

Title	Dynamical electroweak symmetry breaking in SO(5)×U(1) gauge-Higgs unification with top and bottom quarks
Author(s)	Hosotani, Y.; Oda, K.; Ohnuma, T. et al.
Citation	Physical Review D. 2008, 78(9), p. 096002
Version Type	VoR
URL	https://hdl.handle.net/11094/78767
rights	© 2008 American Physical Society
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

PHYSICAL REVIEW D **79**, 079902(E) (2009)

Erratum: Dynamical electroweak symmetry breaking in $SO(5) \times U(1)$ gauge-Higgs unification with top and bottom quarks [Phys. Rev. D 78, 096002 (2008)]

Y. Hosotani, K. Oda, T Ohnuma, and Y. Sakamura (Received 3 April 2009; published 16 April 2009)

DOI: 10.1103/PhysRevD.79.079902 PACS numbers: 11.10.Kk, 11.15.Ex, 12.60.-i, 12.60.Cn, 99.10.Cd

(1) The second equation in Eq. (2.8) should read

$$\mathcal{D}(c_a) = \Gamma^A e_A^M \left(\partial_M + \frac{1}{8} \omega_{\text{MBC}} [\Gamma^B, \Gamma^C] - i g_A A_M - i q_a \frac{g_B}{2} B_M \right) - c_a \sigma'(y). \tag{1}$$

- (2) Equation (2.10) should read $\Psi_a(x, y_i y) = P_i \Gamma^5 \Psi_a(x, y_i + y)$.
- (3) In Eq. (4.6) the third equation should read

$$S_L(z; \lambda, -c) = -S_R(z; \lambda, c). \tag{2}$$

The relation for C_L and C_R was incorrect and should be deleted.

(4) The last sentence in the paragraph below the one containing Eq. (4.13) on page 096002-8 should be replaced by "We note that for $c < -\frac{1}{2}$ the lowest mass value becomes nonvanishing, but remains small."