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We study the production cross section of a highly excited string with fixed angular momentum from an

ultrahigh energy collision of two light strings. We find that the cross section exhibits geometric behavior in

a certain region of angular-momentum/impact-parameter space. This geometric behavior is common to

the differential cross sections of a black hole production with fixed angular momentum and thus we see

another correspondence between strings and black holes.
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I. INTRODUCTION

String theory not only cures the ultraviolet divergences
from graviton loops in S matrices but also has revealed
nontrivial consequences of black hole physics in which
both gravity and quantum mechanics play pivotal roles
together, adding credibility as a candidate for the theory
of quantum gravity. Especially it is claimed that there is a
correspondence: a black hole should correspond to an
ensemble of highly excited single string states at a certain
threshold g2sM� 1, namely, the correspondence point,
with gs and M being the (closed) string coupling constant
and the mass, respectively.1 The string and black hole
pictures should be valid for g2sM � 1 and g2sM � 1,
respectively. This is based on the observation that both
the string and black hole descriptions give the same order
of entropy at the correspondence point, as one varies
adiabatically the string coupling constant gs for a fixed
mass M [1,2]. When one takes into account the self inter-
actions, the string gets entangled in itself and consequently
its typical size is reduced to the order of the string length
scale which coincides with the horizon radius of the black
hole at the threshold, providing another support for the
correspondence [3,4].

It should be interesting to consider the correspondence
between a formation process of a string and that of a black
hole both from an ultrahigh energy scattering, since the
latter involves nonperturbative dynamics of the gravita-
tional interactions which is not successfully formulated
within string theory so far.2 At low energies, the string
picture should be valid while at high energies, the black
hole picture would prevail. For a classical gravitational

scattering with center of mass energy
ffiffiffi
s

p
, the black hole

production cross section has been proven to be of the order
of the black disk with its size being the Schwarzschild

radius rS � ðg2sMÞ1=ðD�3Þ of the black hole mass M� ffiffiffi
s

p
,

where D ¼ dþ 1 is the number of (large) spacetime di-
mensions [10–12]. Physical interpretation is that when
initial particles are wrapped within the horizon scale, a
black hole forms [13].
Dimopoulos and Emparan [14] have investigated the

production of a single highly excited string as a black
hole progenitor, in view of the correspondence principle
with a fixed string coupling gs � 1 and with a varying
mass M, or equivalently with a varying center of mass
energy

ffiffiffi
s

p �M. At the tree level, they obtained a linearly
raising total cross section with respect to s (for closed
string). The tree level cross section does not match the
black hole one at the correspondence point

ffiffiffi
s

p �MC �
g�2
s . Actually the resultant string cross section hits the

unitarity bound around
ffiffiffi
s

p � g�1
s which is below MC.

Historically, when string theory was applied to the strong
interactions, it was conjectured, based on experimental
observations, that the theory would provide a constant total
cross section above the unitarity bound if one managed to
take all the higher order loop corrections into account [15].
If it is the case, the constant cross section, that is to be of
order one, matches the black hole one at the correspon-
dence point. Currently one cannot prove the validity of this
argument given the status of string theory where the cross
section is computed only up to few loops and the relative
phase of each loop cannot be fixed a priori. Also, the total
cross section of open string turns out to be constant of order
gs at tree level, as we will see below, and again it does not
agree with that of the black hole at the correspondence
point.3*tmatsuo@het.ph.tsukuba.ac.jp

†odakin@phys.sci.osaka-u.ac.jp
1In this paper, we shall work in string natural unit �0 ¼ 1, 4

etc. We will specify when necessary.
2We also note that in a scenario with the string scale around

TeV [5,6], this process is not only theoretically important but
also directly testable at the CERN Large Hadron Collider and
beyond [7,8]. See also [9].

3The correspondence principle is blind to the end points of
strings. There does not seem to be a strong reason to exclude the
gravitating string ball made of a long open string when self
interactions including closed string exchanges are taken into
account at higher orders.
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However, it is just a first step to study a total cross
section that is a sum of infinitely many partial-wave cross
sections. By decomposing a total cross section into partial-
wave cross sections we are able to investigate the corre-
spondence in more detail. When a black hole is produced
from a high energy scattering, two initial particles have a
finite impact parameter b and therefore finite angular mo-
mentum J � bj ~pj � bM. If one assumes that the initial
angular momentum is not lost much during the black hole
formation process, the differential cross section d�BH=dJ
increases geometrically with the angular momentum as
JD�3 until a threshold value Jmax [16]. On the other
hand, a string partial-wave cross section is considered to
give exponential damping with respect to J due to the
softness of string at high energy. Thus at first sight there
does not seem a correspondence to hold even at the partial-
wave level.

In this paper, we revisit the partial-wave string ampli-
tude in the ultrahigh energy limit, and show that the soft-
ness of string is seen at relatively large angular momentum
or impact parameter4 while in a certain region of the
angular momentum space the partial-wave cross section
indeed shows the geometric behavior for both closed and
open strings thus we find an universal behavior that is
comparable with that of black hole.

The organization of the paper is as follows: In Sec. II, we
present our computation of the production cross section of
an excited string with fixed total angular momentum J. We
find soft behavior characteristic to a string in the Regge
limit at large angular momentum region as well as a
geometric behavior of the partial-wave cross section for
an angular momentum which is rather large but less than a
certain energy scale in string unit. Then we discuss the
energy region where the partial-wave unitarity condition is
satisfied, which is the necessary condition for the pertur-
bative expansion to be valid. We also argue open string
case. In Sec. III, we briefly review the correspondence
principle and discuss the production cross section of a
rotating black hole. Then we apply the correspondence
principle to the black hole/heavy string production pro-
cesses. Section IV provides the summary and discussions
for possible future directions. In Appendix A, we review an
alternative way to obtain cross sections through residue
computation. In Appendix B, we collect formulae useful
for our computations. In Appendix C, we review the deri-
vation of the partial-wave unitarity condition in D dimen-
sions. In Appendix D, we present a heuristic argument for
black disk formation condition.

II. ROTATING STRING PRODUCTION

In order to get the production cross section of a string
with fixed total angular momentum J, we shall employ four

tachyon tree amplitude at high energy. For closed strings,
the imaginary part of the amplitude provides the total cross
section whereas the real part dominantly governs the uni-
tarity condition.

A. Total cross section

We consider the four tachyon tree amplitude in closed
bosonic string theory. The amplitude is given by the
Virasoro-Shapiro amplitude:

A closedðs; tÞ ¼ 2�g2s
�ð�1� sÞ�ð�1� tÞ�ð�1� uÞ

�ð2þ sÞ�ð2þ tÞ�ð2þ uÞ ;

(1)

where sþ tþ u ¼ �4 with �0 ¼ 4.
The high energy process in our concern is controlled by

the Regge limit s � 1 with a fixed t. The amplitude in the

Regge limit is computed by Stirling’s formula �ðnþ 1Þ ’
nne�n

ffiffiffiffiffiffiffiffiffi
2�n

p
and become5

A closedðs; tÞ ! 2�g2ss
2þ2t

�
� 1

t
þ i�

�
for s � 1: (2)

Once the asymptotic form of high energy amplitude is
found it is straightforward to see the total cross section for
production of a heavy string state. The optical theorem
provides the total cross section from the imaginary part of
the forward scattering6:

�closedðsÞ ¼ 1

s
ImAclosedðs; t ¼ 0Þ ¼ 2�2g2ss: (3)

The total cross section raises linearly with s, as opposed to
the field theory cases in which total cross sections decrease
with energy due to the uncertainty relation: the higher the
energy of particle, the smaller its wave length, i.e. the
smaller effective size of the scatterer. On the other hand,
the stringy uncertainty relation [19] indicates that the
higher the scattering energy, the bigger the area of string
becomes, resulting in the growing cross section. Intuitively,
one may think that the raising cross section implies a
breakdown of unitarity. However string theory (and grav-
ity) contains massless modes and thus has a long range
potential. Therefore there is no known restriction for total

4See also Refs. [17,18] for related arguments on string side
with a finite impact parameter.

5This is obtained by the prescription which simulates the
expected quantum corrections to the sharp tree level resonances
on the physical sheet (along real axis in the complex s plane).
The Regge limit is taken on the second sheet avoiding the poles
on the real axis. See also footnote 10.

6In [14] the authors obtained (3) by computing the residues of
the s-channel resonances and averaging the delta function (see
also Appendix A)

�closedðsÞ ’ ��

s
ResAclosedðs; t ¼ 0Þ ¼ 2�2g2ss:

TOSHIHIRO MATSUO AND KIN-YA ODA PHYSICAL REVIEW D 79, 026003 (2009)

026003-2



cross sections with respect to the unitarity such as the
Froissart bound, thus the linearly raising behavior (3) is
not necessary a contradiction to any physical requirement.7

To argue the unitarity we need to decompose into partial
waves which we shall investigate in the following.

B. Partial wave cross section—rotating string
production

Let us compute the production cross section of a heavy
string state with a fixed total angular momentum J. To this
end we shall consider the partial-wave expansion of the
amplitude. In D dimensions, the spherical harmonics is
given by the Gegenbauer polynomials and the partial-wave
expansion of the amplitude is given in terms of them

A ðs; tÞ ¼ X1
J¼0

AJðsÞC
�
J ðcos�Þ
C�
J ð1Þ

; (4)

where � ¼ ðD� 3Þ=2 and cos� ¼ 1þ 2t=s with � being
the scattering angle. In (4), we put the factor C�

J ð1Þ ¼
ð2�ÞJ=�ðJ þ 1Þ to yield Aðs; 0Þ ¼ P1

J¼0 AJðsÞ so that

the simple normalization

�JðsÞ ¼ 1

s
ImAJðsÞ (5)

leads to the required formula �ðsÞ ¼ P1
J¼0 �JðsÞ, where

ðaÞn ¼ �ðaþ nÞ=�ðaÞ is the Pochhammer symbol. Using
the orthogonality condition (B2) with the normalization
factor (B3) in Appendix C, the partial-wave amplitude is
given by8

A JðsÞ ¼ C�
J ð1Þ
N�

J

Z 1

�1
dzð1� z2Þ��ð1=2ÞC�

J ðzÞAðs; tÞ; (6)

where t ¼ �sð1� zÞ=2 (and z ¼ cos�).
In the high energy limit s � 1, the integral (6) is domi-

nated by the forward scattering region jtj=s � 1 or 1�
z � 1. Thus the Regge limit (2) yield good approxima-
tions for the integral (6) and we have:

Aclosed
J ðsÞ ’ 2�g2ss

2 C
�
J ð1Þ
N�

J

Z 1

�1
dzð1� z2Þ��ð1=2ÞC�

J ðzÞ

�
�
� 1

t
þ i�

�
s2t: (7)

The production cross section of a highly excited string with
total angular momentum J is given by the partial-wave
cross section through the optical theorem

�closed
J ðsÞ ¼ 1

s
ImAclosed

J ðsÞ

¼ 2�þ1�5=2g2s�

�
�þ 1

2

� ½C�
J ð1Þ�2
N�

J

se��

�� IJþ�ð�Þ;
(8)

where � � s lns and we have utilized Eq. (B5) in
Appendix B to perform the integration. Further from the
limit (B6) in � � 1 for the modified Bessel function, we
get9

�closed
J ðsÞ ’ 2�þð1=2Þ�2g2s�

�
�þ 1

2

� ½C�
J ð1Þ�2
N�

J

� s

��þð1=2Þ e
�ððJþ�Þ2=2�Þ: (9)

The exponential factor shows the softness of the cross
section that is a characteristic feature of string in the high
energy processes. We can introduce an impact parameter b
through the total angular-momentum with a fixed center of
mass energy as b ¼ J=

ffiffiffi
s

p
. We find the effective size of

string is about
ffiffiffiffiffiffiffi
lns

p
. This is consistent with the well-known

argument that the Fourier transform of the Regge ampli-
tude with respect to the transverse momentum p2

? ��t
gives the effective size of the string in the transverse space

resulting the Gaussian profile of width
ffiffiffiffiffiffiffi
lns

p
:

1

s

Z dD�2p?
ð2�ÞD�2

AReggee
ip?�x ¼ sð4� lnsÞ�ðD�2Þ=2e�x2=ð4 lnsÞ;

ARegge � s2þ2t: (10)

Note that this argument is only valid at large x because t is
small in the Regge amplitude and that it is not reliable at

7In [20,21], the genus G four point amplitude in the Regge
limit is computed as

A Gðs; tÞ ’ g2Gþ2
s ðlnsÞ�12GsGþ2;

where the t dependence is not determined and more importantly
the relative phase is not also known. One might suppose the
relative phase of the leading correction to the tree amplitude is
pure imaginary and then

�ðsÞ ’ g2ss� g4sðlnsÞ�12s2 þOðg6sÞ;
which seems to satisfy the unitarity condition at high energy.
Although it would be interesting to consider such higher order
corrections, we do not pursue them and shall push forward the
tree level analysis in this paper.

8When D ¼ 4, the expansion reduces to the better-known
formula with the Legendre polynomial

A ðs; tÞ ¼ X1
J¼0

AJðsÞPJð1þ 2t=sÞ;

AJðsÞ ¼ 2J þ 1

2

Z 1

�1
d cos�PJðcos�ÞA

�
s;�s

1� cos�

2

�
:

9In [22] similar expression is obtained. However the weight
function that appears in the partial wave expansion is not
specified there, thus they obtained the partial wave cross section
up to the J-dependent coefficient which is fixed in the present
paper. Actually this factor is the origin of the geometric behavior
of the cross section.
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small x region. On the other hand, Eq. (9) is valid for all J
and thus we are able to investigate the small b ( ¼ J=

ffiffiffi
s

p
)

region. Therefore it is interesting to see the behavior in

Eq. (9) especially at J &
ffiffiffiffiffiffiffiffiffiffi
s lns

p
where the Gaussian damp-

ing factor can be neglected. Recalling the normalization
(B3) in Appendix B andC�

J ð1Þ ¼ ð2�ÞJ=�ðJ þ 1Þ, one may
immediately read from Stirling’s formula for large J � 1

but J &
ffiffiffiffiffiffiffiffiffiffi
s lns

p
that the cross section behaves geometri-

cally

�JðsÞ / JD�3: (11)

Thus we conclude that at 1 � b &
ffiffiffi
s

p
the cross section is

described by a black disk. As we will argue, this is the
characteristic behavior of differential cross sections of
black hole and thus we have a correspondence.

Before proceeding, several comments are in order:
(i) So far we have considered the partial amplitude

decomposed by using a basis of the Gegenbauer
polynomials that is the highest spherical harmonics
in D dimensions. This means that we have obtained
partial-wave amplitudes with respect to the total
angular momentum J. However we may use the
‘‘lowest spherical harmonics,’’ namely, a plane
wave eiJ12�, which is an eigenfunction of the angular
momentum J12. In this case one has

�J12 ¼
1

s

Z 2�

0

d�

2�
ImAðs; tÞe�iJ12�;

with t ¼ � s

2
ð1� cos�Þ:

(12)

In other words, the J12 partial wave cross section is
obtained from the Fourier transform of the imaginary
part of the amplitude [22]. Although this is the same
form as Eq. (10) with D ¼ 3, these are different
Fourier transformations. As before, we may intro-
duce an impact parameter (projected onto 1–2
plane): b12 ¼ J12=

ffiffiffi
s

p
and may focus on the small �

region (as a consequence of the Regge amplitude

jtj � 1) by defining ~� � ffiffiffi
s

p
�:

�J12 �
1

s

Z 2�
ffiffi
s

p

0

d~�

2�
e�ð~�2=2Þ lns�ib12 ~�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s

2� lns

r
e�ðb2

12
=2 lnsÞ: (13)

(ii) The cross section (9) has been obtained by applying
the Regge limit to the integrand. On the other hand,
as we explain in Appendix A, one can estimate its
production cross section with fixed angular momen-
tum J by reading off the residue

�JðsÞ ’ ��

s
Ress¼NAJðsÞ

¼ 2�2g2s
s

C�
J ð1Þ
N�

J

Z 1

�1
dzð1� z2Þ��ð1=2ÞC�

J ðzÞ

�
�

�ðsþ tþ 3Þ
�ðsþ 2Þ�ðtþ 2Þ

�
2
: (14)

Note that the Regge limit has not been taken here.
The integral can be evaluated numerically and we
can compare (8) and (14) to check the validity of the
Regge limit in the integrand for a given s. As an
illustration, the result for s ¼ 100 is shown in Fig. 1.

C. Unitarity bound

For completeness, we discuss how large s the cross
section can be trusted via the unitarity argument. We will
study the partial-wave unitarity by analyzing the four point
amplitude from which we read off the production cross
section of a string with fixed angular momentum. The
partial-wave unitarity at tree level has been investigated
in [23] (and beyond tree level with eikonal approximation
in [24]), see also [25]. It has been shown that when the

angular momentum is less than
ffiffiffiffiffiffiffiffiffiffi
s lns

p
, the partial-wave

amplitude might break the unitarity bound at high energy.
Here we check whether our geometric behavior of the
amplitude is within the unitarity bound.
Because of the t-channel exchange of the massless (t ¼

0) graviton, we see from Eq. (2) that the real part will be
larger than the imaginary part in Eq. (6) in the high energy
limit s � 1. In the limit, the real part can be written as

ReAclosed
J ðsÞ ¼ 4�g2s

C�
J ð1Þ
N�

J

se�s lns
Z 1

0
dwe�w

�
Z 1

�1
dzð1� z2Þ��ð1=2ÞC�

J ðzÞeðs lnsþwÞz:

(15)

D 4 D 6 D 10
D 26

20 40 60 80 100 120 140
J

0.005

0.010

0.015

0.020

0.025

0.030

σJ σ tot

FIG. 1 (color online). Cross section �J=�tot for s ¼ 100. �J is
obtained by Regge limit (8) and by reading off the residues (14)
(dashed and solid lines, respectively). �tot is given by (3).
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Using the formula (B5) in Appendix B, we get

ReAclosed
J ðsÞ ¼ 2�þ2�3=2g2s�

�
�þ 1

2

�
C�
J ð1Þ2
N�

J

se�s lns

�
Z 1

0
dwe�w IJþ�ðs lnsþ wÞ

ðs lnsþ wÞ� : (16)

The modified Bessel function takes the limit IJþ�ð�Þ !
e�=

ffiffiffiffiffiffiffiffiffiffi
2��

p
for � � 1 and we get

ReAclosed
J ðsÞ ¼ 2�þð3=2Þ�g2s�

�
�� 1

2

�
C�
J ð1Þ2
N�

J

� s

ðs lnsÞ��ð1=2Þ : (17)

With the normalization of Eq. (C5), we have

Re aclosedJ ðsÞ ¼ g2ss

ð2�� 1Þ23�þð1=2Þ���ð1=2ÞðlnsÞ��ð1=2Þ :

(18)

On the other hand the imaginary part is also written with
the normalization of Eq. (C5) as

Im aclosedJ ðsÞ ¼ g2ss

23�þð5=2Þ���ð3=2ÞðlnsÞ�þð1=2Þ : (19)

Plugging these into the condition for the partial-wave
unitarity (C6), we have

g2ss

ð�� 1
2Þ223�þð1=2Þ��þð1=2ÞðlnsÞ��ð3=2Þ & 1

for � >
1

2
ðD> 4Þ; (20)

where we have used the fact that the real part dominates
over the imaginary part in the right hand side of (C6) in
Appendix B. Indeed the real part is larger than the imagi-
nary part by a factor lns. This shows that no matter how
small the string coupling is, the unitarity bound will be
violated at sufficiently high energy.

It is interesting to notice that up to the lns factor the
partial-wave unitarity bound is hit at s ’ 1=g2s which is
precisely at the total cross section (3) becomes of order
one. When one includes the lns factor, the total cross
section is reliable up to larger value of s for a fixed gs.

D. Open string case

So far we have considered the closed string scattering.
We can repeat the above argument for the open string case.
We start from the Veneziano amplitude:

A openðs; tÞ ¼ gs

�
�ð��ðsÞÞ�ð��ðtÞÞ
�ð��ðsÞ � �ðtÞÞ

þ �ð��ðtÞÞ�ð��ðuÞÞ
�ð��ðtÞ � �ðuÞÞ

þ �ð��ðuÞÞ�ð��ðsÞÞ
�ð��ðuÞ � �ðsÞÞ

�
; (21)

where �ðxÞ ¼ 1þ �0x and sþ tþ u ¼ �4 with �0 ¼ 1.

The Regge limit reads10

Aopen ! �gs�

�ð1þ �ðtÞÞ sin��ðtÞ ð1þ e�i��ðtÞÞ
� ð�ðsÞÞ�ðtÞ ðs � 1Þ

’ �gss

�
�

2
tþ i

�
ðt ’ 0Þ; (22)

where the last line is the case in which the amplitude is
dominated over by the t-channel exchange of massless
modes of the open string. Note that the real part is small
compared with the imaginary part contrary to the closed
string case.
We find immediately the total cross section:

�openðsÞ ¼ 1

s
ImAopenðs; t ¼ 0Þ ¼ �gs: (23)

The partial wave cross section is obtained quite similarly as
in the case of closed string. The imaginary part gives

ImAopen
J ðsÞ ¼ 2��3=2�

�
�þ 1

2

�
gs

½C�
J ð1Þ�2
N�

J

� se��0

�0� IJþ�ð�0Þ; (24)

where �0 ¼ ðs lnsÞ=2. Again we find a geometric cross

section at 1 � J 	 ffiffiffiffiffiffiffiffiffiffi
s lns

p

�open
J ’ JD�3: (25)

We may also check the partial-wave unitarity. The real
part is negligible to the imaginary part and thus the partial-
wave unitarity condition ImaJ 
 jaJj2 becomes

ImaopenJ 	 1: (26)

From Eq. (24) we have

ImaopenJ ¼ gs

22�þ3��þð1=2ÞðlnsÞ�þð1=2Þ (27)

thus the partial-wave unitarity condition is satisfied at any
high energy for open strings.

III. CORRESPONDENCE AND BLACK HOLE
CROSS SECTION

Let us briefly review the correspondence principle for
black hole and string [1,2]. In the perturbative formulation
of string theory, the string coupling constant gs is a free
parameter, which should be fixed by a dilaton vacuum
expectation value supposedly fixed by nonperturbative ef-

10We take the large s limit off the real axis s ! ð1þ i�Þ1 so
that ðsin��ðsÞÞ�1 ! 0 and ðtan��ðsÞÞ�1 ! �i exponentially.
Physically, this limit corresponds to the assumption that the
s-channel resonances have decay widths that increase at least
linearly with the pole masses, which is natural given the ex-
ponentially growing number of decay modes in string theory. See
also footnote 5.
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fects. When we vary gs and/or the mass M, it is observed
that various physical quantities are smoothly transited
between string and black hole pictures. Especially as we
vary the coupling adiabatically, adiabatic invariants would
not change drastically at the transition point. The order
parameter for the transition is � � g2sM. The larger the
coupling and/or mass is, the stronger the gravitational
interactions are. Therefore we will see that the black hole
(string) picture becomes valid for � � 1 ( � 1) and the
transition point is given at �� 1. The gravitational con-
stant is given by G� g2s in any dimensions. When D ¼
dþ 1 spacetime dimensions are large, that is, uncompac-
tified or compactified with a length scale much larger than
our region of interactions, the D-dimensional Planck mass

(length) is given by MD � g�2=ðD�2Þ
s (� ‘�1

D ). Note that,
for a string coupling being fixed at a small value gs < 1, the
Planck scale is always smaller than the correspondence
scale MD & MC ¼ g�2

s and that the black hole picture
should be valid at the correspondence point M�MC.

The Schwarzschild radius for a black hole with mass

M is given by rS � ðGMÞ1=ðD�3Þ ��1=ðD�3Þ and its en-

tropy is given by the horizon area SBH � rD�2
S =G�

ðg2sMD�2Þ1=ðD�3Þ. For free string states with a fixed mass
M (being equal with its length in string unit), the entropy
becomes Sstring �M. Therefore the entropy becomes the

same order in both pictures at the correspondence point
�� 1 for any number of (large) dimensions.11 We note
that the string states are treated within a micro/grand
canonical ensemble and that a black hole corresponds to
the ensemble for the correspondence to hold. The com-
pared quantities are averaged values within the ensemble.
If we neglect the self interactions of the string, typical size

would be that of the random walk RRW � ffiffiffiffiffi
M

p
, which is

much larger than the black hole horizon radius at the
correspondence point for gs < 1. This discrepancy can be
solved by properly taking into account the self interactions
[3,4].

If correspondence is valid and a black hole can be
viewed as an ensemble of the corresponding string states,
black hole production cross sections must be connected to
the production cross sections of string states. As we have
seen in Sec. II, the tree level total production cross sec-
tion of a closed string is obtained from the four point
amplitude and the result is �totðsÞ � g2ss. When s * g�2

s

the partial-wave cross sections start to exceed the unitarity
bound (20). We note that this is the scale where the D-brane
interactions become also significant.

Now let us consider the trans-Planckian collision of two
light particles. The production cross section of a black hole

can be computed by the assumption that the colliding target
looks like a black disk with its radius being of order the

Schwarzschild radius rS � ðg2sMÞ1=ðD�3Þ. Physically, when
the initial particles are wrapped within the horizon, a black
hole forms. It has been proven in four dimensions [10] and
in higher dimensions [11] that a classical gravitational
collision of two massless particles, whose gravitational
fields are simulated by the Aichelburg-Sexl solution [27],
leads to a formation of a trapped surface, outside which
there must be an event horizon [28]. This argument has
been generalized to the collision of two wave packets [29].
The resultant black hole production cross section turns out
to be geometrical

�BH � RD�2
S � ðg2sMÞðD�2=D�3Þ: (28)

At the correspondence point, the black hole production
cross section (28) becomes unity �BH � 1. Clearly, the
tree level total cross section of string (3) and black hole
do not coincide at the correspondence point s� g�4

s . We
note that the classical treatment of the gravitational inter-
actions is valid when the black hole mass is larger than the

D dimensional Planck scaleM * MD � g�2=ðD�2Þ
s and that

MD is smaller than the correspondence scale MC � g�2
s .

Therefore the black hole production cross section can be
trusted at M * MC for gs < 1. The meaning of the corre-
spondence point is that the (classical) stringy corrections
cannot be neglected for M & MC though the classical
treatment of the gravity is still valid. A cartoon is shown
in Fig. 2 to help understanding.
As is emphasized in the Introduction, it is important to

consider the partial wave cross sections to see more de-
tailed information. For a black hole, the partial wave cross
section is simply given by the differential cross section
d�BH=dJ. Let us consider a Kerr black hole with mass
M ¼ ffiffiffi

s
p

. There are dC2 ¼ dðd� 1Þ=2 components of an-

gular momenta according to the choice of planes in d
spatial directions. The number of independent components

BH gs
4s

d 1

2 d 2

closed gs
2s

open gs

``unitarized''?

gs
1 gs

2 gs
4

s

1

gs

σ tot s

FIG. 2 (color online). Schematic log-log plot for the produc-
tion cross section of a string and black hole.

11We note that the self interactions of the string are neglected to
obtain Sstring �M. At this level, given the form SBH / Ma with a
being some constant, the agreement of the temperature T ¼
ð@S=@MÞ�1 at the correspondence point is trivially derived
from that of the entropy. See also [26].
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are d=2 for d even and ðd� 1Þ=2 for d odd. Let us review
the argument presented in [16]. Initial two light particles
collide with an impact parameter b in D ¼ dþ 1 dimen-
sions. By choosing the scattering plane as 1–2 one, the
initial system has only single nonzero angular momentum
component J ¼ J12 ¼ b

ffiffiffi
s

p
=2, with

ffiffiffi
s

p
being the center of

mass energy and b the impact parameter. If angular mo-
mentum is conserved during the black hole formation
process, it is sufficient to consider a black hole having
only single nonzero angular momentum component. For
such a higher dimensional rotating black hole, the horizon
radius rh is determined by

rD�5
h

�
r2h þ

ðD� 2Þ2J2
4M2

�
¼ 16�GM

ðD� 2Þ�D�2

: (29)

Utilizing the rescaled mass and angular momentum

~� � 16�GM

ðD� 2Þ�D�2

; a� � ðD� 2ÞJ
2Mrh

; (30)

the horizon radius can be written as

rh ¼
�

~�

1þ a2�

�ð1=D�3Þ
: (31)

Note that the horizon radius rh is now given in terms of the
massM ¼ ffiffiffi

s
p

and the angular momentum J ¼ b
ffiffiffi
s

p
=2. For

a fixed s, one can show that rh is a decreasing function of b.
Following from the hoop conjecture, a black hole would be
produced when the impact parameter of the collision is less
than the diameter of the black hole12

b 	 2rhðbÞ: (32)

For a givenM ¼ ffiffiffi
s

p
, the right hand side of Eq. (32) can be

shown to be a decreasing function of b, and hence there is a
maximum impact parameter that saturates the inequality
(32). Noting that b ¼ 2J=M ¼ 4rha�=ðD� 2Þ, the condi-
tion (32) leads to a� 	 ðD� 2Þ=2, whose equality gives
the maximum impact parameter

bmax ¼ 2

�
~�

1þ a2�max

�ð1=D�3Þ
with a�max ¼ D� 2

2
:

(33)

It is amusing that bmax exactly coincides with the naive

Schwarzschild estimation rS ¼ ~�1=ðD�3Þ in D ¼ 4 space-
time dimensions and that bmax > rS for D 
 5. The more
dimensions we have, the bigger the increase of the bmax,
the cross section. This tendency agrees with the numerical
analysis and the numerical values agrees within order 10%
accuracy in an appropriate number of (large) dimensions

for string theory [11,12].13 Therefore we conclude that our
assumption that the initial angular momentum and energy
are almost all packed into the black hole is justified unless
b is not very close to bmax.

14

The effect of the angular momentum appear only
through a� that is less than or of order one as explained
above. Therefore one can drop the a�-dependent factors
when considering the total cross section up to a numerical
factor of order one.15 Neglecting all such numerical coef-
ficients, we get

bmax � ðG ffiffiffi
s

p Þð1=D�3Þ (34)

and the black hole cross section is

�BH � bD�2
max � ðG ffiffiffi

s
p ÞðD�2=D�3Þ: (35)

With the above assumptions we also get the differential
cross section of black hole with given angular momentum
J as

d�BH

dJ
’ JD�3

sðD�2=2Þ for J & Jmax � ðGsðD�2=2ÞÞð1=D�3Þ:

(36)

where we have used d�BH ’ bD�3db.16

Finally, comparing Eqs. (11), (25), and (36) we have
shown the correspondence of the partial wave cross sec-
tions between closed/open strings and black holes

�
string
J ðsÞ $ d�BH

dJ
(37)

for 1 � J 	 ffiffiffiffiffiffiffiffiffiffi
s lns

p
.

IV. SUMMARYAND DISCUSSION

We have studied the production cross section of a highly
excited string with a fixed angular momentum from a high
energy collision of two light open or closed strings at the
tree level. We have also rederived the partial-wave unitar-
ity condition at high energy. We find that the cross sections
exhibit, in addition to the softness in the large angular
momentum/impact parameter space, geometric behaviors

in the large but less than
ffiffiffiffiffiffiffi
lns

p
region of the impact pa-

rameter space. The geometric behavior is characteristic to
differential cross sections of black hole and thus we see a
correspondence between string and black hole.

12However, this is not a coordinate invariant description. The
diameter used here is provided by the Schwarzschild radius
itself. See Appendix D for a related discussion on the radius.

13In Ref. [30], quite a similar condition b 	 rhðbÞ was exam-
ined and it was concluded that the cross section would decrease
from rS (corresponding to different a�max).
14When b� bmax, the reduced mass, which gives the lower
bound for the final black hole mass, is sizably reduced from the
‘‘all-packed’’ assumption [11].
15It is also true in the argument of the entropy correspondence
of rotating string/black hole.
16It is interesting to notice that the maximal angular momentum
Jmax and the entropy have the same form ðGsðD�2Þ=2Þ1=ðD�3Þ.
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The total cross sections do not coincide at the corre-
spondence point at the tree level analysis. These cross
sections of closed string and black hole share the growing
behavior, while that of the open string stays constant. On
the other hand, we have presented that the behaviors of the
partial wave cross sections are common between closed/
open strings and black holes. Although our tree level
amplitude for closed string cannot be trusted at the corre-
spondence point because of the unitarity violation, the
agreement of the geometric behaviors in the finite lower
energy range is an incarnation of the correspondence
principle.

Generically, the geometric behavior of the partial cross
sections is a consequence of black disk total cross section.
Interestingly enough, high energy hadron collisions are
also well described by the black disk approximation in
which the radius of the disk is given by a range of strong
interaction typically provided by a mass gap. The black
disk provides color glass condensation (CGC) in which
gluon density saturates. The CGC sets an initial condition
to simulate the quark-gluon plasma generated in high
energy hadron collisions, see e.g. [31,32]. Our string geo-
metric cross sections might well be a model for the hadron
and the CGC.

We are focusing on the s-channel single heavy string
production, which is equivalent to the t-channel single
graviton exchange. If the correspondence holds at all,
production process of the single string, dressed by the
graviton cloud that accounts for the self interactions, would
be more or less smoothly connected to that of the black
hole. However, Amati, Ciafaloni and Veneziano (ACV)
showed long before [33,34] that a string feels as if it is
propagating under Aichelburg-Sexl background [27] after
summing over the eikonal graviton exchanges with the
other string, see also Ref. [17] for more recent discussion.
Note that, as we already stated, a ‘‘collision’’ of two
Aichelburg-Sexl solutions is proven to lead to a black
hole production in four dimensions [10] and in higher
dimensions [11]. In this sense, the infinitely many eikonal
t-channel graviton exchanges appear to provide the corre-
spondence here. Furthermore, the dominant contribution in
the path integral is from the configuration where all the
internal strings share equal amount of energy and hence
there are no special one to be picked out [35]. Therefore, it
is somewhat puzzling how to reconcile the former corre-
spondence picture with the latter ACV one. To repeat, the
former involves a single t-channel massless string ex-
change (though with graviton clouds) while the latter is a
sum over such exchanges, yet somehow to reemerge a
single-string-like behavior for the correspondence picture
(a black hole being a long string at the threshold) to be
recovered.

We have studied the production processes in which the
initial and final objects in the collision are same, that is,
openþ open to an open string and closedþ closed to a

closed string. In order to understand differences and/or
common features (universality), it would be interesting to
study the production cross section of a rotating closed
string from two light open strings on Dp-brane, which is
also more realistic to describe a scattering in the brane
world scenario [36], by performing similar analysis on the
annulus amplitude with each pair of open strings attached
on the inner and outer boundaries.
We hope to report investigations on the points men-

tioned above elsewhere.
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APPENDIX A

1. Total cross section

In this Appendix we briefly review the tree level com-
putation of the production cross section of the level N
resonance [14]. We consider the Virasoro-shapiro ampli-
tude (1) which can be written around an s-channel pole at
s ¼ N as,

Aðs; tÞ ¼ 1

s� N þ i�
Ress¼NAðs; tÞ

þ ðterms analytic at s ¼ NÞ; (A1)

where the infinitesimal � gives

ImAðs; tÞ ¼ ��	ðs� NÞRess¼NAðs; tÞ
þ ðterms analytic at s ¼ NÞ: (A2)

Combining Eq. (A2) with the optical theorem, the cross
section around the Nth resonance is given as

�NðsÞ ¼ ��

s
	ðs� NÞRess¼NAðs; 0Þ

þ ðterms analytic at s ¼ NÞ: (A3)

Noting that the s ¼ N residue resides only in

Ress¼N�ð�1� sÞ ¼ ð�1ÞN
�ðNþ2Þ in the amplitude (1), it is

straightforward to compute

Res s¼NAðs; tÞ ¼ �2�g2s

�
�ðN þ tþ 3Þ

�ðN þ 2Þ�ðtþ 2Þ
�
2
; (A4)
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where we have also utilized �ðxÞ�ð1� xÞ ¼ �= sin�x.
Therefore, we obtain

�NðsÞ ¼ 2�2g2s
ðN þ 2Þ2

s
	ðs� NÞ

þ ðterms analytic at s ¼ NÞ: (A5)

Finally the total cross section becomes [14]

�totðsÞ ¼
X
N

�NðsÞ ’
X
N

2�2g2sN	ðs� NÞ; (A6)

where the N � 1 limit is taken in the last step.
The total cross section (A6), which has been given at the

tree level, becomes zero and infinity off and at the reso-
nances, respectively. When we take the loop corrections
into account, the Nth resonance will have a finite decay

width �N that corresponds to a finite �N ’ 2
ffiffiffiffi
N

p
�N:

1

s� N þ i�N
¼ s� N

ðs� NÞ2 þ �2N
� i

�N
ðs� NÞ2 þ �2N

:

(A7)

When the decay width for the Nth resonance is small
enough, we can recover

lim
�N!0

1

s� N þ i�N
’ P

1

s� N
� i�	ðs� NÞ: (A8)

Otherwise, the delta function is meant to give the correct
value when integrated over the width of the peak.17 In other
words, at the large N the spacing of the delta function is
close and we may have

�totðsÞ ’ 2�2g2ss: (A9)

It should be kept in mind that, in reality, the decay width
for the higher resonance N � 1 can be large due to the
exponentially growing number of the decay modes.

The pole at the tree level amplitude (1) does not have an
imaginary part corresponding to the decay width of the
resonance (other than the elastic one), which will be served
by the higher loop corrections including many body final
states. The sharp s-channel resonance will eventually be
smeared out due to the exponential grow of the number of
such decay channels. Note also that when one takes the
Regge limit of a stringy amplitude, such a width is implic-
itly taken into account.

APPENDIX B: GEGENBAUER POLYNOMIAL

In this Appendix we collect some useful formulas for
our computations. For the gamma function:

�

�
�þ 1

2

�
¼

ffiffiffiffi
�

p
22��1

�ð2�Þ
�ð�Þ ¼

ffiffiffiffi
�

p
22��1

ð�Þ�: (B1)

The orthogonality condition for the Gegenbauer polyno-
mial:

Z 1

�1
dzð1� z2Þ��ð1=2ÞC�

J ðzÞC�
J0 ðzÞ ¼ N�

J	JJ0 ; (B2)

where the normalization factor is given by

N�
J ¼ ��ðJ þ 2�Þ

22��1ðJ þ �Þ�ðJ þ 1Þ�ð�Þ2 ¼
ffiffiffiffi
�

p ð�Þ1=2
J þ �

C�
J ð1Þ:
(B3)

The angular integral formula for the Gegenbauer polyno-
mial:

Z
d�nC

�
J ðcos�fnÞC�

J0 ðcos�inÞ

¼ ð4�Þ�N�
J

ð�Þ�C�
J ð1Þ

C�
J ðcos�ifÞ	JJ0 : (B4)

Another useful integral formula for Re� >�1=2:

Z 1

�1
dzð1� z2Þ��ð1=2ÞC�

J ðzÞe�z

¼ 2�
ffiffiffiffi
�

p
�ð�þ 1

2ÞC�
J ð1ÞIJþ�ð�Þ

�� : (B5)

For large �, the modified Bessel function has the asymp-
totic form [22]

Inð�Þ ’ 1ffiffiffiffiffiffiffiffiffiffi
2��

p exp

�
�� n2

2�

�
: (B6)

APPENDIX C: PARTIAL-WAVE UNITARITY
BOUND

We spell out the unitarity condition in our notation
basically following Ref. [23]. Set the S-matrix S ¼ 1þ
iT and write generically hjjTjki ¼ ð2�ÞD	DðPj �
PkÞAðk ! jÞ. Let jii and jfi be two-body states of the
same particle contents so that hfjTjii describes the corre-
sponding elastic scattering. The unitarity condition SyS ¼
1 implies �iðT � TyÞ ¼ TyT, that is,

2 ImAelði ! fÞ ¼ X
n

ð2�ÞD	DðPn � PiÞ½Aðf ! nÞ��

�Aði ! nÞ; (C1)

where the summation over n includes momentum integrals.
We can separate the sum into elastic and other parts

P
n ¼P

el
n þP

others
n . In the first elastic sum, jni has the same

particle contents as jii and jji, while the second sum
includes inelastic scattering, many body final states, etc.
From now on, we work in the center of mass frame

unless otherwise stated. The phase space integral reads

17Recall that
R1
�1 ds �

ðs�NÞ2þ�2
¼ � regardless of the magnitude

of �.
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Xelastic
n

ð2�ÞD	DðPn � PiÞ ¼
Z ddpn1

ð2�Þd2En1

Z ddpn2

ð2�Þd2En2

ð2�ÞD	Dðpn1 þ pn2 � PiÞ

¼ jpn1jD�3

ð2�ÞD�24P0
i

Z
d�n1 ! s��ð1=2Þ

2ð4�Þ2�þ1

Z
d�n1; (C2)

where we used P0
i ¼

ffiffiffi
s

p
and also jpn1j !

ffiffiffi
s

p
=2 for s much larger than the corresponding mass squared. We expand Eq.

(C1) into partial waves by Eq. (4)

2
X1
J¼0

ImAel
J ði ! fÞC

�
J ðcos�ifÞ
C�
J ð1Þ

¼ X
n

ð2�ÞD	DðPi � PnÞ
X1
J¼0

½AJðf ! nÞ�� C
�
J ðcos�fnÞ
C�
J ð1Þ

X1
J0¼0

AJ0 ði ! nÞC
�
J0 ðcos�inÞ
C�
J0 ð1Þ

¼ s��ð1=2Þ

2ð4�Þ2�þ1

X1
J;J0¼0

½Ael
J ðf ! nÞ��Ael

J0 ði ! nÞ
Z

d�n

C�
J ðcos�fnÞC�

J0 ðcos�inÞ
C�
J ð1ÞC�

J0 ð1Þ
þ others

¼ s��ð1=2Þ

2ð4�Þ�þ1

�ð�Þ
�ð2�Þ

X1
J¼0

½Ael
J ðf ! nÞ��Ael

J ði ! nÞ N�
J

C�
J ð1Þ2

C�
J ðcos�ifÞ
C�
J ð1Þ

þ others; (C3)

where ‘‘others’’ denotes
P

others
n ½Aðf ! nÞ��Aði ! nÞ�

ð2�ÞD	Dðpn � piÞ and we have utilized Eq. (B4) and (C2).
In the forward scattering limit jfi ! jii, each term in the

sum
P

n in Eq. (C3) goes to jAði ! nÞj2 and becomes
positive. Noting that the elastic matrix elements depend
only on s and J, namely Ael

J ði ! nÞ ¼ Ael
J ðsÞ for any n,

we get a sufficient condition for each J in order to satisfy
the unitarity of the S matrix:

2 ImAel
J ðsÞ 


s��ð1=2Þ

2ð4�Þ�þ1

�ð�Þ
�ð2�Þ

N�
J

C�
J ð1Þ2

jAel
J ðsÞj2: (C4)

Defining

aJðsÞ � s��ð1=2Þ

4ð4�Þ�þ1

�ð�Þ
�ð2�Þ

N�
J

C�
J ð1Þ2

Ael
J ðsÞ; (C5)

the unitarity condition (C4) reads

ImaJðsÞ 
 jaJðsÞj2: (C6)

As an immediate corollaryffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðReaJÞ2 þ

�
ImaJ � 1

2

�
2

s
	 1

2
(C7)

or

jaJðsÞj 	 1: (C8)

APPENDIX D: VARIOUS RADII AND ULTRA-
SPINNING BLACK DISK FORMATION

In this Section we comment on some subtleties on the
choice of the horizon radius which is to be used in the naive
estimation of the cross section. Generically one should not
take the numerical coincidence of the total cross section
between the naive one computed from Eq. (33) and the

exact lower bound by Refs. [11,12] too literally, because
the definition of the radius (31) is not coordinate invari-
ant.18 Our metric for the relevant Myers-Perry black hole
with a single angular momentum is given by

ds2 ¼ �dt2 þ �

rD�5
2
ðdtþ asin2�d�Þ2 þ 
2

�
dr2

þ 
2d�2 þ ðr2 þ a2Þsin2�d�2 þ r2cos2�d�2
D�4;

(D1)

where


2ðr; �Þ ¼ r2 þ a2cos2�; �ðrÞ ¼ r2 þ a2 � �

rD�5
:

(D2)

We can define the following proper radii for a rotating
black hole in D dimensions

rtot � ðAtot=�D�2Þ1=ðD�2Þ ¼ ð1þ a2�Þ1=ðD�2Þrh; (D3)

rk � ðAk=4�Þ1=2 ¼ ð1þ a2�Þ1=2rh; (D4)

req � ‘eq=2� ¼ ð1þ a2�Þrh; (D5)

where Atot is the total horizon area, Ak is the two dimen-

sional area along � and� directions,19 and ‘eq is the length

of the equator.20 For a very large angular momentum a� �
1, the resultant ultraspinning black hole takes the shape
of a thin pancake whose thickness being of order rh,
defined in Eq. (31), while the pancake radius being of order

18We thank Roberto Emparan for the discussion on which this
section is based.
19Note that Ak is not the area of the section of the horizon that
lies on the brane.
20More explicitly, the length ‘eq is the integral of

ffiffiffiffiffiffiffiffiffi
g��

p
over

� ¼ 0 to 2� with fixed r ¼ rh and � ¼ �=2 in the metric (D1),
etc.
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a�rh � rh [37]. In this regard, the pancake radius should
correspond to (D4).

The estimation (33) that uses the shortest definition of
the horizon size (31) provides the most conservative lower
bound on bmax within this naive estimation framework. If
we require the impact parameter of the collision to be
smaller than the diameter with respect to this pancake
radius

b < 2reqðbÞ (D6)

instead of (32), the condition (D6) can be satisfied by an
arbitrary large b (and hence a�) without leading to an upper
bound on b and therefore the cross section diverges
naively. In such an extreme, the upper bound on b and
hence on a� would be put by requiring the pancake thick-
ness to be longer than the Planck length rh * M�1

D for a

fixed M (� ffiffiffi
s

p
), instead of the classical naive considera-

tion (D6). We note that such an ultra-spinning black hole
with a� � 1 will suffer from classical gravitational insta-
bilities [37], which might lead to a formation of a black
ring [16] that will also suffer from the black string insta-
bilities.21 In this paper, we constrain ourselves within more
conservative range a 	 a�max ¼ ðD� 2Þ=2, leaving a
stringy consideration of the possible case a� � 1 for future
research.
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