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We propose a consistent setup for the holographic dual of the strongly coupled large-Nc N ¼ 4 super

Yang-Mills theory plasma which undergoes the Bjorken flow relevant to the quark-gluon plasma at BNL

Relativistic Heavy Ion Collider and CERN LHC. The dual geometry is constructed order by order in a

well-defined late-time expansion. The transport coefficients are determined by the regularity of the

geometry. We prove, for the first time, that the dual geometry has an apparent horizon, hence, an event

horizon, which covers a singularity at the origin. Further we prove that the dual geometry is regular to all

orders in the late-time expansion under an appropriate choice of the transport coefficients. This choice is

also shown to be unique. Our model serves as a concrete well-defined example of a time-dependent anti–

de Sitter-space/conformal-field-theory dual.
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The quark-gluon plasma produced at the BNL
Relativistic Heavy Ion Collider is an ultimate state of
matter whose viscosity takes the lowest value that has
ever been observed. The plasma will also be produced
with higher temperature at the CERN LHC. An extremely
small viscosity indicates that the interactions among the
constituent particles are very strong. The plasma produced
by a central collision exhibits approximately a boost-
invariant one-dimensional (1D) expansion, namely, the
Bjorken flow [1]. It is a challenging problem to construct
a theory that describes such a strongly interacting time-
dependent system from the first principle.

The anti–de Sitter-space (AdS)/conformal-field-theory
(CFT) correspondence provides a framework that accounts
for a strongly coupled gauge theory in terms of a dual
gravitational picture in higher dimensions [2,3]. Finite
temperature has been introduced into the framework of
AdS/CFT in Ref. [4], and the deconfinement phase of the
Yang-Mills-theory plasma has been found to correspond to
the AdS black hole. However, the AdS/CFT correspon-
dence for a time-dependent system has not been fully
established yet.

An attempt to construct a holographic dual of the
Bjorken flow of the N ¼ 4 super Yang-Mills plasma has
been initiated by Janik and Peschanski [5] and has been
further pushed forward by several groups [6–9] (see also
[10]). Particularly, the transport coefficients including the
shear viscosity have been obtained from the regularity of

the dual geometry [8,9]. The dual geometry has been
interpreted as a time-dependent black hole.
However, it is quite nontrivial even to show the very

existence of an event horizon in a time-dependent geome-
try. As far as the authors know, any proof of the presence of
an event horizon on the dual time-dependent geometry has
not been reported. Furthermore, it has been claimed in
Ref. [11] that there is a logarithmic singularity at the third
order of the late-time expansion in the dual geometry
which cannot be removed within the framework of the
10D type IIB supergravity.
In this Letter we propose a new dual geometry which is

free from the above mentioned problem. We prove the
existence of an event horizon, as well as the absence of
naked singularity in the bulk to all orders of the late-time
expansion.
Bjorken flow and its holographic dual.—Hydro-

dynamics tells how the stress tensor (Tij) of the fluid

evolves in time provided that the equation of state (EOS)
and the transport coefficients are given. The EOS for the
present case is given as the traceless condition of the stress
tensor because of the conformality of the gauge theory. The
Bjorken flow of conformal fluid is simple enough to solve
the hydrodynamic equation. The solution is given as

T��ð�Þ ¼ �0ð��4=3 � 2�0�
�2 þ �ð2Þ0 ��8=3 þ � � �Þ; (1)

where � is the proper time of the fluid, �0 is a free
parameter which determines the initial energy density,
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and �0 is proportional to the shear viscosity �: �ð�Þ ¼
�0�0½T��ð�Þ=�0�3=4. We follow the second-order relativis-
tic hydrodynamics of conformal fluid proposed by

Refs. [12,13] in which �ð2Þ0 is given by ½9�2
0 þ

4ð�0
1 � �0�

0
�Þ�=6 where �0� and �0

1 are proportional to

the relaxation time �� and another second-order transport

coefficient �1, respectively: ��ð�Þ ¼ �0�½T��ð�Þ=�0��1=4,

�1ð�Þ ¼ �0�
0
1½T��ð�Þ=�0�1=2 [12]. Here, the stress tensor is

that on the local rest frame of the Bjorken flow, and it is
diagonal. Other components of the stress tensor, Tyy and

Tx?x? where y is the rapidity and ~x? denote the perpen-

dicular directions to the collisional axis, are expressed in
terms of T�� by virtue of the EOS and the hydrodynamic
equation.

We propose the following parametrization of the 5D
dual metric on the Eddington-Finkelstein coordinates:

ds2¼�r2ad�2þ2d�drþe2b�2cð1þr�Þ2dy2þr2ecd~x2?:
(2)

Here, r is the fifth dimension with r ! 1 corresponding to
the spatial boundary. The boundary conditions at r ! 1
are set so that the 4D part of the metric becomes r2 times
the 4D Minkowski metric on the local rest frame of the
Bjorken flow:

ds2jr!1 ¼ r2ð�d�2 þ �2dy2 þ d~x2?Þ þ 2d�dr; (3)

namely a ! 1 and b, c ! 0. We assume that the bulk
metric depends only on � and r to ensure the boost invari-
ance (y independence) [1]. We have also assumed that the
4D part of the bulk metric is diagonal so that the diagonal
4D stress tensor is reproduced. Physically, these conditions
provide information for the gravity theory that the plasma
undergoes the Bjorken flow. We note that there remains a
gauge degree of freedom r ! rþ fð�Þ in the metric (2).
a, b, c (hence, the 4D stress tensor) are determined from

the vacuum Einstein equation with the negative cosmologi-
cal constant (� ¼ �6 in our unit), which is equivalent to
(the bosonic part of) the equations of motion of 10D type
IIB supergravity under the assumption of constant dilaton
and constant Ramond-Ramond flux [14]. Equation (1)
suggests that the Einstein equation may also be solved

order by order in the ��2=3 expansion. A natural trial
suggested by Ref. [5] is that we introduce a new spatial

variable u � r�1=3 and perform a ��2=3 expansion regard-

ing that u is independent of �: aðu; �Þ ¼ a0ðuÞ þ
a1ðuÞ��2=3 þ a2ðuÞ��4=3 þ � � � (this is similar for b and
c). We shall find that this expansion (which we call late-
time expansion in this Letter) works consistently.
With the boundary conditions (3), we find the following

solutions to the Einstein equation:

a0ðuÞ ¼ 1� w4u�4; b0ðuÞ ¼ c0ðuÞ ¼ 0; a1ðuÞ ¼ � 2

3

ð1þ �1Þu4 þ �1w
4 � 3�1uw

4

u5
;

b1ðuÞ ¼ �ð�1 þ 1Þ=u; c1ðuÞ ¼ 1

3w

�
arctan

u

w
� �

2
þ 1

2
log

�
u� w

uþ w

��
� �1

2
log

�
1� w4

u4

�
� 2�1

3u
;

(4)

where �1, w, �1 are the integration constants which are not
determined by the boundary conditions. We have also
obtained the second-order solution, which is too lengthy
to be shown here and will be presented in Ref. [15]. The
second-order solution contains two more integration con-
stants, �2 and �2. Actually, we can show that �1 and �2 are
gauge degrees of freedom which can be absorbed by the
following coordinate transformation:

u ! u� 3�1�1�
�2=3 � 3�1�2�

�4=3 þOð��2Þ: (5)

There is also a gauge degree of freedom of constant shift
u ! uþ �0, but we have already chosen a gauge �0 ¼ 0 in
(4).

Through the standard AdS/CFT dictionary [16], we find
that the integration constantsw, �1, and �2 are related to the
energy density of the 4D fluid T�� by

T�� ¼ 3w4

16�G5

ð��4=3 � 2�1�
�2 þ �2�

�8=3 þ � � �Þ: (6)

Other nonzero components Tyy and Tx?x? are expressed in

terms of T�� by virtue of the Einstein equation at the
vicinity of the boundary [15] in a consistent way with
hydrodynamics. Namely, the hydrodynamic equation and

EOS are encoded in the Einstein equation and the dual
geometry [17]. Comparing Eqs. (1) and (6), we can read off
the physical meaning of the integration constants as �1 ¼
�0 and �2 ¼ �ð2Þ0 .

Regularity of dual geometry to all orders.—The
Kretschmann scalar computed from our metric to the first

order is ðR�	
�Þ2¼40þ72w8=u8þOð��2=3Þ. Obviously
there is a singularity at the origin u ¼ 0. We can also
compute a component of the Riemann tensor projected
onto an orthonormal basis

Ry
4 y 4 ¼ Ry

�y	e
�
4 e

	
4

¼ w4

3u2ðu4 � w4Þ2
�
�1 � 4u3

3ð3u4 þ w4Þ
�
þOð��2=3Þ;

(7)

where e�4 ¼ �2�1=2ð1; 0; 0; 0; 1þ 2�1r2aÞ is a fifth-

dimensional component of the fünfbein. The expression
(7), which is a coordinate scalar (and a local Lorentz
tensor), is singular at u ¼ w, except when

�1 ¼ 1=3w: (8)

Hence, the spacetime regularity at u ¼ w requires (8).
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Similarly, we can show that the regularity of Ry
4 y 4 at

u ¼ w is achieved at the second order if [15]

�2 ¼ ð1þ 2 log2Þ=18w2: (9)

Recalling the correspondences �1 ¼ �0 and �2 ¼ �ð2Þ0 , one

can see that the regularity of the spacetime has completely
fixed the shear viscosity and the combination of the
second-order transport coefficients [19]. Let us assume
that the static relation between the energy density T��,
the entropy density s, and the temperature T [20] is still
valid due to the local thermal equilibrium which is realized
at a sufficiently large proper time: sð�Þ ¼ ð�2N2

c=2ÞT3ð�Þ.
Then we obtain, by using N2

c=4�
2 ¼ 1=8�G5, that �ð�Þ=

sð�Þ ¼ 3�0w=4�, which results in the celebrated formula
[21] �ð�Þ=sð�Þ ¼ 1=4�, as a consequence of the regularity
condition (8). Similarly we get from the second-order

results that �1ð�Þ � �ð�Þ��ð�Þ ¼ � 1�log2
9 N2

c½T��ð�Þ=s�2,
which is consistent with the results in [9,12,13,22].

So far, the conditions (8) and (9) are the necessary ones
for the spacetime regularity at u ¼ w. Actually, we find

that these are the sufficient conditions, too. This can be
shown by confirming the regularity of the metric and its
inverse as well as their arbitrary-order derivatives with
respect to r and �. (The apparent divergence of the metric
at r ! 1 is harmless as it is the case for the pure AdS.)
Once these are shown to be regular, any coordinate invar-
iants made of Riemann tensors and their covariant deriva-
tives are also regular. The foregoing regularity conditions
are equivalent to the regularity of a, b, c, and their
arbitrary-order derivatives in our parametrization (2), ex-
cept at the origin.
We can generalize the above observation to all orders by

means of induction [15]. The outline is the following. Let
us use the terminology ‘‘regular’’ for the regularity except
at the origin. We begin with the assumption that ak, bk, ck,
and their arbitrary-order derivatives are regular for k < n.
We also assume that the 1=u expansions of ak, bk, ck
around the boundary start at the order of 1=u or less sin-

gular order. Then, a component of the nth-order (/ ��2n=3)

Einstein equation,

ðu2b0nÞ0 ¼ terms includingak; bk; ck ðk < nÞ and their derivatives with regular coefficients; (10)

tells us that the left-hand side is regular, where 0 denotes @=@u. We can generalize this statement to the regularity of bn and
its arbitrary-order derivatives for 0< u � 1 by integrating and/or differentiating Eq. (10). We can also prove the
regularity of an and its arbitrary-order derivatives in a similar way, by using another component of the Einstein equation:

ðu4anÞ0 ¼ terms including ak; bk; ck ðk < nÞ; b0n; and their derivatives with regular coefficients: (11)

The proof for the regularity of cn is more complicated
since we encounter a potential singularity:

c0n ¼ � 2

3
b0n þ 1

u4 � w4
ðregular termsÞ: (12)

It is necessary to prove that one can take the integration
constants so that the terms denoted as ‘‘regular terms’’ in
Eq. (12) vanish at u ¼ w. We find that the integration
constant �n in an appears linearly in the regular terms of
Eq. (12); hence, it is always possible to remove the singu-
larity by an appropriate choice of �n. We also find that �n
corresponds to the nth-order contribution to the stress

tensor �ðnÞ0 . We have explicitly seen this to the second

order: the transport coefficients �0 and �
ð2Þ
0 are determined

by requesting the regularity of c1 and c2, respectively.
Since we have already shown that our starting assumption
is valid to the second order, the regularity (under the
appropriate choice of the transport coefficients) for all
orders is proven by induction.

So far we have proven that the spacetime can be made
regular by an appropriate choice of the integration con-

stants �n that corresponds to the transport coefficient �ðnÞ0 .

Now we shall prove that if we do not choose the con-
stants �n as above, we necessarily encounter a singularity

at u ¼ w. This is shown by computing Ry
4 y 4 ¼

½72��2=3u4ð��2=3 þ uÞ��1ðc0n=uþ c00n=2þ regular termsÞ.

Any choice which makes Eq. (12) singular at u ¼ w nec-
essarily renders Ry

4 y 4 singular.

We have proven that a unique appropriate choice of a set
of transport coefficients makes the spacetime regular (ex-
cept at the origin). Therefore, the unremovable singularity
pointed out in Ref. [11] is absent in our setup.
Apparent horizons.—Since we still have a physical sin-

gularity at the origin (u ¼ 0), we shall show the presence
of an event horizon which covers it. We show the presence
of an apparent horizon whose existence necessarily leads to
the existence of an event horizon outside [23]. Let us

expand the location of the apparent horizon as uHð�Þ ¼
u0 þ u1�

�2=3 þ u2�
�4=3 þOð��2Þ and determine the co-

efficients order by order by solving the equation 0 ¼
�ðuHÞ ¼ �0 þ�1�

�2=3 þ�2�
�4=3 þOð��2Þ, where �

is the normalized product of expansions in the double
null formalism [24]. We obtain

�0 ¼ �ð9=2Þð1� u�4
0 w4Þ; (13)

�1 ¼ �ð3=wÞð1� 2�1 þ 6u1Þ; (14)

�2 ¼ � 3�þ 4 log2� 8� 24wð�2 � 3u2Þ
4w2

; (15)

where the conditions for the regularity (8) and (9) have
been imposed. The apparent horizon is located at u0 ¼ w,
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u1 ¼ � 1
6 þ �1

3 , and u2 ¼ 8�3��4 log2
72w þ �2

3 . We see the pres-

ence of the trapped region �> 0 inside the apparent
horizon. The contribution of �1 and �2 can be absorbed
by the coordinate transformation (5).

The area element of the apparent horizon is given by

AHdyd~x
2
?, where AH¼w3�w2

2 �
�2=3þwð2þ�þ6log2Þ

24 �
��4=3þOð��2Þ. The area element of the event horizon
should be the entropy density per unit rapidity �s, which
means �s � AH=4G5. (At the late-time limit, the apparent
horizon must coincide with the event horizon.) The entropy

density per unit rapidity is given by �s / �T3=4
�� /

1� 3�0

2 ��2=3 þ � � � from Eq. (1) and the dimensional

analysis. The entropy production rate coincides with the
expansion rate of the area of the apparent horizon at the

leading order: A�1
H @�AH ¼ ð�sÞ�1@�ð�sÞ ¼ �0�

�5=3. In
other words, the ratio of the first and the second terms in

the ��2=3 expansion agrees between AH and �s.
The area element of the apparent horizon has been found

to increase with �. Further, we can show that the difference
between the Weyl tensors exhibits a time-dependent an-

isotropy: Cx1x2

x1x2
�Cx1y

x1y
¼3�0w

4u�4��2=3þOð��4=3Þ.
This indicates that the geometry is not locally static under
the presence of the dissipation due to the viscosity.

The EOS and the hydrodynamic equation have been
obtained at the vicinity of the boundary, while the transport
coefficients have been obtained from the regularity around
the horizon. The traceless property (EOS) and the conser-
vation of the stress tensor (hydrodynamic equation) hold
whether or not the (local) thermal equilibrium is achieved
in the Yang-Mills-theory side. However, the concept of the
transport coefficients makes sense only when the notion of
fluid is valid. This tempts us to relate the notion of (local)
thermal equilibrium with the regularity (or the presence) of
the horizon.

We would like to thank Masayuki Asakawa, Akihiro
Ishibashi, and Makoto Natsuume for useful discussions.
This work was initiated during the YITP-W-06-11 on
‘‘String Theory and Quantum Field Theory,’’ and discus-
sions during the YITP international symposium
‘‘Fundamental Problems in Hot and/or Dense QCD’’
were useful. The authors also thank APCTP, where useful
discussions have taken place during the focus program
‘‘New Frontiers in Black Hole Physics.’’ This work is
partially supported by MEXT, Japan, JSPS (S. K.), WPI
Initiative Nos. 17740134, 19GS0219, 19340054 (S.M.),
19740171, 20244028, and 20025004 (K.O.) and by
KOSEF, Korea, Grant Nos. R01-2004-000-10520-0 and
R11-2005-021 (S. N.).

Note added.—When the present work was at the final
stage, we received a paper [25] which partly covers a
related subject. The first-order solution presented in
Ref. [25] corresponds to the gauge choice of �1 ¼ 0 in
our first-order solution. Our proposal in the present Letter
has been invented independently. However, we were mo-
tivated by Ref. [25] to examine the gauge degree of free-

dom and the regularity of the higher-order geometry.
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