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We propose an extension of the supersymmetric standard model with right-handed neutrinos and a singlet
Higgs field, and study the neutrino masses in this model. The Majorana masses for the right-handed neutrinos
are generated around the supersymmetry breaking scale through the vacuum expectation value of the singlet
Higgs field. This model may induce spontaneousR-parity violation via the vacuum expectation value of the
right-handed sneutrino. In the case, the effective theory is similar to a bilinearR-parity violating model. There
are two sources for the neutrino masses: one is this bilinearR-parity breaking effect, and the other is the
ordinary seesaw effect between left- and right-handed neutrinos. Combining these two effects, the hierarchical
neutrino mass pattern arises even when the neutrino Yukawa matrices are not hierarchical. We acquire appro-
priate masses and mixings to explain both the solar and atmospheric neutrino oscillations.

PACS number~s!: 14.60.St, 11.30.Qc, 12.60.Jv, 14.60.Pq
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I. INTRODUCTION

Recent Super-Kamiokande data provide convincing e
dence for neutrino oscillations@1#. It strongly suggests the
existence of neutrino masses of at most a few eV. The s
dard explanation of such tiny neutrino masses is the see
mechanism@2#, in which one introduces right-handed singl
neutrinosNi . The standard model gauge group does not f
bid the Majorana massesMR between the right-handed neu
trinos Ni , which are usually placed near the unificatio
scale, sayMR;1014 GeV.

Bilinear R-parity violation in the supersymmetric model
another possible way of obtaining the neutrino masses@3#.
This model is the extension of the minimal supersymme
standard model~MSSM! @4# adding small bilinear terms
LiH2 to the superpotential. Originally the conservation ofR
parity was introduced to avoid proton decay, so that lep
and baryon number are conserved in the MSSM. T
R-parity breaking termsLiH2 violate lepton number conser
vation, leaving baryon number conserved. Therefore, n
trino masses are generated without introducing any rig
handed neutrinos. In this scenario, the neutrino masses
a characteristic structure. Only one generation of neutr
obtains mass at the tree level by mixing with the gaugin
~we refer to this as ‘‘gaugino seesaw’’!. Therefore, the
masses of the first and second generation of neutrinos
generated by radiative corrections. In this model it is rat
difficult to maintain the second generation neutrino mass
propriately large to account for the solar neutrino anom
by the Mikheyev-Smirnov-Wolfenstein~MSW! effect.

The origin of theR-parity violation may be naturally ex
plained by spontaneousR-parity breaking@5,6#. However, it
is not very easy to generate spontaneous symmetry brea
in the supersymmetric model in general. Namely, the ori
@a point where all the vacuum expectation values~VEV’s!
0556-2821/2000/61~11!/113001~9!/$15.00 61 1130
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are zero# is always the global minimum of the scalar pote
tial in the supersymmetric limit, and if we add the positiv
soft scalar mass-squared terms it still remains at least a l
minimum and in general tends to be the global minimu
~We recall that negative soft mass-squared terms for
charged-colored fields easily lead to unwanted charge
color breaking.! One way to get rid of this vacuum is radia
tive breaking@7#, where the radiative correction to the so
scalar mass-squared drives it negative even if it is positiv
the tree level. In this mechanism the origin does not rem
the local minimum. This is applied to the electroweak sy
metry breaking of the MSSM successfully. Another way is
introduce the large soft scalar trilinear couplings (A terms!
@8#. The origin remains a local minimum while there appea
the global minimum which is far from the origin due to th
effect of the largeA terms.

As mentioned above, when one considers the see
mechanism the right-handed Majorana massesMR are sup-
posed to lie near the unification scale. This is based on
assumption that at least one of the Dirac-type Yukawa c
plings f n is of order unity. However, there are no reasona
priori to expect f n;O(1). In fact, almost all the Yukawa
couplings in the standard model or the MSSM are mu
smaller than 1; the top Yukawa coupling is the on
exception.1 Therefore, it is interesting to pursue the possib
ity that the right-handed Majorana mass scaleMR is also low
enough to be spontaneously generated at the weak or su
symmetry breaking scale, while the Dirac-type Yukawa co
plings f n are small enough to give appropriate sees
masses of the left-handed neutrinosn.

1Also bottom and tau Yukawa couplings becomeO(1) in the
large tanb (v1!v2) region of the MSSM.
©2000 The American Physical Society01-1
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In this paper we propose a model where a singlet Hi
field S is added to the MSSM with right-handed neutrin
Ni . We consider the most general superpotential consis
with R parity and an overallZ3 symmetry which forbids an
explicit mH1H2 term, without assuming any extra glob
symmetry. In particular, we do not impose lepton numb
symmetry by hand, so that the singletS may couple to ordi-
nary Higgs fieldsH1 andH2, which means that them term is
spontaneously generated as well@9#.

Our model has an interesting parameter region where
and right-handed sneutrinos acquire VEV’s andR parity is
spontaneously broken. In the vacuum with brokenR parity,
the effective theory is similar to the bilinearR parity violat-
ing model. There are two sources for the left-handed n
trino massesmn in this case. One is the ordinary seesa
effect with right-handed neutrinosNi and the other is the
bilinear R-parity breaking effect.

Owing to the existence of these two effects, we can
plain the hierarchical neutrino mass structure naturally. T
seesaw mechanism with right-handed neutrinos prov
masses for all generations, while the effect of theR-parity
breaking provides mass only for one generation. Theref
one neutrino may be much heavier than the other two n
trinos.

This paper is organized as follows: In Sec. II, we analy
the scalar potential of our model. In Sec. III, we investiga
the neutrino masses with VEV’s considered in Sec. II. S
IV is the summary of this paper. The detailed calculations
the vacua of the simplified potential are shown in the app
dix.

II. THE MODEL AND ITS VACUA

We add the singlet fieldS to the MSSM with right-handed
neutrinosNi . We assignR parity even forSand odd forNi ,
io
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as usual. The most general superpotential consistent
R-parity conservation~up to the appropriate field redefin
tion! is

W5WMSSM1WN,S ~1!

where

WMSSM5(
i

f i
d~H1Qi !Di1(

i , j
f i j

u ~QiH2!U j

1(
i

f i
e~H1Li !Ei , ~2!

WN,S5(
i , j

f i j
n ~LiH2!Nj1lH~H1H2!S1(

i

lNi

2
Ni

2S

1
lS

3!
S3, ~3!

i , j are generation indices and summed from 1 to 3. T
parametersf i

d , f i
e , lNi , lH , andlS can be taken real and

positive while f i j
u and f i j

n are in general complex matrices
We have imposed an overallZ3 symmetry in which all the
superfields have the same charge, as is done in the nex
minimal supersymmetric standard model to generate thm
term spontaneously@9#.2

The scalar potential corresponding to Eq.~1! is

V5VF1VD1Vsoft, ~4!

where
VF5 (
F5D,U,Q

U]WMSSM

]F U2

1(
i

u f i
e~H1Li !u21(

i
U]WMSSM

]Li
1(

j
f i j

n H2NjU2

1U]WMSSM

]H1
1lHH2SU2

1U]WMSSM

]H2
1(

i , j
f i j

n LiNj1lHH1SU2

1(
j
U(

i
f i j

n ~LiH2!1lN jNjSU2

1UlH~H1H2!1(
i

lNi

2
Ni

21
lS

2
S2U2

, ~5!

Vsoft5Vsoft
MSSM1S (

i , j
An f i j

n ~LiH2!Nj1AHlH~H1H2!S1H.c.D
1F(

i
m2uNi u21m2uSu21H AmS (

i

lNi

2
SNi

21
lS

3!
S3D 1H.c.J G . ~6!
glets

ci-
The termVsoft
MSSM represents the MSSM soft terms.~Note that

the B term BmH1H2 is not included.! We have taken the
common soft breaking parametersm and A for the singlet
fieldsNi ,S in Eq. ~6!, motivated by the supergravity scenar
@11#. That is, if we set the common trilinear couplingA and
universal soft massm at the Planck scale, theA parameters
and soft breaking masses composed purely of gauge sin

2There might be the cosmological domain-wall problem asso
ated with the spontaneousZ3 symmetry breaking. This may be
evaded by, e.g., nonrenormalizable terms or inflation@10#.
1-2
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NEUTRINO MASSES IN THE SUPERSYMMETRIC . . . PHYSICAL REVIEW D61 113001
Ni ,S @namely, the terms inside the square brackets in
~6!# are relatively insensitive to RGE running and so th
values at the weak scale are approximately the same a
values at the Planck scale. In contrast, the MSSM soft te
run in the usual way. The termVD in Eq. ~4! represents the
MSSM D terms whose neutral components may be written

VD
neutral5

g1
21g2

2

8 S 2uH1
0u21uH2

0u22(
i

uñ i u2D 2

. ~7!

Note that the Majorana masses of right-handed neutr
MR are naturally induced by the VEV ofS which is around
the supersymmetry breaking scale and not near the uni
tion scale. This is because we have imposed theZ3 symme-
try, which forbids the explicit Majorana mass terms betwe
the right-handed neutrinos, to generate them term of the
Higgs fieldsH1 and H2 spontaneously by the VEV ofS.
Since the Majorana massesMR are generated at the order
the supersymmetry breaking scale, the Dirac-type Yuka
couplingsf n must be below 1026, which is around the mag
nitude of electron, up-quark, or down-quark Yukawa co
plings, in order to generate tiny neutrino massesmn&eV.

The VEV’s are determined by the minimization of th
potential ~4!. The right-handed sneutrinoN may acquire a
VEV along with theS, i.e., R parity may be spontaneousl
broken. In this case, the bilinearR-parity violating terms of
the form f n^N&LiH2 arise as new sources of neutrino mas
mn . Notice that the VEV for the right-handed sneutrinoN
does not induce spontaneous lepton number violation
fact, neither lepton number nor any other global symme
can be assigned to the superpotential~3!.3 Therefore, an un-
wanted Nambu-Goldstone boson accompanied with spo
neously broken global symmetry is absent even if eitherSor
N acquires a VEV.

To gain more insight into the superpotential~3!, we show
the three lepton number restoring limits. The first is the lim
f n→0. We assignL50 to bothSandNi . This model forms
the NMSSM @9# with extra singlet fieldsNi . The second
limit is lN→0. This is also the NMSSM with right-hande
neutrinos whose lepton number assignments areL521 for
N and L50 for S. The third islH ,lS→0. This model is
called the singlet Majoron model, whereL521 for Ni and
L52 for S @6#. In the singlet Majoron model, lepton numb
andR parity are broken spontaneously by the VEV’s of theS
andN.

Now we show the mechanism which generates the VE
for S andN. As mentioned in the previous section, it is n
very easy to generate the VEV’s in the supersymme
model. We use the mechanism which requires a largeA term
@8#. Let us briefly review this mechanism by using a simp
model. Consider a superpotential

W5
l

3
F3. ~8!

3The R symmetry can be assigned as the charge 2/3 for all su
fields, but it is broken explicitly by the soft supersymmetry brea
ing terms.
11300
q.
r
the
s

s

s

a-

n

a

-

s

In
y

a-

t

s

c

Then the scalar potential including the soft terms is given

V5ulf2u21S A

3
mlf31H.c.D1umu2ufu2. ~9!

For simplicity, we takel, A, m, andf to be real. Rescaling
the field asx5(l/m)f, the potential becomes

V5
m4

l2
x2S x21

2A

3
x11D . ~10!

The global minimum is at the originx50 for uAu,3, or at
the pointxÞ0 for uAu.3. WhenA.3, the VEV and poten-
tial are given by

^f&52
m

l
C1 , ~11!

Vmin52
m4

3l2
C1

2 ~C1
2 21!, ~12!

where

C65
A6AA228

4
. ~13!

This situation is shown in Fig. 1 schematically. It is intere
ing that both the VEV and the depth of the potential depe
on the inverse ofl. Therefore, we may obtain the large
VEV and the deeper minimum for smaller values ofl. Origi-
nally, efforts have been made to apply this mechanism to
electroweak symmetry breaking of the MSSM in the sup
gravity scenario, and it has turned out to be difficult@8#. The
reason is that the smallest Yukawa couplingf e, f u, or f d

produces a deeper minimum~where the electric charge i
broken! than the desirable one, resulting in the breaking
the electric charge symmetry. In contrast, we apply t
mechanism toR-parity breaking, leaving the explanation o
electroweak symmetry breaking for, say, the radiative bre
ing.

r-
-

FIG. 1. The schematic figure of the vacuum. The solid li
corresponds toA54 and the dotted line corresponds toA52.
1-3
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Let us analyze the neutral components of the potential~4!,
and evaluate the VEV for the singlet fieldsS and N. As an
illustration, we first treat its simplified version analyticall
ignoring the f n and lH terms. Thef n terms can be safely
neglected. If we also ignore thelH term, the singletsS and
Ni decouple from the other fields and the potential is sim
enough to be treated analytically. We includelH term as a
perturbation later.4 The relevant superpotential is given by

W5
lNi

2
SNi

21
lS

3!
S3. ~14!

The scalar potential is written as

V5(
i

ulNiSNi u21U(
i

lNi

2
Ni

21
lS

2
S2U2

1(
i

m2uNi u2

1m2uSu21H AmS (
i

lNi

2
SNi

21
lS

3!
S3D 1H.c.J . ~15!

This potential has the same structure as Eq.~9! and theSand
N fields can acquire VEV’s if theA terms are large enough

For simplicity, we do not considerCP-violating effects,
that is, we assume that all the parameters and VEV’s are
The stationary conditions are given by

]V

]Ni
U

vacuum

5lNi
2s2ni1S (

j

lN j

2
nj

21
lS

2
s2D lNini

1AmlNisni1m2ni50, ~16!

]V

]SU
vacuum

5(
j

lNj
2nj

2s1S (
j

lN j

2
nj

21
lS

2
s2D lSs

1(
j

AmlN j

2
nj

21
AmlS

2
s21m2s50,

~17!

where the VEV’s are parametrized as

^S&5s, ^Ni&5ni . ~18!

If ni is nonzero, Eq.~16! reduces to

lNi
2s21lNij1m250, ~19!

where

j5(
j

lN j

2
nj

21
lS

2
s21Ams. ~20!

Obviously, Eq.~19! cannot be simultaneously satisfied for a
i 51,2,3 with nonzero values ofni , whenlNi are arbitrary.
Condition~19! does not change if one includes thelH term.
This means that only one of the threeNi can acquire a VEV

4We solve the full equations~21! and~22! when we calculate the
VEV’s for S andN numerically in the next section.
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and the other two VEV’s remain zero in our basis.5 We
choose parameters such thatn3 is nonzero. We will writen3
andlN3 asn andlN , respectively, when it is clear from th
context.

Let us classify the global minimum of the scalar potent
~15!. There are three types depending on the parameteA
andk[lS /lN . ~We treat them in more detail in the Appen
dix.!

When uAu,3, the global minimum is at the originn5s
50. ~This corresponds to Solution 1 in the Appendix.! This
vacuum is unacceptable, becauses;0 means that the
Higgsino bosons are nearly masslessm;0. In addition, Ma-
jorana masses of the right-handed neutrinos also become
small. Therefore the Yukawa couplingsf n must be extremely
small to give proper seesaw masses.

When uAu.3, there are two possibilities. One isn50,s
Þ0. ~This corresponds to Solution 2 in the Appendix.! This
is uninteresting, because in this case the right-han
sneutrinoN does not have a VEV, i.e.,R parity is unbroken.
This amounts to just changing the scales of the ordin
seesaw mechanism. The other isnÞ0,sÞ0. ~This corre-
sponds to Solution 3 in the Appendix.! This can be the globa
minimum for some range of values ofk @that is given by Eq.
~A9! in the Appendix#. For example whenuAu54, this range
corresponds to 1.8&k&6.

Next, we consider whether the above situation rema
the same when we add thelHS(H1H2) term. Equations~16!
and ~17! are changed to

]V

]N U
vacuum

5Eq. ~16!1lHlNv1v2n50, ~21!

]V

]SU
vacuum

5Eq. ~17!1~lH
2 v2

21lH
2 v1

21lHlSv1v2!s

1AHmlHv1v250, ~22!

where v15^H1
0&,v25^H2

0&. The f n terms are neglected
again. One can see from Eqs.~21! and~22! that the solution
corresponding to each case remains the global minimum@for
v1

21v2
2.(174 GeV)2#, if lH&1 andm*100 GeV. We have

also confirmed this in the numerical calculations.
If one setsm extremely small or adds the term with larg

lH (*1), the solutions withsÞ0 will not correspond to be
the global minimum anymore. The global minimum will the
be the unacceptable cases50.

We note that even if we assume commonA terms at the
Planck scale as in the supergravity scenario, it is easy
make theA parameters for the charged fields small enou
(uAchargedu,3) to avoid the charge breaking minima, whi
maintains theA parameters for the neutral fieldsS and N
large enough (uAu.3). This is because onlyAchargedreceives
the radiative corrections from gaugino loops running fro
the Planck to weak scale.

5There are negligibleO( f n2) corrections once one includesf n

terms.
1-4
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III. THE NEUTRINO MASSES

We investigate the neutrino masses generated by a se
mechanism in which left-handed neutrinos mix with both t
right-handed neutrinos and neutralinos. The left-han
sneutrinos acquire VEV’s induced by a VEV of the righ
handed sneutrino. This is because the nonzero VEV ofN3
introduces the bilinearR-parity violating couplings

f i3
n n3~LiH2!, ~23!

such that the VEV ofH2
0 induces linear terms for the left

handed sneutrinos@3#. The stationary conditions with respe
to left-handed sneutrinos are given by

]V

]n ĩ
U

vacuum

5~ f j 3
n ujn31lHsv1! f i3

n n3

1~ f j 3
n ujv21lNsn3! f i3

n v21 (
k51,2

~ f jk
n ujv2f ik

n v2!

1
1

4
~g1

21g2
2!

3S (
j

uj
21v1

22v2
2Dui1Anm fi3

n v2n31mL
2ui

50, ~24!

whereui are the VEV’s of the left-handed sneutrinos. Igno
ing the terms of the second order inf n, we can easily solve
Eq. ~24! as

ui;2 f i3
n n3H lHv1s1lNv2s1Anmv2

1

4
~g1

21g2
2!~v1

22v2
2!1mL

2J . ~25!

Note thatu is O( f n) multiplied by parameters of the order o
the weak scale. It is always possible to change the bas
the lepton doublets as

ui85Oi j uj , ~26!

so that onlyu38 takes nonzero valueu385u. By this rotation,
f n changes as

FIG. 2. The Feynman graph for neutrino masses at tree leve~a!
corresponds to the usual seesaw.~b! corresponds to the gaugin
seesaw.
11300
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f n
i j8 5Oik f k j

n

5S f n
118 f n

128 0

f n
218 f n

228 0

f n
318 f n

328 f n

D , ~27!

where

f n[ f n
338 5O3kf k3

n 5Af 13
n 21 f 23

n 21 f 33
n 2. ~28!

Hereafter, we take this base and drop8 from f n.
In our model, neutrinos mix with neutralinos. The tre

level mass matrix for neutrino-neutralino field
(n i ,cN j ,cS ,cH

1
0,cH

2
0,B̃0,W̃0) is given by6

S 0333 MD

M D
T MR

D , ~29!

where

6We have omitted the mass termf 3 j
n u3cN jcH

2
0, because this term

is second order inf n and contributes to the light neutrino massesmn

at higher orders.~Other terms contribute up to second order.!

FIG. 3. The three neutrino masses vs the soft scalar massm of
gauge singlets in the case ofnÞ0 ~corresponding to Solution 3 in
the Appendix!. The dashed line shows the case of zero gauge c
plings, i.e., the case where the gaugino seesaw effect is igno
The dotted line represents the ordinary seesaw effect between
left- and right-handed neutrinos. The values of the parame
are f 1

n5 f 2
n5 f 3

n5531027, lH50.3, lN150.4, lN250.3, lN3

50.2, lS50.6, andA524. The gaugino mass values areM2

52M151 TeV.
1-5
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MD5S f i j 8
n v2 , 0331 , 0331 , d i3f nn, 2d i3

g1u

A2
, d i3

g2u

A2
D , ~30!

MR5S d j j 8lN js d j 3lNn 0331 0331 0331 0331

d3 j 8lNn lSs lHv2 lHv1 0 0

0133 lHv2 0 lHs 2g1v1 /A2 g2v1 /A2

0133 lHv1 lHs 0 g1v2 /A2 2g2v2 /A2

0133 0 2g1v1 /A2 g1v2 /A2 M1 0

0133 0 g2v1 /A2 2g2v2 /A2 0 M2

D ,

~31!

and 0i 3 j is i 3 j submatrix whose components are all zero. Higgsino massm, Majorana masses of right-handed neutrinosMR ,
and Dirac massesmD between left- and right-handed neutrinos are, respectively, given by
by

-
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e

q.
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-
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m[lHs, ~32!

MRi[lNis, ~33!

mDi j [ f i j
n v2 . ~34!

The mass matrix for the three light neutrinos is given

mn i j 52MDM R
21M D

T

52 (
k51

3
mDikmD jk

MRk
2d i3d j 3F u2

2M
1

f nnuv1

Mm

3S 12
lHv2 sin 2b

X
1

2lHv2
2 tanb

X D
1

~ f nn!2

m S v1
2

2Mm
2

lHv4sin2 2b

MmX
1

4lHv2
2

X D G
3H 12

v2

2Mm S sin 2b1
lHv2

X
cos2 2b D J 21

, ~35!

where

X[lSs22lNn212lHv1v2 , ~36!

the ‘‘reduced’’ gaugino mass parameterM is defined by

1

M
5

g1
2

M1
1

g2
2

M2
, ~37!

and v2[v1
21v2

2.(174 GeV)2. We have taken the param
etrization v15v cosb, v25v sinb which is justified since
ui!v1 ,v2.

Before presenting the numerical results, we provide qu
tative explanations taking two limits in Eq.~35!. The first
term 2mDikmD jk /MRk in Eq. ~35! comes from the ordinary
seesaw effect between left- and right-handed neutrinos
shown in Fig. 2~a!. We denote this as ‘‘usual seesaw.’’ Th
second term in Eq.~35! is characteristic of our model.

In the limit s→` andv→0, Eq. ~35! reduces to
11300
i-

as

mn i j 52d i3d j 3

u2

2M
, ~38!

which is simply the first term in the square bracket in E
~35!. This comes from the ‘‘gaugino seesaw’’ effect show
in Fig. 2~b!. The neutrino mass generation through t
gaugino seesaw effect is characteristic of a bilinearR-parity
violating model@3#. @As mentioned, our model has the effe
tive bilinearR-parity violating coupling~23!.#

If we take the limitM→`, Eq. ~35! becomes

mn i j 52 (
k51

3
mDikmD jk

MRk
2d i3d j 3

~ f nn!2

m

4lHv2
2

X
. ~39!

The first term in Eq.~39! is just the usual seesaw mass ter
The second term in Eq.~39! comes from the ‘‘Higgsino see
saw’’ effect via the Dirac massf nn which mixes Higgsino
cH

2
0 and left-handed neutrino of third generation, whi

originates from the effective bilinearR-parity breaking cou-
pling ~23!. The origin of this second term in Eq.~39! is the
last term in the square bracket in Eq.~35!. The Higgsino
seesaw effect is absent in the bilinearR-parity violating
model. The difference is that if we rotate (Li ,H1) to elimi-
nate the bilinear terms~23!, there appear (LiH2)S terms
which are absent in the bilinearR-parity violating model.

The interesting point here is that the neutrino mass ma
~39! is purely given by the usual seesaw effect except for
3-3 element. The gaugino and Higgsino seesaw toge
work only for one generation, because we can always ro
the basis as in Eq.~26!. Thus the hierarchical neutrino mas
structure arises even if the Dirac-type Yukawa couplingsf n

are all the same order of magnitude.
Now we show our numerical result in Fig. 3 using th

parameters explained as follows. In the calculation, we tr
the VEV’s of the Higgs fieldsv1 andv2 as inputs such tha
v15v cosb, v25v sinb, wherev.174 GeV and tanb510.
1-6
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~This can be realized by solving the stationary conditions
the scalar potential with respect toH1

0 and H2
0 for the soft

scalar massesmH1
andmH2

.! We search for the global mini
mum of the potential~4! to obtain the VEV’s forS and N
using Eqs.~21! and ~22!, and then evaluate the neutrin
masses from the eigenvalues of the mass matrix~29!. We
input the soft supersymmetry breaking parameters as

A524,

mL
25m210.5M0

2 , ~40!

M252M150.8M051 TeV,

motivated by the supergravity scenario.~The overall form of
Fig. 3 does not change if we set another inputs for soft bre
ing e.g. mL

25m2.! We take the following values for the
Yukawa couplings:

lN150.4, lN250.3, lN350.2,

lH50.3, lS50.6,

f i j
n 5S 1 0 0

0 1/A2 1/A2

0 21/A2 1/A2
D

3S 531027 0 0

0 531027 0

0 0 531027
D . ~41!

The above parameters are chosen such that we obtain
global minimum with spontaneousR-parity violation nÞ0
~corresponding to Solution 3 in the Appendix!, and that we
may account for the solar neutrino by the MSW effect@12#
betweenne andnm and the atmospheric neutrino by mixin
betweennm andnt . With this choice, the mass of the thir
generation;531022 eV accounts for the atmospheric ne
trino oscillations, and the mass of the second genera
;331023 eV accounts for the solar neutrino oscillations

We can see in Fig. 3 that the third generation is subs
tially heavier than the other two due to the Higgsino a
gaugino seesaw effect. The dotted line represents the u
seesaw effect for the third generationmD3

2/MR3. The dashed
line represents the Higgsino seesaw effect@the second term
in Eq. ~39!#. We can see that in the largem region, the
gaugino seesaw effect shown in Eq.~38! becomes dominan
for the third generation. The reason is thats andn are both
proportional tom @see Eq.~A3! in the Appendix#; hence we
can show from Eqs.~32! and ~33! that the usual and
Higgsino seesaw effects~39! are inversely proportional tom,
so that they are less significant in the largem region.

Let us now discuss the neutrino mixing. The neutri
mixing matrix U diagonalizes themn shown in Eq.~35!:

UTmnU5diag~mn1 ,mn2 ,mn3!. ~42!

At first sight, it might seem difficult to maintain large mixin
between the second and third generation as required t
11300
f

k-

the

n

n-

ual

fit

atmospheric neutrino data, becausemn is hierarchical
~namely 3-3 element is largest!. However, the observable
mixing matrix @13# in the neutrino oscillation experiment i
not U but

OTU, ~43!

whereO is the arbitrary mixing matrix appearing in Eq.~27!,
determined by the free parametersf 13

n , f 23
n , and f 33

n in the
original basis of Eq.~26!. Therefore, we may obtain suffi
ciently large mixing angle~s! to account for the atmospheri
and/or solar neutrino oscillation~s!.

IV. SUMMARY

We have studied the supersymmetric standard model w
right-handed neutrinosNi and a singlet fieldS, without as-
suming extra symmetries such as lepton number. The M
rana masses of the right-handed neutrinos are spontane
induced around the TeV region by the VEV of the sing
field S, which is generated by the effect of the largeA term.
The right-handed sneutrinoN may acquire a VEV as well,
leading to spontaneousR-parity violation. In this case, the
effective theory is similar to a bilinearR-parity violating
model.

There are two sources for the neutrino masses. One is
‘‘usual seesaw’’ mechanism between left- and right-hand
neutrinos. The other is the bilinearR-parity violating effect
coming from the termsf i3

n nLiH2.
The usual seesaw contributes to all the elements of

neutrino mass matrixmn i j , which generates suitable mas
differences for the solar neutrino oscillation due to the MS
effect. The mass difference appropriate for the atmosph
neutrino oscillation is obtained by the bilinearR-parity
breaking effect which contributes only to the third gene
tion. The hierarchical neutrino mass structure naturally ari
even if one sets all the neutrino Yukawa couplingsf n to be
of the same order. We may obtain suitable mixing angles
both the atmospheric and solar neutrinos.
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APPENDIX: THE VACUA OF THE SIMPLIFIED
POTENTIAL

We investigate the vacua of the scalar potential~15!. The
solutions of the stationary conditions~16! and ~17! may be
classified into four types:

Solution 1:

ni5s50. ~A1!
1-7
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Solution 2:

ni50, s52
2m

lS
C6 . ~A2!

Solution 3:

n25
m2

lN
2 H A2k

~11k!2
22J , s52

Am

lN

1

11k
. ~A3!

Solution 4:

n25
m2

lN
2

C6
2 ~22k!, s52

m

lN
C6 , ~A4!

wherek5lS /lN ~note thatk.0 in our base!. The value of
the potential~15! at each solution is, respectively,

V150, ~A5!

V2
652

4

3

m4

lS
2

C6
2 ~C6

2 21!, ~A6!

V352
m4

lN
2 H A4k

3~k11!3
2

A2

k11
11J , ~A7!

V4
652

m4

lN
2

C6
2 ~C6

2 21!S 12
k

3D . ~A8!

WhenuAu,3, solution 1 becomes the global minimum of th
potential~15!. WhenuAu.3, Solution 3 becomes the globa
minimum if

1

6C1
2 S 212C1

2 1
8•21/3C1

4

f
121/3f D ,k,2C1

2 , ~A9!

where

f 5$2123 C1
2 120C1

6 1~112 C1
2 !

3A112 C1
2 23 C1

4 236C1
6 136C1

8 %1/3, ~A10!
-

d

11300
otherwise Solution 2 becomes the global minimum. There
no region where Solution 4 becomes the global minimu
The reason is as follows. We look for the parameter reg
that realizesV4,V1 ,V2 ,V3. To haveV4,V1 andn2.0, we
needC6

2 21.0 ~which is equivalent touAu.3). UsingC6
2

21.0, the conditionV4,V2 reads (k22)2(k11),0. This
cannot be maintained for allk.0. That is, Solution 4 is not
global minimum.

Let us derive the condition~A9! for Solution 3. We con-
sider the caseA.0 because the extension to theA,0 case
is trivial. The condition forn2.0 is

2A2,A, ~A11!

2C2
2 ,k,2C1

2 . ~A12!

The global minimum condition is given by

V3,V1 when 2A2,A,3, ~A13!

V3,V2 when 3,A. ~A14!

WhenA,3 we rewrite the condition~A13! using Eqs.~A5!
and ~A7! such that

k.
1

3
$A2231~9A42A6!1/3%.2C1

2 , ~A15!

which is inconsistent with Eq.~A12!. Therefore, it is not
Solution 3 but Solution 1 which represents the global mi
mum of the potential in the case ofA,3. WhenA.3, con-
dition ~A9! follows from Eqs.~A6!, ~A7!, and ~A14!. Con-
dition ~A9! is compatible with condition~A12!, and we may
find nonzero solutions~A3! for n ands. As mentioned below
Eq. ~19!, only one of the threeNi may acquire a VEV. We
isolate it by comparing the value ofV3 for eachlNi . (V3
takes its minimum value whenk5A21. Therefore, if
k1 ,k2 ,k3.uAu21, the right-handed sneutrino that acquir
the VEV is the one with the smallestlNi .)
le,

y
C
y,
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