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We consider the production and decay of TeV sized black holes. After discussing evaluation
of the production cross section of higher dimensional rotating black holes and black rings, the
master equation for general spin-s fields confined on brane world is derived. For five-dimensional
(Randall-Sundrum) black holes, we obtain analytic formulae for the greybody factors in low fre-
quency expansion.

I. INTRODUCTION

The scattering process of two particles at CM ener-
gies in the trans-Planck domain, is well calculable using
known laws of physics, because gravitational interaction
dominates over all other interactions. Non-trivial quan-
tum gravitational (or string/M theoretical) phenomena
are well behind the horizon [1]. If the impact parame-
ter is less than the black hole radius corresponding to
the CM energy then one naturally expects a black hole
to form. When nature realizes TeV scale gravity sce-
nario [2, 3, 4], one of the most intriguing prediction would
be copious production of TeV sized black holes at near
future particle colliders and in ultra high energy cosmic
rays [5, 6, 7, 8, 9]. (See also some recent papers [10] for
particle accelerator signals and [11, 12] for cosmic ray
signals.) The production cross section of black hole in
the higher dimensional case was obtained in ref. [13] un-
der the assumptions of “Hoop conjecture” [14] by taking
angular momenta into account and the result has been
numerically proved in refs. [15, 16](See Ref. [17] and also
[12] where similar analysis were made to estimate the
cross-section by taking angular momenta into account.).
Once produced, black holes lose its masses and angu-
lar momenta through the Hawking radiation [18]. The
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Hawking radiation is determined for each mode by the
greybody factor, i.e. the absorption probability of an in-
coming wave of the corresponding mode. For four dimen-
sional case, it is first calculated for spin 0 field by A. A.
Starobinsky [19], then for spin 1, 2 and 1/2 fields by S.
A. Teukolsky and Don N.Page [20, 21, 22, 23, 24, 25, 26].
The absorption cross section of a non-rotating BH for
all frequencies and with an analytic expression was com-
puted by N. Sanchez [27].

The master equation for general brane-fields with ar-
bitrary spin-s was obtained in ref. [13] for rotating
black holes in higher dimensional spacetime and its non-
rotating limit was confirmed in ref. [28]. Analytic expres-
sions of greybody factors for rotating black holes were
obtained in five dimensional (Randall-Sundrum) case in
ref. [13] and also for non-rotating limit in the series of
papers [29, 30].

II. PRODUCTION OF ROTATING BLACK

HOLES

First we briefly review the properties of the rotating
(4 + n)- dimensional black hole [31]. In general, higher
dimensional black hole may have ⌊(n+3)/2⌋ angular mo-
menta. When the black hole is produced in the collision
of two particles on the brane, where the initial state has
only single angular momentum, it is sufficient to consider
that the only single angular momentum is non-zero.

In the Boyer-Lindquist coordinate, the metric for the
black hole with single angular momentum takes the fol-
lowing form [31]

g =

(
1− µr−n+1

Σ(r, ϑ)

)
dt2
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FIG. 1: Schematic picture for the condition of the black hole
formation.

− sin2 ϑ

(
r2 + a2 + a2 sin2 ϑ

µr−n+1

Σ(r, ϑ)

)
dϕ2

+ 2a sin2 ϑ
µr−n+1

Σ(r, ϑ)
dtdϕ− Σ(r, ϑ)

∆(r)
dr2 − Σ(r, ϑ)dϑ2

− r2 cos2 ϑ dΩn, (1)

where

Σ(r, ϑ) = r2 + a2 cos2 ϑ,

∆(r) = r2 + a2 − µr−n+1.

We can see that the horizon occurs when ∆(r) = 0, i.e.
when r = rh with

rh =

[
µ

1 + a2∗

]1/(n+1)

= (1 + a2∗)
−1/(n+1)rS , (2)

where a∗ = a/rh and rS is the Schwarzschild radius for
given mass. Note that there is only single horizon when
n ≥ 1 (contrary to the four-dimensional Kerr black hole
which has inner and outer horizons) and its radius is
independent of the angular coordinates. We can obtain
the total mass M and angular momentum J of the black
hole from the metric (1)

M =
(n+ 2)An+2

16πG
µ, J =

2

n+ 2
Ma, (3)

where An+2=2 π(n+3)/2/Γ(n+3
2 ) is the area of unit sphere

Sn+2 and G is the (4+n)-dimensional Newton constant.
Therefore we may consider µ and a (or r−1

h and a∗) as
the normalized mass and angular momentum parameters,
respectively. We note that there are no upper bound on
a when n ≥ 2 nor on a∗ when n ≥ 1, contrary to the four-
dimensional case where both a and a∗ are bounded from
above. We concentrate on the brane field equations and
hence only the induced metric on the brane is relevant,
where the last term in eq. (1) vanishes and the angular
variables ϑ and ϕ are redefined to take the values 0 ≤
ϑ ≤ π and 0 ≤ ϕ < 2π.

A. Production cross section

We estimate the production cross section of rotating
black holes within the classical picture. Let us consider
a collision of two massless particles with finite impact
parameter b and CM energy

√
s = Mi so that each par-

ticle has energy Mi/2 in the CM frame.(see Fig. 1 for
schematic picture) The initial angular momentum before
collision is Ji = bMi/2 in the CM frame. Suppose that a
black hole forms whenever the initial two particles can be
wrapped inside the event horizon of the black hole with
the mass M = Mi and angular momentum J = Ji , i.e.,
when

b < 2rh(M,J) = 2rh(Mi, bMi/2), (4)

where rh(M,J) is defined through eqs. (2) and (3). Since
the right hand side is monotonically decreasing function
of b, there is maximum value bmax which saturates the
inequality (4)

bmax(M) = 2

[
1 +

(
n+ 2

2

)2
]− 1

n+1

rS(M), (5)

where rS(M) is defined by rS(M) = µ(M)1/(n+1) and
eq. (3). When b = bmax, the rotation parameter a∗ takes
the maximal value (a∗)max = (n+ 2)/2.
The formula (5) fits the numerical result of bmax with

full consideration of the general relativity by Yoshino and
Nambu [16] within the accuracy less than 1.5% for n ≥ 2
and 6.5% for n = 1:

n 1 2 3 4 5 6 7

RNumerical 1.04 1.16 1.23 1.28 1.32 1.35 1.37

RAnalytic 1.11 1.17 1.22 1.26 1.30 1.33 1.36

where R denotes R = bmax/rS(M).
Our result is obtained in the approximation that we ne-

glect all the effects by the junk emissions in the balding
phase and hence that the initial CM energy Mi and an-
gular momentum Ji become directly the resultant black
hole mass M = Mi and angular momentum J = Ji. The
coincidence of our result with the numerical study [16]
suggests that this approximation would be actually vi-
able for higher dimensional black hole formation at least
unless b is very close to bmax.
Once we neglect the balding phase, the initial impact

parameter b directly leads to the resultant angular mo-
mentum of the black hole J = bM/2. Since the im-
pact parameter [b, b+ db] contributes to the cross section
2πbdb, this relation between b and J tells us the (differ-
ential) production cross section of the black hole with its
mass M and its angular momentum in [J, J + dJ ]

dσ(M,J) =

{
8πJdJ/M2 (J < Jmax)

0 (J > Jmax)
, (6)
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where

Jmax =
bmaxM

2
= jn

(
M

MP

)n+2
n+1

(7)

with

jn =



 2nπ
n−3
2 Γ

(
n+3
2

)

(n+ 2)
[
1 +

(
n+2
2

)2]




1/(n+1)

,

MP =

(
(2π)n

8πG

)1/(n+2)

. (8)

It is observed that the differential cross section (6) lin-
early increases with the angular momentum. We expect
that this behavior is correct as the first approximation, so
that the black holes tend to be produced with larger an-
gular momenta. At the typical LHC energy M/MP = 5,
the value of Jmax is Jmax = 2.9, 4.5, . . . , 10, 12 for n =
1, 2, . . . , 6, 7, respectively. This means that the semi-
classical treatment of the angular momentum becomes
increasingly valid for large n.
Integrating the expression (6) simply gives

σ(M) = πb2max

= 4

[
1 +

(
n+ 2

2

)2
]−2/(n+1)

πrS(M)2

= F πrS(M)2. (9)

The form factor F [35] is summarized as

n 1 2 3 4 5 6 7

FNY 1.084 1.341 1.515 1.642 1.741 1.819 1.883

FOur 1.231 1.368 1.486 1.592 1.690 1.780 1.863

.

This result implies that we would underestimate the
production cross section of black holes if we did not take
the angular momentum into account and that it becomes
more significant for higher dimensions. We point out that
this effect has been often overlooked in the literature.

B. Rotating black ring

A higher-dimensional black hole can have various non-
trivial topology, and the uniqueness property of station-
ary black holes fails in five (and probably in higher) di-
mensions. The typical example in five dimensions has
been recently given by Emparan and Reall [32]. They
have explicitly provided a solution of the five-dimensional
vacuum Einstein equation, which represents the station-
ary rotating black ring (homeomorphic to S1 × S2). In
this case, the centrifugal force prevents the black ring
from collapsing. When the angular momentum is not
large enough, the black ring will collapse to the Kerr
black hole due to the gravitational attraction and some

effective tension of the ring source. In fact, this five di-
mensional black ring solution has the minimum possible
value of the angular momentum given by

Jmin = kBR

(
M

MP

)3/2

, (10)

where kBR = 0.282. On the other hand, we have the up-
per bound for the angular momentum of the black holes
produced by particle collisions:

Jmax = j1

(
M

MP

)3/2

, (11)

where j1 = 0.256. Since these numerical values are of the
same order, we cannot conclude the possibility of black
ring productions at colliders.
Now we consider the possibility of the higher di-

mensional black rings, which is homeomorphic to, say,
S1 × Sn+1. Corresponding Newtonian situation will be
the system of a rotating massive circle. For simplicity,
we just consider the gravitational attraction and the cen-
trifugal force of the massive circle and neglect the effect
of tension. Let ℓ, M and J be the radius, the mass and
the angular momentum of the massive circle. The the
minimum value of the angular momentum for exploding
black ring is estimated:

J & Jmin = kn

(
M

MP

)(n+2)/(n+1)

, (12)

where

kn = 2−
2n2+3n+7

2(n+1) π
(n+6)(n−1)

4(n+1)

[
Γ
(
n+2
2

)

n+ 1

]− n−1
2(n+1)

.(13)

Jmin for exploding black rings is one or two order(s) of
magnitude smaller than Jmax for collision limit when n is
large. Therefore we expect that the exploding black rings
are possibly produced at colliders if there are many extra
dimensions, though they will suffer from the black string
instability when they become sufficiently large thin rings.

III. RADIATIONS FROM ROTATING BLACK

HOLE

In this section, we study the Hawking radiation [18]
from the higher dimensional Kerr black hole [31]. The
Hawking radiation is thermal but not strictly black body
due to the frequency dependent greybody factor Γ, which
is identical to the absorption probability (by the hole) of
the corresponding mode [18, 25]. The quantity 1− Γ for
each mode can be computed from the solution (to the
wave equation of that mode) which has no outgoing flux
at the horizon as the ratio of the incoming and outgoing
flux at infinity.
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A. Brane field equations

We derive the wave equations of the brane modes us-
ing the induced four dimensional metric of the (4 + n)-
dimensional rotating black hole [31]. The wave equa-
tions can be understood as generalization of the Teukol-
sky equation [20, 22, 23, 24] to the higher dimensional
Kerr geometry. The derivation is shown in Appendix.
We present the brane field equations for massless spin

s field which are obtained from the metric (1) with the
standard decomposition

Φs = Rs(r)S(ϑ)e
−iωt+imϕ, (14)

utilizing the Newman-Penrose formalism [33]

1

sinϑ

d

dϑ

(
sinϑ

dS

dϑ

)
+ [(s− aω cosϑ)2

−(s cotϑ+m cscϑ)2 − s(s− 1) +A]S = 0,

(15)

∆−s d

dr

(
∆s+1 dR

dr

)

+

[
K2

∆
+ s

(
4iωr − i

∆,rrK

∆
+∆,rr −2

)

+ 2maω − a2ω2 −A

]
R = 0, (16)

where

K = (r2 + a2)ω −ma. (17)

The solution of eq. (15) is called spin-weighted
spheroidal harmonics sSlm (see e.g. ref. [23, 34]).

B. Hawking radiation and greybody factor

Since we have shown that massless brane field equa-
tions are separable into radial and angular parts, we may
write down the power spectrum of the Hawking radia-
tion [18] for each massless brane mode

dEs,l,m

dt dω dϕd cosϑ
=

ω

2π
sΓl,m

e
ω−mΩ

T ∓ 1
|sSlm|2 , (18)

where T and Ω are the Hawking temperature and the
angular velocity at the horizon, respectively given by

T =
(n+ 1) + (n− 1)a2∗

4π(1 + a2∗)rh
, Ω =

a∗
(1 + a2∗)rh

, (19)

and sΓl,m(rh, a;ω) is the greybody factor [18, 25] which
is identical to the absorption probability of the incoming
wave of the corresponding mode.

Approximately, the time dependence of M and J can
be determined by

− d

dt

(
M

J

)

=
1

2π

∑

s,l,m

gs

∫ ∞

0

dω
sΓl,m(rh, a;ω)

e(ω−mΩ)/T ∓ 1

(
ω

m

)
, (20)

where gs is the number of ‘massless’ degrees of freedom at
temperature T , namely the number of degrees of freedom
whose masses are smaller than T , with spin s. Therefore,
once we obtain the greybody factors, we completely de-
termine the Hawking radiation and the subsequent evo-
lution of the black hole up to the Planck phase, at which
the semi-classical description by the Hawking radiation
breaks down and a few quanta radiated is not predictable.

C. Greybody factors for Randall-Sundrum black

hole

We find analytic expression of the greybody factors for
n = 1 Randall-Sundrum black hole within the low fre-
quency expansion. Here we outline our procedure: First
we obtain the “near horizon” and “far field” solutions in
the corresponding limits; Then we match these two solu-
tions at the “overlapping region” in which both limits are
consistently satisfied; Finally we impose the “purely in-
going” boundary condition at the near horizon side and
then read the coefficients of “outgoing” and “ingoing”
modes at the far field side. The ratio of these two coef-
ficients can be translated into the absorption probability
of the mode, which is nothing but the greybody factor
itself.
First for convenience, we define dimensionless quanti-

ties

ξ =
r − rh
rh

, ω̃ = rhω, Q̃ =
ω −mΩ

2πT
. (21)

Matching the NH and FF solutions in the overlapping

region 1 + |Q̃| ≪ ξ ≪ 1/ω̃, we obtain

R∞ = Yine
−iω̃ξ

(
ξ

2

)−1

+ Youte
iω̃ξ

(
ξ

2

)−2s−1

, (22)

where

Yin

=
Γ(2l+ 1)Γ(2l + 2)

Γ(l − s+ 1)Γ(l + s+ 1)

Γ(1− s− iQ̃)

Γ(l + 1− iQ̃)
(−4iω̃)−l+s−1

+
Γ(−2l)Γ(−2l− 1)

Γ(−l − s)Γ(−l + s)

Γ(1− s− iQ̃)

Γ(−l − iQ̃)
(−4iω̃)l+s,

Yout

=
Γ(2l+ 1)Γ(2l+ 2)

[Γ(l − s+ 1)]2
Γ(1− s− iQ̃)

Γ(l + 1− iQ̃)
(4iω̃)−l−s−1



5

+
Γ(−2l)Γ(−2l− 1)

[Γ(−l − s)]2
Γ(1 − s− iQ̃)

Γ(−l − iQ̃)
(4iω̃)l−s. (23)

Finally, the greybody factor Γ (=the absorption prob-
ability) could be written as follows.

Γ = 1−
∣∣∣∣
YoutZout

YinZin

∣∣∣∣ = 1−
∣∣∣∣
1− C

1 + C

∣∣∣∣
2

, (24)

where

C =
(4iω̃)2l+1

4

(
(l + s)!(l − s)!

(2l)!(2l+ 1)!

)2 (
−iQ̃− l

)

2l+1
, (25)

with (α)n =
∏n

n′=1(α+ n′ − 1) being the Pochhammer’s
symbol.
For concreteness, we write down the explicit expansion

of eq. (24) up to O(ω̃6) terms

0Γ0,0 = 4ω̃2 − 8ω̃4 +O(ω̃6),

0Γ1,m =
4Q̃ω̃3

9

(
1 + Q̃2

)
+O(ω̃6),

0Γ2,m =
16Q̃ω̃5

2025

(
1 +

5Q̃2

4
+

Q̃4

4

)
+O(ω̃10),

1
2
Γ 1

2 ,m
= ω̃2

(
1 + 4Q̃2

)
− ω̃4

2

(
1 + 4Q̃2

)2
+O(ω̃6),

1
2
Γ 3

2 ,m
=

ω̃4

36

(
1 +

40Q̃2

9
+

16Q̃4

9

)
+O(ω̃8),

1Γ1,m =
16Q̃ω̃3

9

(
1 + Q̃2

)
+O(ω̃6),

1Γ2,m =
4Q̃ω̃5

225

(
1 +

5Q̃2

4
+

Q̃4

4

)
+O(ω̃10). (26)

Note that subleading terms in ω̃ are already neglected
when we obtain eq. (24) and the terms from these con-
tributions are not written nor included in eqs. (24) and
(26). We also note that the so-called s-wave dominance
is maximally violated for spinor and vector fields since
there are no l = 0 modes for them.

IV. SUMMARY

We have studied theoretical aspects of the rotating
black hole production and evaporation.

For production, we present an estimation of the geo-
metrical cross section up to unknown mass and angular
momentum loss in the balding phase. Our result of the
maximum impact parameter bmax is in good agreement
with the numerical result by Yoshino and Nambu when
the number of extra dimensions is n ≥ 1 (i.e. within
6.5% when n = 1 and 1.5% when n ≥ 2). Relying on this
agreement, we obtain the (differential) cross section for a
given mass and an angular momentum, which increases
linearly with the angular momentum up to the cut-off
value Jmax = bmaxM/2. This result shows that black
holes tend to be produced with large angular momenta.
We also studied the possibility of the black ring forma-
tion and find that it would possibly form when there are
many extra dimensions. For evaporation, we first derive
the master equation for brane fields for general spin and
for an arbitrary number of extra dimensions. We show
that the equations are separable into radial and angular
parts as the four-dimensional Teukolsky equations. From
these equations, we obtain the greybody factors for brane
fields with general spin for the five-dimensions (n = 1)
Kerr black hole within the low-frequency expansion. We
address several phenomenological implications of our re-
sults. The form factor of black hole production cross sec-
tion is larger in the higher dimensional spacetime. The
more precise determination of the radiation power is now
available. We have shown that the black holes are pro-
duced with large angular momenta and that the resul-
tant radiations will have strong angular dependence for
s = 1/2 and s = 1 modes which points perpendicular
to the beam axis while very small angular dependence is
expected for scalar mode. More quantitative estimation
will need the greybody factors for arbitrary frequency.
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