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Abstract

We propose a minimal model that can explain the electroweak scale, neutrino masses,
Dark Matter (DM), and successful inflation all at once based on the multicritical-point
principle (MPP). The model has two singlet scalar fields that realize an analogue of the
Coleman-Weinberg mechanism, in addition to the Standard Model with heavy Majorana
right-handed neutrinos. By assuming a Z2 symmetry, one of the scalars becomes a DM
candidate whose property is almost the same as the minimal Higgs-portal scalar DM.
In this model, the MPP can naturally realize a saddle point in the Higgs potential at
high energy scales. By the renormalization-group analysis, we study the critical Higgs
inflation with non-minimal coupling ξ|H|2R that utilizes the saddle point of the Higgs
potential. We find that it is possible to realize successful inflation even for ξ = 25 and
that the heaviest right-handed neutrino is predicted to have a mass around 1014 GeV to
meet the current cosmological observations. Such a small value of ξ can be realized by
the Higgs-portal coupling λSH ' 0.32 and the vacuum expectation value of the additional
neutral scalar 〈φ〉 ' 2.7 TeV, which correspond to the dark matter mass 2.0 TeV, its
spin-independent cross section 1.8 × 10−9 pb, and the mass of additional neutral scalar
190 GeV.
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1 Introduction

The observed Higgs mass supports the assumption that the Standard Model (SM) is not
much altered up to the Planck scale. More precisely, the critical value of the top-quark
pole mass is about mpole

t,critical ' 171.4 GeV [1] for the theoretical border between stability
and instability (or metastability) of the effective Higgs potential for the observed Higgs mass
'125 GeV; see also Refs. [2, 3, 4].1 This critical value of the top pole mass is consistent at

the 1.4σ level with the latest combination of the experimental results mpole
t = 172.4 ± 0.7

GeV [5]. Surprisingly, the degenerate minimum of the Higgs potential at the critical top mass
coincides with the Planck scale, and such a behavior of the potential has a lot of implications
to high energy physics and cosmology. This interesting behavior of the Higgs potential can
be understood by the multicritical-point principle (MPP) [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ?]
(see also Refs. [16, 17]) that “coupling constants that are relevant at low energies are tuned
to a multicritical point around which the vacuum structure drastically changes when they
are varied.” We note that existence of a saddle-point around the Planck scale, rather than a
degenerate vacua, is another possible form of multicriticality. This fact is used in the critical
Higgs inflation [18, 19, 1, 20, 21] explained below.

Besides such interesting behavior of the Higgs potential, there are many mysteries and
problems in particle physics and cosmology. For example, we have not yet understood the
origin of electroweak (EW) scale v = 246 GeV, which is hugely small compared to the Planck
or string scale 1018 GeV at which people believe that there must exist an unified theory which
includes quantum gravity. Further, the Majorana-mass scale for the right-handed neutrinos
is unknown in the SM with the seesaw mechanism [22, 23, 24, 25, 26]. Moreover, the recent
observations in cosmology, including that of the cosmic microwave background (CMB), have
established the existence of (cold) dark matter (DM). It motivates us to consider a new
particle whose interactions with the SM particles are relatively weak.

In addition, the CMB fluctuations may also provide hints for further new physics since
they are seeded at high energy scales during inflation. Current observation is consistent
with single-field inflation models, among which the Higgs inflation provides one of the best
fits [27, 28, 29, 30]. In particular, the critical Higgs inflation is inspired by the possible
existence of the saddle point around the Planck scale in the MPP, which helps to flatten
the Higgs potential and allows rather small value of the non-minimal coupling ξ = O(10) in
ξ|H|2R. (The not-so-large coupling is favorable from unitarity [31, 32, 33, 34, 35].)

In this paper, we consider the most economical model that can simultaneously explain all
the above issues: the critical Higgs inflation, neutrino masses, EW scale, and DM. The model
consists of two additional real singlet scalar fields and the SM with the right-handed neutrinos.
As a result, we manage to predict the parameters in a well determined narrow region by taking
into account the constraints from the DM relic abundance, its direct detection experiments,
the CMB fluctuations, and the latest LHC data, while keeping the perturbativity up to the
Planck scale. We find that the Higgs-portal coupling and the vacuum expectation value of
the additional neutral scalar are fixed to be λSH ' 0.32 and 〈φ〉 ' 2.7 TeV, resulting in the
dark matter mass 2.0 TeV, its spin-independent cross section 1.8× 10−9 pb, and the mass of
additional neutral scalar 190 GeV.

The motive behind this model is as follows. Ifmpole
t > mpole

t,critical, the instability of the Higgs

1With the current central value mH = 125.1 ± 0.1 GeV [5], the critical top mass becomes mpole
t,critical '

171.2 GeV [4].
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potential requires additional positive contributions to the renormalization group (RG) of the
Higgs quartic coupling λH . The simplest possibility is to introduce a real scalar field S that
couples to the SM Higgs doublet H via a quartic interaction λSH |H|2S2. (This is nothing but
the Higgs-portal DM model [36, 37, 38, 39].) However, such an extension could yield too large
a tensor-to-scalar ratio of the CMB in the (critical) Higgs inflation, because of the raised Higgs
potential at high scales; see e.g. [40, 21]. We can resolve this issue by introducing additional
superheavy fermions that lowers the Higgs potential at higher scales, while keeping the above
mentioned positive contribution from the scalar at lower scales. Therefore, it is reasonable
to assume a high-scale seesaw in which right-handed neutrinos have large Majorana masses
MR and large Yukawa couplings yν . In fact, it is possible to maintain the saddle point of the
Higgs potential at high energy scales in the existence of new scalar field(s) when MR ∼ 1014

GeV [21]. This is also one of the interesting predictions of the MPP.
So far, the MPP has not explained the origin of the EW scale. In fact, we may do so as

follows. It is known that the Coleman-Weinberg (CW) mechanism [41] can naturally explain
the hierarchy between the EW and Planck scales through the dimensional transmutation.
Important assumption behind the CW mechanism is that the renormalized mass-squared
parameter vanishes at the origin of the scalar field space. This assumption is called the
classical scale invariance (CSI) [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54].2 The CSI can
be naturally understood as one of the possible multicriticalities in the MPP [59, 60]. From
this MPP point of view, the simplest realization of the dimensional transmutation is achieved
by only two real singlet scalar fields, one of which is S mentioned above [59, 60].

Although we will focus on a specific model proposed in [59, 60] (namely only the CP
2-2 among various multicritical points in the parameter space) in the following, the analysis
of Higgs inflation does not much depend on the details of the model because only the scalar
coupling λSH and the neutrino Yukawa yν play important roles to determine the behaviours of
the Higgs potential at high energy scales. In this sense, the same analysis is easily applicable
to similar extensions of the SM.

The organization of the paper is as follows. In Sec. 2, we briefly explain the minimal model
of dimensional transmutation [59, 60] extended with right-handed neutrinos and study the
RG. In Sec. 3, we study the saddle point of the Higgs potential at high scales. In Sec. 4, we
discuss the critical Higgs inflation. In Sec. 5, we show the method and results for our numerical
prediction for the inflationary observables. Summary and discussion are given in Sec. 6. In
Appendix A, we list the two-loop renormalization group equations (RGEs). In Appendix B,
we summarize basic results for a general single-field slow-roll inflation. In Appendix C, we
summarize basic results for the ordinary (non-critical) Higgs inflation. In Appendix D, we
show analytic results of expansion around the saddle point.

2 Model

In this section, we introduce the minimal model for the EW scale, neutrino masses, DM and
the critical Higgs inflation. The model is based on [59, 60] whose scalar sector contains two
additional real singlet scalars S and φ. We also take into account heavy Majorana right-
handed neutrinos νiR with three generations. In order to make S a DM candidate, we impose
the Z2 symmetry S → −S, with all the other fields being invariant.

2In Refs. [55, 56], the bare Higgs mass too is required to vanish; see also Ref. [57, 58] for the discussion on
bare mass in the SM.
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Among the various critical points analyzed so far, we take the CP 2-2 defined in Ref. [60]
that has two saddle points in the effective potential, because the widest parameter region is
allowed by the constraints considered. The Lagrangian is3

L = LSM −
1

2
(∂µφ)2 − 1

2
(∂µS)2 − λH(H†H)2 −

λφ
4!
φ4 −

λφS
4
φ2S2 − λS

4!
S4 +

λφH
2
φ2(H†H)

− λSH
2
S2(H†H)−

µφ
3!
φ3 +

1

2

3∑
i=1

νRiγ
µi∂µνRi −

1

2

3∑
i=1

MRiνRicνRi

−
3∑

i,j=1

(
yνijLiH

cνRj +
yφij
2
φ νRicνRj + h.c

)
, (1)

where LSM is the SM Lagrangian without the Higgs potential and without the right-handed
neutrinos, and Hc ≡ iσ2H

∗. The dimensionful parameter µφ is fixed by others at the CP 2-2.
Here, λH is the Higgs quartic coupling in the mass-independent scheme. Hereafter, we use
λ for the one in the theory without the heavy neutrino after its decoupling; see Eq. (18) for
their relation.

For simplicity, we will make the following three assumptions. First, we take λS to be
zero at the EW scale since it is irrelevant for our discussion.4 Second, we assume that the
Majorana Yukawa couplings yφij are not large and do not affect the other RG runnings.5 Third,
we assume that Majorana masses are all degenerate each other, MR1 = MR2 = MR3 = MR,
and neglect the mixing in the neutrino Dirac Yukawa couplings, i.e., yνij = yνiδij . At the
leading order of M−1

R , the neutrino mass matrix becomes

(mν)ij =
v2

2MR
δijy

2
νi. (2)

We call the number of “heavier active neutrinos” nν , namely the degeneracy of the largest yνi:
In the case of normal and inverted hierarchies, we have nν = 1 and 2, respectively, and when
all the neutrino masses are degenerate, we have nν = 3. Throughout this paper, we will use
mν = 0.05 eV [5] as the heaviest mass of active neutrinos.6 The relation between MR and
the largest yν is then determined to be yν ' 0.41

√
MR/1014 GeV.

The scalar field φ develops the vacuum expectation value (VEV) 〈φ〉 through the CW
mechanism at the scale µ = µ∗, at which the quartic coupling λφ becomes zero. This scale µ∗
is determined as

µ∗ =

√
λφS
2
〈φ〉 exp

[
−W (e−1)−

16π2λ2
φH

λλ2
φS

]
, (3)

where W is the Lambert W function. The VEV 〈φ〉 is also related to the trilinear scalar
coupling µφ from the requirement of having two saddle points at the CP 2-2 as

µφ = −
λ2
φS

16π2
e−W (e−1)−1〈φ〉. (4)

3At the CP 2-2, the coefficients of φ, φ2, H†H, φH†H, and φS2 are tuned to be zero.
4This choice makes the perturbativity bound loosest, while keeping the stability of the effective potential.
5If one wants, one can forbid it by a Z′2 symmetry φ→ −φ that is softly broken by the φ3 term.
6The current upper limit of the sum of the neutrino masses is given by the Planck and baryon acoustic

oscillation measurements as
∑
mν < 0.12 eV (95% CL) [61], which corresponds to mν ∼ 0.04 eV in the

degenerate case. Although it is ruled out, we also show the nν = 3 case in this paper to illustrate the nν
dependence.
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This triggers the EW symmetry breaking by the φ2(H†H) term,

v

〈φ〉
=

√
λφH
2λ

, (5)

where v ' 246 GeV. At the minimum, the squared mass of S is given by

m2
S =

λSH
2
v2 +

λφS
2
〈φ〉2. (6)

From the above discussion, the six parameters λ, λφ, λφS , λS , λφH , and λSH in the potential
are reduced by fixing the two parameters, v and the Higgs mass 125.1 GeV, and by taking λS
to be zero at the EW scale as aforementioned. The resultant three parameters are

mS , λSH , 〈φ〉, (7)

where λφ has been replaced by the scale µ∗ at which λφ vanishies, and further converted
to 〈φ〉 by Eq. (3).

The thermal relic abundance of S is satisfied when [60]

4λ2
SH + λ2

φS =

(
mS

mth

)2

, mth = 1590± 40 GeV. (8)

This relation provides a contour of 〈φ〉 in the mS vs λSH plane as shown in Fig. 1: The
red, magenta, green, and blue curves correspond to 〈φ〉 = 2.5 TeV, 3 TeV, 4 TeV, and
10 TeV, respectively. We also show the other constraints on the model parameters in the
figure: The purple, orange, cyan, and yellow shaded regions are excluded by the updated
XENON1T result [62],7 the LHC results, DM relic abundance, and perturabativity bound,
respectively [60]. We note that these bounds are insensitive to MR.8

In the following analyses of the critical Higgs inflation, we choose the parameters on the
dotted line in Fig. 1 that is close to the perturbativity bound, to reduce the computational
time.9 On the dotted line, there remains only single parameter in the scalar sector, and we
choose it to be λSH . Therefore, there are two parameters λSH and MR in total. We choose
these parameters in such a way that the Higgs potential has a (near) saddle-point at high
scale region.10

3 Saddle point of Higgs potential

In this section, we analyze the effective Higgs potential for large field values, and look for its
saddle point in order to realize the critical Higgs inflation.

7For the region with the DM mass larger than 1 TeV, we extrapolate the upper limit on the spin independent
cross section for DM and nucleon scatterings.

8MR might possibly affect the perturbativity bound via the RGE of λS and λSH , but its effect is only
through the small λH coupling and is negligible.

9When we vary mS from the dotted line for a fixed λSH , the coupling λφS changes via Eq. (6), but the
running of λ and λH do not depend on λφS at the one-loop level (see Eq. (53)), and hence the high-scale Higgs
potential is not altered drastically. Note also that, even though the dotted line is close to the perturbativity
bound, λSH (which contributes to running of λ and λH at one-loop) remains perturbative unlike λS , and hence
the effective Higgs potential is reliably computed.

10Without the right-handed neutrinos, the high-scale potential value tends to become too large to accom-
modate the observed value of the tensor-to-scalar ratio; see also Ref. [21].
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Figure 1: The solid curves correspond to Eq. (8) for 〈φ〉 = 2.5 TeV (red), 3 TeV (magenta), 4
TeV (green), and 10 TeV (blue), with each width corresponding to the error of mth = 1590±40
GeV. Shaded regions are respectively excluded by the XENON1T experiment (purple), the
LHC data (orange), DM abundance (cyan), and the perturbativity bound (yellow). Regarding
the perturbativity bound, the absence of Landau pole up to µ = 1017 GeV is imposed.

3.1 Effective potential

We calculate the one-loop effective Higgs potential improved by the two-loop RGEs presented
in Appendix A. The one-loop effective potential for large h in the MS scheme in the Landau
gauge is

V =
λH(µ)

4
h̄4 + ∆V1-loop(h, µ), (9)

where

∆V1-loop(h, µ) =
6M4

W (h)

64π2

[
ln

(
M2
W (h)

µ2

)
− 5

6

]
+

3M4
Z(h)

64π2

[
ln

(
M2
Z(h)

µ2

)
− 5

6

]
− 3M4

t (h)

16π2

[
ln

(
M2
t (h)

µ2

)
− 3

2

]
−

3∑
i=1

M4
Ni

(h)

32π2

[
ln

(
M2
Ni

(h)

µ2

)
− 3

2

]

+
M4
S(h)

64π2

[
ln

(
M2
S(h)

µ2

)
− 3

2

]
+
M4
φ(h)

64π2

[
ln

(
M2
φ(h)

µ2

)
− 3

2

]
, (10)

in which the effective masses are

MW (h) =
g2h

2
, MZ(h) =

√
g2

2 + g2
Y

2
h, Mt(h) =

yth√
2
, (11)

MNi(h) =
MR

2

(
1 +

√
1 +

2y2
νih

2

M2
R

)
, M2

S(h) =
λSH

2
h2, M2

φ(h) =
λφH

2
h2, (12)
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and

h := heΓ(µ) = h exp

(∫ lnµ/Mt

0
ds γH

)
(13)

is the Higgs field with field renormalization. See Eq. (61) in Appendix A for the one-loop
result of γH . We here represent Ni as the mass eigenstates for the heavy Majonara neutrinos.
We neglect the contributions from the leptons and quarks other than the top quark because
their Yukawa couplings are small. We also neglect the loops of the Higgs and the NG bosons
because λH becomes small at high scales.

In the following, we match two theories with and without right-handed neutrinos around
µ = MR, to obtain the threshold correction. We expand the one-loop correction from heavy
neutrinos by h as

−
3∑
i=1

M4
Ni

(h)

32π2

[
ln

(
M2
Ni

(h)

µ2

)
− 3

2

]

= − 1

32π2

[
3M4

R

2

(
−3 + 4 ln

(
MR

µ

))
+ 2h2M2

Rnνy
2
ν

(
−1 + 2 ln

(
MR

µ

))

+
h4

2
nνy

4
ν

(
1 + 2 ln

(
MR

µ

))
+ · · ·

]
, (14)

where the coefficient of h4 corresponds to the threshold correction to λH below MR [63, 64,
65]:11

∆λ
(R)
H := −nνy

4
ν

16π2

(
1 + 2 ln

(
MR

µ

))
. (15)

The term containing ln(MR/µ) leads to the subtractions of y4
ν term from the beta function.

The same analysis can be also applied to the field renormalization as

1

2
h�h

[
1− 2

32π2

3∑
i=1

yνi ln

(
MNi

2(h)

µ2

)]
' 1

2
h�h

[
1− 1

8π2
nνy

2
ν ln

(
MR

µ

)
+ · · ·

]
, (16)

from which we can see that the canonically normalized Higgs field hc in the low-energy theory
is given by

hc = h

[
1− 1

8π2
nνy

2
ν ln

(
MR

µ

)]1/2

=: hZR. (17)

This also leads to the redefinition of the quartic coupling. By combing both of them, the
Higgs quartic coupling below µ = MR is12

λ := λHZ
−4
R + ∆λ

(R)
H

= λH

(
1− 4nν

16π2
y2
ν ln

(
µ

MR

))
+
nνy

4
ν

16π2

(
−1 + 2 ln

(
µ

MR

))
. (18)

11The coefficient of h2 in Eq. (14) gives the threshold correction to the Higgs mass-squared parameter in
the low-energy theory. At the CP 2-2, the mass-squared parameter including this correction is tuned to zero,
based on the MPP.

12If we want, we may take into account the threshold correction of S too: ∆λ
(S)
H =

λ2
SH

16π2

(
1
6

+ 1
2

ln
(
mS
µ

))
.

This contribution is minor for our analysis and we neglect it hereafter.
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Figure 2: The RG runnings of λ and λH . Upper left (right) corresponds to the case of
normal (inverted) hierarchy and lower panel corresponds to the degenerate case. Here, the
different colors correspond to the different values of λSH(Mt).

One can easily check that contributions from heavy neutrinos cancel out in the beta function
dλ/d lnµ.

In Fig. 2, we show the RG runnings of λ and λH , where the upper left (right) panel
corresponds to the normal (inverted) hierarchy case and the lower panel corresponds to the
degenerate case. The different colors correspond to the different values of λSH(Mt), and the

top pole mass mpole
t and MR are fixed at mpole

t = 172.4 GeV [5] and 4×1014 GeV, respectively.
As explained above, other parameters, 〈φ〉 and mS , are fixed as functions of λSH on the dotted
line in Fig. 1 by the thermal relic abundance of S to explain ΩDMh

2 ∼ 0.12.

3.2 Saddle point

In the following, we rewrite the one-loop Higgs effective potential (9) as

V =
λeff(h, µ)

4
h4, (19)

where

λeff(h, µ) =

[
λH(µ)e4Γ(µ) + 4

∆V1-loop(h, µ)

h4

]
. (20)
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Note that λeff(h, µ) is independent of the renormalization point µ if we take all order loop
corrections into account. For practical purpose with finite-loop, it better approximates by
choosing µ ∼ h.

In the SM without the right-handed neutrinos, it is known that λeff(h, h) in general takes
a minimum value λmin at h = hmin (' 1018 GeV); see the blue dashed line in Fig. 2. Fur-
thermore, by tuning the top mass, we can realize a saddle point V ′ = V ′′ = 0 at h = hs
(' hmin) [1]. (This tuning may be done within the 1.4σ experimental bound as stressed in
Introduction.) However, this saddle-point itself is not sufficient to achieve a viable saddle-
point inflation because the resultant CMB fluctuations become too large [66, 40, 67]. By
introducing the non-minimal coupling ξ|H|2R, a successful inflation can be achived around
the (near) saddle-point even when ξ ∼ 10 [18, 19, 1]. This is called the critical Higgs inflation.

In this paper, we pursue the critical Higgs inflation in our model at the CP 2-2. The
detailed analysis will be presented in the next section. In the remaining of this section, we
look for the saddle point in our model. When we take into account the right-handed neutrinos,
they first lower λH above MR, and at higher scales, the extra scalar couplings become large
and their contributions raise λH again. As a result, we may have a minimum for λH at a high
scale as can be seen in Fig 2, e.g. with the orange curve for the normal and inverted hierarchy
cases, and green for the degenerate case.

In general, the condition to have a saddle point is

V
′

= V
′′

= 0 ⇔ λeff(h, h) +
1

4

dλeff(h, h)

d lnh
= 12λeff(h, h) + 8

dλeff(h, h)

d lnh
+
d2λeff(h, h)

d(lnh)2
= 0.

(21)

Again, we call the position of saddle-point hs. As said in the last of Sec. 2, there is only single
parameter λSH in the scalar sector. For each given λSH , we numerically solve for MR that
achieves the saddle-point condition (21), and obtain its position hs.

In the upper left panel in Fig. 3, we show the Higgs potential in the case of the normal
hierarchy where the differently colored contours correspond to the different values of λSH .
Here, the Higgs field h is normalized by hs. In the upper right panel, we plot the value of
MR as a function of λSH that is determined by the saddle point condition (21). In the lower
left panel, we show hs as a function of λSH where blue and red correspond to the normal and
inverted hierarchy cases, respectively, while green to degenerate. One can see that hs has a
strong dependence on λSH , which causes the strong dependence of the value of the potential
around the saddle point on λSH in the upper left panel.

The above numerical result can be fitted by an analytic formula as follows. Around the
minimum h = hmin giving the minimal value of λeff, we may always approximate as [1]

λeff(h, h) = λmin +
b

2

(
ln

h

hmin

)2

. (22)

Within this approximation, we see that the potential has a saddle point V ′ = V ′′ = 0 at
h = hs when and only when λmin is tuned to a critical value λmin = λc where

hs = e−1/4hmin, (23)

λc =
b

32
. (24)
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Figure 3: Upper Left: The one-loop effective Higgs potential in the normal hierarchy case
where the different colors correspond to the different values of λSH(Mt). Here, dashed black
curves represent the Higgs potential whose quartic coupling is replaced by the analytical
one (25).
Upper Right: The relation between MR and λSH(Mt) determined by the saddle point condi-
tion (21).
Lower Left: The saddle point hs as a function of λSH(Mt), where blue and red correspond to
the normal and inverted hierarchy, while green to degenerate.
Lower Left: The minimum value of λH as a function of λSH(Mt).

That is,

λeff(h) =
b

32

[
1 + 16

(
ln

(
h

hse1/4

))2
]
. (25)

We fit b and hs from the numerical analysis above. As a consistency check, we also plot the
Higgs potential whose effective coupling is replaced by the analytical one (25) in the upper
left panel in Fig. 3 by dashed black lines. One can actually see that the analytical ones well
approximate the effective Higgs potential around the saddle point. In the next section, we
will use Eq. (22) with λmin close to λc, as in Eq. (47), to study the critical Higgs inflation.
In particular, the minimum value λc is important because it also determines, along with hs,
the value of the potential during the inflation. Qualitatively, small λc will turn out to be
favorable to realize successful inflation with small ξ . 100.
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In the lower right panel in Fig. 3, we show the numerical calculations of λc as a function
of λSH . From this plot, one can see that λc is a monotonically increasing function of λSH
and its order of magnitude is 10−5 around λSH ∼ 0.3. This corresponds to b = O(10−4)
by Eq. (24). We will see that the region with small λSH is preferred to realize a successful
inflation for small ξ.13 Therefore, in the inflationary analysis, we will show the results in the
region λSH . 0.3.

4 Critical Higgs inflation

In this section, we study the critical Higgs inflation of our model at the CP 2-2. We take full
advantage of the saddle point of the Higgs potential. The existence of the saddle point makes
it easy to obtain the sufficient number of e-foldings N even when ξ . 100; contrary to the
conventional case, the tensor-to-scalar ratio r does not have to be related to N as r ∼ 1/N2,
and it can be sizable ∼ 0.05. In section 5.1, we will show our numerical calculations of CMB
observables.

4.1 Higgs inflation at classical level

We first review the Higgs inflation with non-minimal coupling ξh2R at the classical level [68,
27]. We start with the Jordan-frame action

Scl =
M2

P

2

∫
d4x
√
−gJΩ2(h)RJ −

∫
d4x
√
−gJ

[
1

2
(∂h)2 + Vcl(h)

]
, (26)

where we have truncated the potential and Weyl factor at the quartic and quadratic orders,
respectively:

Vcl(h) =
λcl

4
h4, Ω2(h) = 1 + ξ

h2

M2
P

. (27)

By performing the following redefinition of the metric,

gµν = Ω2gJµν , (28)

we obtain

RJ = Ω2

[
R+ 3� ln Ω2 − 3

2
gµν(∂µ ln Ω2)(∂ν ln Ω2)

]
. (29)

Then the Einstein-frame action becomes

Scl =

∫
d4x
√
−g
(

1

2
M2

PR−
1

2Ω2
(∂h)2 − 3

4
M2

P(∂µ ln Ω2)2 − Ucl(h) + · · ·
)
, (30)

where

Ucl(h) =
Vcl(h)

Ω4(h)
(31)

13Higgs inflation with ξ = O(104) [68, 27] is always possible at the expense of the small cutoff scale MP/ξ.
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is the potential in the Einstein frame. Since Vcl is quartic, the following relation holds

Ucl(h) =
λcl

4

(
h

Ω(h)

)4

= Vcl

(
h

Ω(h)

)
. (32)

In the h→∞ limit, we have

h

Ω(h)
→ MP√

ξ
. (33)

Therefore for large h, the Einstein-frame potential Ucl(h) becomes constant:

Ucl(h)→ Vcl

(
MP√
ξ

)
=
λclM

4
P

4ξ2
. (34)

This flat potential is used in the Higgs inflation.
The relation between the canonically normalized Einstein-frame field χ and the Jordan-

frame field h is given by

dχ

dh
=

√
Ω2 + 6ξ2h2/M2

P

Ω2
. (35)

Under the slow-roll approximation, we obtain

λcl

ξ2
' 6.0×

(
50

N

)2

× 10−10 (36)

to fit As = U/(24π2M4
PεV ) to the observed value 2.1× 10−9 at the e-folding N ; see Appendix

C. We see that the typical SM value at low energy λcl ∼ 0.1 requires large value of ξ ∼ 105.

4.2 Higgs inflation including radiative correction

At the quantum level in the flat spacetime, we promote Vcl(h) to the effective potential

V (h) = Vtree(h, µ) + ∆Vloop(h, µ), (37)

where Vtree is the tree-level potential including the field renormalization and ∆Vloop is the
loop correction; see Eq. (9) for the 1-loop approximation. In this paper, we employ the
Einstein-frame effective potential on the so-called Prescription I,

U(h) =
λH(µ)e4Γ(µ)h4

4Ω4(h)
+ ∆Uloop(h, µ) , (38)

where ∆Uloop is obtained from ∆Vloop in Eq. (37) by replacing all the effective masses MΨ(h)

with MΨ(h)
Ω for Ψ = W ,Z, t, νi, S, and φ:

∆Uloop(h, µ) = ∆Vloop(h, µ)
∣∣∣
MΨ(h)→MΨ(h)

Ω

. (39)
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See Ref. [69] for the meaning of this prescription as well as ambiguity due to indeterminacy
of non-renormalizable terms. Because the potential should not depend on µ (if one takes all
order corrections into account), we may replace µ by µ/Ω: 14

U(h) =
λH( µΩ)e4Γ( µ

Ω
)h4

4Ω4
+ ∆Vloop

(
h,
µ

Ω

)∣∣∣
MΨ(h)→MΨ(h)

Ω

=
λH( µΩ)e4Γ( µ

Ω
)h4

4Ω4
+

1

Ω4
∆Vloop(h, µ) . (40)

When we truncate the loop correction at the 1-loop order, we can obtain better approximation
by choosing µ to be around h to minimize the higher loop corrections:

U(h) =
1

Ω4

(
λH
(
h
Ω

)
4

e4Γ( hΩ)h4 + ∆V1-loop(h, h)

)
. (41)

This is the expression we employ in the following. When yνih is sufficiently larger than MR,
all the effective masses are proportional to h, therefore ∆V1-loop(h, h) is proportional to h4

whose coefficient is independent of h (up to higher order corrections), and hence we obtain

U(h) = V

(
h

Ω

)
. (42)

Thus, after taking into account the quantum corrections, the same relation still holds as
Eq. (32) on Prescription I, and again the Einstein-frame potential (42) becomes constant for
ξh2/M2

P � 1:

U(h) =
λeff

(
h

Ω(h) ,
h

Ω(h)

)
4

(
h

Ω(h)

)4

→
λeff

(
MP√
ξ
, MP√

ξ

)
4

(
MP√
ξ

)4

. (43)

Unless λeff

(
MP√
ξ
, MP√

ξ

)
is particularly small, we still need large ξ to fit As. In fact in the SM,

it is known that λeff(h, h) becomes small around h ∼MP, which is an essential ingredient in
the critical Higgs inflation.

4.3 Critical Higgs inflation

As can be seen from Eq. (42), when V(h) has a saddle point at h = hs, U(h) also has a saddle

point at h = h̃s, with h̃s being determined by h̃s
Ω(h̃s)

= hs:

h̃s =
hs

1− c2
s

, (44)

where we have introduced

cs := hs

√
ξ

MP
. (45)

14In the second line of Eq. (40), we have assumed that the Ω dependence in ∆Vloop(h, µ/Ω) disappears by
the replacement Mψ(h)→Mψ(h)/Ω. At one loop level, we can easily check this from Eq. (10).
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Figure 4: The Higgs potential in the Einstein frame.

This parameter is the ratio of hs to MP/
√
ξ; the latter is the typical value of h above which the

conformal factor Ω(h) starts to deviate from unity. One can see that h̃s approaches infinity as
cs ↗ 1, which means that the small region around the saddle point h = hs is widely stretched,
and allows a sufficient e-folding.

In the critical Higgs inflation, we assume that the high-scale Higgs potential is close to a
one having a saddle point, namely, λmin in Eq. (22) is close to λc given by Eq. (24):

λmin = (1 + δ)λc, (46)

where we have parametrized the deviation from the saddle-point criticality by δ. Then the
flat-space effective potential becomes

V(h) =
λeff(h, h)

4
h4 =

λc
4

[
1 + δ + 16

(
ln

(
h

hse1/4

))2
]
h4. (47)

Using Eqs. (42) and (45), we see that U approaches the constant value in the h→∞ limit

U(h)→ λc
4

[
1 + δ + (1 + 4 ln cs)

2
]M4

P

ξ2
, (48)

which determines the value of the potential during the inflation. In this paper, we will focus
on cs ≤ 1 and take full advantage of the saddle point of the Higgs potential.

In Fig. 4, we show the Higgs potential in the Einstein frame where different colors
correspond to different values of cs. Here, we show the the normal hierarchy case with
λSH(Mt) = 0.5 for illustration. One can see that the region around the saddle point h = hs
is more and more stretched as we increase cs toward unity. Therefore, for a given cs . 1, we
may always fit the e-folding N around h = hsΩ by tuning δ.15

15The tuning of λmin to λc is favored by the maximum entropy principle because the more the space is
expanded by the inflation, the more the total entropy emerges [10, 14].
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5 Prediction on inflationary observables

Here, we analyze the prediction on inflationary observables as we vary the parameters in the
model. So far, we have three free parameters: λSH , MR, and ξ. Recall that the scalar sector
has only one parameter λSH in our analysis on the red dotted line in Fig. 1.

On the other hand, we have seen that the Jordan-frame potential can be parametrized
near the saddle-point criticality by λc, δ, and hs as Eq. (47). Here, these three parameters
are functions of the model parameters λSH and MR.

In order to sweep the parameters near the saddle point, we use the results of Sec. 3.2:
For each λSH , we find the value of MR that gives the saddle-point criticality, δ = 0, as well
as the corresponding parameters hs and λc. See the upper-right, lower-left, and lower-right
panels in Fig. 3 for MR, hs, and λc, respectively. For a given λSH , as we slightly change MR

from the critical value, in general all of the parameters λc, hs, and δ are modified. Here, we
neglect the change of λc and hs, and take into account the effect of non-zero δ.

Now we take into account the non-minimal coupling ξ. Among three parameters ξ, λSH , δ,
the last one is traded with e-folding N using Eq. (63). The observables ns and r are functions
of ξ and λSH once e-folding N is fixed by δ.

5.1 Results

In Fig. 5, we show the values of ξ, cs, and λSH in the ns-r plane for N = 60 with the central
value mpole

t = 172.4 GeV: The upper left (right) panel corresponds to the normal (inverted)
hierarchy case, and the lower panel to the degenerate case. The values of ξ and cs are shown
by the solid and dashed lines, respectively, while λSH by the numbers on the solid line. The
dark (light) blue region is allowed by the combined analysis of Planck 2018 at the 65% (95%)
CL. From these results, one can see that our model at the CP 2-2 is consistent with the
current CMB observations even when ξ = 25. The smaller the r, the larger the required value
of ξ: If the upper bound becomes r < 0.04 (0.02), we need ξ & 30 (40).

We see that we typically have λSH ∼ 0.32, which corresponds to the large Majorana mass
as

5× 1013GeV .MR . 2× 1014GeV (49)

from the upper right panel in Fig. 3.
In Fig.6, we also show dns/d ln k vs ns, where cs and ξ are again shown as in Fig. 5. In this

case, the observational error of dns/d ln k is still too large to constrain the inflaton potential.
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Figure 5: Upper Left (Right): r vs ns in the case of the normal (inverted) hierarchy where
c (ξ) is fixed on each solid (dashed) curves and λSH(Mt) is varied. The blue regions correspond
to the allowed regions by Planck 2018.
Lower: the degenerate case.

6 Summary and discussion

Motivated by various fundamental issues in particle physics and cosmology, we have discussed
the minimal model that can explain EW scale, neutrino masses, DM, and successful inflation
at the same time. The model adds right-handed neutrinos to the two-scalar model in Refs. [59,
60], which has been proposed to explain the origin of EW scale and DM. These two scalar
fields give a minimal setup to realize an analogue of the CW mechanism. Assuming the Z2
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Figure 6: Upper Left (Right): ns vs dns/d ln k in the case of the normal (inverted) hierarchy
where c (ξ) is fixed on each solid (dashed) curves. The blue regions correspond to the allowed
regions by Planck 2018. Lower: the degenerate case.

symmetry of a scalar, S → −S, it can be a candidate for DM, similarly to the Higgs-portal
scalar DM model. Neutrino masses are naturally explained by the seesaw mechanism.

In this paper, we have analyzed RGEs, calculated the effective Higgs potential, and studied
the critical Higgs inflation that uses the (near) saddle point of the Higgs potential at a high
scale. The new scalar coupling λSH between the SM Higgs and DM S can stabilize the Higgs
potential even if the top mass is current center value mt = 172.4 GeV. In our model, it is
possible to maintain the existence of saddle point by the neutrino Yukawa coupling yν , and
the saddle point condition relates the parameters of the model as is shown in Fig. 3.

By utilizing the saddle point of the Higgs potential, we have found that it is possible to
realize successful inflation even for ξ ∼ 25 within the parameter space where all the necessary
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requirements are satisfied. As a result, we obtain λSH ' 0.32 and 〈φ〉 ' 2.7 TeV, which
correspondingly lead to the dark matter mass mS ∼ 2.0 TeV, its spin-independent cross
section 1.8× 10−9 pb, and the mass of additional neutral scalar mH ∼ 190 GeV.

Finally, we mention testability of our model at collider experiments and future directions
of this scenario. Since the DM should be as heavy as a TeV range in order to satisfy the relic
abundance and the constraints from the direct searches, the detection of the extra Higgs can
be an important probe of our model similarly to the Higgs singlet model. On the benchmark
points shown in Fig. 1, the mass of the additional Higgs boson is predicted to be in the
range of 70 GeV – 200 GeV, so that it can be produced at future lepton colliders such as the
International Linear Collider (ILC) via the Z boson strahlung process. Therefore, our model
can be tested at the ILC and/or its energy upgraded version.

Our model can be well tested at the near future DM detection experiments such as
XENONnT. If the whole region is excluded by them, one of the simplest extensions would be
introduction of extra heavy fermions that are singlet under the SM gauge symmetry but are
odd under Z2 such that they lower the quartic scalar couplings in the RGE running to make
the perturbativity bound milder.

It would be interesting to analyze all the possible criticalities along the line of the current
work. Moreover, we can also come up with a lot of interesting phenomena within this model
such as a possibility of producing primordial Black Hole by Higgs inflation [70, 71, 72, 73],
spontaneous leptogenesis [74, 75, 76, 77, 78], (p)reheating dynamics and so on. We would like
to discuss those possibilities in future investigations.
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Appendix A Two-Loop RGEs

Here, we summarize the two-loop RGEs. Our calculations are based on [79, 80, 81, 82].

dgY
dt

=
1

(4π)2

41

6
g3
Y +

g3
Y

(4π)4

19

6

(
199

18
g2
Y +

9

2
g2

2 +
44

3
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3 −
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6
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2
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, (50)

dg2
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=
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3 −
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dg3
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=
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Appendix B Single-field slow-roll inflation

Here we summarize basic results for the single-field slow-roll inflation.
The slow roll parameters are defined by

εV =
M2

P

2

(
U ′

U

)2

, ηV =
M2

P

2

U ′′

U
, ζ2

V = M4
P

(
U ′′′

U

)(
U ′

U

)
, (62)

where U is the inflation potential in the Einstein frame and the prime represents the derivative
with respect to χ.

The number of e-foldings from a field value χ∗ to the end of inflation is given by

N =

∫
dtH ' 1

MP

∫ χ∗

χend

dχ√
2εV

. (63)

The CMB observables are given by

As =
U

24π2M4
PεV

, r = 16εV , ns = 1− 6εV + 2ηV ,
dns
d ln k

= 16εV ηV − 24ε2
V − 2ζ2

V , (64)

within the slow roll approximations, where As, r, ns, and dns
d ln k are the scalar power spectrum

amplitude, tensor-to-scalar power ratio, scalar spectral index, and its running. The current
observational bounds by Planck 2018 are [61, 83]

As = 2.101+0.031
−0.034 × 10−9, (68% CL)

r < 0.056, (95% CL)

ns = 0.9665± 0.0038,
dns
d ln k

= 0.013± 0.024, (68% CL) (65)

at the pivot scale k∗ = 0.05 Mpc−1.
Under the slow-roll approximation, the scalar amplitude As is given by Eq. (64). We note

that r and the value of potential U is related each other by fixing As to the observed value:

U ∼ 1.5× 10−9
[ r

0.05

]
M4

P; (66)

see also Ref. [21].

Appendix C Ordinary Higgs inflation without criticality

For ξh2

M2
P
� 1 we have simple relations for the slow roll parameters

εV '
4

3
exp

(
−2

√
2

3

χ

MP

)
' 3

4N2
, ηV ' −

4

3
exp

(
−
√

2

3

χ

MP

)
= − 1

N
, (67)

and they provide one of the best fits to the CMB observations for the reasonable values of
e-folding N = 50–60 (corresponding to the pivot scale).

Qualitatively, the typical value of ξ can be estimated as follows. Putting the potential (48)
with λeff ∼ λc ∼ 10−6 into Eq. (66), one can easily check that ξ is around 30.
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Appendix D Expansion around saddle point

For qualitative understanding, it is also helpful to derive the expansion of V around hs. We
first expand as

V =
λc
2
h4
s + λ1h

3
s(h− hs) +

λ2

2
h2
s(h− hs)2 +

λ3

3!
hs(h− hs)3 + . . . , (68)

where

λ1 = λcδ, λ2 = 3λcδ, λ3 = 32λc. (69)

As we explain in Section 4.2, the Higgs potential in the Einstein frame also has a saddle point
at h = hsΩ. We are interested in the parameter space cs ∼ 1 ⇔ h̃s � hs ∼ MP√

ξ
, which

guarantees the large field expansion of χ as a function of h. As a result, we have

dh

dχ
∼ h√

6MP

⇔ h ∼ MP√
ξ

exp

(
χ√

6MP

)
, (70)

ϕ ∼ MP√
ξ

1−

(
MP√
ξ

)2

2h2

 ⇔ ϕ− hs ∼
MP√
ξ

[
1− c− 1

2
e
− 2χ√

6MP

]
, (71)

where ϕ := h/Ω. Then, U and its derivatives with respect to χ are

U ∼ λc
4
h4
s =

λ0c
4

4

(
MP√
ξ

)4

, (72)

∂U

∂χ
=
∂ϕ
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1
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(73)

∂2U
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+
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e
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, (74)

where we have used Eq. (68). When c ∼ 1, the slow roll parameters are approximately given
by

ε =
M2

P

2

(
U ′

U

)2

∼ 4

3

(
δ

c

)2

e−4χ/(
√

6MP), η = M2
P

U ′′

U
∼ −4δ

3c
e−2χ/(

√
6MP), (75)

where a = λ1/λ0 = 1 + (βλ/4λ)|φ=φs . Compared to the conventional case, we have additional
suppression factor δ thanks to the saddle potential. Note that, when c� 1, we can no longer
trust Eq. (75).

22



References

[1] Y. Hamada, H. Kawai, K.-y. Oda, and S. C. Park, “Higgs inflation from Standard
Model criticality,” Phys. Rev. D 91 (2015) 053008, arXiv:1408.4864 [hep-ph].

[2] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, and
A. Strumia, “Higgs mass and vacuum stability in the Standard Model at NNLO,”
JHEP 08 (2012) 098, arXiv:1205.6497 [hep-ph].

[3] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio, and
A. Strumia, “Investigating the near-criticality of the Higgs boson,” JHEP 12 (2013)
089, arXiv:1307.3536 [hep-ph].

[4] A. Bednyakov, B. Kniehl, A. Pikelner, and O. Veretin, “Stability of the Electroweak
Vacuum: Gauge Independence and Advanced Precision,” Phys. Rev. Lett. 115 no. 20,
(2015) 201802, arXiv:1507.08833 [hep-ph].

[5] P. Z. et al. (Particle Data Group), “The review of particle physics,” Prog. Theor. Exp.
Phys. 2020 (2020) 083C01.

[6] C. Froggatt and H. B. Nielsen, “Standard model criticality prediction: Top mass 173
+- 5-GeV and Higgs mass 135 +- 9-GeV,” Phys. Lett. B 368 (1996) 96–102,
arXiv:hep-ph/9511371.

[7] C. Froggatt, H. B. Nielsen, and Y. Takanishi, “Standard model Higgs boson mass from
borderline metastability of the vacuum,” Phys.Rev. D64 (2001) 113014,
arXiv:hep-ph/0104161 [hep-ph].

[8] H. B. Nielsen, “PREdicted the Higgs Mass,” Bled Workshops Phys. 13 no. 2, (2012)
94–126, arXiv:1212.5716 [hep-ph].

[9] H. Kawai and T. Okada, “Asymptotically Vanishing Cosmological Constant in the
Multiverse,” Int. J. Mod. Phys. A 26 (2011) 3107–3120, arXiv:1104.1764 [hep-th].

[10] H. Kawai and T. Okada, “Solving the Naturalness Problem by Baby Universes in the
Lorentzian Multiverse,” Prog. Theor. Phys. 127 (2012) 689–721, arXiv:1110.2303
[hep-th].

[11] H. Kawai, “Low energy effective action of quantum gravity and the naturalness
problem,” Int. J. Mod. Phys. A 28 (2013) 1340001.

[12] Y. Hamada, H. Kawai, and K. Kawana, “Evidence of the Big Fix,” Int. J. Mod. Phys.
A 29 (2014) 1450099, arXiv:1405.1310 [hep-ph].

[13] Y. Hamada, H. Kawai, and K. Kawana, “Weak Scale From the Maximum Entropy
Principle,” PTEP 2015 (2015) 033B06, arXiv:1409.6508 [hep-ph].

[14] Y. Hamada, H. Kawai, and K. Kawana, “Natural solution to the naturalness problem:
The universe does fine-tuning,” PTEP 2015 no. 12, (2015) 123B03, arXiv:1509.05955
[hep-th].

23

http://dx.doi.org/10.1103/PhysRevD.91.053008
http://arxiv.org/abs/1408.4864
http://dx.doi.org/10.1007/JHEP08(2012)098
http://arxiv.org/abs/1205.6497
http://dx.doi.org/10.1007/JHEP12(2013)089
http://dx.doi.org/10.1007/JHEP12(2013)089
http://arxiv.org/abs/1307.3536
http://dx.doi.org/10.1103/PhysRevLett.115.201802
http://dx.doi.org/10.1103/PhysRevLett.115.201802
http://arxiv.org/abs/1507.08833
http://dx.doi.org/10.1016/0370-2693(95)01480-2
http://arxiv.org/abs/hep-ph/9511371
http://dx.doi.org/10.1103/PhysRevD.64.113014
http://arxiv.org/abs/hep-ph/0104161
http://arxiv.org/abs/1212.5716
http://dx.doi.org/10.1142/S0217751X11053730
http://arxiv.org/abs/1104.1764
http://dx.doi.org/10.1143/PTP.127.689
http://arxiv.org/abs/1110.2303
http://arxiv.org/abs/1110.2303
http://dx.doi.org/10.1142/S0217751X13400010
http://dx.doi.org/10.1142/S0217751X14500997
http://dx.doi.org/10.1142/S0217751X14500997
http://arxiv.org/abs/1405.1310
http://dx.doi.org/10.1093/ptep/ptv011
http://arxiv.org/abs/1409.6508
http://dx.doi.org/10.1093/ptep/ptv168
http://arxiv.org/abs/1509.05955
http://arxiv.org/abs/1509.05955


[15] Y. Hamada, H. Kawai, and K.-y. Oda, “Eternal Higgs inflation and the cosmological
constant problem,” Phys. Rev. D 92 (2015) 045009, arXiv:1501.04455 [hep-ph].

[16] D. Bennett, H. B. Nielsen, and I. Picek, “Understanding Fine Structure Constants and
Three Generations,” Phys. Lett. B 208 (1988) 275–280.

[17] D. Bennett and H. B. Nielsen, “Predictions for nonAbelian fine structure constants from
multicriticality,” Int. J. Mod. Phys. A 9 (1994) 5155–5200, arXiv:hep-ph/9311321.

[18] Y. Hamada, H. Kawai, K.-y. Oda, and S. C. Park, “Higgs Inflation is Still Alive after
the Results from BICEP2,” Phys. Rev. Lett. 112 no. 24, (2014) 241301,
arXiv:1403.5043 [hep-ph].

[19] F. Bezrukov and M. Shaposhnikov, “Higgs inflation at the critical point,” Phys. Lett. B
734 (2014) 249–254, arXiv:1403.6078 [hep-ph].

[20] Y. Hamada, H. Kawai, and K.-y. Oda, “Predictions on mass of Higgs portal scalar dark
matter from Higgs inflation and flat potential,” JHEP 07 (2014) 026,
arXiv:1404.6141 [hep-ph].

[21] Y. Hamada, H. Kawai, Y. Nakanishi, and K.-y. Oda, “Cosmological implications of
Standard Model criticality and Higgs inflation,” Nucl. Phys. B 953 (2020) 114946,
arXiv:1709.09350 [hep-ph].

[22] P. Minkowski, “µ→ eγ at a Rate of One Out of 109 Muon Decays?,” Phys. Lett. B 67
(1977) 421–428.

[23] T. Yanagida, “Horizontal gauge symmetry and masses of neutrinos,” Conf. Proc. C
7902131 (1979) 95–99.

[24] M. Gell-Mann, P. Ramond, and R. Slansky, “Complex Spinors and Unified Theories,”
Conf. Proc. C 790927 (1979) 315–321, arXiv:1306.4669 [hep-th].

[25] S. Glashow, “The Future of Elementary Particle Physics,” NATO Sci. Ser. B 61 (1980)
687.

[26] R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity
Nonconservation,” Phys. Rev. Lett. 44 (1980) 912.

[27] F. L. Bezrukov and M. Shaposhnikov, “The Standard Model Higgs boson as the
inflaton,” Phys. Lett. B 659 (2008) 703–706, arXiv:0710.3755 [hep-th].

[28] A. Barvinsky, A. Kamenshchik, and A. Starobinsky, “Inflation scenario via the
Standard Model Higgs boson and LHC,” JCAP 11 (2008) 021, arXiv:0809.2104
[hep-ph].

[29] A. De Simone, M. P. Hertzberg, and F. Wilczek, “Running Inflation in the Standard
Model,” Phys. Lett. B 678 (2009) 1–8, arXiv:0812.4946 [hep-ph].

[30] K. Allison, “Higgs xi-inflation for the 125-126 GeV Higgs: a two-loop analysis,” JHEP
02 (2014) 040, arXiv:1306.6931 [hep-ph].

24

http://dx.doi.org/10.1103/PhysRevD.92.045009
http://arxiv.org/abs/1501.04455
http://dx.doi.org/10.1016/0370-2693(88)90429-7
http://dx.doi.org/10.1142/S0217751X94002090
http://arxiv.org/abs/hep-ph/9311321
http://dx.doi.org/10.1103/PhysRevLett.112.241301
http://arxiv.org/abs/1403.5043
http://dx.doi.org/10.1016/j.physletb.2014.05.074
http://dx.doi.org/10.1016/j.physletb.2014.05.074
http://arxiv.org/abs/1403.6078
http://dx.doi.org/10.1007/JHEP07(2014)026
http://arxiv.org/abs/1404.6141
http://dx.doi.org/10.1016/j.nuclphysb.2020.114946
http://arxiv.org/abs/1709.09350
http://dx.doi.org/10.1016/0370-2693(77)90435-X
http://dx.doi.org/10.1016/0370-2693(77)90435-X
http://arxiv.org/abs/1306.4669
http://dx.doi.org/10.1007/978-1-4684-7197-7_15
http://dx.doi.org/10.1007/978-1-4684-7197-7_15
http://dx.doi.org/10.1103/PhysRevLett.44.912
http://dx.doi.org/10.1016/j.physletb.2007.11.072
http://arxiv.org/abs/0710.3755
http://dx.doi.org/10.1088/1475-7516/2008/11/021
http://arxiv.org/abs/0809.2104
http://arxiv.org/abs/0809.2104
http://dx.doi.org/10.1016/j.physletb.2009.05.054
http://arxiv.org/abs/0812.4946
http://dx.doi.org/10.1007/JHEP02(2014)040
http://dx.doi.org/10.1007/JHEP02(2014)040
http://arxiv.org/abs/1306.6931


[31] C. Burgess, H. M. Lee, and M. Trott, “Power-counting and the Validity of the Classical
Approximation During Inflation,” JHEP 09 (2009) 103, arXiv:0902.4465 [hep-ph].

[32] J. Barbon and J. Espinosa, “On the Naturalness of Higgs Inflation,” Phys. Rev. D 79
(2009) 081302, arXiv:0903.0355 [hep-ph].

[33] C. Burgess, H. M. Lee, and M. Trott, “Comment on Higgs Inflation and Naturalness,”
JHEP 07 (2010) 007, arXiv:1002.2730 [hep-ph].

[34] F. Bezrukov, A. Magnin, M. Shaposhnikov, and S. Sibiryakov, “Higgs inflation:
consistency and generalisations,” JHEP 01 (2011) 016, arXiv:1008.5157 [hep-ph].

[35] Y. Ema, R. Jinno, K. Mukaida, and K. Nakayama, “Violent Preheating in Inflation
with Nonminimal Coupling,” JCAP 02 (2017) 045, arXiv:1609.05209 [hep-ph].

[36] V. Silveira and A. Zee, “SCALAR PHANTOMS,” Phys. Lett. B 161 (1985) 136–140.

[37] J. McDonald, “Gauge singlet scalars as cold dark matter,” Phys. Rev. D 50 (1994)
3637–3649, arXiv:hep-ph/0702143.

[38] C. Burgess, M. Pospelov, and T. ter Veldhuis, “The Minimal model of nonbaryonic dark
matter: A Singlet scalar,” Nucl. Phys. B 619 (2001) 709–728, arXiv:hep-ph/0011335.

[39] J. M. Cline, K. Kainulainen, P. Scott, and C. Weniger, “Update on scalar singlet dark
matter,” Phys. Rev. D 88 (2013) 055025, arXiv:1306.4710 [hep-ph]. [Erratum:
Phys.Rev.D 92, 039906 (2015)].

[40] Y. Hamada, H. Kawai, and K.-y. Oda, “Minimal Higgs inflation,” PTEP 2014 (2014)
023B02, arXiv:1308.6651 [hep-ph].

[41] S. R. Coleman and E. J. Weinberg, “Radiative Corrections as the Origin of
Spontaneous Symmetry Breaking,” Phys. Rev. D 7 (1973) 1888–1910.

[42] K. A. Meissner and H. Nicolai, “Conformal Symmetry and the Standard Model,”
Phys.Lett. B648 (2007) 312–317, arXiv:hep-th/0612165 [hep-th].

[43] R. Foot, A. Kobakhidze, K. L. McDonald, and R. R. Volkas, “A Solution to the
hierarchy problem from an almost decoupled hidden sector within a classically scale
invariant theory,” Phys.Rev. D77 (2008) 035006, arXiv:0709.2750 [hep-ph].

[44] S. Iso, N. Okada, and Y. Orikasa, “Classically conformal B − L extended Standard
Model,” Phys.Lett. B676 (2009) 81–87, arXiv:0902.4050 [hep-ph].

[45] S. Iso, N. Okada, and Y. Orikasa, “The minimal B −L model naturally realized at TeV
scale,” Phys.Rev. D80 (2009) 115007, arXiv:0909.0128 [hep-ph].

[46] T. Hur and P. Ko, “Scale invariant extension of the standard model with strongly
interacting hidden sector,” Phys.Rev.Lett. 106 (2011) 141802, arXiv:1103.2571
[hep-ph].

[47] S. Iso and Y. Orikasa, “TeV Scale B-L model with a flat Higgs potential at the Planck
scale - in view of the hierarchy problem -,” PTEP 2013 (2013) 023B08,
arXiv:1210.2848 [hep-ph].

25

http://dx.doi.org/10.1088/1126-6708/2009/09/103
http://arxiv.org/abs/0902.4465
http://dx.doi.org/10.1103/PhysRevD.79.081302
http://dx.doi.org/10.1103/PhysRevD.79.081302
http://arxiv.org/abs/0903.0355
http://dx.doi.org/10.1007/JHEP07(2010)007
http://arxiv.org/abs/1002.2730
http://dx.doi.org/10.1007/JHEP01(2011)016
http://arxiv.org/abs/1008.5157
http://dx.doi.org/10.1088/1475-7516/2017/02/045
http://arxiv.org/abs/1609.05209
http://dx.doi.org/10.1016/0370-2693(85)90624-0
http://dx.doi.org/10.1103/PhysRevD.50.3637
http://dx.doi.org/10.1103/PhysRevD.50.3637
http://arxiv.org/abs/hep-ph/0702143
http://dx.doi.org/10.1016/S0550-3213(01)00513-2
http://arxiv.org/abs/hep-ph/0011335
http://dx.doi.org/10.1103/PhysRevD.88.055025
http://arxiv.org/abs/1306.4710
http://dx.doi.org/10.1093/ptep/ptt116
http://dx.doi.org/10.1093/ptep/ptt116
http://arxiv.org/abs/1308.6651
http://dx.doi.org/10.1103/PhysRevD.7.1888
http://dx.doi.org/10.1016/j.physletb.2007.03.023
http://arxiv.org/abs/hep-th/0612165
http://dx.doi.org/10.1103/PhysRevD.77.035006
http://arxiv.org/abs/0709.2750
http://dx.doi.org/10.1016/j.physletb.2009.04.046
http://arxiv.org/abs/0902.4050
http://dx.doi.org/10.1103/PhysRevD.80.115007
http://arxiv.org/abs/0909.0128
http://dx.doi.org/10.1103/PhysRevLett.106.141802
http://arxiv.org/abs/1103.2571
http://arxiv.org/abs/1103.2571
http://dx.doi.org/10.1093/ptep/pts099
http://arxiv.org/abs/1210.2848


[48] C. Englert, J. Jaeckel, V. Khoze, and M. Spannowsky, “Emergence of the Electroweak
Scale through the Higgs Portal,” JHEP 04 (2013) 060, arXiv:1301.4224 [hep-ph].

[49] M. Hashimoto, S. Iso, and Y. Orikasa, “Radiative symmetry breaking at the Fermi
scale and flat potential at the Planck scale,” Phys.Rev. D89 (2014) 016019,
arXiv:1310.4304 [hep-ph].

[50] M. Holthausen, J. Kubo, K. S. Lim, and M. Lindner, “Electroweak and Conformal
Symmetry Breaking by a Strongly Coupled Hidden Sector,” JHEP 12 (2013) 076,
arXiv:1310.4423 [hep-ph].

[51] M. Hashimoto, S. Iso, and Y. Orikasa, “Radiative Symmetry Breaking from Flat
Potential in various U(1)’ models,” arXiv:1401.5944 [hep-ph].

[52] J. Kubo, K. S. Lim, and M. Lindner, “Electroweak Symmetry Breaking via QCD,”
Phys.Rev.Lett. 113 (2014) 091604, arXiv:1403.4262 [hep-ph].

[53] J. Kubo and M. Yamada, “Genesis of electroweak and dark matter scales from a
bilinear scalar condensate,” Phys. Rev. D 93 no. 7, (2016) 075016, arXiv:1505.05971
[hep-ph].

[54] D.-W. Jung, J. Lee, and S.-H. Nam, “Scalar dark matter in the conformally invariant
extension of the standard model,” Phys. Lett. B 797 (2019) 134823, arXiv:1904.10209
[hep-ph].

[55] P. H. Chankowski, A. Lewandowski, K. A. Meissner, and H. Nicolai, “Softly broken
conformal symmetry and the stability of the electroweak scale,” Mod. Phys. Lett. A 30
no. 02, (2015) 1550006, arXiv:1404.0548 [hep-ph].

[56] K. A. Meissner, H. Nicolai, and J. Plefka, “Softly broken conformal symmetry with
quantum gravitational corrections,” Phys. Lett. B 791 (2019) 62–65,
arXiv:1811.05216 [hep-th].

[57] M. Veltman, “The Infrared - Ultraviolet Connection,” Acta Phys. Polon. B 12 (1981)
437.

[58] Y. Hamada, H. Kawai, and K.-y. Oda, “Bare Higgs mass at Planck scale,” Phys. Rev.
D 87 no. 5, (2013) 053009, arXiv:1210.2538 [hep-ph]. [Erratum: Phys.Rev.D 89,
059901 (2014)].

[59] J. Haruna and H. Kawai, “Weak scale from Planck scale: Mass scale generation in a
classically conformal two-scalar system,” PTEP 2020 no. 3, (2020) 033B01,
arXiv:1905.05656 [hep-th].

[60] Y. Hamada, H. Kawai, K.-y. Oda, and K. Yagyu, “Dark matter in minimal dimensional
transmutation with multipoint criticality principle,” arXiv:2008.08700 [hep-ph].

[61] Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological
parameters,” Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO].

[62] XENON Collaboration, E. Aprile et al., “Dark Matter Search Results from a One
Ton-Year Exposure of XENON1T,” Phys. Rev. Lett. 121 no. 11, (2018) 111302,
arXiv:1805.12562 [astro-ph.CO].

26

http://dx.doi.org/10.1007/JHEP04(2013)060
http://arxiv.org/abs/1301.4224
http://dx.doi.org/10.1103/PhysRevD.89.016019
http://arxiv.org/abs/1310.4304
http://dx.doi.org/10.1007/JHEP12(2013)076
http://arxiv.org/abs/1310.4423
http://arxiv.org/abs/1401.5944
http://dx.doi.org/10.1103/PhysRevLett.113.091604
http://arxiv.org/abs/1403.4262
http://dx.doi.org/10.1103/PhysRevD.93.075016
http://arxiv.org/abs/1505.05971
http://arxiv.org/abs/1505.05971
http://dx.doi.org/10.1016/j.physletb.2019.134823
http://arxiv.org/abs/1904.10209
http://arxiv.org/abs/1904.10209
http://dx.doi.org/10.1142/S0217732315500066
http://dx.doi.org/10.1142/S0217732315500066
http://arxiv.org/abs/1404.0548
http://dx.doi.org/10.1016/j.physletb.2019.01.066
http://arxiv.org/abs/1811.05216
http://dx.doi.org/10.1103/PhysRevD.87.053009
http://dx.doi.org/10.1103/PhysRevD.87.053009
http://arxiv.org/abs/1210.2538
http://dx.doi.org/10.1093/ptep/ptz165
http://arxiv.org/abs/1905.05656
http://arxiv.org/abs/2008.08700
http://dx.doi.org/10.1051/0004-6361/201833910
http://arxiv.org/abs/1807.06209
http://dx.doi.org/10.1103/PhysRevLett.121.111302
http://arxiv.org/abs/1805.12562


[63] C. P. Burgess, “Introduction to Effective Field Theory,” Ann. Rev. Nucl. Part. Sci. 57
(2007) 329–362, arXiv:hep-th/0701053.

[64] S. Iso and K. Kawana, “RG-improvement of the effective action with multiple mass
scales,” JHEP 03 (2018) 165, arXiv:1801.01731 [hep-ph].

[65] M. Bando, T. Kugo, N. Maekawa, and H. Nakano, “Improving the effective potential:
Multimass scale case,” Prog. Theor. Phys. 90 (1993) 405–418, arXiv:hep-ph/9210229.

[66] G. Isidori, V. S. Rychkov, A. Strumia, and N. Tetradis, “Gravitational corrections to
standard model vacuum decay,” Phys. Rev. D 77 (2008) 025034, arXiv:0712.0242
[hep-ph].

[67] M. Fairbairn, P. Grothaus, and R. Hogan, “The Problem with False Vacuum Higgs
Inflation,” JCAP 06 (2014) 039, arXiv:1403.7483 [hep-ph].

[68] D. Salopek, J. Bond, and J. M. Bardeen, “Designing Density Fluctuation Spectra in
Inflation,” Phys. Rev. D 40 (1989) 1753.

[69] Y. Hamada, H. Kawai, Y. Nakanishi, and K.-y. Oda, “Meaning of the field dependence
of the renormalization scale in Higgs inflation,” Phys. Rev. D 95 no. 10, (2017) 103524,
arXiv:1610.05885 [hep-th].

[70] J. M. Ezquiaga, J. Garcia-Bellido, and E. Ruiz Morales, “Primordial Black Hole
production in Critical Higgs Inflation,” Phys. Lett. B 776 (2018) 345–349,
arXiv:1705.04861 [astro-ph.CO].

[71] F. Bezrukov, M. Pauly, and J. Rubio, “On the robustness of the primordial power
spectrum in renormalized Higgs inflation,” JCAP 02 (2018) 040, arXiv:1706.05007
[hep-ph].

[72] S. Rasanen and E. Tomberg, “Planck scale black hole dark matter from Higgs
inflation,” JCAP 01 (2019) 038, arXiv:1810.12608 [astro-ph.CO].

[73] D. Y. Cheong, S. M. Lee, and S. C. Park, “Primordial Black Holes in Higgs-R2

Inflation as a Whole Dark Matter,” arXiv:1912.12032 [hep-ph].

[74] S. M. Lee, K.-y. Oda, and S. C. Park, “Spontaneous Leptogenesis in Higgs Inflation,”
arXiv:2010.07563 [hep-ph].

[75] A. Kusenko, L. Pearce, and L. Yang, “Postinflationary Higgs relaxation and the origin
of matter-antimatter asymmetry,” Phys. Rev. Lett. 114 no. 6, (2015) 061302,
arXiv:1410.0722 [hep-ph].

[76] A. G. Cohen and D. B. Kaplan, “Thermodynamic Generation of the Baryon
Asymmetry,” Phys. Lett. B 199 (1987) 251–258.

[77] A. G. Cohen and D. B. Kaplan, “SPONTANEOUS BARYOGENESIS,” Nucl. Phys. B
308 (1988) 913–928.

[78] A. Dolgov and K. Freese, “Calculation of particle production by Nambu Goldstone
bosons with application to inflation reheating and baryogenesis,” Phys. Rev. D 51
(1995) 2693–2702, arXiv:hep-ph/9410346.

27

http://dx.doi.org/10.1146/annurev.nucl.56.080805.140508
http://dx.doi.org/10.1146/annurev.nucl.56.080805.140508
http://arxiv.org/abs/hep-th/0701053
http://dx.doi.org/10.1007/JHEP03(2018)165
http://arxiv.org/abs/1801.01731
http://dx.doi.org/10.1143/PTP.90.405
http://arxiv.org/abs/hep-ph/9210229
http://dx.doi.org/10.1103/PhysRevD.77.025034
http://arxiv.org/abs/0712.0242
http://arxiv.org/abs/0712.0242
http://dx.doi.org/10.1088/1475-7516/2014/06/039
http://arxiv.org/abs/1403.7483
http://dx.doi.org/10.1103/PhysRevD.40.1753
http://dx.doi.org/10.1103/PhysRevD.95.103524
http://arxiv.org/abs/1610.05885
http://dx.doi.org/10.1016/j.physletb.2017.11.039
http://arxiv.org/abs/1705.04861
http://dx.doi.org/10.1088/1475-7516/2018/02/040
http://arxiv.org/abs/1706.05007
http://arxiv.org/abs/1706.05007
http://dx.doi.org/10.1088/1475-7516/2019/01/038
http://arxiv.org/abs/1810.12608
http://arxiv.org/abs/1912.12032
http://arxiv.org/abs/2010.07563
http://dx.doi.org/10.1103/PhysRevLett.114.061302
http://arxiv.org/abs/1410.0722
http://dx.doi.org/10.1016/0370-2693(87)91369-4
http://dx.doi.org/10.1016/0550-3213(88)90134-4
http://dx.doi.org/10.1016/0550-3213(88)90134-4
http://dx.doi.org/10.1103/PhysRevD.51.2693
http://dx.doi.org/10.1103/PhysRevD.51.2693
http://arxiv.org/abs/hep-ph/9410346


[79] M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equations in a
General Quantum Field Theory. 1. Wave Function Renormalization,” Nucl. Phys. B
222 (1983) 83–103.

[80] M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equations in a
General Quantum Field Theory. 2. Yukawa Couplings,” Nucl. Phys. B 236 (1984)
221–232.

[81] M. E. Machacek and M. T. Vaughn, “Two Loop Renormalization Group Equations in a
General Quantum Field Theory. 3. Scalar Quartic Couplings,” Nucl. Phys. B 249
(1985) 70–92.

[82] M.-x. Luo, H.-w. Wang, and Y. Xiao, “Two loop renormalization group equations in
general gauge field theories,” Phys. Rev. D 67 (2003) 065019, arXiv:hep-ph/0211440.

[83] Planck Collaboration, Y. Akrami et al., “Planck 2018 results. X. Constraints on
inflation,” Astron. Astrophys. 641 (2020) A10, arXiv:1807.06211 [astro-ph.CO].

28

http://dx.doi.org/10.1016/0550-3213(83)90610-7
http://dx.doi.org/10.1016/0550-3213(83)90610-7
http://dx.doi.org/10.1016/0550-3213(84)90533-9
http://dx.doi.org/10.1016/0550-3213(84)90533-9
http://dx.doi.org/10.1016/0550-3213(85)90040-9
http://dx.doi.org/10.1016/0550-3213(85)90040-9
http://dx.doi.org/10.1103/PhysRevD.67.065019
http://arxiv.org/abs/hep-ph/0211440
http://dx.doi.org/10.1051/0004-6361/201833887
http://arxiv.org/abs/1807.06211

	1 Introduction
	2 Model
	3 Saddle point of Higgs potential
	3.1 Effective potential
	3.2 Saddle point

	4 Critical Higgs inflation
	4.1 Higgs inflation at classical level
	4.2 Higgs inflation including radiative correction
	4.3 Critical Higgs inflation

	5 Prediction on inflationary observables
	5.1 Results

	6 Summary and discussion
	Appendix A Two-Loop RGEs
	Appendix B Single-field slow-roll inflation
	Appendix C Ordinary Higgs inflation without criticality
	Appendix D Expansion around saddle point

