the Higgs and gauge bosons in
an Re-like gauge by treating the brane-localized potential as a small per-
turbation. We also check that the p parameter is not altered by the brane
localized potential.

PACS numbers: 14.80.Rt

1. Introduction

The five dimensional Quantum Field Theory (QFT), compactified on
the orbifold S'/Z5, has been paid much attention as the basis for the extra
dimensional standard model with bulk gauge bosons [1-5], Universal Extra
Dimension (UED) model [6,7], Higgsless model [8], gauge-Higgs unification
models (see e.g. |9] and references therein), and also the supergravity mod-
els [10-13]. The five dimensional QFT on S'/Z, is also the starting point
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1292 N. HaBa, K.-v. OpA, R. TAKAHASHI

for the QFT in the warped space!, which is again utilized in the warped
version of the bulk standard [16,17], Higgsless [18-21], gauge-Higgs unifica-
tion [22-26], and supergravity [27] models.

A five dimensional gauge theory is not renormalizable and must be seen
as an effective field theory. We must take into account all the higher di-
mensional operators that are allowed by symmetries of a given theory, with
appropriate suppression by a cutoff scale A. Especially, when there is a
bulk scalar field, no symmetry prohibits the existence of the same type of
potentials at the orbifold fixed-points as that of the bulk potential (with ap-
propriate rescaling by the cutoff A to match its mass dimension). To repeat,
the five dimensional QFT with a bulk scalar, given as an effective theory,
inevitably has the brane potentials.

In [30] we stressed the importance of the brane-localized potential and
considered an extreme case where the electroweak symmetry breaking is
solely due to the brane-localized potential?>. In this paper, we concentrate
on the opposite extreme where electroweak symmetry breaking is mainly
due to the bulk potential, as in the UED model, and take into account the
brane localized potentials as small perturbation®. One of the main subjects
of the current study is to perform diagonalization of eigenmodes in order
to present their profiles that even leads to a difference between the vev and
lowest mode profiles. Note that this diagonalization has never been achieved
in any kind of models, except for our previous study [30].

The organization of the paper is as follows. In the next section, we
present our idea by the simplest toy model with a single real scalar field
in the bulk, under the presence of the brane-localized potentials. In Sec-
tion 3, we compute the Kaluza—Klein (KK) expansions for Higgs fields in
the UED model with brane potentials, by taking it as a small perturba-
tion. In Section 4, we compute the KK expansions for gauge fields similarly.
We show that even though the KK masses are distorted by the brane po-
tential, p parameter remains the same as the standard model at the tree

! Originally Randall and Sundrum proposed it without any bulk field other than gravi-
ton [14]. See also [15] for a possible regularization of the negative tension brane.
See Refs. [28,29] for related works that also take into account the brane-localized
potential. In Ref. [28], the equivalence theorem is studied in a two Higgs doublet
model with a brane-localized potential. In Ref. [29], it has been shown that the vev
profile can be non-flat under the presence of a brane-localized potential. In both
papers, the KK expansion of the Higgs field is not performed in a diagonal basis and
the wave function profile of a KK mass eigenstate was hardly observable.

In [31], Flacke, Menon and Phalen have emphasized the importance of the brane-
localized interactions in the context of the UED model and especially have analyzed
the effect from the existence of the brane-localized kinetic (quadratic) term upon the
extra dimensional wave-function profile. The brane-localized potential was written
but not taken into account in the calculation of the wave function profile. In this
paper we continue to concentrate on the effect of the brane localized potential.

N
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Diagonal Kaluza—Klein Ezpansion under Brane Localized Potential 1293

level. In Section 5, we summarize our result and show possible future di-
rections. In Appendix, we give our gauge fixing procedure and show that
extra-dimensional component of the gauge field and the would-be Nambu—
Goldstone (NG) modes mix each other because of the position dependent
vacuum expectation value (vev) while the four dimensional component of
the gauge field does not receive such contribution.

2. Vacuum expectation value and physical fields
under brane potentials

To clarify our previous observation [30], let us first consider a five dimen-
sional theory with a real bulk scalar field @, compactified on a line segment
y € [0, L]*. The action is given by

L
5= [ate [ dy [0 ®) (0" ) - V(®)~5(0) Vo( )~y ~ L) Vu(#)]
0
(1)
where M, N, ... run for 0, ...,3; 5, our metric convention is nyn =
diag(—1,1,1,1,1)an. Mass dimensions are [@] = 3/2, [V] =5, and [V)] =

(V] = 45.
The variation of the action is

L
ov A% ovr,
— 4 O 2p 27 _ 0 grL
/dm/dyé@[@—i—a@ EY; 5()8@) Iy L)8§Z§

+ / d'z 580, 9)'=¢ (2)

where we have performed the partial integration and we define O = 9,0 =
—88—|—V2 with y, v, ... running for 0 to 3. Resultant bulk equation of motion
from the variation (2) is

)%
0 2p -~ =
D +0y0— 52 =0, (3)

while the boundary condition at y = 0, L reads either Dirichlet

59|, , =0, (4)

4 An orbifold theory on S*/Z, can be obtained by identifying its brane-localized poten-
tials with twice the corresponding boundary-localized potentials in the line-segment
theory.

® Note that there can be brane localized kinetic terms too [31] oc §(y — n)(0ar &) (0™ &)
with 7 being 0 or L, which we neglect for simplicity in this paper.
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or Neumann
=0, (5)

(70255
99 /) |y=y

where signs above and below are for = L and 0, respectively, throughout
this paper. We have four choices of combination of Dirichlet and Neumann
boundary conditions at ¥y = 0 and L, namely

(D,D), (D,N), (N,D), and (N,N). (6)

Difference choice of boundary condition corresponds to different choice of
the theory. The theory is fixed once one chooses one of the four conditions.

We comment on the relation between the above “downstairs” line-seg-
ment picture and the orbifold picture. Sometimes it is convenient to first
define fields on a circle y € (—L,L], or even in the “upstairs” picture
y € (—00,00). A special Dirichlet condition @]y:n = 0 corresponds to the
Z5 odd condition ¢(x,n+y) = — ®(x,n—y) in the orbifolding, while the Neu-
mann condition (5) corresponds to the Z; even one @(z,n+y) = ¢(z,n—1y)
(with the appropriate redefinition of the brane potential by factor two). The
even (N, N) and odd (D, D) fields in the orbifold picture are given as (see

132)

PN, y) = P(x,lyl), (7)

2°M(z,y) = e(y) D(x, ly), (8)
where €(y) = £1 for £y > 0 and @ in the r.h.s. is the solution to the bulk
equation (3) in 0 < y < L subject to the boundary conditions (4) or (5).

We utilize the background field method, separating the field into vev and
quantum-fluctuation parts:

P(x,y) = ¢°(x,y) + ¢(z,y) . 9)

In order to determine the vev profile, we need to solve the bulk equation of
motion

[
Do + 92 0° — =0 10
with either the Dirichlet boundary condition
5¢c|y:n:0, (11)
or the Neumann boundary condition
ov,©
FO, P — — =0 (12)
0P Jly=y
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at each brane. Here and hereafter, we utilize the following shorthand nota-
tion:

ove ov o?v e 0*V

— *,y) = 4= 5 (1Y) = =5 , 13
56 Y =55 SRR 7 = (@,9) = 553 ooeton) (13)
ete.

We put the separation (9) into the action (1) and expand up to the
quadratic terms of the fields ¢?. Note that the Dirichlet boundary condi-
tion on the quantum fluctuation reads gbq]y:n = 0. After several partial
integrations, utilizing the equation of motion (10) with either the Dirichlet
gi)‘i’|y:77 = 0 or Neumann (12) boundary condition, we obtain the free field
action up to the quadratic terms in ¢

Shee = /d4 /dy( ¢ [D+62 MEW

92V; - L 0°VL*
e BB - ]

A few comments are in order:

e The free field action (14) is obtained by the expansion up to quadratic
orders. Higher order terms ox ¢™ with n > 2 are treated as interactions.
Kaluza—Klein (KK) expansion will be performed on the free field ¢
with the action (14).

e The boundary conditions (4) and/or (5) is put on the whole field (9)
when the theory is defined. That is, when the vev @€ obeys Dirichlet
condition ¢ = const. at a boundary, the quantum fluctuation also
obeys the Dirichilet one 6@ = ¢¢ = 0. When &€ obeys Neumann
condition (12) at a boundary, the quantum part ¢? obeys

2
<:Fay¢q oy ¢>q>

y=n

where above (below) sign is for y = L (0).

e The Neumann boundary condition for vev (12) and for quantum fluc-
tuation (15) are generically different. Therefore in general, the wave
function profile for the vev and quantum fluctuation are different from
each other. We will see it more in detail below.



1296 N. HaBa, K.-v. OpA, R. TAKAHASHI

e The boundary condition (5) on the whole field (9) contains terms
quadratic and higher order in ¢9, such as

i(y) (Vo))"
— (58 (%)%, (16)
These terms are coming from the cubic and higher order brane-loca-
lized interactions, which are dropped to obtain the free field action (14).
Note that exactly these terms account for the difference between the

boundary conditions for vev and fluctuation. For example, the brane-
localized term corresponding to the condition (16) is

(T (17

31\ 093

These dropped terms will be treated as boundary-localized interactions
that generically mix different KK modes.

Now let us go on to the KK expansion. On physical ground, we assume
that the vev does not depend on the flat four dimensional coordinates x*:
9¢ = 9(y). The equation of motion are then

2 HC c
)= g ) =0. (18)

Following the Sturm-Liouville theory, we can always expand any function
of y, subject to one of the four choices of boundary conditions (6), in terms
of the orthonormal basis

¢z, y) =Y (@) fuly), (19)

where f,(y) are eigenfunctions of the Hermitian differential operator in the
free action (14):

2 2y ¢
(i~ e ) 5a6) = 12 0). (20)

The eigenvalues —pu2 are real but are not necessarily negative at the mo-
ment©.

For each nth mode, there are totally three unknown constants: two
integration constants of the second order differential equation (20) and the

6 Recall also that they are not degenerate, that is, —u2 # —p2, if n % m.
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eigenvalue —pu2. Two of the three are fixed by the two boundary conditions
at y = 0 and L, while the last one is fixed by the normalization

L
/dy fn(y)fm(y) = Onm - (21)
0

Consequent mass dimension is [f,] = 1/2. Eventually the free field ac-

tion (14) is rendered into
Shee = Y [ d'a §08(0) (0 - ) é4(o). (22)

3. Boundary potential on universal extra dimension

In this section, we study the effect of the brane-localized potentials on
the UED model [6,7]. In the UED model, the KK parity % —y — % +y
plays a crucial role to make the Lightest KK Particle (LKP) stable so that
it can serve as a dark matter candidate. In this setup, it is convenient to
utilize the new coordinate z =y — % The KK parity is realized as z — —z.
Hereafter, we rewrite the labels 7 = L and 0, respectively by + and —. The
action for the SU(2)r, doublet Higgs field H is now

L)2

Sy = /d4x_L//2 dz [—(DMH)T(DMH)—V(H)

5 <z - ’;) Vi (H) -6 <z 4 ’;) V(H)] , (23)

where D) is the gauge covariant derivative
Dy =0y + Z'g5TaWJ(\1/[ + igéYBM , (24)

with Y =1/2 and T* = 0%/2 on H. (As usual, 0% are the Pauli matrices.)
Mass dimensions are [H] = [W§,] = [By] = 3/2 and [g5] = [g5] = —1/2.
In the UED model, extra dimensional components of the gauge fields W5i,
Z5 and Ajp are odd under orbifold projection, taking (D, D) boundary con-

ditions, while all the other fields are even, taking (N, N) ones’.

" In the UED model, (D, D) condition is set such that the fields Wsi, Zs and As are
vanishing at the boundary. Generically one can consider fixed but non-vanishing
value for (D, D) boundary condition. This type of boundary condition for the Higgs
field is utilized in [33].
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An important point is that, as a non-renormalizable effective field the-
ory in five dimensions, the bulk and brane potentials should contain all the
higher dimensional operators, suppressed by a cutoff scale of the five dimen-
sional theory A:

A
V(H) = m?|H|* + Z|H|' + 0 (477) , (25)

A _
Vi(H) = me|HP + 5 H|' +0/(47°) , (26)

where A and Ay are dimensionless constants®. (Recall the mass dimensions:
[V] =5, [Vi] = 4, and [H] = 3/2.) We emphasize that the presence of the
brane potential (26), which has been overlooked so far, is inevitable since
no symmetry can prohibit the existence of (26) when one allows the bulk
potential (25).

Note that we have chosen the following basis

= (%)= (2 ) 27

in which the real part ¢ (of the electrically neutral scalar ¢°) takes a vev
and plays the role of the real scalar @ in the previous section. Using |H|? =

¢2+X + ¢t~ with ¢~ = (¢1)T, let us rewrite the potentials®

V= (¢2+X +2p" 0" —0f) +0 (47, (28)
)\ _

Ve =S5 (4 +20T0 —0}) 40 (477) (29)
where we defined A = A/A and A+ = Ai/A%2 The mass dimensions of
the new parameters are A] = [)\i] = —2, and [v7] = [v1] = 3. Note
that the parameters v3 = m?/ /\ and 4 = m4 /Ay can be either positive or
negatlvew

In this notation, the vev ¢°(z) is determined by the bulk equation of
motion

2 ic >
TEE (01 - ) o) =0, (30)

8 Generically one would also expect that m ~ m+ ~ A as an effective theory. Here we
do not pursue this so-called “naturalness problem” and take m? and m, being either
positive or negative, as free dimensionful parameters.

¥ In this paper, we neglect all the back-reactions to the background spacetime geometry
and shift zero of the potentials freely.

10 As stated in footnote 8, the bulk mass squared and the brane mass, which can be
positive and/or negative, are taken as free dimensionful parameters and hence v2 and
v3 are also free parameters.
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with either the Neumann

#1285 (66 - 2) o)

~0, (31)
z=+L/2

or Dirichlet
¢°(2)|.—4 12 = const. (32)

boundary condition at each end.
Hereafter, we rewrite h(x, z) = ¢%(x, z) and drop the label “?” from other
quantum fluctuations:

(@) ) . (33)

Hw2) = <f [6°(2) + h(w, 2) + ix(, 2)]

For reader’s ease, we write down the potential quadratic in quantum fluctu-
ation

V(z,2) = g ( C(Z)2 — v0> (X(:L‘, 2)2 +2 |<p+(:17, z){2>
+% ( ) h(z,z)?, (34)
= £ o) a2

% (302~ 0}) bl 2 (35)

z=+L/2

Note that linear terms necessarily drop out, due to the equation of motion
for the vev (corresponding to Eq. (18)). The KK expansion for the quantum

fluctuations is given as
hz,z) = ) ha(@)f;
n

X(@.2) = Y xal@)fX(2)

g0+(.’L',Z) = Z(pjz(w)frf(z)v (36)
where [h,] = [xa] = [pf] = 1. Here f, are eigenfunctions of the KK
equations

d? N2 22\ | sh 2 rh
A (36 - )| 14 = it o), (37)

dz?

[d{z”(‘ﬁc(z) —vo)} 15 =~ fX (2, (33)
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subjecting to the boundary conditions

e (30007 - 02) | st =" (39)
T (007 - )| 2 =" (10)

where X stands for the labels x and ¢, both giving the same KK expansions
in this case without boundary potential. Results presented in this section
correspond to £ = 1 in the R, gauge, see Appendix.

3.1. No brane potential case

Let us first review the case without any brane potential Vi (H) = 0, as
in the original UED model [6,7]. In the model, there is only bulk poten-
tial (28), with O(A~*) terms being neglected. The solution to the equation
of motion (30) is

¢°(2) = vo . (41)

Note that obviously x¢(z) = (¢1)%(2) = 0 is the solution for other modes.
In the original UED model, all the bulk fields are put the (N, N) boundary
condition with V4 = 0:

dH
—(xL/2) =0 42
# xrpm) = 0, (42)
which is trivially satisfied by the constant profile (41).
The KK equation corresponding to (20) is now

d?fh(z
Sul2) g fi(z) = e, (43)
d*f¥ (2) 2 X
42 —pxnfn (2)- (44)
The (N, N) boundary condition (42) simply reads
dfn
—(£L/2) =0 45
Fn(er) =0, (45)

for all h, x and ¢+,



Diagonal Kaluza—Klein Ezpansion under Brane Localized Potential 1301

There are three possible cases:

1. When ufm < 2\ or ,u,?Xn < 0, general solutions are
fn(2) = ay cosh(kpz) + By sinh(k,2) , (46)
where K, = /2Xvd — p3 or ky, = 1/|p%,|, respectively. This cannot
satisfy the boundary condition (45).

2. When u%m =2X\v¢ or ,u%m = 0, general solutions are

fa(2) = an + Bz (47)

This is conventionally called zero mode and is written with n = 0.
With the boundary condition (45) and the normalization (21), we get

fo(z) =1/ +- (48)

3. When ,u%m > 2\ or :“%(n > 0, general solutions with integration
constants «,, B, are

fn(z) = Qp COS(k‘nZ) + Bn Sin(knz) > (49)

where k,, = 1/u%m — 2)\1)% or k, = uxn > 0, respectively. With the

boundary condition (45) and the normalization (21), we obtain

fi(2) = \/%cos(knz) (n: even), (50)
" 2 sin(kyz) (n: odd),

where k,, = nm/L. The cosine and sine modes are KK parity even and
odd, respectively.

To summarize, the Kaluza—Klein mass for n > 0 is given by

/1.2 2 2 203 ’
Whn = A/ k2 + 2/\1}0 =\/n°+ MKK , (51)
MKK

pxn = kn = nmkk , (52)

where we defined the unit KK mass mgg = 7/L.
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3.2. Brane potential as perturbation: vev part

In Ref. [30], we have considered an extreme case where electroweak sym-
metry breaking is solely due to the brane potential. Here we concentrate on
the opposite limit where brane potential is put as a small perturbation on
the above UED model.

Let us start from the bulk potential (28) and treat the brane potential
V4 in (29) as a small perturbation of O(e). Note that v3 can be negative
here, corresponding to the positive mass term in the brane potential, while
v3 is always positive by the starting assumption that the symmetry breaking
in mainly generated by the bulk potential. We take vy > 0 hereafter. When
we are interested solely in the brane mass term, we can take limit Ay — 0
with fixed m4 = —)\ivi.

Firstly the equation of motion (30) is not altered. We seek for a solution
of the type

¢°(2) = vo + €9 (2) (53)

where ¢§(z) is a small perturbation and € is the expansion parameter even-
tually set to be unity. We put Eq. (53) into Eq. (30) to get

d2¢i: 2 c
1.2 (2) — 259 (2) = 0. (54)
The general solution is
¢{(z) = Aj cosh(kz) + By sinh(kz), (55)

where we define k = v2Xvg. Note the mass dimensions [k] = 1 and [A;] =
[B1] = 3/2. We sometimes trade A by « in the following.

Noting that the brane potential itself is treated as a perturbation of O(e),
the (N, N) boundary condition (31) reads:

do§(z
:FQE() — s (0(2) — vi) Vg =0, (56)
z z==£L/2
that is,
—kAj sinh(kL/2) F kBy cosh(kL/2) — At (v% - vi) v =0. (57)

When we assume conserved KK parity on our setup, namely Vi (H) =
V_(H) and hence Ay = A_ and v} = 02, the solution to Eq. (57) sim-
plifies to

A 2 .2
Alz_wa Blzo <58)
/@smh%
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To summarize, when the brane potentials respect the KK parity V, = V_
the vev becomes KK parity even:

?°(2) = vy + €di(z) + 0(62) ,
with
2 .2
P(z) = —M cosh(kz). (59)
Kk sinh %

Recall that v in the perturbation potential V. can be negative while we
take vg > 0 by construction.

3.8. Brane potential as perturbation: quantum part

We treat the brane potential as a perturbation on the eigenvalue prob-
lem (37) with the boundary condition (39). Recall that we are regarding V.
as a small perturbation of O(e):

A
Vi = =5 [(oo+ )P+ + 2%0” — 2]+ 0(e), (60)
A
v =7 (2vh+ W2+ X% + 207 p7)?
+eA (2voh + B® + X* + 20707 ) (vo + h) ¢F + O(e?) . (61)

We separate the KK wave function of the physical Higgs field into the un-
perturbed and perturbed parts

fn(z) = f02) + efiP(2) + O() (62)

where f,(LO)(z) are explicitly given as the r.h.s. of Egs. (48) and (50) with the
unperturbed eigenvalues —u2 given by (51). Let us write the new perturbed
eigenvalues as —u2 — €A, with u, being given by r.h.s. of Eq. (51) and
A, being real constant of mass dimension [A,] = 2. The first order KK
equation from Eq. (37) becomes

2
(- 208 +12) 106 = ©usi(@) - 4 10G) . (69)

The boundary condition (39) is now, to the first order,

¢df7$1)(2)
dz

= e (3~ 10| _,, - (64)
2=+L)2 =
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3.3.1. Zero mode
Let us first consider the zero mode KK equation from Eq. (63)

1
G
dz?

(Z) _ 6)\1)0¢§(Z) — AO
VL
~ 6Avg (Ag cosh(kz) 4+ By sinh(kz)) — Ag
= NG ,
where constants A; and B; are given by Eq. (58) when there is the conserved
KK parity. General solution is

Ao

(65)

(1) 2 3 :
z) = ag + Poz — z° 4+ Aj cosh(kz) + By sinh(kz)) , (66
37 = 00+ oz = 5t (A cosh(z) + Bysinhz) - (66)
where ag and (3 are integration constants of mass dimensions [ag] = 1/2

and [Oo] = 3/2, respectively.
Hereafter, we assume the conserved KK parity: Ay = A_ and vf_ =2,
for simplicity. The solution to the boundary condition (64) is

AN pof
=== B=o. (67)

The zero mode becomes KK parity even. The constant g can be fixed by
the normalization condition (21), or to the first order,

Ag

L)2
| 88 e o, (69)
—L)2
so that
2 2 2
oy = /\+vg L 22)\;3@/02 ( - Z‘é) : (69)
Recall the mass dimensions [vg] = [v4] = 3/2, [k] = 1, (] = 1/2, [A] =

(L] = —1, and [\] = —2.

3.3.2. Even modes

For even n, the KK equation (63) reads

d? 2
( + k,%) fi9(2) = (6Xvodi (2) — An) | 7 cos(hn2)

dz?
RIS 2 _ 2 2
— (W cosh(kz) + An> \/;COS(an) .
(70)
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Recall k,, = nw/L. The solution is
1 (2) = ap cos(kpz) + B sin(kpz) —

+ 3v2
voV/'L (4k2 + K2)

Ap
——— |cos(k,z) + 2k, zsin(kyz
2v/2Lk2 [cos(hnz) ()]

(%65 (2) cos(knz) + 2kn ¢y (2) sin(kn2)] |
(71)

where ¢§(z) is given in Eq. (59).
The boundary condition (64) for even n mode is now, to the first order,

dftV 2
- fdz(Z) = Ay (303 —0?2) \/;(_1)n/2’ (72)

z==+L/2

which gives G, = 0 and

8ApvE 24N k2 (vE —vd)
L L(4k2 + K2)

A, = (73)
For n > 1, we get A,, — 2A;(3v8 +v1)/L. As in the zero mode case, the
constant ., can be fixed by the normalization condition

12\/§A+ (’US — vi) K2

Qp = L3/2 (4]{:% n ﬁ2)2 . (74)

3.3.3. Odd modes

Finally we consider the odd n modes. The KK equation reads
d 2\ £(1) c 2 .
12 + k) fn(2) = (6Avo9i(2) — Ay) b7 sin(kn2)
36A4 (v —v2) 2
=—| —————"*cosh + A, — kn,
< sinh 2L cosh(kz) \/ Lsm( z)

(75)

and its general solution is

I (2) = ap cos(kpz) + By sin(kpz) — [sin(knz) — 2kpz cos(knz)]

+ 3v2
voV'L (4k2 + K2)

_An
2v/2Lk2
[ gbl( Ysin(kpz) — 2kn o5’ (2) cos(k:nz)] .

(76)
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The boundary condition (64) for odd n mode is now, to the first order,

(1)
dfn (Z) 2 n—
¥ = A¢ (30 —v}) y/ z(*l)( vre, (77)
z=+L/2

which gives a,, = 0 and A,, again as in Eq. (73). From the normalization,
the last constant (3,, is obtained as

5, = 12\/§A+ (v% — v%r) K2
" L2 (4k2 + k2)?

; (78)

which is equal to the value of even-mode’s ay,.

3.4. KK expansion of physical Higgs

To summarize, under the presence of small brane-localized potential, the
KK expansion is given by

1 Av2 L 6L (v —v2 2X 02 3. (v2 — 2
fél(z)ii 1+ +%+ +( 02 +)7 + +,2 +(.0 L+)
6 vok?L L ksinh &=

cosh(nz))

(79)

fi(z) = \/E <Cn+%(4:§2+ﬁ2)¢i(2)> {ZTE((ZZQ}

Ay 2 6k, o —sin(ky,2) n: even positive,
* <\/2Lknz V T vtz +72) %1 (Z)> { cos(kn2) | 1 s odd,
(80)

where € = 1, and ¢§(z) and A, for n > 0 are given in Egs. (59) and (73),
respectively, and

1224 (v% — vi) K2

Cp=1 - 81
L(4k2 +K2)*  4k2 (81)
The perturbed KK mass becomes, respectively for n = 0 and n > 0,
4N 402
pio = K2+ Ao = 2\0f + %UJF , (82)
2
pi, = k2424 A, = (%) M2 + A, (83)

The case where we have only positive mass term on the brane V; =
my |H|? = %55¢% 4+ -+ can be obtained by taking limit A} — 0 with fixed
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m4 = —)\+’U_2|_ >0:
f(2) = —— 20 cosh(kz) | (84)
x sinh %7
A Amy (85)
S
0 I
8my k2 + K2
A _ oMt Bp TR
n>0 —7 L 4]{% + K2 (86)
12m K2 2m4 (k2 + K2)
C 1 z . 87
n At T v 2 T TR R 1 ) (87)
For a very high KK mode n > 1, the limit further simplifies to
2
Apso — —%, Cp—1. (88)

4. Bulk gauge field under Higgs brane potential

Under the presence of the brane potential, the vev of the Higgs field is
distorted as in Eq. (59) so that it has non-trivial extra dimensional profile.
Let us see how the gauge field wave function is modified in this case.

As shown in Appendix, the position dependent vev v(z) = ¢°(z) gener-
ates the position dependent bulk mass terms for the gauge fields Wui and
Z,,. When KK-expanding as

Wiz, 2) =Y LEOWi),  Zu(z.2) =) 1) Zuu(z),  (89)
resultant bulk KK equation becomes
2
(= ) 7Y = st ), (90)

where the label V' stands for W and Z. In contrast, their boundary condi-
tions are not modified from the ordinary (N, N) ones

Y (z)
dz

=0, (91)
z==+L/2

since we neglect the brane-localized Higgs kinetic terms in our analysis.
Again let us solve the KK equation iteratively by taking the Higgs brane
potential as small perturbation. From Eq. (59), we see

m%/ = m%/O + egymyooi(z) + 0(62) , (92)
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where we define
_ 9vo _ 9z%0
mwo = 7 s mzo = 5

with g7 = Vg2 + ¢’2. The zeroth order solution with the boundary condi-
tion (91) is, both for W and Z,

(93)

0 1
(g )(Z) = Vi’ (94)
2 cos(knz) for n: even positive,
ey = {VEeottad v (95)
\/%sin(knz) for n: odd,
where again k, = mn/L and the zeroth order KK masses are given by
Hir = ki +mig (96)

Writing the eigenvalues of the KK equation —u2,, — €AY, the first order
KK equation for the eigenfunction f,so)(z) tefy (1)(2) is
d2
(2 +#2) 2OC) = (vmvadi () - A1) £0). o7

The solution subjecting to the boundary condition (91) is obtained similarly
to the Higgs case

v 1 AY 2mZ Ay (v —v2)
fo ( )(z) = NG <a(‘)/ — 7022 — ‘/:;3;rin}(1)”2L *2 cosh(kz) | , (98)
vy N 2 v Al gvmvo . cos(knz)
Juso (2) =4[ T (a” 2 T 2 1 w2 1) ) sin(kn2)
2 AV 2gvmyokn ., (—sin(kpz))
+vL<%f‘@mww%@%@0{<mwm>}’<%>
where
A2 . (02 — 02
AY = - vo ;2(20 o) (100)
AV Smiod (vf — vR)(2K7 + 1?) L01
no Lk?(4k2 + k?) ’ (101)
and
v mioAg(vf —vi)(24 — K2L?) 102
% = 6Kk4L ’ (102)
aT‘L/ _ S’rn%/())‘Jr (U(Q) - U-Qi-) (103)

L (4k2 + r2)?
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When there is only positive mass term on the brane Vi = m_|H|?, the

solution is obtained by taking limit Ay — 0 with fixed my = —/\Jrv?|r
4m2,om
AY — -Vt 104
0 - K/ZL ? ( )
8m2 m (2k2 + K?)
AY — -0 105
n = Lr2(4k2 + k2) (105)
and
2 272
v mipgmy(24 — k°L7)
4 2
alf = VTt (107)
L (4k2 + k2)
For a very high KK modes n > 1, they further simplify to
4m?,om
1% vo'lt+
An _T ’ (108)
al —0. (109)

We note that the observed physical mass-squared for W+ and Z bosons
correspond to m%/O + A(‘)/. Since the correction to the gauge boson mass-
squared A(‘)/ is proportional to m‘Q/O, the correction to the W and Z masses
are proportional to the corresponding gauge coupling g and gz, respectively,
with the uniform coefficient —%. Therefore, the ratio of the W
and Z boson masses are still proportional to the ratio of the gauge coupling
g/9z. The brane localized Higgs potential does not change the p parameter
of the model even though it does change the mass formula, as is expected
from the fact that the introduction of the brane potential does not violate
the custodial symmetry.

5. Summary and discussions

We have further clarified our previous observation that the brane local-
ized potential can make the extra-dimensional profiles of the vev and lowest
KK mode different from each other. One of the main subjects of this paper
is to perform diagonalization of eigenmodes in order to present their profiles
that even leads to a difference between the vev and lowest mode profiles. We
note that this diagonalization has never been achieved in any kind of mod-
els, except for our previous study [30]. Especially we have explained what
makes the difference from the view point of free part of the Lagrangian.
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We have considered the UED model and obtained the KK expansion
for the Higgs field, under the presence of the brane-localized potential. We
find that small boundary potential raises the KK masses when it is wine-
bottle shape with negative mass-squared at its origin, while it lowers the
KK masses when there is only positive mass term. KK parity is conserved
in all the modes by introduction of the KK parity even potential V; = V_.

We have also computed the KK expansion for the four dimensional com-
ponents of the gauge fields Wj[ and Z,,. Contrary to the Higgs field case,
gauge boson KK masses acquire negative contribution for both the wine-
bottle and positive-mass shapes of boundary potential. Even though Wj
and Z,, have different position-dependent bulk masses and hence the oscilla-
tion of their wave function is different in the extra dimension, the resultant
p parameter remains the same. This reflects the fact that the custodial
symmetry remains intact under the presence of the boundary potential.

It would be interesting to compute the KK expansions of extra dimen-
sional component of gauge fields and the would-be NG modes as well as
the bulk fermions, whose masses are modified by the position dependent
vev too. It is also worth studying the brane-localized Higgs kinetic term
simultaneously in our setup. These subjects will be treated in a separate
publication.

We would like to thank T. Yamashita for very helpful discussions, and
also S. Matsumoto for useful discussions. This work is partially supported by
the scientific grant from Ministry of Education and Science, Nos. 20540272,
20039006, 20025004, 20244028, and 19740171. The work of R.T. is sup-
ported by the GCOE Program, The Next Generation of Physics, Spun from
Universality and Emergence.

Appendix
Gauge fizing
Basically we follow the notation of Ref. [30|, summarized in its Ap-

pendix C, except for the normalization of the vev v which differs by a factor
V2. In our basis

e [0 . "
H¢ = v&) , HY = h(w,z)\-;ix(%Z) , (110)
2 2

where we have rewritten the vev v(z) = ¢°(z). The covariant derivative on
the Higgs field is:
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ig (R
DyH = Oy H+ —= H
M MET A (WA} 0
Zyu + Ap 0
tie (tan20w . ) H
0 " sin 20y M
ot ig Wj\f[ vt+htix
= | omvtoyhtioyx | + —= V2
< * 1\% " V2 WM‘P+
( Zn + AM) o
. tan 260
+ie a Vi’ vt hiix ; (111)
" sin 20y M V2
where we have defined
Wt W& $1Wf4 Zum _ (¢ —s WJ?/[ (112)
M V2 ’ Ay s ¢ By )
with
g q g9’
CECOSHW:72, szsinewzi27 €= ———.
9 +9q Vg +yg Vg +yg
(113)

Note that the bulk gauge boson masses my, and myz are z dependent now

mw(z) = gv2(z) ., mg(z) = Wv(z) = Singewv(z). (114)
Mass dimensions are [g] = [¢/] = [¢] = —1/2 and [v] = [W5] = [Zu] =
[Ap] = 3/2. The Higgs kinetic Lagrangian is
Ly = —|DyHI?

— —’8Mg0++z'mWW;[+iéqW;} (h+ix)+ie (tan120w ZM+AM) ot i

;}&wv+3Mh+i@wX+ﬂﬂVM¢+WWZZM120 ZM(h+Mﬁ2,

(115)
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where the contraction of the Lorentz indices is understood. The quadratic
terms are

(Onrh)? + (Omx)?

2
ua 2 2 m
£t = ot [P PO e (2
+ imyy (W—MaM@Jr — W+M3M90_) + mZZMaMX
— (05v) <a5h + = (W —Wshe™) + — 29 Z5X) (116)

The terms in the last line are coming from the non-trivial profile of the vev
in the extra dimension.
We employ the following Re-like gauge fixing!!

3
1
Lor = =5 (Z fofe s fo3> , (117)
a=1
where
PO = 9y WM 4 ige (H‘”T“HC _ HCTT“HQ) :
FB = 9y BM 1 ige (HqTYHC - HCTYHq) . (118)

By the redefinition

1 2
pe=t jgf = OuWEM F igmp*, (119)
Z=cf® —sff =0m2ZM - tmyy, (120)
fA=sf+eff =0y AM, (121)
we can rewrite
Lop = —éf*f % L7257 4 g

— _1 +M M M\ 2
= ¢ louw = 5((a ZM) + (0 AM)?)
+imy (g0+aMW M_ (p_aMW+M) + mzxaMZM
2
oy | [P - S5 122)

The following gauge choices can be considered.

1 When we also introduce brane-localized Higgs kinetic terms, we need to add extra
gauge fixing terms localized on the branes.
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1. For £ = 1, the sum of quadratic terms simplifies to

ﬁquad

Hitre, = —|owe*| = 5 a0 = S

—miy | 5

L
2
1
—5 (@arh)® = ox W N — iy Wy

2
5 (2N T2 (2~ (on A

+05 [imw (W5 ot = Wit o™) +mzZsx]
- (65'1)) (85h) -2 (851))

< (Lwrer—wre) -

Z . (12
sin 20y 5X> (123)

The third (second last) line is a total derivative and potentially con-
tributes as boundary localized mixing terms between gauge fields and
the would-be NG modes when we integrate out the extra dimension
for the KK reduction where the vev is independent of four-dimensional
spacetime coordinate. In the UED model of our current consideration,
all the extra dimensional components of a vector field are assumed to
be odd under the orbifold projection y — —y and take the following
Dirichlet boundary conditions

Wgt‘z:ﬂ/z = Zsl.—spy2 = Aslmipp = 0. (124)

Under this assumption, the third line can be safely neglected.

The last line in Eq. (123) is due to the non-trivial wave function profile
of the vev, which mixes the extra-dimensional component of the gauge
fields and the would-be NG modes. The first term in the last line
—(05v)(05h) is treated properly in Secs. 2 and 3, while impact from
the other mixing terms will be presented elsewhere.

2. In the unitary gauge & — oo, the would-be NG bosons ¢T and y
become infinitely heavy and decouple

uas 1 2 m2
Lyl — -3 (Onh)? —miy (Wi — TZ(ZM)Q. (125)

Hereafter, we employ the £ = 1 gauge.
The gauge kinetic Lagrangian is

3
1
Lyy=— (Z Fg, Ny FOMN +F]%}NFBMN) . (126)

a=1
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From the redefinition

ZM :CW]%/[—SBM,

Ay = sW]:@ + c¢Byy,
we get
Fiiy = O0uWE — oNW3; £ 2ig (Wi W - WEWE),
Fiy = 0uWy — onWip +2g (WiHWy — WEW,,)
with W}\)’/l =cZy + sAy, and
Lym = —5Ffiy FMN — L [F g F3MN 4 P FBMNT

Quadratic terms are!'?

3
ua 1 a a, a,
£y = =52 (- wimwer — @wey?
a=1

+ (D5 W) (D5 W) — WEOWE + 2WEds (9, V) )
5 (= BOB = @B + @5B,) (051")
~Bs0Bs + 2B505 (9,8") )
= = [-wrowr = WP (s W) (W)
— [-W5 oWy + Wios (0,W ) + Wy 95 (9,WHH)]
5 (- 207" — 0,2 + (02, (35 2")

— 25075 + 27505 (auZ#))

(127)

(128)
(129)

(130)
(131)

(132)

1
-5 <—AMDA“—(8MA“)2 (B54,,) (9 AM)— AsOA5+2A505 (8MA”)> .

(133)

12 We do not consider Wilson-line phases and put all the vevs of gauge field zero.
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