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3LEPP, Cornell University, Ithaca, New York 14853, USA
(Received 28 February 2006; published 15 June 2006)
1550-7998=20
TeV scale gravity scenario predicts that the black hole production dominates over all other interactions
above the scale and that the Large Hadron Collider will be a black hole factory. Such higher-dimensional
black holes mainly decay into the standard model fields via the Hawking radiation whose spectrum can be
computed from the greybody factor. Here we complete the series of our work by showing the greybody
factors and the resultant spectra for the brane-localized spinor and vector field emissions for arbitrary
frequencies. Combining these results with the previous works, we determine the complete radiation
spectra and the subsequent time evolution of the black hole. We find that, for a typical event, well more
than half a black hole mass is emitted when the hole is still highly rotating, confirming our previous claim
that it is important to take into account the angular momentum of black holes.

DOI: 10.1103/PhysRevD.73.124022 PACS numbers: 04.70.Dy, 04.50.+h, 11.25.Mj, 11.25.Wx
1A similar formula has appeared in [28], which predicts that
the cross section would be reduced by taking into account the
angular momentum, contrary to our result. See also [29] for
another earlier attempt.
I. INTRODUCTION

Black holes have been playing crucial roles for decades
in the yet unaccomplished theoretical development to rec-
oncile gravitational interactions with quantum description
of nature [1–7]. From this point of view, it is no doubt
desirable to have a direct experimental test of the Hawking
radiation [2] through which black holes are expected to
radiate off quanta almost thermally. An astrophysical black
hole is too big to have a sizable Hawking temperature for
this purpose. It has long been known that a collision of two
particles above the Planck energy scale inevitably leads to
a production of a black hole [8], which can have large
Hawking temperature.

Until recently, the Planck scale was always assumed to
be unaccessibly high for human beings even in theories
with extra compact dimensions such as string theory, under
the assumption that the compactification radius is of the
order of the Planck length. Without prejudice, there is no
reason that forces one to keep this assumption. Recently it
has been pointed out that the large extra dimensions can
reduce the higher-dimensional Planck scale down to TeV
scale to solve the so-called hierarchy problem without
contradicting any experimental data if the standard model
interactions are confined to a 3-brane [9–11]. It also has
been pointed out that a TeV scale gravity is realized if an
extra dimension is compactified with the warped metric on
AdS5 [12].

The TeV scale gravity opens up a possibility of produc-
ing black holes and observing their decay products directly
at a next generation collider. First it was considered that
such a black hole will mainly decay into the bulk graviton
modes [13,14]. Later it has been noticed that the decay
channels into observable brane-localized standard model
fields dominate over the bulk graviton emission [15]. When
the black hole is highly rotating, the bulk graviton emission
is expected to be greatly enhanced [16–19]. Currently the
06=73(12)=124022(16) 124022
bulk graviton equation is obtained only for the nonrotating
J � 0 hole [20–22] and we cannot conclude how much the
graviton emission will be enhanced. There is also an argu-
ment that the higher-dimensional graviton has a larger
number of modes than four dimensions and that the gravi-
ton emission would be enhanced due to this fact [16,17].
The actual number of modes that have smaller masses than
the Hawking temperature, which is always smaller than the
higher-dimensional Planck scale, will depend on the de-
tails of the moduli stabilization. Typically one has much
fewer light modes after the moduli fixing. The possibility
of black hole production at collider and the detection of its
Hawking radiation is studied from a general perspective in
[23] and the experimental signature at the CERN Large
Hadron Collider is studied in [24] in the approximation that
the black hole has vanishing anglar momentum J � 0 and
that the Hawking radiation spectrum is described with the
high frequency limit rh!� 1, where rh and ! are the
black hole horizon radius and the energy of the emitted
particle, respectively.

In [25], we have emphasized the importance to take into
account the angular momentum of the black hole and have
first estimated the differential production cross section for
a given J, whose integral over J qualitatively agrees with
the numerical results of the classical gravitational collision
of two massless particles [26,27], namely, the fact that the
total cross section increases from the Schwarzschild ap-
proximation more and more for higher dimensions is well
described.1 Further, utilizing the Newman-Penrose formal-
ism [30] we have obtained the field equations of the brane-
localized scalar (s � 0), spinor (s � 1=2), and vector (s �
1) fields in a separable form for the D � 4�
-1 © 2006 The American Physical Society
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n-dimensional black hole background with a single angular
momentum J � 0 [31]. Later, these equations are also
derived for a nonrotating J � 0 black hole in Refs. [32,33].

Once shown to be separable, its radial part can be solved
to obtain the greybody factors that completely determine
the Hawking radiation spectra without relying on the high
frequency limit rh!� 1. A thermal radiation spectrum at
the horizon is modified when the radiation passes through
the curved geometry toward an observer located at the
spatial infinity. The greybody factor is introduced to take
this correction into account for each angular mode �l; m�
and frequency! of the emitted radiation. It is defined to be
the absorption rate by the hole for a steady in-falling flux at
the infinity

�lm �
_N�in�lm �

_N�out�
lm

_N�in�lm

(1)

under the condition that the radial wave is purely ingoing at
the horizon. This definition physically means, in a time-
reversed sense, that � is identical to the proportion that
passes through the gravitational potential from the horizon
toward the infinity without being reflected back.

In the early 1970’s, Teukolsky showed that the general
wave equation in the four-dimensional Kerr black hole
background is separable into the angular and radial parts
and developed analytic and numerical methods to solve the
equation [34–36]. Page then calculated the Hawking ra-
diation spectra with the greybody factors taken into ac-
count [37] and showed the whole time evolution of the
four-dimensional Kerr black hole [38]. The brane field
equations that we have obtained in [25] is a generalization
of the Teukolsky equation. In [25], we have further ob-
tained the analytic formulas of the greybody factors of the
s � 0, 1=2 and 1 brane fields in the low frequency limit
rh!� 1 for D � 5-dimensional J � 0 black hole.

Our next goal is to obtain the greybody factors without
relying on the low frequency expansions. The numerical
results with nonrotating J � 0 black holes are shown by
Harris and Kanti in [33]. The greybody factors of s � 0
brane field for general J � 0 hole are presented by our-
selves [39,40] and by Harris and Kanti [41,42]. Recently,
there also appeared a paper that treats the s � 1 modes for
J � 0 black hole in a restricted range rh! < 4 [43].

In this paper, we complete the series of our work by
presenting the greybody factors for s � 1=2 and s � 1
brane fields for the general J � 0 hole and the resultant
Hawking spectra. Now that all the brane field spectra are
completed, we are finally able to show the whole time
evolution of the black hole to confirm our previous claim
that the spin-down phase, where the approximation J � 0
is not valid, is hardly negligible: we find that typically
much more than a half of the black hole mass is emitted
in the spin-down phase.

The organization of the paper is as follows: In Sec. II, we
go beyond our previous treatment to obtain the brane field
124022
equations in a separable form for the lower spin compo-
nents too and recast the results into rather simple formulas
(51) and (52). We then show the resultant forms of the
asymptotic solutions and the greybody factors. In Sec. III,
we explain our numerical methods to evade the contami-
nation of the outgoing wave near the horizon when we
impose the purely ingoing boundary condition there. In
Sec. IV, we show our results of the greybody factors and the
Hawking spectra for the brane-localized spinor and vector
fields. In Sec. V, we combine all the results of scalar [40]
and spinor/vector obtained in the previous section to de-
termine the whole time evolution of the black hole. The
time evolution for the Randall-Sundrum (D � 5) and the
Arkani-Hamed, Dimopoulos, and Dvali (ADD) (D � 10)
black hole are presented.
II. BRANE FIELD EQUATIONS

The stationary rotating black holes would be described
by the Myers-Perry solution [31] as indicated in [44– 49].
The induced metric on the three-brane in the �4�
n�-dimensional Myers-Perry solution with a single nonzero
angular momentum is given by
g �
�� a2sin2#

�
dt2 �

2a�r2 � a2 � ��sin2#
�

dtd’

�
�r2 � a2�2 ��a2sin2#

�
sin2#d’2

�
�

�
dr2 ��d#2; (2)
where
� � r2 � a2cos2#; � � r2 � a2 ��r1�n: (3)
The parameters � and a are equivalent to the total mass M
and the angular momentum J
M �
�2� n�A2�n�

16�G4�n
; J �

A2�n�a
8�G4�n

; (4)
evaluated at the spatial infinity of the �4� n�-dimensional
space-time, respectively, where A2�n � 2��3�n�=2=���3�
n�=2� is the area of a unit �2� n� sphere and G4�n is the
�4� n�-dimensional Newton constant of gravitation.

In Ref. [25] it has been shown in terms of the Newman-
Penrose formalism that the spin s � 0, 1=2 and 1 equations
are of separable type in the background space-time with the
metric (2). Here we give the basic equations in more
compactified notation.
-2
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The null tetrad fn; n0; m;m0g on the brane is

n � @t � asin2#@’ �
�

�
@r;

n0 �
�

2�
�@t � asin2#@’� �

1

2
@r;

m �
i sin#���

2
p
�r� ia cos#�

	a@t � �r
2 � a2�@’


�
r� ia cos#���

2
p @#;

m0 � �m:

(5)

The spin coefficients [30] in this tetrad system become

� � �
ia sin#���

2
p

�
; � � �

1

r� ia cos#
;

� � �
�� cot#

2
���
2
p ; �0 � �

ia�2 sin#���
2
p ;

�0 � �
�2 ���

2
; �0 � �0 �

� ���;r

4
;

�0 � �0 � ��; � � � � �0 � �0 � � � 0:

(6)

The null tetrad basis vectors define the differential opera-
tors

�D;D0; m;m0� � �rn;rn0 ;rm;rm0 �:

In terms of these differential operators and the spin-
coefficients, the field equations for s � 1=2 fields
� 0;  1� (Weyl equation) are given by

D 1 � 	0 0 � ��0 � �0� 0 � ��� �� 1; (7)

	 1 �D
0 0 � ��

0 � �0� 0 � ��� �� 1: (8)

On the other hand, the field equations for s � 1 fields
�
0; 
1; 
2� (Maxwell equation) are given by

D
1 � 	
0
0 � �2�

0 � �0�
0 � 2�
1 � �
2; (9)

D
2 � 	0
1 � �0
0 � 2�0
1 � ��� 2��
2; (10)

D0
0 � 	
1 � ��0 � 2�0�
0 � 2�
1 � �
2; (11)

D0
1 � 	
2 � ��0
0 � 2�0
1 � �2�� ��
2: (12)

The all field variables are assumed to have time and
angular dependence 
A,  A / e�i!t�im’.

Here it is useful to introduce the differential operators

D � @r � i
K
�
;

Dy � @r � i
K
�
;

LN � @# �Q� N cot#;

LyN � @# �Q� N cot#;

�N � 0;�1=2;�1�;

(13)

where
124022
K�r� � !�r2 � a2� �ma;

Q�#� � �!a sin# �m csc#
(14)

have been defined.

A. s � 1=2 field equations

The s � 1=2 field Eqs. (7) and (8) can be written as

D�1=2��1=2 � �L1=2�1=2; (15)

D y�1=2�1=2 � Ly1=2��1=2; (16)

where

��1=2 �
���
2
p

��1=2��1 1; �1=2 �  0 (17)

have been defined. From Ly1=2� Eq. (15) �D�1=2�

Eq. (16) we obtain

D�1=2Dy�1=2�1=2 � �L
y
1=2L1=2�1=2: (18)

By putting �1=2 � R1=2�r�S1=2�#�e�i!t�im’, we have sepa-
rated equations

D�1=2Dy�1=2R1=2 � �1=2R1=2; (19)

L y
1=2L1=2S1=2 � ��1=2S1=2; (20)

where �1=2 is the separation constant. In a similar manner,
Dy�1=2� (15)�L1=2� (16) and the substitution ��1=2 �

R�1=2�r�S�1=2�#�e
�i!t�im’ give the separated equations

D y�1=2D�1=2R�1=2 � �1=2R�1=2; (21)

L 1=2L
y
1=2S�1=2 � ��1=2S�1=2: (22)

The separation constant must again be �1=2, which can be
seen from explicit forms of angular Eqs. (20) and (22).
Hereafter, the angular function SA�#� is normalized such
that

Z �

0
jSA�#�j

2 sin#d# �
1

2�
: (23)

Furthermore, from Eqs. (15) and (16), we obtain relation-
ships

S�1=2 � �
1���������
�1=2

p L1=2S1=2; (24)

S1=2 �
1���������
�1=2

p Ly1=2S�1=2; (25)

and

D�1=2R�1=2 �
���������
�1=2

q
R1=2; (26)
-3
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D y�1=2R1=2 �
���������
�1=2

q
R�1=2; (27)

where the constant of proportionality can be determined by
noting that

�L1=2S1=2�
2 sin# � �1=2S

2
1=2 sin# � @#�S1=2L1=2S1=2�;

(28)

�Ly1=2S�1=2�
2 sin# � �1=2S2

�1=2 sin#

� @#�S�1=2 sin#Ly1=2S�1=2� (29)

hold.

B. s � 1 field equations

The s � 1 field Eqs. (9)–(12) become

D� � ���2L1��1; (30)

L 0� � ���2D����1; (31)

L y
0� � ��2Dy���1; (32)

D y� � ��2Ly1���1; (33)

where

�1 � 
0; ��1 � 2��1��2
2; � �
���
2
p
��2
1

(34)

have been defined. From Ly0� Eq. (30)�D� Eq. (32), we
obtain

	�D����Dy������Ly0 � i�asin#��L1� i�asin#�
�1

�

�
DDy��Ly0L1�

2i!
��

�
�1�0: (35)

Putting �1 � R1�r�S1�#�e
�i!t�im’, we obtain separated

equations

�DDy�� 2i!r�R1 � �1R1; (36)

�Ly0L1 � 2!a cos#�S1 � ��1S1; (37)

where �1 is the separation constant. In a similar manner,
from Dy� Eq. (31) �L0� Eq. (33) we obtain

	�Dy����D������L0� i�asin#��Ly1 � i�asin#�
��

�

�
DyD��L0L

y
1 �

2i!
��

�
��1: (38)

Putting ��1 � R�1�r�S�1�#�e�i!t�im’, we obtain another
set of separated equations

�DyD�� 2i!r�R�1 � �1R�1; (39)

�L0L
y
1 � 2!a cos#�S�1 � ��1S�1: (40)
124022
The constant of separation �1 is again common for both
sets of equations.

The relationship between �1 and ��1 is seen as follows:
From L0� Eq. (30) �D� Eq. (31), we obtain

DD���1 � L0L1�1: (41)

From Dy� Eq. (32) �Ly0� Eq. (33), we obtain

D yDy��1 � Ly0L
y
1��1: (42)

These imply that

L 0L1S1 � BS�1; (43)

DD�R�1 � BR1; (44)

L y
0L
y
1S�1 � BS1; (45)

D yDy�R1 � BR�1; (46)

where B is a constant. The constant B is determined by

B2 �
Z
�L0L1S1�

2 sin#d# �
Z
S1L

y
0L
y
1L0L1S1

� �2
1 � 4!a�!a�m�: (47)

We choose

B �
������������������������������������������
�2

1 � 4!a�!a�m�
q

: (48)
C. Master equations for brane fields

The angular and radial equations can be recasted into a
neat form
��
@# �

s
jsj
Q� �1� jsj� cot#

��
@# �

s
jsj
Q� jsj cot#

�

� �2jsj � 1�
� s
jsjQ sin#�;#

sin#
� �jsj

�
Ss � 0; (49)

��
@r � i

s
jsj

K
�

�
�1�jsj

�
@r � i

s
jsj

K
�

�
�jsj

� �2jsj � 1�i
s
jsj
K;r � �jsj

�
Rs � 0: (50)

More explicit forms are given by

1

sin#
d
d#

�
sin#

dSs�#�
d#

�
� 	�s�!a cos#�2

� �s cot# �m csc#�2 �!a�!a� 2m�

� jsj�jsj � 1� � �jsj
Ss�#� � 0; (51)
-4
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��jsj
d
dr

�
�1�jsj dRs�r�

dr

�
�

�
K2 � isK�;r

�
� 2isK;r

� jsj�;rr � �jsj

�
Rs�r� � 0: (52)

These expressions are valid also for the massless scalar
field by setting s � 0.

Besides we have relationships between different radial
components�

@r � i
K
�

�
�1=2R1=2 �

���������
�1=2

q
R�1=2 (53)

for spinor fields and�
@r � i

K
�

��
@r � i

K
�

�
�R1 �

������������������������������������������
�2

1 � 4!a�!a�m�
q

R�1

(54)

for vector fields.

D. Asymptotic solutions

Asymptotic far-field solution to the Eq. (52) is

Rs ! Y�in�s
e�i!





1�s�jsj

�
1� i

�jsj � s� jsj
2!


�

� Y�out�
s

ei!





1�s�jsj

�
1� i

�jsj � s� jsj
2!


�
; (55)

where we have introduced the new radial coordinate

r? �
Z r K

!�
; (56)

and the dimensionless parameters 
 � r=rh, 

 � r?=rh,
!
 � !rh, and a
 � a=rh have been defined.

Then, Eqs. (53) and (54) give the relationship between
coefficients

Y�out�
�1=2 � i

2!
���������
�1=2

p Y�out�
1=2 ; (57)

Y�out�
�1 � �

4!2

��������������������������������������������������

�2
1 � 4!
a
�!
a
 �m�

q Y�out�
1 : (58)
E. Greybody factors

The greybody factor is given by the absorption coeffi-
cient for the wave equations. By virtue of the Eqs. (57) and
(58), the absorption coefficient can be calculated solely by
solving a single radial equation.

The number flux vector for s � 1=2 is

j� � k�n� 1
� 1 � n0� 0

� 0 �m� 1
� 0 �m0� 0

� 1�;

(59)

where k is a constant. The radial component becomes
asymptotically
124022
jr � k
�
j 1j

2 �
�

2�
j 0j

2

�
� k

�

2�
�j��1=2j

2 � j�1=2j
2�

!
k

2�
�jY�out�
�1=2j

2jS�1=2j
2 � jY�in�1=2j

2jS1=2j
2�

�r! �1�: (60)

Therefore, the absorption coefficient is given by

�1=2 � 1�
_N�out�
1=2

_N�in�1=2

� 1�
4!2



�1=2

jY�out�
1=2 j

2

jY�in�1=2j
2
; (61)

for spinor fields, where _N�in=out�
1=2 denotes the total number

flux. The last expression is determined by solving only s �
1=2 equation.

In a similar manner, we have the absorption coefficient

�1 � 1�
_N�out�
1

_N�in�1

� 1�
16!4




	�2
1 � 4!
a
�!
a
 �m�


jY�out�
1 j2

jY�in�1 j
2
; (62)

for vector fields.
III. NUMERICAL METHODS TO OBTAIN
GREYBODY FACTORS

Next, we explain our numerical methods. In this section,
we take the unit

rh � 1; (63)

and always consider the case s � 0 unless otherwise
stated. First, we switch from the Boyer-Lindquist frame
(2) to the ingoing Kerr-Newman frame by

dv � dt�
r2 � a2

�
dr; (64)

d ~’ � d’�
adr
�
: (65)

The radial wave equation now becomes

d2R

dr2
� �

dR
dr
� �R � 0; (66)

with

� � �
�s� 1��0 � 2iK

�
; � �

2i!r�2s� 1� � �
�

:

(67)

For the angular eigenvalue �, we use the expansion of the
form

� �
X
n

Cn�a!�
n (68)

presented in [50]. The coefficients Cn are given for each
-5
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angular mode �l;m� and dumps quite fast, like a multiple of
inversed factorials, as l increases. We take up to n � 6
terms. The accuracy of the approximation can be checked
by the relative size of the last n � 6 term to the sum when
a! is within the relevant region to the peak of the power
spectrum, a posteriori. We have checked that the ratio is at
most of order 0.1% for each relevant region.

The asymptotic solutions in the near-horizon (NH) and
far-field (FF) regions are obtained as [25]

RNH �Win �Woute2ikr
�s;

RFF � Yinr
2s�1 � Youte

2ikr
=r;
(69)

where r
 is the tortoise coordinate defined by dr
=dr �
�r2 � a2�=� and r
 ! r for r! 1. Recall that �! 0 for
r! 1. This coordinate change is not essential for the
following analysis but convenient because the near-horizon
ingoing solution does not contain the tortoise coordinate
r
.

A. Removing outgoing contamination at near horizon

For the case of scalar (s � 0) [40], the calculation is
simply to put the purely ingoing boundary conditionWin �
0 at a point r0 � 1� � close enough to the horizon �� 1
and to solve the second order ordinary differential Eq. (66)
numerically toward the far-field region. In this region we
easily can read off the coefficients Yin, Yout by the �2 fit,
whose ratio directly leads to the greybody factor � � 1�
jYout=Yinj

2.
Putting the purely ingoing boundary condition Win � 0

at the near-horizon r � r0 is always polluted by a tiny
outgoing wave, numerically. This itself is the case for the
scalar too. The difficulty in the spinor (s � 1=2) and vector
(s � 1) case is that the amplitude of the outgoing wave
grows with respect to that of the ingoing one as we go apart
from r0. To evade this problem, we first expand the near-
horizon solution

RNH
in � 1� a1�r� 1� � a2�r� 1�2 � � � � ;

RNH
out � e2ikr
 �r� 1�s�1� b1�r� 1� � � � ��;

(70)

where the coefficients ai, bi are straightforwardly obtained
by substituting the expansion of �, �, � and (70) into (66),
which serves linear equations for the coefficients. The
point to remove the outgoing contamination is the follow-
ing subtraction

~R � R� �1� a1�r� 1��; (71)

introduced in [35] as Bardeen’s prescription. Then ~R sat-
isfies the equation

L ~R � g; (72)

where
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L � d2=dr2 � �d=dr� �;

g � �L�1� a1�r� rH�� � ��a1 � ��1� a1�r� rH��:

(73)

Now (72) can be safely solved toward the far-field region
without the growing outgoing contamination.

B. Matching at far field

We expand the far-field solutions for spinor (s � 1=2)

RFF
in � 1�

cf1
r
�
cf2
r2 �

cf3
r3 � � � � ;

RFF
out � e2ikr


1

r

�
1�

df1
r
�
df2
r2 � � �

�
;

(74)

and for vector (s � 1)

RFF
in � r

�
1�

cv1
r
�
cv2
r2 �

cv3
r3 � � � �

�
;

RFF
out � e2ikr


1

r

�
1�

dv1
r
�
dv2
r2 �

dv3
r3 � � � �

�
:

(75)

Again the coefficients cf;vi , df;vi can be straightforwardly
obtained. The asymptotic form of the ~Rs is now

~R 1=2 � �Yin � 1� a1� � a1r� Yin
cf1
r
� Yout

e2i!r


r
;

(76)

~R 1 � �Yin � a1�r� �Yincv1 � 1� a1� � Yin
cv2
r

� Yout
e2i!r


r
: (77)

By the �2 fit to the obtained solution ~R in the far-field
region, we can determine Yin, Yout since the bigger terms
than that containing Yout are all fixed. The smallness of the
oscillating term containing Yout can be overcome easily by
keeping sufficient digits in the numerics and by taking
sufficiently dense sample points in the far-field region for
the �2 fit.

Finally the greybody factors can be obtained as

�s�1=2 � 1�
2!

jcf1j

��������Yout

Yin

��������
2
; (78)

�s�1 � 1�
2!2

jcv2 j

��������Yout

Yin

��������
2
: (79)
IV. GREYBODY FACTORS AND HAWKING
RADIATION SPECTRA

In [25] we have argued that the black hole production
cross section for a center of mass energy s is well approxi-
mated by
-6
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d�
dJ
�s� �

�
8�J=s for J < Jmax;
0 for J > Jmax;

(80)

except for the region where J is very close to Jmax, and
consequently that the black hole tends to be produced with
large angular momentum. The rotation parameter a corre-
sponding to Jmax is [25]

amax �
n
2
� 1 (81)

for a D � 4� n-dimensional black hole.
Once produced, we assume that the decay process of the

black hole is governed by the Hawking radiation into the
brane-localized standard model fields (see [51] for a review
on the estimation of the amount of energy radiated at the
black hole formation process (balding phase) rather than
by the Hawking radiation and see also [52] for the recent
progress) in the spirit that the quantum gravitational cor-
rection will be read off as a deviation from this precise
prediction in the black hole picture.

With this assumption in mind, the number of spin s
particles emitted into a �l;m� angular mode of the spheroi-
dal harmonics is given, per degree of freedom per unit time
per energy interval 	!;!� d!
, by

dNs;l;m
d!dt

�
1

2�
�s;l;m�!�

e�!�m��=T � ��1�2s
; (82)
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FIG. 1 (color online). Greybody factors for spinor field (s � 1=2)
1=2, 3=2, 5=2 modes (and 7=2 for right plot) from left to right bunche
where the steeper curve corresponds to lower dimensions.
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FIG. 2 (color online). Greybody factors for vector field (s � 1) with
3 modes (and 4 for right plot) from left to right bunches, respectivel
steeper curve corresponds to lower dimensions.
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where T � 	�n� 1� � �n� 1�a2


=4�rh�1� a

2

� and � �

a
=�1� a
2

�rh are the Hawking temperature and angular

velocity of the black hole, respectively. The corresponding
power and angular spectra are obtained by multiplying the
number spectrum (82) by ! and m, respectively.

The time evolution of the black hole with mass M and
angular momentum J is then governed by

�
d
dt

M
J

� �
�

X
s;l;m

gs
Z 1

0
d!

dNs;l;m
d!dt

!
m

� �
; (83)

where gs is the number of massless degrees of freedom at
temperature T, namely, the number of degrees of freedom
whose masses are smaller than T with spin s.

A. Greybody factors for spinor and vector fields

We present the greybody factors obtained by the proce-
dure above. Hereafter we limit ourselves to the case D �
11 motivated by the fact thatD � 11 is the highest possible
dimension if we exclude the s > 2 component fields from
the supergravity multiplet, though in principle we can
consider a larger-dimensional case as well [53].

In Fig. 1, we plot the greybody factors for the brane-
localized spinor field for the nonrotating (a
 � 0) and
highly rotating (a
 � 1:5) black holes. Note that a
 �
1:5 is the highest possible rotation parameter for a D � 5
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FIG. 3 (color online). Superradiant amplification of brane-localized vector field amplitude scattered by a highly rotating (a
 � 1:5)
black hole in D � 5 (left) and 10 (right).
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a
 � 0, 0.3, . . ., 1.5 from lower left to upper right.
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 � 0, 0.3, . . ., 1.5 from lower left to upper right.
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black hole when the black hole is produced by a collision
of two particles; see Eq. (81).

Figure 2 shows the corresponding plots for the vector
field (s � 1). We observe that the greybody factor becomes
negative when !<m�, rendering the number spectrum
(82) always positive. In other words, when the black hole is
highly rotating, an incoming steady energy flux with !<
m� is scattered back by the hole with an increased ampli-
tude; see Eq. (1). This is called the superradiance [54].
Though we cannot observe the superradiance itself for the
TeV black hole since it is decaying so fast, we show the
rate of the energy amplification in Fig. 3 for its own
interest.
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FIG. 7. Vector power (upper) and angular (lower) spectra for fixed
from below to above.
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B. Power and angular spectra for spinor

Hereafter in this section, we present the dimensionless
power and angular spectra per degree of freedom:

rh
dEs;l;m
d!dt

�
1

2�
rh!�s;l;m�!�

e�!�m��=T � ��1�2s
;

dJs;l;m
d!dt

�
1

2�
m�s;l;m�!�

e�!�m��=T � ��1�2s
;

(84)

versus the dimensionless energy of the emitted particle
rh!. Note that this implies that the frequency ! in the
horizontal axis is given in units of r�1

h , which varies for a
fixed mass M when we vary the angular momentum J. For
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a
 � 0 (left) and 1.5 (right). In each figure, D � 5, 7, 9, and 11
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modes with the same l mod 10 are drawn with the same color/gray level.
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simpler presentation we show our plot for 0< rh! < 8 in
this section but we also have calculated all the ! regions
for a
 � 1:5 to obtain the total power and angular spectra
in the next section; see also Figs. 14.

In Figs. 4 and 5, we plot them for the brane-localized
spinor and vector fields, respectively, with varying black
hole rotation a
 for fixed D � 5 (Randall-Sundrum black
hole) and D � 11 (ADD black hole). It is clear that the
larger the rotation parameter a
 is, the more enhanced are
both the power and angular spectra.

In Figs. 6 and 7, we plot the same for spinor and vector,
respectively, for varying dimensions D with fixed black
hole rotation a
 � 0 (nonrotating) and a
 � 1:5 (highly
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FIG. 12 (color online). Vector power spectra for �D; a
� � �5; 0�, (
modes with the same l mod 10 are drawn with the same color/gray l
total spectrum.
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rotating). These figures show that the black hole radiation
is greatly enhanced for larger dimensions. Note that the
peaks coming from l � m modes are distinctive only for
the Randall-Sundrum black hole, especially in the case of
the spinorial emission.

The substructure behind the total spectrum is shown in
Figs. 8–10 and in Figs. 11–13. For each column, the grey-
body factor, power spectrum, and the angular spectrum are
shown from above to below. We can see that each region of
the greybody factor’s rise in rh! coincides with each peak.
For a nonrotating hole, the angular modes m � �l, �l�
1; . . . ; l give exactly the same greybody factors and the�m
modes cancel each other in each given l mode for angular
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5, 1.5), (11, 0) and (11, 1.5). The contributions from the angular
evel. In each figure, the uppermost enveloping black curve is the
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FIG. 15. Schematic pictures for black hole life. From above to
below, the production phase, the balding phase, spin-down
phase, Schwarzschild phase, and Planck phase are shown.
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FIG. 13 (color online). Vector angular spectra for �D; a
� � �5; 0�, (5, 1.5), (11, 0) and (11, 1.5). The contributions from the angular
modes with the same l mod 10 are drawn with the same color/gray level. In each figure with a
 � 1:5, the uppermost enveloping black
curve is the total spectrum.
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spectrum. When the black hole is highly rotating, the
contributions from the l � m modes become dominant.

For a highly rotating black hole with large a
, the con-
tributions from l � m modes become dominant, which
greatly enhance the amplitude of total spectra at high
frequency region rh! > 1. This is sometimes called the
superradiant enhancement of the higher spin emission,
though it is not directly related to the original meaning
[54] of the superradiance as shown in Fig. 3. To exhibit
such high frequency tails which are taken into account in
the calculation of the next section, we present Fig. 14.

V. TIME EVOLUTION OF A BLACK HOLE

In Fig. 15, we show the schematic pictures for the black
hole life at various stages: production phase, the balding
phase, the spin-down phase, the Schwarzschild phase, and
the Planck phase [23]. The spin-down and Schwarzschild
phases are of interest here.

We show the black hole time evolution as it emits brane-
localized particles. We calculate the rates at which energy
and angular momentum are radiated into the brane-
124022-12
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localized standard model fields and the evolution of the
mass and the angular momentum. A particular quantity of
interest is the portion of the energy emitted during the spin-
down phase and the (almost) Schwarzschild phase.

A. Setup for time evolution

To follow the time evolution, it is convenient to make
quantities invariant under the scaling of rs � �1�
a2

�

1=�n�1�rh, which does not vary for a fixed M when we
vary J. We define a scale-invariant function ��as�, with
respect to the scale-invariant rotation parameter as � a=rs,
as follows:

��1�as� �
d lnas

d lnM=Mi
(85)

�
n� 2

2

�
1

a
dJ
dM
�

2

n� 1

�
; (86)

where the mass of a hole is measured in the unit of the
initial mass Mi. This quantity is directly integrated. We
calculate the ratio of the final mass Mf to the initial mass
Mi by integrating Eq. (85) with an initial rotation parame-
ter as�ini�

Mf

Mi
� exp

�Z as�final�

as�ini�
das

��as�
as

�
: (87)

The amount of energy which is radiated in spin-down
phase [0 � as�final� � as � as�ini�] is �Mi �Mf� and
then the remaining Mf will be subsequently radiated off
in the Schwarzschild phase, where the angular momentum
of black hole is vanishing.

Next, we consider the evolution of the black hole. Since
the time roughly scales as rn�3

s in �4� n� dimensions, it is
convenient to introduce scale-invariant rates for energy and
angular momentum as follows2:

��as� � �rn�3
s

d lnM
dt

; (88)

��as� � �r
n�3
s

d lnJ
dt

: (89)

With these new variables ��as� can be written as
��1�as� � �=��as� � �n� 2�=�n� 1�. For all the stan-
dard model particles,

�SM � gs�s�0 � gf�s�1=2 � gv�s�1; (90)

�SM � gs�s�0 � gf�s�1=2 � gv�s�1; (91)
2We can understand this by simply looking at the formula
�dM=dt� AT4 where the surface area of horizon A� r2

s for
brane fields and the temperature of the hole T � 1=rs and M�
rn�1
s .
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where gs � 4, gf � 90, and gv � 24 are adopted in this
section.

We also introduce dimensionless variables y and z to
take angular momentum and mass of the hole:

y � � lnas; (92)

z � � ln
M
Mi

; (93)

then finally we get the time variation of energy and angular
momentum in terms of scale-invariant time parameter [� �
r�n�3
s �ini�t] with initial mass of the hole:

dz
dy
�

�

�� ��n�2
n�1�

;

dy
d�
�

�
�� �

�
n� 2

n� 1

��
e	�n�3�=�n�1�
z:

(94)

After finding the solutions z�y� and ��y� of the coupled
differential Eqs. (94), one can get y��� and z���, hence as
and M=Mi, as a function of time. From these, one can find
how other quantities evolve, such as the area.

For our purpose, it is convenient to convert the set of
variables �rh; a
�. For conversion of unit, the following
expressions are useful with as � a
=�1� a

2

�

1=�n�1�:

��as� � ��
n�1
n �1� a2


�
2=�n�1�r2

h

dM
dt

; (95)

��as� � ��n�1
n �1� a2


�
2=�n�1�r2

h

1

a
dJ
dt
; (96)

where

�n � rsM�1=�n�1� �

�
16�G

�n� 2��n�2

�
1=�n�1�

; (97)

�n � �n

�
n� 2

2

�
1=�n�1�

: (98)

B. Results for time evolution

In this section we use the natural unit 8�G � 1. We
assume that all the standard model fields are massless and
therefore the effective degrees of freedom are given by
gs � 4, gf � 90, and gv � 24. In Fig. 16, we draw the
rates at which the energy and angular momentum are
radiated into the brane-localized standard model fields.
We have explicitly calculated the rates up to the rotation
parameter a
 < 1:5 for the Randall-Sundrum black hole
(D � 5) and for the ADD black hole (D � 10). For D �
10 we have extrapolated our result using the cubic-curve
approximation up to a
 < 4 to cover all the possible rota-
tions; see Eq. (81). The curves are plotted with respect to as
rather than a
 using the conversion rules described in the
previous section, namely, up to as < 0:83 and 2.67 forD �
5 and 10, respectively. The D � 10 results are exact with-
out using the cubic-curve extrapolation up to as < 1:27.
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FIG. 16. Total mass loss rate � (left) and angular momentum loss rate � (right) for scalar (s), fermion (f), vector (v), and for sum of
all the standard model particles (SM) in D � 5 (above) and 10 (below).
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In Fig. 16, one can see that the power � and torque � are
increasing functions of the angular momentum as. The
vector emission dominates over the spinor and scalar emis-
sion for the high rotation parameter, sometimes called the
superradiant enhancement of the higher spin particle emis-
sion, but as rotation becomes slower the fermion channel
becomes increasingly important. Generally, angular mo-
mentum is emitted much faster than energy, therefore a
rapidly rotating black hole spins down to a nearly non-
rotating state before its mass has been radiated off
completely.

In Fig. 17, we plot the mass of a hole as a function of the
rotation as for the virtual setup where only the scalar (s),
spinor (f), or vector (v) field is emitted, respectively, and
for the realistic case where all the standard model fields are
emitted (SM). One can see that the larger the particle’s spin
is, the more effectively the black hole angular momentum
is carried away. For the most effective case of vector-only
(v), the angular momentum is carried away so rapidly that
more than 30% of the mass still remains after the spin-
down phase, to be radiated off at the Schwarzschild phase.
In contrast, the scalar-only case (s) exhibits that the black
0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
s

v

f

a/rs

M
/M

i

5D

SM

FIG. 17 (color online). Black hole mass evolution in units of the i
fermion (f), vector (v), and sum of all the standard model particles
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hole radiates its whole mass before it stops rotation. For the
realistic case (SM), black hole loses roughly 70% to 80%
in D � 5 and D � 10, respectively, before it stops rotation
when starting from the maximum rotation. Note that the
scalar emission (s) is subdominant comparing to the vector
(v) and spinors (f) because of its small effective degrees of
freedom and small emission rates.

In Figs. 18 and 19, we plot the time evolution of rotation
parameter and mass. The unit time t0 is defined by the time
duration from the initial state to the state with as � 0:01
for the virtual cases of spinor-only (f) and vector-only (v).
For scalar-only case (s), the mass goes to zero before
rotation stops, therefore we defined t0 for scalar to be the
duration until the whole mass is radiated off. The initial
rotation parameter is fixed by as�0:83 and 2.67 in D � 5
andD�10, respectively. The mass of the hole goes to zero
before the rotation parameter goes to zero when only scalar
emission is available. We have taken the initial radiation
parameter to be as�0:83 and 2.67 for D�5 and 10 that
are the maximal rotations allowed by the initial collision.

When all the standard model fields are turned on, the
evolution is essentially determined by the spinor and vector
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nitial mass as a function of rotation parameter as for scalar (s),
(SM) in D � 5 (left) and D � 10 (right).
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FIG. 19 (color online). Time evolution of mass and time versus rotation parameter in D � 10.
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FIG. 18 (color online). Time evolution of mass and time versus rotation parameter in D � 5.
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radiation. The figures show that a black hole spins down
quickly at the first stage with large rotation parameter and
the decrease of rotation parameter slows down as angular
momentum of the hole is reduced.
3We note that a friction between the brane and black hole can
be sizable and also can reduce the angular momentum faster at
the initial stage [55,56].
VI. SUMMARY AND DISCUSSION

We have generalized our previous result [25] for the
greybody factor and Hawking radiation spectrum of the
higher-dimensional Kerr black hole to general dimensions
D � 4� n, without relying on the low frequency limit
rh!� 1, not only for the scalar field (s � 0) [40] but
also for the spinor (s � 1=2) and vector fields (s � 1).
Now we can completely describe the evolution of a black
hole with any given initial mass and angular momentum by
taking into account any type of field residing on the brane.

We have developed the numerical method to solve the
radial Teukolsky equation which has been generalized to
the higher dimension (D � 4� n) in the first paper [25] of
our series. There are two points in our numerical methods.
First, we have imposed the proper purely ingoing boundary
condition near the horizon without the growing contami-
nation of the outgoing wave by extracting lower order
terms explicitly. Second, we have developed the method
to fit the ingoing and outgoing part from the numerically
integrated wave solution at a far-field region by explicitly
obtaining the next-to-next order expansion (or next-to-
next-to-next order in vector case) of the solution. With
this progress in numerical treatment, we can safely inte-
grate the generalized Teukolsky equation up to very large r
without outgoing wave contamination.

Then we have calculated all the possible modes to
completely determine the radiation rate of the mass and
124022
angular momentum of the hole. Totally 3407 modes are
computed explicitly, other than the modes which are con-
firmed to be negligible. A black hole tends to lose its
angular momentum at the early stage of evolution.
However, the black hole still has a sizable rotating parame-
ter after radiating half of its mass. Typically more than 70%
or 80% of a black hole’s mass is lost during the spin-down
phase. In the case of very fast initial rotation, the number
could be modified quantitatively by taking the bulk gravi-
ton emission into account, especially for a larger number of
extra dimensions as discussed in the introduction, but the
result would remain the case qualitatively.3

We have determined the radiation and evolution of the
spin-down and Schwarzschild phases up to the ambiguities
for the initial fastest rotations shown above. The remaining
hurdle is the evaluation of the balding phase, which is still
being disputed due to its nonperturbative nature, to extract
the quantum gravitational information at the Planck phase
from the experimental data at the CERN Large Hadron
Collider.
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