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Abstract

In models with “large” and/or warped extra dimensions, the higher–dimensional
Planck scale may be as low as a TeV. In that case black holes with masses of a few
TeV are expected to be produced copiously in multi–TeV collisions, in particular at
the LHC. These black holes decay through Hawking radiation into typically O(20)
Standard Model particles. Most of these particles would be strongly interacting.
Naively this would lead to a final state containing 10 or so hadronic jets. However,
it has been argued that the density of strongly interacting particles would be so
large that they thermalize, forming a “chromosphere” rather than well–defined jets.
In order to investigate this, we perform a QCD simulation which includes parton–
parton scattering in addition to parton showering. We find the effects of parton
scattering to remain small for all cases we studied, leading to the conclusion that the
decays of black holes with masses within the reach of the LHC will not lead to the
formation of chromospheres.

http://arxiv.org/abs/hep-ph/0610269v2


1 Introduction

The Standard Model (SM) of particle physics is very successful in reproducing experimental
data. However, from the theoretical point of view it has several unsatisfactory features.
Its perhaps biggest problem stems from the very large hierarchy between the electroweak
mass scale Mweak ∼ 100 GeV and the (reduced) Planck mass MP ≃ 2.4 · 1018 GeV. The
origin of this hierarchy has no explanation within the SM; worse, it tends to be destroyed
by quantum corrections.

In the late 1990’s it has been suggested [1, 2] that this problem could be solved by
introducing additional spatial dimensions. They could be relatively large if only gravity
is allowed to propagate in them, i.e. if all (other) SM fields are bound to a brane with
three spatial dimensions. The strength of the gravitational interactions at lengths larger
than the radii of these additional dimensions would then be diluted by a factor which is
essentially given by the ratio of the volume of these extra dimensions and the appropriate
power of the higher–dimensional Planck length. This ratio can be very large even if the
higher–dimensional Planck mass MD is not far above Mweak. If this idea is correct, the
very large measured value of MP is an artefact of using a 3–dimensional description of a
world that actually has 3 + n spatial dimensions.

This scenario leads to dramatic predictions for collisions of pointlike particles at high
center–of–mass (cms) energy. Collisions at energies around MD would likely be dominated
by the exchange of gravitons [3], rather than by exchange of SM gauge bosons. Collisions
at energies exceeding MD could lead to the formation of black holes [4, 5, 6, 7, 8, 9, 10, 11],
with cross section being given by the square of the (generalized) Schwarzschild radius.
Since this radius actually increases with increasing cms energy, this would lead to “the end
of short–distance physics” [5].

These black holes with masses of a few TeV should decay very quickly via the higher–
dimension analogue [12] of Hawking radiation [13], into final states on the brane consisting
mostly of SM degrees of freedom [14]. Since the Hawking temperature of black holes that
can be produced at the LHC is O(100 GeV), its decay should produce roughly O(20)
particles with average energy ∼ 3 times the Hawking temperature. This decay would
appear to be instantaneous to LHC experiments, since the typical lifetime of such a black
hole is only O(10−27 s).

Since these black holes decay into all SM degrees of freedom with approximately equal
probability, most final state particles would be strongly interacting quarks or gluons. This
leads to the expectation that a typical black hole event at the LHC would contain 10 or
so jets plus a few (charged or neutral) leptons and/or photons, each with typical energy of
several hundred GeV. This is obviously a very dramatic signature, which should be easy
to detect.

However, it has been argued by Anchordoqui and Goldberg [15] that the density of
strongly interacting partons just after the decay of the black hole would be so high that
they would frequently interact with each other, leading to the formation of a (more or less)
thermalized “chromosphere”, i.e. a (nearly) spherical shell of thousands of particles with
rather small energies. This final state would also be very easy to detect. However, in this
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case the final state would be characterized almost uniquely by the mass of the black hole.
More detailed investigations of the primary decay spectrum, which could give information
about the number of additional dimensions as well as the spin of the decaying black hole,
could then only be performed with the (rather few) primary charged leptons and photons.

It is therefore of some importance to decide whether the assertion of ref.[15] is in fact
correct. In this paper we report results of a Monte Carlo simulation of the QCD effects
relevant for the decay of TeV black holes, including both parton showering and partonic
collisions. This simulation has to keep track of the space–time evolution of the black hole
decay products. In contrast, the usual shower codes only keep track of the virtuality of the
partons in the shower, but treat the shower itself as instantaneous. This is quite adequate
for most applications, since a parton shower only lasts 10−23 seconds or so, corresponding
to a spatial extension of a few Fermi, many orders of magnitude below the resolution of
any conceivable detector. However, if a chromosphere forms at all, it should do so during
those 10−23 seconds. A careful treatment of the spatio–temporal evolution of the shower
is therefore mandatory for us.

We find that the effects of parton–parton scatterings after black hole decay are essen-
tially negligible for a black hole of 5 TeV, and are quite small even for 10 TeV black holes.
Even in the latter case, most partons do not scatter. Moreover, most of these (relatively
rare) interactions are rather soft, i.e. they do not change the energies, trajectories or vir-
tualities of the participating partons very much. We therefore conclude that the decays of
black holes that might be produced at the LHC will not lead to the formation of a chro-
mosphere. Black hole event generators that ignore interactions between black hole decay
products [16, 17] only make a small mistake.

The remainder of this note is organized as follows. In the next Section we describe the
production of TeV black holes, and their subsequent decay through Hawking radiation, in
slightly more detail. This determines the initial set–up of the partonic system, which later
may or may not develop into a chromosphere. In Sec. 3 we summarize the argument in favor
of chromosphere formation, closely following ref.[15]; we also point out some weaknesses
in this argument. Sec. 4 is devoted to a description of the simulation program we wrote.
In Sec. 5 we present numerical results for the angular correlation between pairs of charged
particles, for the overall energy flow of the hadronic black hole decay products, and for
the microscopic structure of these events. Finally, Sec. 6 contains a brief summary and
outlook.

2 Black hole production and decay

Lower bounds on the classical gravitational production cross section of black holes are
obtained in [7, 10, 11]. Quantum corrections are estimated in [8, 9]. The implication of
the correspondence principle for black holes and strings is considered in [18]. All these
results suggest that the black hole production cross section grows geometrically above the
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(higher–dimensional) Planck scale:

σ(ŝ) ≃ πrh(M)2 ∝ ŝ1/(1+n) . (1)

Here, n is the number of additional spatial dimensions, ŝ is the partonic cms energy, and
rh is the horizon radius of the D = 4 + n dimensional Schwarzschild black hole with mass
M =

√
ŝ:∗

rh(M) =
1

MD

[

M

MD

2nπ(n−3)/2Γ
(

3+n
2

)

n + 2

]1/(1+n)

. (2)

Eq.(1) should hold as long as rh is small compared to the size of the additional dimensions,
which is true for all cases of interest to LHC experiments.

Astrophysical processes lead to the very strong lower bound MD ≫ 10 TeV for n ≤ 3
[19]. For larger n the lower bound on MD comes from searches for the production of
gravitons (including their Kaluza–Klein towers) at colliders, yielding MD ≥ 0.65 TeV for
n = 6 [20]. It has been argued [21] that the non–observation of black holes produced by

very energetic cosmic ray neutrinos yields the slightly stronger bound MD
>∼ 1 TeV for

n ≥ 5. However, this bound relies on assumptions on the flux of very energetic cosmic
neutrinos. We will see shortly that chromosphere formation is most likely for the smallest
allowed value of MD. To be conservative, we will therefore present numerical results for
n = 6 and MD = 0.65 TeV. In that case according to Eqs.(1), (2) the LHC operating at
a proton–proton cms energy of 14 TeV yields cross sections in excess of 200 pb (10 fb) for
M > 5 (10) TeV [5]. In other words, the LHC will be a veritable black hole factory if a
TeV scale gravity scenario is employed by nature [5, 6].†

We note that the black hole is generically produced with a sizable angular momen-
tum [24]. However, here we only consider the case of vanishing angular momentum. While
the spin of the black hole would affect the details of its decay spectrum during the early
“spin–down” phase [24, 25, 26], these details are not likely to significantly change the
importance of the QCD processes which are the main focus of our analysis.

Once produced, the black hole radiates off its mass M via Hawking radiation [13]
mainly into the brane–localized standard model particles [14].‡ The number spectrum for

∗We use the notation of [15], where MD stands for the reduced higher–dimensional Planck mass.
†QCD initial state radiation is, as usual, taken into account by using scale–dependent parton distribu-

tion functions, the relevant momentum scale being set by 1/rh [5]. Numerical simulations indicate [10, 11]
that several tens of percent of the cms energy of the colliding partons may escape in form of gravitational
radiation. The same calculations show that Eqs.(1), (2) underestimate the cross section for black hole
production for fixed ŝ. Nevertheless the energy “lost” in gravitational radiation implies M <

√
ŝ, in which

case the cross section for the production of black holes with a given mass at the LHC might be more
than three orders of magnitude smaller than indicated by Eqs.(1), (2) with

√
ŝ = M [22]. Finally, if a

“generalized uncertainty principle” imposes a lower bound on physical lengths of order 1/MD, the cross
section for producing black holes with mass M ≫ MD at the LHC would also be reduced by several orders
of magnitude [23].

‡Possible enhancement effects of bulk graviton emission, especially for highly rotating black holes, have
been discussed in [27].
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the emission of a spin−s particle with energy ω per unit time is

dṄs

dω
=

1

2π

Γs

eω/T − (−1)2s
. (3)

Here the Hawking temperature T is given by

T =
1 + n

4πrh
. (4)

The “greybody factor” Γs(E) in Eq.(3) is defined to be the absorption rate of the incoming
flux with energy E at spatial infinity:

Γs =
Ṅin − Ṅout

Ṅin

, (5)

when the purely in–going boundary condition is put at the black hole horizon. Physically
Γs is, in the “time-reversed” sense, the proportion of the radiation that passes through the
gravitational potential well from the horizon towards spatial infinity.

1 2 3 4 5 6
rhΩ

0.02

0.04

0.06

0.08

0.1
dN�dΩdt

Figure 1: The energy spectrum of gluons (upper, black) and quarks (lower, grey) emitted
in black hole decay for n = 6 additional dimensions. ω is the energy of the emitted particle,
and the Schwarzschild radius rh is given by Eq.(2).
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Numerical results [26] for the spectra of quarks and gluons produced in the decay of
a black hole are shown in Fig. 1. In principle Eqs.(3) and (4) predict that the spectrum
of black hole decay products changes with time: as more energy is radiated off, the mass
of the black hole becomes smaller. Eq.(2) shows that this also reduces its radius, which
according to Eq.(4) increases its temperature.∗ For simplicity we employ the “sudden decay
approximation” [6] where the entire decay spectrum is calculated using a fixed black hole
mass.

All degrees of freedom with a given spin are emitted with equal probability in black
hole decay; however, Fig. 1 shows that the greybody factors do depend on the spin. In
order to include this effect, we define the integrals over the decay spectra

Is =

∫ ∞

0

dṄs

dω
dz , (6)

where z = ωrh is the dimensionless variable shown in Fig. 1. Numerically, I1/2 ≃ 0.115, I1 =
0.155. In our simulation we are primarily interested in the question whether quarks and
gluons produced in black hole decay will thermalize. Since scattering cross sections for
heavy quarks are smaller than those for massless quarks, we conservatively assume that
only u, d, s, c quarks and gluons are emitted in black hole decays. The relative abundance
of gluons is then on average given by

〈Ng〉
〈Ng〉+ 〈Nq〉

=
8I1

8I1 + 24I1/2
. (7)

An analogous argument shows that about 75% of the black hole mass will be radiated into
quarks and gluons.†

The total (average) number of particles produced in the decay of a single black hole
can be estimated from the integrals

Ĩs =

∫ ∞

0

z
dṄs

dω
dz ; (8)

numerically, Ĩ1/2 = 0.181, Ĩ1 = 0.231. The average energies (in units of r−1
h ) of the produced

particles are given by the ratios Ĩs/Is. Numerically, the average energy of a quark or gluon

∗Since Fig. 1 effectively shows the spectrum in units of the inverse black hole radius, it includes all the
information required for including this effect in the simulation. However, these semi–classical results only
hold for M ≫ ω; they may therefore not describe the late stages of black hole decay adequately. In fact,
it has been argued [28] that a black hole will not evaporate completely, but leave behind a stable or at
least long–lived, and possibly charged, remnant with mass ∼ MD. We do not consider this possibility in
our work.

†Massive gauge and Higgs bosons produced in black hole decay frequently also decay into quarks.
However, these bosons have much longer lifetimes than the black hole itself. The quarks produced in their
decays therefore come too late to contribute to the formation of a chromosphere, although they might get
trapped in the chromosphere [15] should it indeed form.
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is 〈Eq〉 = 313 (283) GeV and 〈Eg〉 = 296 (268) GeV forM = 5 (10) TeV. Using the fact that
about 75% of the total energy goes into hadrons, this gives average parton multiplicities

〈Nq〉 = 8.4 (18.6)

〈Ng〉 = 3.8 (8.3) , (9)

for M = 5 (10) TeV, where Nq counts both quarks and antiquarks. Choosing a larger
higher–dimensional Planck scale MD would lead to higher Hawking temperature T , and
hence to fewer, more energetic, primary black hole decay products; this would obviously
reduce the probability of parton–parton scattering.

Finally, Eq.(3) also allows to compute the lifetime of the black hole. To that end, one
computes the time derivative of the mass of the black hole,

dM

dt
=

∫ ∞

0

ω
dṄ

dω
dω . (10)

If we set t = 0 for the time of black hole production, its lifetime τbh is defined by M(τbh)
= 0. Eq.(3) shows that the rhs of Eq.(10) is ∝ r−2

h . The use of Eq.(2) then leads to [5]

τbh = Γ−1
bh =

C

MD

(

M

MD

)(n+3)/(n+1)

. (11)

The coefficient C can be computed by numerically integrating the spectra shown in Fig. 1,
leading to C ≃ 0.2. Eq.(11) then gives Γbh = 240 (100) GeV for M = 5 (10) TeV and
MD = 0.65 TeV, corresponding to lifetimes of order 10−27 seconds.

Having presented the relevant properties of the partonic final state that emerges from
black hole decay, we are now ready to discuss whether interactions between these partons
might lead to formation of a chromosphere.

3 Arguments for and against chromosphere formation

The argument by Anchordoqui and Goldberg [15] starts from the observation that the
parton number density n after black hole decay is quite high: roughly O(10) partons are
distributed over a sphere with radius ∼ cτbh. They estimate the rate Γ of bremsstrahlung
reactions (which increase the total number of partons) as Γ = ncσb, with

σb ≃
8α3

s

Λ2
ln

(

2Q

Λ

)

, (12)

where αs is the strong coupling constant and Q the initial energy of the parton in the rest
frame of the black hole; the energy scale Λ is estimated as the inverse of the radius of the
expanding shell of partons. This leads to a total interaction rate per parton [15]

Nint ≃ 0.15
Nq,init

10

(

αs(Qmin)

0.2

)3

ln

(

2Q

Qmin

)

ln

(

Γbh

Qmin

)

. (13)
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For Q ≃ 400 GeV and initial parton number Nq,init = 10 Eq.(13) predicts about 3 inter-
actions per parton even with minimal momentum transfer Qmin = 9 GeV; this increases
to ∼ 30 interactions for Qmin = 1.8 GeV (the mass of the τ lepton). Anchordoqui and
Goldberg argue that partons that interact so frequently must thermalize, leading to the
formation of an expanding shell of particles with approximately thermal energy distribu-
tion.‡

This argument has several weaknesses. To begin with, most QCD interactions are
rather soft, as seen by the factor 1/Λ2 in Eq.(12). Similarly, most emitted gluons will
be soft and/or collinear; this leads to the logarithmic factor in the cross section (12).
In other words, a “typical” interaction may not change the energies and momenta of
the participating partons very much, and may only lead to the emission of a soft and/or
collinear gluon. Such interactions would not impede the formation of well–defined hadronic
jets. In fact, during a QCD parton cascade, many gluons will in any case be emitted from
the partons produced in a given “hard” process; most of these gluons will also be soft
and/or collinear. This gives rise to finite widths and masses of hadronic jets, but does not
destroy them.

Secondly, Anchordoqui and Goldberg seem to have overlooked the fact that a scattering
reaction takes a finite time: according to the uncertainty principle, the time at which a
reaction with energy exchange of O(Λ) occurs can only be determined with an intrinsic
uncertainty of order O(1/Λ). Most reactions have Λ ∼ r−1 [15], r being the radius of the
expanding shell of particles. Loosely speaking, a particle “has time” for only one such
reaction while traveling a distance O(r).

The formation of a chromosphere seems unlikely on purely phenomenological grounds.
Note that the number of interactions per parton is proportional to the number of initial
partons. If ten initial partons lead to a chromosphere, five or six initial partons should
at least show significant effects from these interactions. The observation of events with
six well–defined jets has been reported by both the UA2 [29] and CDF [30] collaborations.
CDF finds fair agreement between observations and QCD parton shower simulations (based
on leading–order matrix elements). They demand that the total invariant mass of the 6–jet
system exceed 520 GeV, while each jet should have a transverse momentum of at least 20
GeV. Using Ninit = 6, Q = 30 GeV and Γbh −→ M6−jet = 500 GeV setting the scale
for the initial hard reaction, Eq.(13) predicts N ≃ 0.7 (9.5) interactions per parton for
Qmin = 9 (2) GeV. We find it difficult to believe that such high interaction rates would
leave no imprint in the properties of the observed events, given that 3 (30) interactions are
supposed to lead to nearly complete thermalization.

Even if a nearly thermal chromosphere does not form, parton–parton scattering might
still have significant impact on the hadronic final state from black hole decay. Given the
complexity of QCD processes even in the absence of parton–parton scattering, a quantita-
tive investigation of their effect can only be performed with the help of a QCD simulation

‡In contrast, the authors of ref.[5] state that the shell of black hole decay products is too thin to
thermalize; however, no quantitative estimate of the effects of interactions between these decay products
is given there.
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program. This is the topic of the next Section.

4 Simulation

We saw in the previous Section that a quantitative analysis of the effects of parton–parton
scattering is only possible if we also treat the QCD parton showers that occur whenever
a large four–momentum is transmitted to strongly interacting particles. This implies that
we need to follow the spatio–temporal development of these QCD showers. In this Section
we first outline the general philosophy of our approach; a more detailed description of the
various stages treated by our code will be given in the subsequent Subsections.

Numerical codes that simulate parton showers are probabilistic, i.e. they operate with
squared amplitudes. Quantum mechanical interference effects can therefore only be treated
approximately (e.g. through angular ordering [31], whereby subsequent gluons are emitted
at smaller and smaller angles.) The basic idea is that partons emerging from a hard reaction
(scattering or decay) initially have time–like virtuality, which is reduced by “branching off”
additional partons. This can be justified by the observation that in a complete calculation
of the relevant Feynman diagrams, final state partons emitting additional partons indeed
have to have time–like virtualities. The beauty of such showering algorithms is that they
exploit QCD factorization theorems to sum such higher order processes to all orders in
perturbation theory, albeit (usually) only with leading logarithmic accuracy.

Most of these codes follow the “evolution” of this shower not in time, but in an energy
variable, which in the simplest case is given by the virtuality of the partons in the shower;
since we are dealing with final–state showers, the partons in question have time–like mo-
menta, i.e. the shower has the same kinematics as a cascade of two–body decays. (In this
analogy, the lifetime of the decaying particles would be given by the inverse virtuality of
the particles in the shower.)

According to quantum mechanics, one cannot simultaneously determine this shower
energy scale and the (proper) time of a branching. Unfortunately for our application we
need to do precisely that. A certain additional abuse of the principles of quantum mechanics
is therefore inevitable. We do this by identifying the uncertainty in time, as determined
by the uncertainty principle, with the actual duration of a given process. We use this
identification both for the branching and for parton–parton scattering; in the former case,
the time is given by the inverse of the virtuality of the branching parton, whereas the
time needed for a scattering is given by the (space–like) virtuality of the parton exchanged
in this scattering reaction. Note that neither two branching steps, nor two scatterings,
involving the same partons can occur at the same time. In the absence of scattering, the
evolution in time would therefore strictly match the evolution towards smaller virtualities.
Moreover, between branching or scattering events, the partons are taken to propagate
along their classical paths. Note that this evolution is nonetheless probabilistic, since after
each branching or scattering the 4–momenta of the outgoing partons are chosen randomly,
with distributions determined by perturbative QCD (and subject to energy–momentum
conservation).
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We only aim at leading logarithmic accuracy. This means that we only use leading
order cross sections, and only include 2 → 2 scattering processes; later gluon emission,
which is treated explicitly in the estimates of interaction rates in ref.[15], is taken into
account by the subsequent shower evolution. In fact, including 2 → 3 processes in the
scattering reactions would lead to double counting. Scattering reactions can nevertheless
increase the particle multiplicities, since they can increase the virtuality of the participating
particles; in contrast, each branching reduces this virtuality. Moreover, the scattering can
change the 3–momenta of the particles, thereby potentially destroying the jet structure. As
mentioned in the previous Section, one needs large scattering angles in order to establish
a chromosphere from an initially small number of very energetic partons.

As usual, we treat showering and hard scattering independently, i.e. we apply QCD
factorization. This requires that the scattering indeed be sufficiently hard; that is, the
absolute value of the four–momentum exchanged in the scattering reaction must be (much)
larger than the virtualities of the partons in both the initial and final state. However, as
already noted, the partons in the final state may be more off–shell than those in the initial
state. Note also that we should not include initial state showering in our approach, since
each “initial state” of a scattering reaction is part of the extended final state shower that
follows the Hawking evaporation of the black hole; including initial state radiation would
therefore also lead to double counting.

Our simulation starts with a rather small number of energetic, and far off–shell, partons,
using the results of Section 2. It then uses small time steps to follow the parton shower
and/or scattering of all partons. This phase ends when all partons are (nearly) on–shell
and far apart from each other, so that neither further branching nor further scattering is
possible. When the particles virtualities reach the QCD scale ΛQCD, hadronization will
take place and the data of the final particles will be stored for statistical analysis.

The simulation code has been written nearly from scratch in C++, although the global
structure is based on the VNI 4.12b Monte Carlo simulation [32, 33] using its particle
record and a selection of modified routines from it. The VNI particle record uses the
“Les Houches” format, extended to hold information necessary for the full space–time
evolution of the partons. VNI 4.12b was originally written in order to simulate ultra–
relativistic heavy–ion collisions; in that case, multiple partonic scattering reactions are
certainly important, and had to be modeled carefully, making this code a good starting
point for our work. In contrast, scattering in the final state is thought to be unimportant
for hard reactions involving e± and/or p/p̄ in the initial state.

We also use some routines from the PYTHIA Monte Carlo simulation [34]. For nu-
merical integration and a simulation grade random number generator the GNU Scientific
Library [35] for C/C++ was used.

4.1 Initial setup

As in ref.[15] we randomly distribute the initial partons inside a shell with thickness equal
to the black hole lifetime τbh (11) around the decayed black hole with radius (2). Quarks
and gluons are generated separately, with average multiplicities given by Eq.(9) and energy
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distributions according to Fig. 1. The momenta of most partons are chosen randomly inside
that half of the solid angle which points away from the black hole, as seen from the location
at which the particle is created. Choosing the partons to be always emitted radially by the
black hole, which would be proper for non–rotating black hole, would make future collisions
between them impossible in the absence of showering; our choice therefore increases the
possibility of parton–parton scattering.∗ The 3–momentum of the last parton is taken such
that the total 3–momentum in the black hole rest frame is zero.† This is not absolutely
necessary, because the 3–momenta of the strongly interacting particles alone do not have
to add up to zero, but it allows a good control of the simulation.

Next, quark flavors are assigned randomly. We do not include the top and bottom
quark because we cannot assume them to be massless in all possible collisions when we
are using the massless QCD scattering amplitudes; indeed, top production is likely to
be somewhat suppressed since for our choice of parameters, the Hawking temperature is
somewhat below mt. Charge conservation is not enforced in our initial setup taking into
account that the black hole also radiates off other particles like leptons. However we take
care that the charges add up to some integer.

We set the maximal initial virtualities of the partons equal to their energies; the actual
values of these virtualities will be chosen by the shower algorithm described in a subsequent
Subsection. This choice of maximal virtuality reproduces features of hadronic Z decays
fairly accurately, when starting from leading order, Z → qq̄, decays.‡

After the initial setup the program enters the main loop, which simulates the space–time
evolution of the parton cascade. This evolution is determined by two processes, parton
scattering and branching, which are described in the next two Subsections.

4.2 Parton scattering

Every possible pair of partons is boosted from the black hole rest frame into its cms frame,
and it is checked if it has reached its closest possible distance. In the next step it is checked
whether partons which reached their closest distance undergo a collision. We are using the
cascade approach [36] for this purpose, according to which a collision takes place if the
closest distance of the parton pair is within the radius defined by the total cross section of

∗Non–radial emission should occur during the spin–down phase, with quite complicated angular depen-
dence [24, 25, 26]. Since most of the energy is released after the black hole has shed its spin, our treatment
most likely over–estimates the probability of parton–parton scattering.

†This is not always possible, given that the energy of this parton has already been fixed and its
virtuality must be smaller than this energy. If no solution is found, the event is abandoned, and the
routine for generating the initial set–up makes a new attempt.

‡One might argue that this choice is not appropriate for black hole decay, since black holes are not
pointlike, unlike Z bosons. However, for choices of MD and M relevant for LHC phenomenology, the
scales 1/rh or Γbh that describe the spatio–temporal extension of the black hole are quite close to the
average energies of the decay partons; note also that the final results will only depend logarithmically on
the maximal initial virtuality.
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the specific process,

|ra − rb|min ≤
√

σ̂ab

π
. (14)

If there is more than one possible scattering channel for two partons the total cross
section will be the sum of the cross sections for all possible final states,

σ̂ab =
∑

c,d

σ̂ab→cd . (15)

The individual cross sections are calculated numerically by integrating the corresponding
differential cross sections

σ̂ab→cd =

∫ t̂max

t̂min

(

dσ̂(ŝ, t̂, û)

dt̂

)

ab→cd

dt̂ , (16)

with Mandelstam variables ŝ = (pa+ pb)
2, t̂ = (pa− pc)

2, û = (pa− pd)
2. The choice of the

upper and lower bounds t̂max, t̂min in equation (16) requires some care. When two on–shell
partons are scattering, the matrix elements for the (2 → 2) QCD cross sections diverge for
forward (t̂ → 0) and/or backward (û → 0) scattering, thus a minimal momentum transfer
is needed that determines t̂max and t̂min for given ŝ. In this case we take the commonly used
value (in the parton–parton cms) of p⊥min = 1 GeV; this requires

√
ŝ > 2 GeV. Collisions

with p⊥ < 1 GeV are considered to be soft and are not evaluated since only collisions
generating high transverse momentum can change the jet structure of the event.

Collisions with at least one virtual particle in the initial state need special treatment,
since off–shell initial or final partons lead to non gauge invariant (2 → 2) amplitudes [36].
The authors of [36] solve this problem by combining the scattering with space– or time–like
branching in a single (rather large) time step so that at the end of a scattering only on–shell
particles are left and only on–shell particles will scatter again. This should be sufficient
for the simulation of heavy ion collisions, where (nearly) all virtualities and exchanged
4–momenta are quite small. However, in our case this procedure would allow a parton to
instantaneously∗ shower off a virtuality of hundreds of GeV and then undergo a collision
with momentum exchange of only a few GeV. This does not make sense, since such a
relatively soft collision would take much more time than the (initial part of) the showering;
moreover, the (many) particles produced in the shower might undergo scatterings of their
own.

We therefore take another approach: we allow virtual particles to take part in a collision
only if the scattering scale Q2

scatt is at least as high as half the sum of the virtualities Q2
a,

Q2
b of the particles a and b in the initial state,

Q2
scatt ≥

Q2
a +Q2

b

2
. (17)

∗Our program uses much shorter time steps than the original VNI code, typically ∼ 2 · 10−4 GeV−1

initially. We checked that choosing even shorter steps does not change the result.
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In this case the scattering will at least not take longer than the parton shower up to that
point. Moreover, it can be hoped that the scattering is hard enough that the virtuality of
the particles in the initial state becomes irrelevant, so that we can describe the scattering
using massless (2 → 2) QCD cross sections. In fact, basically the same condition is chosen
by the usual QCD simulators when setting the showering scale for initial state radiation,
although in these programs the scattering scale Q2

scatt is fixed first. In our simulation the
scattering scale is taken to be

Q2
scatt =

t̂û

ŝ
≃ p2

⊥ . (18)

This also fixes the scale in the running strong coupling constant,

αs(Q
2
scatt) =

12π

25 log(
Q2

scatt

Λ2

QCD

)
, (19)

where we took NF = 4 active flavors and QCD scale ΛQCD = 0.2 GeV. The requirement
(17) determines the boundaries of the integration over t̂ in (16):

t̂min,max =
1

2

(

−ŝ∓
√

ŝ2 − 4Q2
abŝ

)

, (20)

where Q2
ab =

Q2
a+Q2

b

2
.

We did not include (2 → 1) fusion processes like g + g → g∗ (with g∗ being off–
shell), since the first branching of the produced off–shell parton would again result in
a 2 → 2 process, leading to double counting. It could be argued that we should also
require Qscatt ≥ 1/|ra − rb|min. However, this would exclude interactions between partons
that happen somewhat before or after the time of their closest approach, which seems
unphysical. We therefore do not impose this additional requirement, which would reduce
the number of partonic scatterings significantly. In fact, the opposite requirement, Qscatt <
1/|ra− rb|min, seems more reasonable, since according to the uncertainty principle a highly
virtual exchanged parton can only travel a very short distance. We do not impose this
constraint, i.e. we allow very large momentum exchange also between relatively distant
partons. This again increases the importance of collisions, since a large Qscatt is required
for a collision to modify the jet structure. However, we will see that not imposing this
upper bound on Qscatt has very little effect in practice, since high values of Qscatt are in
any case very unlikely.

In some rare cases one parton has two possible collision partners in a single time step.
In that case for both partners cross section and distance will be checked. If only one
collision takes place this will be the one evaluated. If both collisions would take place only
the one with the larger cross section will be evaluated.

After a pair of particles has been identified as colliding, the scattering kinematics can
be generated. For initial states which have more than one channel, the final state is chosen
according to the probability given by the relevant total cross sections. Next the value of
t̂ ∈

[

t̂min, t̂max

]

is generated, with distribution given by the corresponding differential cross
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section dσ̂/dt̂ (normalized to unity). The initial particle pair is boosted into its cms frame
and put on–shell. The absolute value of the transverse momentum of the final particles is
given by Q2

scatt as determined by the chosen value of t̂. The azimuthal scattering angle,
which fixes the direction of the p⊥ vectors, is chosen randomly, with flat distribution
between 0 and 2π.

Finally the virtualities of the outgoing particles are created by the branching routine
(see the next Subsection) and color charges are assigned according to the color flow of the
specific process. It should be noted that in case of the scattering of virtual particles, the
virtuality after scattering can become even lower than before, since Qscatt is the maximal

virtuality of the particles in the final state. We see no physical reason why such virtuality–
reducing scattering reactions should be suppressed.

Due to the lifetime of a virtual (exchanged) particle the scattering will take a finite
amount of time determined by the scattering scale. In the rest frame of the black hole this
time is given by

τscatt =
γab

Qscatt
, (21)

where γab = (Ea+Eb)/
√
ŝab is the boost factor between the cms of colliding partons a and

b and the black hole rest frame. During this time the colliding particles are not allowed to
collide again, nor can they branch off additional partons; in fact, in quantum mechanics
one cannot say whether the parent partons a, b or the children c, d exist during the period
τscatt. After the scattering time is over the partons are able to initiate final state radiation
or collide again.†

4.3 Parton branching

While the inclusion of partonic collisions is the main new ingredient of our simulation,
we will see that parton branching plays a far more important role in determining the
characteristics of the final state. We model this using a modified version of the relevant
routine of VNI 4.12b, which in turn is based on the PYTHIA branching algorithm [34, 37,
38].

The modifications implemented by us address the need to do branching for a single
parton, instead of treating two partons at once as is done normally in order to ensure
4–momentum conservation. To make sure we can conserve energy and momentum for a
single parton we always have to determine the virtualities at which the parton branches
one step ahead in the branching algorithm: the kinematics of a → b+ c can only be fixed
if the “masses”, i.e. (time–like) virtualities, of all three participating partons are known.
Our version of the routine therefore determines the virtualities of b and c earlier than the

†In principle it might be more appropriate to place this “dead time” symmetrically around the time
of closest approach, rather than letting it start at the time of closest approach. However, this would be
technically difficult, since the program would then have to go back in time, and “un–do” any possible
branchings that happened in the “dead” period before the time of closest approach. Since by construction
Qscatt is larger than the virtuality of the scattering particles, this asymmetric placement of the “dead
time” should not matter much in practice.
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original routine does. Note that these actual virtualities are typically much smaller than
the corresponding maximal values; this is the reason why energetic partons, with initial
maximal virtualities given by their energies, typically produce quite narrow jets. Another
modification is the introduction of the scattering–induced “dead time” described at the
end of the previous Subsection, during which partons are not allowed to branch.

Just like scattering reactions, the branching a → b + c also takes a finite amount of
time in our simulation, given by

τbranch =
γa
Qa

=
Ea

Q2
a

, (22)

with γa = Ea/Qa describing the boost from the rest frame of parton a to that of the black
hole. In our simulation this is treated like the lifetime of a decaying particle, i.e. the
probability of an “active” parton a to branch during the time step dt is given by [32, 33]

Pbranch = 1− e−dt/τbranch ≃ dt

τbranch
, (23)

where the second, approximate equality holds for the (realistic) situation dt ≪ τbranch.
Note that each parton is checked for possible scattering before it is checked for branching.
In our treatment partons b, c are created instantaneously if a branching occurs, i.e. they
are allowed to undergo scattering immediately.∗ This can be justified from the requirement
(17), which ensures that scattering reactions are much faster than branchings. Imposing a
branching “dead time” of (some fraction of) τbranch on b, c before they are allowed to scatter
would obviously reduce the number of parton–parton scatterings, although numerically
this effect is not very large. The 4–momenta of partons b, c are chosen as in the PYTHIA
branching algorithm [34].

There are three situations in which the branching routine is used. First, all initial
partons which have some maximum virtuality from black hole decay are sent through
the branching routine once, in order to determine their actual starting virtuality for the
simulation. Secondly, the normal use when every time step all partons which have any
time–like virtuality left, and which did not scatter recently, are sent through the routine
to undergo branching with probability given by Eq.(23). Third, similar to the first case,
the two partons coming out of a hard scattering which took place at the scale Q2

scatt are
sent through the branching routine to determine the actual virtualities they will start to
propagate with.

The next step after the parton branching algorithm is to propagate all partons freely
by one time step. Then the simulation calculates the average distance between all pairs of
partons to see if it exceeds the QCD scale 1/ΛQCD, at which point the partonic simulation
loop can be aborted. If the abort condition is met hadronization will take over, or else
time is increased by one time step and the simulation loop starts again. For details of the
hadronization algorithm we again refer to the documentation of PYTHIA [34].

∗These partons are created at slightly different locations, as determined by the uncertainty principle;
moreover, they are moving away from each other. These two partons can therefore not scatter on each
other, even if they are very close, but they can scatter on other partons.
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5 Results

We are now ready to present some numerical results. As stated in Sec. 2, we set the
higher–dimensional Planck scale to its lower bound, MD = 0.65 TeV, since this maximizes
the number of initial partons, and hence the number of parton–parton interactions within
a given black hole decay. We also consider relatively heavy black holes, with M = 5 and
10 TeV. Recall that decays of heavier black holes are characterized by lower temperatures,
and hence higher multiplicities; however, the production cross section for black holes with
mass exceeding 10 TeV is certainly negligible at the LHC.

Since the initial set–up is created totally randomly there are large event–to–event fluc-
tuations of the number and energies of the initial partons. One therefore needs sufficient
statistics to make reliable statements about average quantities; the results presented below
are based on 200 events for each run. In order to illustrate the effects of parton–parton
interactions, we made separate runs for each black hole mass where these interactions were
turned on or turned off. In the latter case the spatio–temporal evolution of the parton
shower is irrelevant, i.e. our program reproduces standard (PYTHIA) showering for the
given set–up of original partons.

If black hole decays led to formation of a chromosphere, observables based on jets would
no longer be useful. In the following Subsections we therefore analyze the distribution of
two observables whose definition does not assume the existence of jets: angular correlations
between energetic charged hadrons, and the overall energy flow. Of course, the observables
are chosen such that their distribution would be greatly affected if parton–parton scattering
did indeed lead to formation of a chromosphere. In the last Subsection we will interpret
these results with the help of the time structure of the parton shower that develops after
typical black hole decays.

5.1 Angular correlation

After hadronization we are left with a large number of charged, long–lived particles (mostly
charged pions and kaons and some protons) as well as photons and neutral hadrons. In
this first analysis we focus on charged particles because their momenta can be measured
accurately using tracking information. We only consider particles with an energy (in the
black hole rest frame) above 4 GeV; the number of charged particles passing this cut
is denoted by Nch. This cut should largely remove particles from the underlying event
which have nothing to do with black hole decay, and which have not been included in our
simulation.

We compute the angles θ between any two of these charged particles; altogether there
are Npair = Nch(Nch−1)/2 such pairs. The resulting distribution is binned in cos θ. Because
Nch can vary a lot from event to event, we normalize the distribution for each event to
Npair, before averaging over the 200 generated events.

Let us first consider some simple situations, in order to get a feeling for what kind
of distribution to expect. The simplest case, which certainly does not describe black hole
decay, would be events with two back–to–back jets, each of which contains the same number
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Nch/2 of charged particles. In this case N2
ch/4−Nch/2 pairs would have an angle near zero

between the particles of the pair because they reside inside the same jet; the remaining
N2

ch/4 pairs would have an angle near π between the particles of the pair because the
particles are in different jets. In the limit of large Nch these numbers will become almost
equal, leading to peaks at 1 and −1 in our plot which have approximately the same height.

A case that is closer to what one may expect from the decay of a black hole would be
an event with nj jets. Let us keep the assumption that each of these jets contains exactly
the same number Nch/nj of energetic charged particles. In this case there are

Nch

2

(

Nch

nj
− 1

)

(24)

pairs residing in the same jet; the remaining N2
ch(nj − 1)/(2nj) pairs of charged particles

are in different jets. We thus see that the fraction of all pairs that reside inside the same
jet will decrease when the number of jets increases, i.e. the peak in our distribution at
cos θ = +1 will become smaller. Moreover, for nj ≫ 2 randomly distributed jets the peak
at cos θ = −1 will vanish because momentum conservation no longer requires any two jets
in the event to be back–to–back. After averaging over many events all the angles between
different jets contribute more or less equally. In this case we therefore expect a smooth
distribution (although momentum conservation my still lead to a slight increase of the
correlation function at negative cos θ) with only one peak at cos θ = +1. The distribution
should remain qualitatively the same in the more realistic scenario where we allow different
jets to contain different numbers of charged particles, although eq.(24) will then no longer
be valid.

On the other hand, if we assume that a chromosphere is indeed spherical, the correlation
function should become almost perfectly flat; in particular, we would not expect any visible
peak at cos θ = +1.

Figs. 2 show results for black hole mass M = 5 TeV (top) and 10 TeV (bottom), with
(red) and without (black) parton–parton scattering. Clearly for both black hole masses
there is still a strong peak at cos θ = 1, leading to the conclusion that we should expect
a jet structure after black hole decay. The peak becomes smaller for a heavier black hole;
this is expected from the qualitative discussion presented above, given the increasing initial
parton multiplicity, see Eq.(9). The rise of the distribution towards cos θ = −1 is also more
pronounced for smaller black hole masses, again as expected from our qualitative discussion.
For M = 5 TeV, parton–parton scattering has essentially no effect on this distribution.
For M = 10 TeV, it leads to a very slight broadening of the peak at cos θ = +1; however,
given the uncertainties of our simulation, we do not claim that this effect is significant.
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Figure 2: The angular correlation function for charged particles from black hole decay with
E > 4 GeV, for black hole mass M = 5 (top) and 10 TeV (bottom), obtained by binning
into 1,000 bins. The red and black curves have been obtained including and omitting
parton–parton scattering, respectively.
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5.2 Total energy flow

The second quantity we investigate is the total energy flow from the hadronic black hole
decay products. Here we envision a calorimetric measurement. We therefore divide phase
space into azimuthal angle φ ∈ [0, 2π] and pseudo–rapidity η ∈ [−4, 4], with 15 bins in
φ and 30 bins in η. For each of these 450 “calorimeter cells” the total visible energy is
calculated, including hadrons and photons from hadronic decay, but no neutrinos or muons.
We present the result by plotting the number of cells with deposited energy Ecell ≤ Emax

as function of Emax.
Let us again first discuss the possible shapes of this distribution for different final

parton configurations. If a chromosphere forms, we expect a very large number of hadrons
in the final state, each of which has a relatively small energy. These would be distributed
uniformly over phase space, i.e. had we defined our cells as having constant length in cos θ
all cells would receive essentially the same energy. We prefer to use η to parameterize
the phase space, since the energy flow pattern will then be invariant under motion of the
black hole along the beam pipe. Since d/dη = sin2(θ)d/d cos θ, cells at small cos θ, i.e.
small |η|, will then receive significantly more energy than those at large |η|. There should
nevertheless be almost no empty cells; the maximal energy deposit, in cells with η ∼ 0,
would be about 0.009Etot, where Etot ≃ 0.75M is the total hadronic energy released in the
decay of a black hole with mass M. In particular, there should not be any cells with energy
comparable to the initial average partonic energy, which amounts to about 300 GeV for
our choices of parameters [see the discussion of Eq.(9) in Sec. 2]. The distribution expected
for “ideal” chromospheres, with energy flow being completely independent of φ and cos θ,
is depicted by the blue step–like∗ curves in Figs. 3.

In the opposite extreme, where the final state consists of a relatively small number
[given by Eq.(9)] of very narrow jets, most cells would be empty, while in a few cells the
deposited energy would be of order 300 GeV. However, even in the absence of parton–
parton scattering, final state radiation implies that many jets will spread out over several
cells. Together with the final hadronization step, this will lead to a significant number of
cells in which a small, but nonzero, amount of energy is deposited, often in form of a single
hadron. We therefore expect a non–trivial dependence on Emax in the entire range between
∼ 100 MeV and 1 TeV.

Our results for the energy flow of hadronic black hole decay products are shown in
Figs. 3. We see that the number of cells with E < Emax indeed shows nontrivial dependence
on Emax over a wide range. The number of (almost) empty cells decreases with increasing
black hole mass, as expected from the higher initial parton multiplicity (9). However, even
for M = 10 TeV, in about 50% of the cells almost no energy is deposited; on the other
hand, about twenty cells contain more than 100 GeV. We saw above that these results are
consistent with the existence of well–defined jets. Parton–parton scattering has practically
no effect on the number of cells containing at least 30 GeV, again indicating that it does
not affect the jet structure at all.

∗These steps appear only for black hole decays at rest. In general one expects a smoothed-out version
of these curves once a distribution of longitudinal momenta of the black holes is taken into account.
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Figure 3: The number of phase space cells where the deposited energy satisfies E < Emax

as function of Emax, for black hole mass M = 5 TeV (top) and 10 TeV (bottom). The
notation is as in Fig. 2, except that the blue, step–like, curves show the prediction from
an ideal chromosphere.
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Scattering does increase the total number of non–empty cells by about 5% (10%) for
M = 5 (10) TeV. However, the production of soft hadrons is a non–perturbative process,
and can therefore not be treated from first principles; it is not clear whether the effect of
parton–parton scattering is larger than the systematic error of our simulation.† Moreover,
it should be kept in mind that the “underlying event”, which is created by the remnants of
the colliding protons that do not participate in black hole formation, will also contribute a
large number of (mostly soft) hadrons to the final state, which have not been included in
our simulation. It is therefore not clear whether the increase of the cells containing some
black hole decay products results in a measurable difference in the total energy flow in the
event.

5.3 Microscopic structure of the events

The results of the two previous Subsections show that parton–parton interactions have little
effect on the global characteristics of the hadronic final state that results from the decay
of black holes with masses of a few TeV. In this Subsection we analyze the microscopic
structure of the evolution of the hadronic final state that results from the decay of such
black holes.

In Table 1 we list the average parton multiplicities (just before hadronization), as well
as the average number of parton–parton collisions, for M = 5 and 10 TeV. We see that
even in the absence of parton–parton scattering, QCD branching (final state radiation)
increases the multiplicity by an order of magnitude, relative to the initial multiplicity
given by Eq.(9). We also see that the average number of parton–parton scatterings per
black hole decay is not so small; as expected from simple statistical arguments, it increases
roughly quadratically with the (initial or final) partonic multiplicity. Scattering increases
the final parton multiplicity by 16% (23%) for M = 5 (10) TeV. This effect is even larger
than that on the number of non–empty calorimeter cells. Note, however, that the number
of scatterings still remains well below the number of partons even for M = 10 TeV.

M [TeV] w/o scattering with scattering
〈nq〉 〈ng〉 〈nparton〉 〈nq〉 〈ng〉 〈nparton〉 〈nscatt〉

5 19 116 135 21 134 156 16
10 41 241 282 50 295 346 53

Table 1: Average final quark, gluon and total parton multiplicities from the decay of
black holes with 5 and 10 TeV mass, with and without including the effect of parton–
parton scattering. The last column gives the average number of partonic collisions. The
statistical errors on the average multiplicities are about 2 percent.

†The relative size of the effect of parton scattering should be rather insensitive to the details of the
simulation; the statement that it increases the number of non–empty cells by 5 to 10% should therefore
be relatively robust. However, at the end one can only compare the absolute prediction of the simulation
with actual events.
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On the other hand, the probability 〈nparton〉/〈nscatt〉 that a given parton resulted from
scattering is not negligible. It rises roughly linearly with the parton multiplicity, in agree-
ment with the estimate (13). However, this expression, with Qmin ∼ 1 GeV as in our
simulation, greatly over–estimates the number of scattering reactions even if we normalize
it to the initial parton multiplicity.

As mentioned earlier, parton–parton scattering can only destroy the jet structure if it
involves large momentum exchange, i.e. if the scale Qscatt defined in Eq.(18) is large. In
Fig. 4 we show a scatter plot of Qscatt values vs. time in the simulation; here entries from
100 decays of black holes with mass M = 5 TeV have been collected. We see that the
average value of Qscatt decreases with time, once t > 1/〈Eparton〉 ∼ 3 · 10−2 GeV−1. This
can be understood from the observation that at early times, most partons are quite far
off–shell; our condition (17) then implies that early scatterings must involve rather large
momentum exchange. The existence of a few early scatterings with low Qscatt is due to
the fact that the initial virtualities with which the partons are actually created by the
simulation may be much smaller than their maximal values, which is given by the energies
of these partons.
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Figure 4: Scatter plot showing the scale Qscale defined in Eq.(18) vs. time after black hole
decay, for M = 10 TeV; scatterings from 100 decays have been added into this plot. The
appearance of discrete lines at early times is an artefact of the finite time step size used.
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Since the average virtualities of the partons diminish with increasing time, more scatter-
ings with small Qscatt become possible. Since the QCD cross sections satisfy dσ/dQ2

scatt ∝
αs(Qscatt)

2Q−4
scatt if t̂û ≪ ŝ2, reactions with large Qscatt are then greatly disfavored. More-

over, the average parton energies also decrease with time. Later collisions therefore tend
to have smaller ŝ, which implies reduced kinematical upper bounds on Qscatt.

The time dependence of the number of scattering reactions is determined by several
competing effects. While the number of partons increases due to multiple branchings as
time goes on, the number density of partons decreases, making it increasingly less likely
that two partons will come close to each other. As a result, the number of collisions per
unit time decreases at first. On the other hand, the decreasing virtuality of the partons,
and corresponding decreasing lower bound on Qscatt, means that their scattering cross
section increases with time. This leads to an accumulation of relatively soft scatterings at
t ∼ 0.1/GeV.

A typical decay of a 5 TeV black hole therefore develops as follows. Initially there
are about 12 highly off–shell partons with average energies around 300 GeV. One or two
of them may undergo scattering very soon after their creation, with typical scattering
scale Qscatt of a few tens of GeV. Note that these rather hard reactions still mostly have
Qscatt ≪ E, so that the direction of the participating partons is not changed very much.
Moreover, these early scatterings may actually reduce the virtualities of the participating
partons. As time goes on, the number of partons in the event increases, mostly due to
branching processes. The number of scatterings also increases, but most of these reactions
are relatively soft. We saw in Table 1 that they do increase the partonic multiplicity at
the end of the QCD cascade. However, most of these scattering reactions involve partons
inside the same jet, and therefore have little effect on the global quantities we analyzed in
the previous Subsections. In fact, the creation of an additional very soft parton nearby in
phase–space may not be visible in the (hadronic) final state at all. This explains why the
results in Table 1 seem to indicate larger effects from parton–parton scattering than what
we saw in Figs. 2 and 3.

6 Summary and conclusions

In this paper we investigated the question if the decays of black holes that might be pro-
duced at the LHC would be characterized by a relatively large number of discrete jets, as is
usually assumed, or if they would lead to the formation of quasi–thermal “chromospheres”
of rather soft hadrons, as suggested in ref.[15]. To this end we first described the partonic
state produced by the decay of a black hole. We found that, if the higher–dimensional
Planck mass MD is at its current lower bound, the average initial number of partons will
be less than about 25 for black holes with mass M ≤ 10 TeV, which might have a chance to
be produced with appreciable rates at the LHC; higher values of MD would lead to initial
states with fewer partons, and hence to less scattering.

In Sec. 3 we summarized the argument in favor of formation of a chromosphere. We
pointed out that this argument ignores the fact that scattering reactions take a finite
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amount of time. Moreover, a very similar argument should apply to ordinary QCD multi–
jet events. It would predict sizable effects in six jet events, which have been studied
experimentally by the UA2 and CDF collaborations, who found good agreement with
standard QCD predictions which ignore interactions between the partons in the final state.

Clearly a dedicated Monte Carlo study is required in order to determine the quantitative
effects of such final state interactions on black hole events at the LHC. As described in
Sec. 4, we wrote such a simulation code, based on the VNI program [32, 33]. We modified
it by forcing scattering reactions to take a finite amount of time, which we estimated
using the uncertainty principle. A very similar argument implies that, as time goes on, the
parton system evolves towards smaller virtualities through branching processes. Scattering
reactions may increase the virtualities of the participating partons again, but can also be
a shortcut towards smaller virtualities.

Results of our simulation are described in Sec. 5. We found the effects of parton–parton
scattering in the final state to be essentially negligible both for the angular correlation be-
tween energetic charged hadrons, and for the number of phase space cells containing a
large amount of energy. We found some effect on the number of cells containing only one
or a few soft hadrons. We interpreted these results in terms of the microscopic structure
of the event. In particular, we saw that “hard” reactions, with large momentum exchange,
only occur early on; in this case they may well reduce the virtualities of the participating
partons. Later scatterings are all quite soft. At both early and late times, most scattering
reactions have momentum exchange well below the energies of the participating partons;
such reactions cannot significantly change the directions into which these partons are trav-
eling. We therefore conclude that a chromosphere will not form; programs that ignore
interactions between the partons from the decay of black holes created at the LHC only
make a negligible mistake.

Our simulation has some shortcomings. Like all QCD simulation codes, it essentially
works on the level of squared matrix elements, i.e. quantum mechanical interference effects
can only be included in an approximate manner. In addition, we had to identify the
quantum mechanical uncertainty in time with actual duration, both for the branching and
scattering processes. It is not clear to us how this limitation can be overcome, even in
principle.

Our results starkly contradict the claims of ref.[15], even though we chose our parame-
ters and initial set–up such as to maximize the likelihood of scattering reactions between
partons in the final state. It might therefore be worthwhile to summarize the three effects
that have reduced the number of such reactions in our simulation.

Perhaps most important is that we only allow scattering of partons that approach each
other. Interactions between partons that “always” (after their creation) move away from
each other can certainly not be treated using the factorization into initial black hole decay
and subsequent parton–parton scattering that underlies our simulation; for one thing, no
S−matrix could be defined for such a state.∗

∗In some sense such partons can nevertheless still interact with each other. For example, the well–known
Coulomb singularity [39] for near–threshold decays into charged particles can be interpreted in terms of the
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Strictly speaking, in our case one cannot define an S−matrix for partons approaching
each other, either, since they were created at a finite time, i.e. they did not exist in
an “in-”state defined at time t = −∞. We circumvent this problem by requiring the
4–momentum exchanged in these reactions to be larger than the initial virtualities. In
this case one should be able to approximately treat the scattering like that of on–shell
particles. This roughly means that we require scattering reactions to be fast on the time
scale of the shower evolution up to the time of the scattering. This constraint greatly
reduces the scattering cross section at early times, when the parton density is highest,
and therefore reduces the number of scattering reactions. The fact that we do not allow
partons participating in a scattering to start another scattering while the first one is still
“in progress” has a much smaller effect on the number of these reactions.

Although the number of parton–parton collisions remains small for all black holes that
might be produced at the LHC, we saw that it increases roughly quadratically with in-
creasing black hole mass. Extrapolating from the results of Table 1, we estimate that
there will be O(1) parton–parton scatterings per produced parton once M >∼ 25 TeV, if
the higher–dimensional Planck scale MD is kept at its lower bound of 0.65 TeV. This need
not lead to formation of a chromosphere, however; we saw that most scattering reactions
have little effect on the jet structure of the event. Note that in this case the average initial
partonic multiplicity already exceeds 100, making the reconstruction of distinct jets quite
unlikely, even if such heavy black holes could ever be produced at human–made colliders.
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