

Title	Certain aspects of twisted linear actions
Author(s)	Uchida, Fuichi
Citation	Osaka Journal of Mathematics. 1988, 25(2), p. 343-352
Version Type	VoR
URL	https://doi.org/10.18910/7877
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

CERTAIN ASPECTS OF TWISTED LINEAR ACTIONS

Dedicated to Professor Hirosi Toda on his 60th birthday

Fuichi UCHIDA*)

(Received February 18, 1987)

0. Introduction

In the previous paper [2], we have introduced the concept of a twisted linear action which is an analytic action of a non-compact Lie group on a sphere, and we have shown as an example that there have been uncountably many topologically distinct analytic actions of SL(n, R) on the (2n-1)-sphere.

In this paper, we shall show another aspect of twisted linear actions. In particular, we shall show that there are uncountably many C^1 -differentiably distinct but topologically equivalent analytic actions of SL(n, R) on a k-sphere for each $k \ge n \ge 2$.

1. Twisted linear actions

Throughout this paper, a matrix means only the one with real coefficients.

1.1. Let $u=(u_i)$ and $v=(v_i)$ be column vectors in \mathbb{R}^n . As usual, we define their inner product by $u \cdot v = \sum_i u_i \ v_i$ and the length of u by $||u|| = \sqrt{u \cdot u}$. Let $M=(m_{ij})$ be a square matrix of degree n. We say that M satisfies the condition (T) if the quadratic form

$$\mathbf{x} \cdot M\mathbf{x} = \sum_{i,j} m_{ij} x_i x_j$$

is positive definite. It is easy to see that M satisfies (T) if and only if

$$(T')$$
 $\frac{d}{dt} ||\exp(tM)x|| > 0$ for each $x \in \mathbb{R}_0^n = \mathbb{R}^n - \{0\}, t \in \mathbb{R}$.

If M satisfies (T'), then

$$\lim_{t\to +\infty} ||\exp(tM) \mathbf{x}|| = +\infty \quad \text{and} \quad \lim_{t\to -\infty} ||\exp(tM) \mathbf{x}|| = 0$$

for each $x \in \mathbb{R}_0^n$, and hence there exists a unique real valued analytic function τ

^{*)} Partly supported by the Grants-in-Aid for Scientific as well as Co-operative Research, The Ministry of Education, Science and Culture, Japan.

on R_0^n such that

$$||\exp(\tau(\mathbf{x}) M) \mathbf{x}|| = 1$$
 for $\mathbf{x} \in \mathbf{R}_0^n$.

Therefore, we can define an analytic mapping π^M of \mathbb{R}_0^n onto the unit (n-1)-sphere S^{n-1} by

$$\pi^{M}(\mathbf{x}) = \exp(\tau(\mathbf{x}) M) \mathbf{x}$$
 for $\mathbf{x} \in \mathbf{R}_{0}^{n}$,

if M satisfies the condition (T).

1.2. Let G be a Lie group, $\rho: G \rightarrow GL(n, \mathbb{R})$ a matricial representation, and M a square matrix of degree n satisfying (T). We call (ρ, M) a TC-pair of degree n, if $\rho(g) M = M\rho(g)$ for each $g \in G$. For a TC-pair (ρ, M) of degree n, we can define an analytic mapping

$$\xi \colon G \times S^{n-1} \to S^{n-1}$$
 by $\xi(g, x) = \pi^{M}(\rho(g) x)$,

and we see that ξ is an analytic G-action on S^{n-1} . We call $\xi = \xi^{(\rho, M)}$ a twisted linear action of G on S^{n-1} determined by the TC-pair (ρ, M) , and we say that ξ is associated to the matricial representation ρ .

1.3. For a given Lie group G, we introduce certain equivalence relations on TC-pairs. Let (ρ, M) and (σ, N) be TC-pairs of degree n. We say that (ρ, M) is algebraically equivalent to (σ, N) if there exist $A \in GL(n, R)$ and a positive real number c satisfying

(*)
$$cN = AMA^{-1}$$
 and $\sigma(g) = A\rho(g) A^{-1}$ for each $g \in G$.

We say that (ρ, M) is C'-equivalent to (σ, N) if there exists a C'-diffeomorphism f of S^{n-1} onto itself such that the following diagram is commutative:

$$G \times S^{n-1} \xrightarrow{1 \times f} G \times S^{n-1}$$

$$\downarrow \xi^{(\rho,M)} \qquad \downarrow \xi^{(\sigma,N)}$$

$$S^{n-1} \xrightarrow{f} S^{n-1}.$$

We call f a G-equivariant C'-diffeomorphism.

Lemma. If (ρ, M) is algebraically equivalent to (σ, N) , then (ρ, M) is C^{∞} -equivalent to (σ, N) .

Proof. It has been proved in the previous paper [2], but we give a proof for completeness. Suppose that there exist $A \in GL(n, \mathbb{R})$ and a positive real number c satisfying (*). Define analytic mappings h_A and k_A of S^{n-1} into itself by

$$h_A(x) = \pi^N(Ax)$$
 and $k_A(y) = \pi^M(A^{-1}y)$.

Then the composites $h_A k_A$ and $k_A h_A$ are the identity mapping on S^{n-1} by the condition $cN = AMA^{-1}$, and hence h_A is a C^{∞} -diffeomorphism. Furthermore, the equality

$$h_A(\xi^{(\rho,M)}(g,x)) = \xi^{(\sigma,N)}(g,h_A(x))$$

holds for each $g \in G$ and $x \in S^{n-1}$, by the condition (*). q.e.d.

Theorem ([2], Theorem 3.3). Let G be a compact Lie group and $\rho: G \rightarrow GL(n, R)$ a matricial representation. Then any TC-pairs (ρ, M) and (ρ, N) are C^{ω} -equivalent.

2. First typical examples

Here we shall study twisted linear actions of $G=\mathbf{SL}(n,\mathbf{R})$ on the (nk-1)-sphere associated to a representation $\rho=\rho_n\otimes I_k$, that is, $\rho(A)=A\otimes I_k$.

2.1. Let A and $B=(b_{ij})$ be square matrices of degrees n and k, respectively. Denote by $A \otimes B$ the Kronecker product written in the form

$$A \otimes B = \begin{pmatrix} b_{11}A & \cdots & b_{1k}A \\ \vdots & & \vdots \\ b_{k1}A & \cdots & b_{kk}A \end{pmatrix}.$$

Let u_1, \dots, u_k be column vectors in \mathbb{R}^n . Then the correspondence

$$(u_1, \cdots, u_k) \rightarrow \begin{pmatrix} u_1 \\ \vdots \\ u_k \end{pmatrix}$$

defines a linear isomorphism $\iota: M(n, k; \mathbf{R}) \to \mathbf{R}^{nk}$. Let X and Y be $n \times k$ matrices. As usual, we define their inner product by

$$\langle X, Y \rangle = \operatorname{trace}({}^{t}XY),$$

and the length of X by $||X|| = \sqrt{\langle X, X \rangle}$. Then ι is an isometry. Furthermore, the equality

$$(A \otimes B) \iota(X) = \iota(AX^tB)$$

holds, where A and B are square matrices of degrees n and k, respectively, and X is an $n \times k$ matrix. In the following, we shall identify R^{nk} with M(n, k; R) via the isometry ι .

2.2. We obtain the following lemma directly.

Lemma 2.2. Let \overline{M} be a square mtarix of degree nk. Then

$$\bar{M}(A \otimes I_k) = (A \otimes I_k) \bar{M}$$

for each $A \in SL(n, \mathbb{R})$, if and only if $\overline{M} = I_n \otimes M$ for some square matrix M of degree k. Furthermore, $I_n \otimes M$ satisfies the condition (T) if and only if M satisfies (T).

Consequently, $(\rho_n \otimes I_k, I_n \otimes M)$ is a TC-pair for any square matrix M of degree k satisfying (T), and any TC-pair $(\rho_n \otimes I_k, \overline{M})$ is written in such a form. Furthermore, TC-pairs $(\rho_n \otimes I_k, I_n \otimes M)$ and $(\rho_n \otimes I_k, I_n \otimes N)$ are algebraically equivalent, if and only if there exist $A \in GL(k, \mathbb{R})$ and a positive real number c satisfying $cN = AMA^{-1}$.

2.3. Let M be a square matrix of degree k satisfying (T). Denote by ζ^M the twisted linear SL(n, R) action on the (nk-1)-sphere determined by the TC-pair $(\rho_n \otimes I_k, I_n \otimes M)$. Identifying R^{nk} with M(n, k; R) via the isometry ι , we can describe

$$\zeta^M \colon \mathbf{SL}(n, \mathbf{R}) \times S^{nk-1} \to S^{nk-1}$$

as follows. That is, S^{nk-1} can be viewed as the set of all $n \times k$ matrices X with ||X|| = 1, and ζ^M is written in the form

$$\zeta^{M}(A, X) = AX \exp(\theta^{t}M)$$

for a real number θ which is uniquely determined by the condition

$$||AX \exp(\theta^t M)|| = 1$$
.

Let I(M) and O(M) denote the isotropy group at

$$\frac{1}{\sqrt{k}} \binom{I_k}{0}$$

and the orbit through that point, respectively, with respect to the twisted linear action ζ^{M} . We obtain the following lemma.

Lemma 2.3. Suppose $n>k\geq 2$. Then the isotropy group I(M) is written in the form

$$I(M) = \left\{ \left(\frac{\exp(\theta^t M)}{0} \middle| \frac{*}{*} \right) : \theta \in \mathbb{R} \right\}$$

and the orbit O(M) is an open dense subset consisting of all $n \times k$ matrices X with rank X=k and ||X||=1.

2.4. Suppose that $n > k \ge 2$ and there exists an SL(n, R)-equivariant homeomorphism f of S^{nk-1} with a twisted linear action ζ^M onto S^{nk-1} with a twisted linear action ζ^N . Then we obtain f(O(M)) = O(N), and hence I(M) and I(N)

are conjugate in SL(n, R). Finally, we see that there exist $A \in GL(k, R)$ and a positive real number c satisfying $cN = AMA^{-1}$, by making use of the fact that M and N satisfy the condition (T) and the group I(M) contains a subgroup written in the form

$$\left\{ \left(\frac{I_k}{0} \middle| \frac{*}{I_{n-k}} \right) \right\}.$$

Summing up the above discussion, we obtain the following result.

Theorem 2.4. Suppose $n>k\geq 2$. Then any two of TC-pairs in the form $(\rho_n\otimes I_k, \overline{M})$ are algebraically equivalent if and only if they are C^0 -equivalent.

Consequently, we see that if $n > k \ge 2$ then there are uncountably many topoloically distinct twisted linear actions of SL(n, R) on S^{nk-1} associated to the matricial representation $\rho_n \otimes I_k$. This is a generalization of a result studied in the previous paper [2].

3. Second typical examples

Here we shall stduy twisted linear actions of $G=SL(n, \mathbf{R})$ on the (n+k-1)-sphere associated to a representation $\rho = \rho_n \oplus I_k$, that is, $\rho(A) = A \oplus I_k$.

3.1. Let A and B be square matrices of degrees n and k, respectively. We denote by $A \oplus B$ the matrix

$$\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$$

of degree n+k. We obtain the following lemma.

Lemma 3.1. Let $n \ge 2$ and $k \ge 1$. Let \overline{M} be a square matrix of degree n+k. Then

$$\bar{M}(A \oplus I_k) = (A \oplus I_k) \,\bar{M}$$

for each $A \in SL(n, \mathbb{R})$, if and only if $\overline{M} = cI_n \oplus M$ for some square matrix M of degree k and a real number c. Furthermore, $\overline{M} = cI_n \oplus M$ satisfies the condition (T), if and only if c is positive and M satisfies (T).

3.2. Let M be a square matrix of degree k satisfying (T). Denote by χ^M the twisted linear SL(n, R) action on the (n+k-1)-sphere determined by the TC-pair $(\rho_n \oplus I_k, I_n \oplus M)$. Then χ^M is written in the form

$$\chi^{M}(A, \mathbf{u} \oplus \mathbf{v}) = e^{\theta}A\mathbf{u} \oplus e^{\theta M}\mathbf{v}$$

for a real number θ which is uniquely determined by the condition

$$||e^{\theta}Au||^2 + ||e^{\theta M}v||^2 = 1$$
,

where u is a column vector in \mathbb{R}^n and v is a column vector in \mathbb{R}^k satisfying $||u||^2 + ||v||^2 = 1$.

3.3. Let us define closed subgroups L(n) and N(n) of SL(n, R) by the forms

$$L(n) = \left\{ \begin{pmatrix} \frac{1}{0} \middle| * \cdots * \\ \vdots \middle| * \end{pmatrix} \right\}, N(n) = \left\{ \begin{pmatrix} \frac{\lambda}{0} \middle| * \cdots * \\ \vdots \middle| * \end{pmatrix} : \lambda > 0 \right\}.$$

Denote by F(M) the fixed point set of L(n) with respect to the twisted linear action X^{M} . Then we obtain the following lemma.

Lemma 3.3. With respect to the twisted linear action X^M ,

$$F(M) = \{ae_1 \oplus v : a^2 + ||v||^2 = 1\}$$

where $e_1={}^t(1, 0, \dots, 0) \in \mathbb{R}^n$. The isotropy group at $0 \oplus v$ coincides with $SL(n, \mathbb{R})$, the one at $\pm e_1 \oplus 0$ coincides with N(n), and if $a||v|| \pm 0$, then the one at $ae_1 \oplus v$ coincides with L(n).

3.4. Notice that the normalizer N(L(n)) of L(n) acts on F(M) naturally via X^M , the identity component of N(L(n)) coincides with N(n), and the factor group N(L(n)/L(n)) is naturally isomorphic to the multiplicative group \mathbf{R}^{\times} consisting of non-zero real numbers.

Let us investigate the induced N(L(n))/L(n) action on F(M) via \mathcal{X}^M . Leaving fixed any point $ae_1 \oplus v$ of F(M) satisfying $a||v|| \neq 0$, we have a real valued analytic function $\theta = \theta(\alpha)$ on \mathbf{R}^{\times} determined by

$$\chi^{M}\left(egin{pmatrix} lpha & * \cdots * \ 0 & * \ 0 & * \end{pmatrix}, aoldsymbol{e}_{1} \oplus oldsymbol{v} \end{pmatrix} = e^{oldsymbol{ heta}} lpha \ aoldsymbol{e}_{1} \oplus e^{oldsymbol{ heta}M} oldsymbol{v}$$

and $(e^{\theta}\alpha a)^2 + ||e^{\theta M}v||^2 = 1$. Then $\theta(-\alpha) = \theta(\alpha)$ and

$$\frac{d\theta}{d\alpha} < 0 < \frac{d}{d\alpha} \left(e^{\theta} \alpha \right)$$

for $\alpha > 0$. Furthermore, we obtain

$$\lim_{\alpha\to +\infty}\theta(\alpha)=-\infty,\quad \lim_{\alpha\to +\infty}e^{\theta}\alpha=|a|^{-1},\quad \lim_{\alpha\to +\infty}||e^{\theta M}v||=0\;,$$

and

$$\lim_{\alpha \to 0+} e^{\theta} \alpha = 0$$
, $\lim_{\alpha \to 0+} e^{\theta M} v = \pi^{M}(v)$.

3.5. Here we shall show the following result.

Theorem 3.5. Let M, N be any square matrices of degree k satisfying the condition (T). Then there exists an SL(n, R)-equivariant homeomorphism f of S^{n+k-1} with a twisted linear action X^M onto S^{n+k-1} with a twisted linear action X^N .

Proof. By the above investigation, we can construct uniquely an N(L(n))/L(n)-equivariant homeomorphism f_0 of F(M) onto F(N) satisfying the following conditions

$$f_0(ae_1 \oplus v) = ae_1 \oplus v$$
 for $|a| = 1$ or $1/\sqrt{2}$,

and

$$f_0(\mathbf{0} \oplus \pi^M(\mathbf{v})) = \mathbf{0} \oplus \pi^N(\mathbf{v}) \quad \text{for} \quad ||\mathbf{v}|| = 1/\sqrt{2}.$$

Next we consider the following diagram

$$SO(n) \times F(M) \xrightarrow{\psi_1} S^{n+k-1}$$

$$\downarrow 1 \times f_0 \qquad \qquad \downarrow f$$

$$SO(n) \times F(N) \xrightarrow{\psi_2} S^{n+k-1}$$

where

$$\psi_1(K, x) = \chi^M(K, x) = (K \oplus I_k) x,$$

$$\psi_2(K, x) = \chi^N(K, x) = (K \oplus I_k) x.$$

By the construction of f_0 , we see that $\psi_1(K, x) = \psi_1(K', x')$ if and only if $\psi_2(K, f_0(x)) = \psi_2(K', f_0(x'))$, and hence we obtain a unique bijection f of S^{n+k-1} onto itself satisfying

$$f \circ \psi_1 = \psi_2 \circ (1 \times f_0)$$
.

Then f is a homeomorphism, because ψ_1 and ψ_2 are closed continuous mappings. Finally, we show that f is $SL(n, \mathbf{R})$ -equivariant. Let $A \in SL(n, \mathbf{R})$, $K \in SO(n)$ and $x \in F(M)$. Then, there are $B \in SO(n)$ and $U \in N(n)$ such that AK = BU, and hence

$$\begin{split} f(\mathbf{X}^{M}(A, \psi_{1}(K, x))) &= f(\mathbf{X}^{M}(AK, x)) = f(\mathbf{X}^{M}(BU, x)) \\ &= f(\psi_{1}(B, \mathbf{X}^{M}(U, x))) = \psi_{2}(B, f_{0}(\mathbf{X}^{M}(U, x))) \\ &= \psi_{2}(B, \mathbf{X}^{N}(U, f_{0}(x))) = \mathbf{X}^{N}(BU, f_{0}(x)) \\ &= \mathbf{X}^{N}(AK, f_{0}(x)) = \mathbf{X}^{N}(A, \psi_{2}(K, f_{0}(x))) \\ &= \mathbf{X}^{N}(A, f(\psi_{1}(K, x))). \end{split}$$

Consequently, we see that f is an SL(n, R)-equivariant homeomorphism of S^{n+k-1} with the action X^M onto S^{n+k-1} with the action X^N . q.e.d.

3.6. Next we shall show the following result.

Theorem 3.6. Let M, N be square matrices of degree k satisfying the condition (T). If there exists an SL(n, R)-equivariant C^1 -diffeomorphism f of S^{n+k-1} with a twisted linear action X^M onto S^{n+k-1} with a twisted linear action X^N , then

$$N = PMP^{-1}$$

for some $P \in GL(k, \mathbb{R})$.

Proof. By the existence of such an equivariant C^1 -diffeomorphism f, we obtain an N(L(n))/L(n)-equivariant C^1 -diffeomorphism $f_0: F(M) \to F(N)$. Considering points whose isotropy groups coincide with N(n)/L(n), we can assume

$$f_0(\boldsymbol{e}_1 \oplus \boldsymbol{0}) = \boldsymbol{e}_1 \oplus \boldsymbol{0}$$
.

Then we obtain an isomorphism

$$df_0: T_{e_1 \oplus 0} F(M) \to T_{e_1 \oplus 0} F(N)$$

of tangential representation spaces of the isotropy group N(n)/L(n).

Here we consider the representation space $T_{e_1\oplus 0}F(M)$. Denote by $F(M)_+$ an open subset of F(M) consisting of $ae_1\oplus v$ with a>0, and define

$$\psi^M \colon F(M)_+ \to \mathbf{R}^k$$
 by $\psi^M(a\mathbf{e}_1 \oplus \mathbf{v}) = \exp(-(\log a) M) \mathbf{v}$.

Then ψ^M is a C^{ω} -diffeomorphism satisfying $\psi^M(e_1 \oplus 0) = 0$. Considering the C^{ω} -diffeomorphism ψ^M , we see that the tangential representation of the isotropy group $N(n)/L(n) \cong \mathbb{R}$ on $T_{e_1 \oplus 0} F(M)$ is equivalent to a representation

$$\sigma^{M}: \mathbf{R} \to \mathbf{GL}(k, \mathbf{R})$$
 defined by $\sigma^{M}(\lambda) = \exp(-\lambda M)$.

The existence of the isomorphism df_0 of tangential representation spaces assures that the representations σ^M and σ^N are equivalent, and hence the equality $N=PMP^{-1}$ holds for some $P\in GL(k,R)$.

Notice that the twisted linear actions X^M are new concrete examples for analytic SL(n, R)-actions on a sphere investigated in [1].

4. Concluding remark

With respect to the first typical examples, we obtain a classification theorem only for the case $n>k\geq 2$ in §2. It seems to be difficult to obtain a similar result for the remaining case $k\geq n\geq 2$ in general. Here we consider the case n=k=3.

The following matrices satisfy the condition (T).

(Type 1)
$$M_1(a,b) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}; 1 \le a \le b$$

(Type 2) $M_2(a,b) = \begin{pmatrix} 1 & a & 0 \\ -a & 1 & 0 \\ 0 & 0 & b \end{pmatrix}; a > 0, b > 0$
(Type 3) $M(a) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & a \end{pmatrix}; a > 0$
(Type 4) $M_0 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$

Furthermore, if a matrix M of degree 3 satisfy the condition (T), then M is similar to only one of the above matrices up to positive scalar multiplication. Here we say that M is similar to N up to positive scalar multiplication if there exist a non-singular matrix A and a positive real number c such that $AMA^{-1} = cN$.

Denote by S(M) the 8-sphere with the twisted linear $SL(3, \mathbf{R})$ action ζ^M (see §2.3), where M is a square matrix of degree 3 satisfying the condition (T). We obtain the following result.

Theorem. (0) If S(M) and S(M') are equivariantly C^1 -diffeomorphic, then M is similar to M' up to positive scalar multiplication.

- (1) If S(M) and S(M') are equivariantly homeomorphic, then M and M' have the same type in the above sense.
- (2) If $S(M_1(a,b))$ and $S(M_1(a',b'))$ are equivariantly homeomorphic, then (a',b')=(a,b) or $(a',b')=(a^{-1}b,b)$.
- (3) If $S(M_2(a,b))$ and $S(M_2(a',b'))$ are equivariantly homeomorphic, then a=a'.
- (4) If S(M(a)) and S(M(a')) are equivariantly homeomorphic, then a=a' or aa'=1.

Proof. We give only an outline of the proof. The fixed point set $S(M)^{L(3)}$ of the restricted L(3)-action is a 2-sphere and the fixed point set $S(M)^{N(3)}$ of the restricted N(3)-action is a disjoint union of low dimensional spheres, where L(3) and N(3) are closed subgroups of $SL(3, \mathbb{R})$ defined in §3.3.

If we consider homeomorphism classes of $S(M)^{N(3)}$, we can distinguish a matrix of (Type i) from that of (Type j) except for the case (i, j) = (2, 4). Fur-

thermore, we can prove (0) by considering a tangential representation of N(3)/L(3) on the tangent space of the 2-sphere $S(M)^{L(3)}$ at isolated fixed points of the restricted N(3)-action.

Denote by H(P) a closed subgroup of SL(3, R) consisting of all matrices in the form

$$\left(\frac{e^{\theta P}}{0}\bigg| * \atop * \right), \ \theta \in \mathbf{R}$$

where P is a square matrix of degree 2. We can prove the remaining part of the theorem by considering homeomorphism classes of the fixed point sets $S(M)^{H(P)}$ of the restricted H(P)-action. For $P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, we see that $S(M_0)^{H(P)}$ is a 1-sphere but $S(M_2(a,b))^{H(P)}$ is a 0-sphere, and hence we can distinguish M_0 from any matrix of (Type 2). By $P = \begin{pmatrix} 1 & c \\ -c & 1 \end{pmatrix}$ for c > 0, we can prove (3). By $P = \begin{pmatrix} 1 & 0 \\ 0 & c \end{pmatrix}$ for c > 0, we can prove (2) and (4).

References

- [1] F. Uchida: Real analytic SL(n,R) actions on spheres, Tohoku Math. J. 33 (1981), 145-175.
- [2] F. Uchida: On a method to construct analytic actions of non-compact Lie groups on a sphere, Tohoku Math. J. 39 (1987), 61-69.

Department of Mathematics Faculty of Science Yamagata University Yamagata 990 Japan