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Introduction. In the recent paper [5] Kusuoka-Strook gave a sufficient
condition of hypoellipticity for degenerate elliptic operators of second order,
as an application of the Malliavin calculus (see Theorem 8.13 of [5], cf. [4]).
Their method is applicable even to infinitely degenerate elliptic operators which
do not satisfy the famous sufficient condition given by Hoérmander [2]. One
of remarkable results by means of their condition is as follows: Let L be a
differential operator of the form 87 4-0Z,4o(x,)?05 in R®, where c&€C*, o(0)=0,
a(%,)>0 (%,%0), o(x,)=0(—x,) and o is non-decreasing in [0, o). Then L is
hypoelliptic in R? if o satisfies

*) linglxl logo(x)|=0  (Theorem 8.41 of [5]).
%y

The condition (*) allows the infinite degeneracy of o at x,=0. For example,
if o(x;)=exp (—1/|x,|%) for §>0 the condition (¥) means §<<1. The main
purpose of the present paper is to show the sufficiency of the condition (¥*)
by using the theory of pseudodifferential operators. In [5] it is proved that
the condition (*) is necessary for L to be hypoelliptic. The author [7] has
given a simple proof of the necessity of (*) without using the Malliavin calculus.
The arguments in [7] apply to degenerate elliptic operators of higher order
(see Theorem 3 of [7]).

As to the operator L we remark that an operator 8; +o(x,)’0; (=L—0%,) is
hypoelliptic in R} , without the condition (*). This result is due to Fedii [1]
(cf. [6]), who studied the criterion of hypoellipticity by means of apriori
estimates. Such criteria have been investigated by Treves [9] and Oleinik-
Radkevich [8]. Our proof of the hypoellipticity of L will be done by improving
criteria studied by [8] and [1].

To explain the idea of the present paper we consider a simple case o(x,)=
exp (—1/]%,]%), 6>0. Then L degenerates infinitely at x,=0, and hence
Hormander’s sufficient condition does not apply to L. In the proof of hypo-
ellipticity by means of apriori estimates, the technical difficulty comes from
the fact that for any «>0 subelliptic estimate
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llulle<Const. (|[Lully+llull), #ECF(R),

does not hold (see Theorem 1.2 of [6]), where ||]|, denotes the norm of the
Sobolev space H, for real s. However, by means of Poincaré’s inequality we
have the following estimate

l|log <D,>)**ull,= Const. (I Lully+llull),  uECH(RY),

where <D,>=+/T14 D? (see Lemma 5.1 of Section 5). The main idea is based
on the fact that if 0<<d<<1 then the repeated use of the above estimate with
logarithmic regularity up gives the regularity up of polynomial order.

The plan of this paper is as follows: In Section 1 we state our main
theorem, which is formulated for a differential operator P=a(x, y, D,)+
g(x")b(x, v, D,) in R} ,, x=(x', x’’), having a slightly more general form than L
(see Remark 2 of Theorem 1.1 in Section 1). In Section 2 we give a new cri-
terion of the hypoellipticity, which is composed of five apriori estimates. In
Section 3 we show that P satisfies each estimate. Sections 4 and 5 are devoted
to the proof of two lemmas, which play important roles in Section 3. The dis-
cussion of Section 4 is similar to the one of Section 5 of [6] and is employed to
estimate the commutator between P and the cut off function of y variables. In
Section 5 we estimate the commutator between P and the cut off function of ¥’
variables. For this estimation we need a condition similar to (¥*) (see (1.4) in
Section 1).

As studied in [6], the method of this paper seems to be extendible to in-
finitely degenerate elliptic operators of higher order, which will be investigated
in the future. Finally we remark that the method of the present paper does
not apply to all results of [5], for example, the hypoellipticity of an operator
%307, +-0%,+ 0 (%,)%(05, +9103,). It is also furtue work to show the hypoellipticity
for this operator by extending our method.

1. Main result

Let P=p(x, y, D,, D,) be a differential operator of second order with C*-
coefficients of the form

(1.1) P = a(x,y, D,)+g(x")b(x, y, D,) in R"= R}:1XR}2,
where x=(x", x”’) ERY%XRY. Assume the following:

1°) a(x,y,D,) and b(x,y, D,) are strongly elliptic with respect to x and
¥, respectively, that is,

(1.2) Rea(x, y, £)=c|E|* for large ||,
(1.3) Re b(x, y, n)Z¢;|n|*  for large |7],
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where ¢, and ¢, are positive constants.
2°) g(x") belongs to C”(Rf}'), £2(0)=0 and g(x')>0 for x'=0.
Theorem 1.1. Let P satisfy 1°) and 2°). ,Assume that g(x') satisfies
(1.4) lim |x'| |log g(x")|= 0.

|2/]>0

Then P is hypoelliptic in R". Namely, for any uc 9'(R") and for any open set
Q of R" it follows that Puc C=(Q) implies us C=(Q).

Remark 1. If x” variables do not exist this theorem is included in Theo-
rem 1.1 of [6].

REMARK 2. Set |
go(x') = exp (—1/|x"[*) sin® (1/|«"|)4-exp (—1/|2'[*) .

Then g,(x") satisfies conditions 2°) and (1.4). In view of this function we see
that Theorem 1.1 is slightly more general than Theorem 8.41 of [5] because
Zo(x") is not expressed in the form gy(x")=o(x’)? for any non-negative C~-func-
tion o (see Remark 2 of Theorem 1.1 of [6]).

In what follows we shall tacitly use the notation in [6] and Kumano-go
[3]. For example, we often write ¢ CCr for ¢, Yy ECH(R") if Y(x)=1 in
a neighborhood of supp ¢.

2. Criterion of hypoellipticity

In this section we shall give an improvement of the criterion of hypo-
ellipticity studied by [8], [1] and refined by [6].

Let  be an open set of R” and let P(x, D,) be a differential operator of
order m with coefficients in C=(Q). We assume:

(I) For any compact set K of Q and any N>0 there exists a constant
C,=Cy(K, N) such that

(2.1) llullo=Ci(I1Pullot+llull-»),  u€CF(K).

(II) For any compact set K of Q, any 8 (|8]=0), any x>0 and any
N>0 there exists a constant C,=Cy(K, 3, u, N) such that

22)  NP@ull-ip=pll Pulle+Cillull-y, v€CF(K), (181F0),
where p (%, £)=D2p(x, &) and D,=—19,.
(IITI) For any compact set K of Q, any @ and any N>0 there exists a
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constant C;=C4(K, a, N) such that
(23) 1PDullo=Cy(llPullo+Ilull-»), #ECFK),
where p™(x, £)=07p(x, £).

(IV) For any x,Q and any neighborhood U of x, there exist ¢(x) and
Yr(x)€C5(U) such that

¢(x) =1 in some neighborhood of %, ,
¢CCyr (, that is, y» = 1 in a neighborhood of supp ¢),

and the estimate

24)  IPpull.=CyK, N, ¢, ¥) (IlW-Pullc+|Pullo+ull-y) , vECF(K),

holds for any compact set K of Q and any N>0, where C, is a constant depend-
ing on K, N, ¢ and 4. Here « is a positive number smaller than 1, independ-
ent of K, N, ¢ and .

(V) For any compact set K of Q, any B (|8]|=0), any x>0, any N<0
and any Yr(x) €C5(Q) there exists a constant Cy=Cy(K, B, p, N, ¢r) such that

(2.5)  l(¥P) grelle-11= pl W Pusl s+ Cs([| Pl lo+- el |- y) ,  2ECF(K), (18] %0),

where « is the same as in (IV).

Theorem 2.1. Assume that a differential operator P=p(x, D,) satisfies
above conditions (1)~(V). Then for any veD'(Q), for any open set Q'CCQ
and for any reals it follows that PveHY(Q') implies ve HY(Q'). Therefore,
P is hypoelliptic in Q.

As in §2 of [6] we employ a pseudodifferential operator A, ;. with a symbol
CEY(14-6CED)7* for real s, €>0 and k=0. We denote A,,, simply by A,.

Lemma 2.1 (cf. Lemma 2.10 of [6]). Let P satisfy the condition (II).
Then, for any compact set K of Q, any B (|8|=+0), any real s, any p>0, N>0,
>0 and k=0 there exists a constant C=C(K, B, s, u, N, k) independent of &
such that

(2.6) As-1p1,8,eP@ulle= pllAs o Pullo+Cllull-x ,  #ECF(K).

Furthermore, for any K of Q, any real s, s', any p>0, N>0, €>0 and k=0 there
exists a constant C'=C"(K, s, s’, p, N, k) independent of & such that

(2.7) P, Aspeully = pll Ao Pullg+Collull-n,  #€CT(K).

Proof. The former assertion of the lemma is the same as in Lemma 2.10
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of [6]. The estimate (2.7) easily follows from (2.6) and the expansion formula

(2.8) [P, Ape]l— 2 (:—DMAﬁfi.,P<.>eS‘” .

o<l®| s +m+ N a!

Q.E.D.

Lemma 2.2. Let ¢(x) belong to C3(Q) and let P satisfy conditions (II)
and (II1). Then, for any compact set K of Q, any real s, any €>0, k=0 there

exists a constant C=C(K, s, N, k) independent of & such that
(2.9) 1A 4 ePPullo=C(l|As e Pullot-lull-v), u&CF(K).

Proof. When s=k=0, the estimate (2.9) easily follows from the condi-
tion (IITI). In fact, noting the Leibniz formula

[P, ] = X ¢pwP™|a!

<laj<m

we have

1Ppullo= [l Pullo+II[P, plullo

2.10
(229 SCUIPdlst, 33 IPOull)S ClIPulHlll-r),  #ECT(K)

Here and in what follows we denote by the same notation C different constants
(independent of €). In the general case, by means of (2.7) we have

1A p,PPullo=C(IPA; s epullo+lull-v),  #E=CH(K) .
Using the expansion formula
(2.11) Apep = 3 p@AliJal mod S™¥7"
0<|®|<s+ N +m
we have
IPA sl =C(_ 3 I1PheATL llotllull-x)
ueCy(K).

By the similar argument in the beginning of the proof of Lemma 2.10 of [6],
it follows from (2.10) that

1P ASE ullo= CIPASS sullo+lull-n),  uECHK).
By means of (2.6) and the expansion formula similar to (2.8) we have

IPASE llo= C(IIPA_ 11 s ePullo+1lull-v),  uECT(K).
Combining above four estimat e we have(2.9). Q.E.D.

Lemma 2.3. Let P satisfy conditions (1) and (V). Then, for any com-
pact set K of Q, any (|B|=*0), any real s, any & u, N>0 and any k=0 there
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exists a constant C=C(K, s, w, N, k) independent of & such that

A= 11,5,6(VP) gysello
S pllAg ke (WPl lo4-C(|| Agx e Pullo+-lull - n),  #ECT(K),

where k>0 and & C7(Q) are the same as in the condition (V).

(2.12)

Proof. The lemma follows from the almost same way as in the proof of
Lemma 2.10 in [6]. As in its beginning, from (2.5) we have

N(PP) () Asmr 68l 181
él"ll(‘!"P)As—x,k,!u”x_FC(lIPAs-x,k,!ul |0+”u“—N) ’ uECSO(K) .

Replace the operator P and the term ||u||_y in the proof of Lemma 2.10 of [6]
by P and |IPA, s s ullo+Ilul|_, respectively.

Then it follows that
1A= 1p1,8,6(¥P) eyl lo
S pllAgpe(WPulle+ CIIPAs—i o tllo+lull-5) ,  #ECFTK).
Using (2.7) for the term ||PA,_, , (||, we obtain (2.12). Q.E.D.
By the same way as in getting the corollary of Lemma 2.10 of [6] we have

Corollary 2.4. Let P satisfy conditions (11) and (V). Then, for any com-
pact set K of Q, any real s, s', any N>0, €>0 and k=0 there exists a constant
C=C(K, s,s', N, k) independent of & such that

”[‘l"P; As,lt,!]u”s’
SCO(IA s b, Pullo+- 1A g e o, Puillo ), #ECH(K).

Lemma 2.5. Let P satisfy conditions (11)-(V). Then, for any compact
set K of Q, any real s, any €>0, N>0 and k=0 there exists a constant C=
C(K, s, N, k) independent of € such that

(2.13)

(2 14) ”As+x,k,!P¢u”0
éC(”As+:=,k,e‘I"Pu”0+IlAs,k,zPu||0+|lu||—N) ’ uGC;(K) )
where k and ¢, \rECF(Q) are the same as in the condition (IV).
Proof. It follows from (2.7) that

"As+x.k,ep¢u“0
SC(IPA epullc+-llull-x),  #ECFK).

In view of the expansion formula (2.11) we have
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”PA,,],,,(i)u”,‘
SCUPG At _, 3T IPooARlltllall-),
ueCs(K).

By means of (2.9) with s=#, k=0 and (2.6) we have for |a|=0

1P Ak el = CIPASS el 1wl - )
SC(IAs-1atsxpePullot+llull-x),  vECH(K).

The conjunction of above three estimates gives

”As+x,k.eP¢u| lo

2.15
(2.15) < CIPOA, s etlle-HlIAu g Pulle-llly),  #ECHE).

Substituting A, ; .# into (2.4) we obtain

IPPA, 4 el

2.16
(2.16) < CUWPA,p llHIIPA s il ), #ECF(K) -

Noting estimates (2.7) and (2.13), we obtain (2.14) from (2.15) and (2.16).
Q.E.D.

RemaARK. Set k=sy+m-+N—+« for s5>0. Then, for any veH_yNE'(K)

the estimate

”As+x,k,sP¢'U”o§ C(I|A3+x,k,g1l'P‘U”o+”As,k,eP'0”0+”‘v”—N) .

holds, where s<s, and C is a constant independent of & This fact follows
from (2.14) by the same way as in the remark of Lemma 2.11 in [6].

Proof of Theorem 2.1. Let x, be any fixed point in Q' and let {r(x) € C5(Q’)
such that Yr(x)=1 in a neighborhood U(x,) of x,. Then, for any natural
number / we can find finite sequences {¢;} =), {V¥;} i, C5(Q’) such that

$1CCY C Ty CCTh CCTY CCTHr

and we have

||P¢1u||x§C(K’ N) d)j’ ‘\P\J)(Il\lrjpullk—l_I'Pu|10+|'u‘l—N) )

(2.17) .
ueCs(K), (j=1, 1),

for any K of Q and N>0, where « is some positive number. Indeed, from
the condition (IV), we can take ¢, ¥, & C5(U(x)) such that ¢ CCy, =1
in some neighborhood V(x,) of x, and satisfies (2.4). For x, and the neigh-
borhood V(x,) we can take again ¢,, ¥, C5(V(x,)) such that ¢,CCr,, $,=1 in
some neighborhood of x, and satisfies (2.4). Repeating these steps / times, we
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have sequences {§;}/o, {P}iaCCT(Q). Set ;=i jur V=11 (j=1,
-+, I). 'Then, {¢;}}-, and {4yr;}}., are desired sequences. As well-known, for
vE&’ there exists a N>0 such that v H_,. Let us choose ! bigger than
(s+m-+N)/k. By means of Lemma 2.11 in [6] and its remark, for pveH_5N
&'(K) (, where K=supp ) the estimate

(2-18) Il As,k,!¢l'vl L= C(l A, k,aP¢17J”o+ | |¢’11’”—N)

holds for a constant C independent of & and k=s+m-+N. From (2.17) and
the remark of Lemma 2.5 it is easy to see that if k=s+m-+N, then for any
s’ <s the estimate

[1Ag 5, Piollo = “As’,k,ep¢j¢j+l'v”0
éC(lIAs’,k,e‘l’jP'v”o‘H'As’—x,k,gpfﬁjﬂ'v”o‘l‘l|"l"'v||—1v)
holds because of vr;P¢p;;=v;P and ¢;1,v=¢;Yv. From (2.18) and (2.19)

we have

(2.19)

[1Ask,eD10]10= C(l|A¢ 1,81 POllo+ [ Asmr b, e Pl o+ V0]l - )
Applying (2.19) to the second term of the right hand side, we have

1A 1.2 b:101lo= C(I|1As 1,9 PolloHAgs 1. e92P0 o
A28 ePPsollot- 1Yol -w) -

Applying again (2.19) to the third term on the right hand side, and repeating
the same procedure, we have

1 pi@lo= O3 1A -ats-.0,69 Pollo-HIA g, ePY ) -

Since \r;PvE H, from the hypothesis of the theorem, and since A,_,;.ES™¥
for any £€>0, we obtain from (2.17) of [6]

1A 1,ep:2l0=C( jﬁ:llI\Ir,-PvIL-x(;-IH—II\IrvlI-N)éc(l WPoll+[[roll)- -

Letting € tend to 0, we finally obtain

llpsolls= C(lly-Poll,+lroll-y) -

This shows v belongs to H, in some neighborhood of x,. Since x, is arbitrary
point in Q' we can complete the proof. Q.E.D.

We end this section by the following corollary:
Corollary 2.6. Assume that for a constant C we have

(2.20) p(x, E)+0 if |E'|SC|E”| and |E"| large enough,
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where E=(E', £”). Then we can ameliorate Theorem 2.1.  Namely, we can replace
the multi-index B=(B’', B”) in conditions (II) and (V) by the multi-index B’ with
respect to x’ variables (x=(x', x”’)).

Proof. Take a symbol X(£) in S}, such that X=1 on {|&'|=C|&’|} N
{|€] =2} and X=0o0n {|&'|<C|&”’|/2} U{|E|<1}. If PoeHY(Q') we have
(1—X(D,))veH*,Q') and PXo=Pv—P(1—X)veH"(Q’) because it follows
from (2.20) that there exists a microlocal parametrix of P on supp(1—¥X). Since
& and £’ are equivalent on supp X, we can replace the pseudodifferéntial operator
A, e by a pseudodifferential operator with a symbol (1+&&">) ", "), which
permits the amelioration of Theorem 2.1. Q.E.D.

3. Proof of Theorem 1.1

Let P=p(x,y,D,, D,)=A-+gB=a(x,y,D,)+g(x")b(x,y, D,) denote the
differential operator in Theorem 1.1. In view of Theorem 2.1, for the proof
of Theorem 1.1 it suffices to show that P satisfies conditions (I)-(V) in Section
2. (Talking more accurately about the plan of the proof, we shall use Corollary
2.6 in checking (V)).

Since conditions (I)~(V) are stated for a compact set K of R", we may
assume, without loss of generality, that g(x") and coefficients of 4 and B belong
to B=(R"), and g(x') satisfy for any £>0

(3.1) g&)=C>0  on {|x'|=é}.

Lemma 3.1. Set Q,={(x,y)ER"; |x'| <. Then, for any >0, any
a, any real s and any N>0 there exist constants C(&, s, N) and C(&, a, s, N) such
that

(3’2) “u”s"—<‘C(8) S, N)(Ilpulls—2+||u||—N) )

(3-3) IPull,=C(&, e, s, N)(|1Pull,-1a+llull-n),  2ECTRN\Q).
Proof is the same as in Lemma 3.1 of [6].
Lemma 3.2. Let ¢(x') be a function in C”(Rf}) such that for any a=0,

Do =0 on {|x'| <&}, where ¢oy=D%eo. Then, for any €>0, any real s and
any N>0 there exists a constant C(€, s, N) such that

(34) I[P, olull. =C(&, s, N)(I|1Pull,-+llull-x), #ECFR).

The lemma easily follows from Lemma 3.1 by the same way as in the proof
of Lemma 3.2 of [6].

Lemma 3.3. For any p>0 and any N>0 there exists a constant C(u, N)
such that
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(3.5) lulle= allPulle+-Clas, Nllidl-y,  wECHR?).
Proof. From conditions 1°) and 2°) for P it is easy to see

KD Sulls+llg(a" Y <D ulli = C(Re (Pu, u)+|lull3)

3.6
(3.6 <C(IPall+Iull),  w=C3R).

Let ¢o(x')€C8°(R,'f/;) such that supp ¢,C {|x'| <&, po(x)=1} on {|x'| =&/2}.
Then, on account of Poincaré’s inequality we have

(3.7) llpoullo=3(E)IKD ully<8(E)IKDully,  uECF(R'),

where 8(€) | 0 (¢} 0). From (3.7) and the estimate obtained by setting u=cpqu
in (3.6) we have

||¢ou”o§06(8)(”P¢o““o+“4’0“”0) s uECB"(R") .

Using this and the preceding two lemmas we obtain (3.5), by the similar way
as in the proof of Lemma 3.3 of [6]. Q.E.D.

It follows from Lemma 3.3 that P satisfies the condition (I). Now, we
shall check conditions (II) and (III).

Lemma 3.4. For any B (18| =*0), any u and N>0 there exists a constant
C(B, w, N) such that

(3.8) IP@ull-101= pllPullo+C(B, p, N)llull-y,  #ECFR").
For any o and any N>0 there exists a constant C(a, N) such that
(3.9) IPDullo=C(a, N)(l|Pullo+Ilull-y),  #ECTR").

Proof. On account of (3.5) it suffices to check (3.8) for |B]|=1 and (3.9)
for |a|=1. Itis clear that for |a|=1 we have

IPullo< CUKDSull+ g )}XDpull) . wECFRY.  (lal=1).

From this and (3.6) we have (3.9) for |a|=1. Since g(x') is non-negative
function we have

IG,;,g(x')l §Cl\/gr(—x7) in a neighborhood of x'=0, (G=1, -, nl),

for a constant C; (see Remark 1 of Theorem 1.1 of [6]). In view of this in-
equality we have for |B|=1

P @ll-151= C(IKD Dullo+1g ey (x )X D ullo+I1g(x")<D,ullo)
S C(KDDullo+llglx" Y <KD pulle),  usCF(R").

Since we have
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KD Sullo+lg(x") <D ,Yully= C(Re (Pu, u)--]lullo)

3.6)’ .,
(36) <ullPull+Cullully,  uEC5(R)
for any x>0 and some constant Cy, we get (3.8) for |B|=1. Q.E.D.

In order to check conditions (IV) and (V) we state two preparatory lemmas
which will be proved in the following two sections.

Lemma 3.5. Let « be equal to 1/3. For any N>0 there exists a constant
C(N) such that

(3.10) llg(x")<XD Y ully= C(N) (I|Pullo+lll-x),  #ECTR).

Lemma 3.6. Let « be 1/3 and let ¢y(x”) and ~p(x") be functions in
CB"(R?Z) such that ¢, CCr,. Then, for any N>O0 there exists a constant C(N)
such that

G.11) I[P, ¢uJulle= CN)(IIWrPull+ 1 Pullo+lull-x),  #ECTRT).
We give a corollary to Lemma 3.5.

Corollary 3.7. Let « be equal to 1/3 and let ¢,(y)EC5(R}2). For any
N>0 there exists a constant C(N) such that

(3.12) I[P, ¢olull=C(N)(I|1Pullot-lull-y), uECFR").
Proof. Let f(£, ) be a symbol in S{, such that

f=1on {{E| =[]} N{lEI+ 19|21}
supp f C{I&|=2|n[} N{I1&|+ 71 =1/2} .

Since P is microlocally elliptic on {|&| = %]} it is easy to see

G.14) A=)l +P, flulle=C(|Pullo+-lull-x),  #ECT(R").

In view of the microlocal ellipticity of P we also have
(3.15) 1P, o] furllo= C(llg( <D tello+ | Pl lo+- el | - ) -
Together with (3.14), estimates (3.15) and (3.10) give (3.12). Q.E.D.

(3.13)

We shall show that P satisfies the condition (IV). Since P=p(x,y, D,, D,)
is elliptic except ¥'=0 and the assumptions of p are invariant under the trans-
lation with respect to #”/ and y variables, it suffices to check the condition (IV)
for the origin and its arbitrary neighborhood U=U,X U, x U,. Let ¢(x,y)
be a C3(U) function such that ¢(x, ¥)=cpo(x")p1(x"")ps(y), where po(x') = C5(U,/)
satisfies ¢hyy=0 near x'=0 for |a|=0. Note that for ucC7(R")
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Pp(x, yyu = Py(x")pi(x")po(y)8 = 1P bopots—+ [Py pilpopré
= ¢1oL P+ i P, Pl + [Py y]popté
= GPu+ 1ol Py Polu+ P[P, polput [Py pildpopaté -

Let y(x,y) be a Cy(U) functions such that yr(x, y)=yr(x")Yr (¥ )yr,(¥) and
¢ CC (in particular ¢, CCy). Then it follows from Corollary 3.7, Lemma
3.2 and Lemma 3.6 that for x=1/3

(3.16) 1P pull | C(INrPul -+ 1Pullo+lull-x) ,  4ECT(R).

Indeed, the estimate is obvious because we see by means of Lemma 2.2 that
for any real s and any ¢(», y)€ C=(R") there exists a constant C(s, ¢) such that

(3.17) 1Pgull,=C(s, §)(IIPull+lull-x), wECTR).

To complete the proof of Theorem 1.1 it remains to check the condition
(V). Note Corollary 2.6 at the end of Section 2 and the fact that p(x,y,&,%)=0
if 0<|n|=<|&| and |&| large enough. Then it suffices to show, in place of the
condition (V), that for any multi-index 820 with respect to only y variables,
and for any x>0 and any N>0 there exists a constant C=C(f, u, IN) such that

(3.18) (¥ P)@ulle-11 = pll(WPull+-C(I|Pullot+llull-x),  #ECT(RT).
From now on we shall prove the following estimate stronger than (3.18)
(319 WP)@ull-m=C(IPullotllull-»),  #ECTR), (18]=*0).

By means of (3.5), the estimate (3.19) is obvious if |8|=3. Note that for
0<|Bl=2

(WP)@ = (v A)G@ +8*") (vB) ) -
It follows {from Lemma 3.5 that for x=1/3 and 0< | 8| <2
llg(x") (¥vB) @l le- w1 < |1g(x KD ull S C(I|Pullo+ull-5) ,  #ECT(R).
On the other hand, for the case | 8| =2 it follows from (3.6) that
(v A)@ullc-11 = CIKD D ulle = C(I|Pullo+-llull-n) ,  4ECFR"),

and for |B|=1 we have from the ellipticity of A with respect to x variables

(- A) @yelle- 151 = ClIKD %0 c-
= C(IlALD;, D,>" "ully+1lullo)
= C(|l Aulle-1+-1IKD " ul lo+1ullo)
= C(/|Pulle-14-118(2") Btelle-1 KD ul o+ 1l o)
= C(I|1Pullotllull-x) 5 usCH(R") .



HYPOELLIPTICITY FOR INFINITELY DEGENERATE ELLIPTIC OPERATORS 25

Here we used (3.5), (3.6), Lemma 3.5 and the fact that
I[4, <D, D,>*"ulle=CIKD>XD;, D,>* *ully=CIKD>"ullo -
Thus we obtain (3.19), which completes the proof of Theorem 1.1.

4. Proof of Lemma 3.5

As stated in the proof of Lemma 3.4, from the property of non-negative
function we have for any g with |B]| =2
(4.1) |05 g(x") | S Cpg(x')=?®l  in a neighborhood of x' = 0,

where Cp is a constant depending on B. Since P is elliptic except for x'=0
the estimate (3.10) holds for #€ C7(R"\Q,), where Q, is the same as in Lemma
3.1. In view of Lemma 3.2 it suffices to show (3.10) for = C7(Q,). There-
fore, we may assume that (4.1) holds for all " by modifying g(x") out of some
neighborhood of x'=0.

Let ¢o(2), $1(2) and ¢y(2) be C=-functions in [0, co) such that
supp $y(t)C[0, 1), d()=1  om [0,1/2],
supp $(£)C[0,2), ¢()=1 on [0, 1],

supp $() (1, ), H(t)=1 in [2, o)
and

(4.2) dtg=1 [0, o).

Set ME, 7)=(]E|°+<p*)¥e. Then A(§, ) satisfies inequalities (2.5) and (2.6) in
[6], so it is a basic weight function associated with pseudodifferential operators.

Lemma 4.1. Set X;(x', & n)=&;(g(x"\ME, 7)) (j=0,1,2). Then X',
D.,D,) belongs to S, 5, where 1=(1, -+, 1) and 8=(8,, -+, 8, 0, -+, 0), §,=1/2.
Furthermore we have

(4'.3) X1+Xz = I B

The lemma follows from (4.1) and (4.2), by the same way as in the proof
of Proposition 5.1 of [6]. (About the definition of SY, ; see Definition 2.3 of

[6]).

Lemma 4.2. There exist a constant C, such that
(44) llg(x KD ol = Co(llPorllotllvallo) » (o= 1/3),
if vy=%Xy(x",D,, D,)u for ucC3(R").

Proof. Let ¢4(2) be a C=-function in [0, o) such that
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supp $(1) [0, 3), Hs(t) =1 on [0,2].

Set X(x', 7)=s(g(x')A(0, 7)). Then, clearly we have Xy(x', D,)v,=v,. Using
the fact that g(x") <3<%>~% on supp Xs(x’, ) we have

| g(x") )X | = V/3g ()X .
From this and (3.6) we obtain (4.4). Q.E.D.

As in §5 of [6], we consider an operator p(,y, D,, D,) which is obtained
by modifying p(x,y, D,, D,) in “a neighborhood of x'=0" as follows: Set

Zi(x’ Y, E’ 77) = a(x’ Y, E)_*_(g(x,))\'(E’ 77)+X0(x', E’ 77))7\'(5’ ﬂ)—lb(xs Y ’7) .

Then we have

Lemma 4.3. 7 =p5(x,y, D,, D,) belongs to $3,s and p(x,y, €, 1) satisfies
(H)-condition, in the following sense:

i) There exists a constant c,>0 such that

(4.5) | B(x%, ¥, E, n)| ZcoME, 1)* for large |E|+ 7).

ii) For any a and (3 there exists a constant C.,g such that
|B& (%, 3, & 0)[B(x, 3, &, 1) SCaph(E, )P,
Jor large  |E]+ 1],
where 3=(3,, **+, 8,1, 0, -+, 0), 8,=1/2.

(4.6)

The proof is done by using (4.1), similarly as in the proof of Proposition
5.3 of [6].

By means of Proposition 2.7 of [6] and Lemma 4.3 we have a parametrix
Qe 852, such that for PSS, ,

(4.7) I=QP+K, Ke$ =,
furthermore

(4.8) { 0=00:, QESis, €14,

a(Q0) = B(% 3, &, ) forlarge |E|+|q].

Lemma 4.4. Set v,=X,(x', D,, D,yu for uc C7(R"). Then, for any N>0
there exists a constant C(N) such that

4.9) KDy, D> 0yllg+11g(x")XD,D*0,lle =< C(N) (|| Po,llo+lul] - y)
where k=1/3.

Proof. By checking symbols of <D,, D,>'**Q, and g(x')<D,>*Q, we see
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that they belong to $3,; Note that PX,=PX,mod $~=. In view of (4.7)
and (4.8) we obtain (4.9) by means of L?-bcundedness of the operator belonging
to 33 .5 (see Proposition 2.5 of [6]). Q.E.D.

Lemma 4.5. For any N>O0 there exists a constant C(N) such that for
j=1, 2 we have
(4.10) I[P, Xl < CN)(IPully+lull-x),  4ECHR"),
where k=1/3.

Proof. It follows from Lemmas 4.1 and 4.3 that we have the expansion
formula

[P’ ;] = o<la+m<N (— 1)'0‘]7‘5"(’%) Bl BleSAT S8 1,
(cf. (2.10) of [6]),
where Ny=3N+6. From (4.7) we have

[P, X]1=[P, %]0P= > (—1)"X{}PQOP|a!B! mod S75,1,.

0<ja+BI< N,

In view of (4.6) it is not difficult to see X{,PEQO e S5Yi for |a+B]|=*0.
Noting A=<{D,, D,>*< S8/}, we obtain (4.10). Q.E.D.

Noting Lemma 3.3 and using the division u=Xu+Xu for uc C3(R"),
as in the proof of Lemma 4.1 of [6] we obtain (3.10) by means of Lemmas 4.2,
4.4 and 4.5. We have completed the proof of Lemma 3.5.

5. Proof of Lemmma 3.6

In this section we denote ¢,(x”’) and r(x”") in Lemma 3.6 simply by ¢(x”’)
and yr(x”’), respectively. Let x be 1/3 and use the division u=Xu-+Xu=v,+v,
for uCy7(R") in the preceding section. By means of Lemmas 4.4 and 4.5
it is easy to see that for any N>0 and any ¢((x”) e C?(Rf,:) there exists a
constant C(N, ¢) such that

(5.1) I[P, ¢plealle=CWN, ¢)(I1Pullo+Ilull-y), #ECFR"),

because [P, ¢] belongs to $1,,. In view of Lemmas 3.3 and 4.5, for the proof
of Lemma 3.6 it suffices to show for a constant C(¢, )

(5-2) P, $loille=C(, ¥)(IWr-Poyllet-11Pullo+-1lzl])o »
provided that ¢, xbeC;’;’(Rf,/l,l) satisfy ¢ CCJr.

It follows from the hypothesis (1.4) of Theorem 1.1 that for any s=1 there
exists a ¢,>>0 such that



28 Y. MoriMoTo

(:3) || <(slog<z2)™ on suppX, #f <ppze,

because (', £, 7) Esupp X, implies g(x')n)**=3. Set hy(D,)= (M KD,>)
for a M =3, where ¢,(£)C=(R") is the same as in §4. Let f(€, n) be the sym-
bol in S, defined by (3.13) in Section 3. Set

(54) w = hy(D,)Xy(%', D,, D,)f(D,, D,yu  for usCF(R")

and let A, denote an operator with a symbol slog<»>. To make clear the idea

of this section, first we shall prove (5.2) by assuming that coefficients of P are
independent of y.

Lemma 5.1. Assume that coefficients of P are independent of y. For any
real s=1 there exists a M,=3 such that for w defined by (5.4) with M =M, we
have

(5.:5) [1A%wllo+1ALD Hwlly=< Col [Pl o,

where C, is a constant independent of s, and moreover for any integer k=0 and
any J(x’")E C7(R%) the estimate

(3.6) (1A% *Fanllo+-A8+ <D Sl llo =< Col P&l o

holds with the same constant Cy in (5.5) (independent of k and ).
Proof. By setting u=w in (3.6) we have

(5.7) KD e l3+1lg(x"Y<D Dl < C(Re (P, w)+I[wlf?) -

Here and in what follows we denote different constants independent of s by
the same notation C. Since it follows that [P, A,]=0 from (5.7) we obtain

(3.8) IKD Swlls+llg(x") <D, pwll§ < C(Re (PAT o, A e)+-|lwl[) -

From this we see that for any x>0 there exists a constant Cy independent of s
such that

(5.9)  IKDwll§+llg(x") <D pwll§ < pll A woll§+Cu(IlPAT 0|4 wl][5) -

By means of Poincaré’s inequalities it follows from (5.3) that for a constant C
independent of s we have

(5.10) [l(s log <pD)abl|12epn < ClID, @oll22epy  of MzZc,,

where @ is the Fourier transform of » with respect to y. In fact, in view of
(5.3) and (5.4) we have

supp WC {(x, 7); |2 =(slog p>77).
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Integrating (5.10) with respect to  we obtain

(5.11) IR 2l§<CIID,wllf (SCIKD wllf) .

Set M,= max (M, ¢,, 3). Then, combining (5.9) and (5.11) we have
1A wllo+-1I<KD Dwllo = C(IPAS %]y 120l 1o)

for w with M=M,. Replacing w by Aw we obtain (5.5) because C[|Awl|, is
estimated above by [|AZw||,/2 if M, is large enough such that 2C'< log <> on
supp @. The derivation of (5.5) is still valid even if we replace w by AkJw
for any integer k=0 and any & C5(R™). So, we obtain (5.6). QED.

Lemma 5.2. Assume that coefficients of P are independent of y. Let
s=1 and let w be defined by (5.4) with M =M, where M, is defined by Lemma

51. Let ¢, \beC;T(Rf,f ) satisfy ¢CCr. Then there exists a constant Cy=
Ci(¢p, V) independent of s such that for any integer N>0

(5.12)  AYD,>¢wlly=<2C\||AyrPuwllo+CYHNY(|| Pl o+ |20l]o) -

Proof. For any integer N>>0 there exists a sequence {Jr;(x")} Y= C CB“(R?/,')
such that
P CCY, CCT - CCTYry, CCTHr

and for a fixed integer ;=2 we have
(5.13) | DEp;| S(C:N)® for  |BI =k,

where C,=Cy(¢, Y, I;) is a constant independent of j and N. In fact, we can
find such a sequence by dividing N times a space between supp ¢ and the com-
plement of {x”;»=1} and by noting Lemma 1.1 of Chapter V of [10] (The
constant C, is given in the form C,=C,], for a constant C, independent of ).
In view of [P, &,]=0, it follows from (5.6) that

[ IAIsv+I<Dx>¢‘w”o§ Col|P. Af"i)w”o = COHK{!P ¢"!"1w”o

5.14
14 < Cy(|1AY ¢ Paollo+- 1A [P, pTyrwlls) -

Noting that the estimate

RSP, ¢pTrwllo=C’IAS<D P wlly
holds for a constant C’ independent of s and N, from (5.14) and (5.6) we have
(5.15) IAY+D,>pwlly=< Col| AP Pa|[o+C5C’|| PAY 0], -

By means of (5.13), there exists a constant C3 independent of 5, j and N such
that

(5.16)  NIATP, ]yl =< (CENYAIAY 44 20llg+ CIN 1A~ D 10l -
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Assume that for a fixed N we have slog<{7>=C}N on supp@, where @ is the
Fourier transform of w with respect to y. Then, since we have C4N||AY-iw||,
<||A¥-7+1g|, it follows from (5.16) that

WPAY I jollo < 1A~ Pl o+ CEN(IAY 741 1 ool o -1 AY D ol -
Applying (5.6) to the second term of the right hand side we obtain
(5.17) IPAY =i wolly <A~ ;Pav] g+ CoCAN || PAY =1 s 0l
=1 N=1L Ay =1).
By means of (3.9) in Lemma 3.4 we have
(5.18) I[P, vrleollo=C”(I|Pello+-Ile0]lo) »

where C” is a constant independent of s and N. In view of (5.13), there exists
a constant C, independent of s, j, and N such that

”’\I";w”o Cillvrwllo (J=0, -, N=1,4y = ¢).

Set Cy=max (C,Cs, C3C'Cy, C,C45Cy, CoC5C”). Then it follows from (5.15),
(5.17) and (5.18) that

RIFICD, > gulle= Gl Pollo+ 2 CINTHIAY~4:Pall

(5.19) +CINY (|1 Pwllo+llwll) »
if sloglpp>=C\N on supp@.

From this we obtain (5.12) if slog<{»>= C,N on supp @ because C{N¥||A¥~ipPyl|,
<||AY¥yrPwl||,, We can remove the assumption slog<{n>=C,N on supp@. In
fact, if slog<{n>=<C,N on supp® it follows from (5.6) that the estimate

IAFHLD Sdwlly=< CHCNYIALD Dullo=< C,C3(C,lN)"||Paly

holds for some constant C% independent of s, j and N. Taking C; such that
C,=C,C} furthermore we can complete the proof of the lemma. Q.E.D.

Lemma 5.3. Assume that coefficients of P are independent of y. Let
s=1 and let w, ¢ and r be the same as in Lemma 5.2. Then there exists a positive
number T(<1/3) independent of s and a constant C(¢p, ) such that

(5.20)  |KD>"KD>¢pwlle=C(¢, ¥)(IKD,> yrPuollo+ || Peollo+-[le0lo) -
Proof. It follows from (5.12) that for any integer N>0
(5.12) IAHD > bl [§ < 8CHIAYy-Paol[§+2C TN J2,
where J=||Pw||;+|lw|lp. Multiplying both sides by 7?¥*?/(2N+-2)! for 0<+=1/3
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and using the stirling formula N?¥ <¢*(2N)! we have

(log {pd)N+2 -
TNt IKD>¢w |* dxdy

=sct | (__———l°g( 2%:’)2” |P®|*dxdn+2CHrCef™ 2,  N=1,2, -,

where P& denotes the Fourier transform of Pw with respecttoy. Let Iy denote
the right hand side of (5.21). Multiplying both sides of (5.12)' by 7°¥+!/
(2N—+1)! again, we also see that

(5.21)

{ tog i< g PavaneN+1)1 51,
because we have log{»>'=1 by means of M,>3. Hence we have

(log <™ )2+ | (log n)™)PN*2 12
(5.22) SS (___—(2 o +_m)!_) <D > | "dxdn=21,

Note gologQ;)")’"/m!:(n}" and take 7 small enough such that +Ce<1.
Then, summing (5.22) with respect to N=1, 2, -« we obtain (5.20) because it
follows from Lemma 5.1 that jg 31 (log <o>™)"|<D, > |"dxdy/m is estimated
above by the constant times of JZ Q.E.D.

Assume that coeflicients of P are independent of y. Since 7 is independent
of s we can choose s=1 such that st=#«=1/3. For s chosen above take M, of
Lemma 5.1. Then, since ||<D,>¢w||, is estimated above by C(||<D,><D,>¢w||,+
[IKDDul)y) it follows from (5.20) and (3.6) that

IIKD > 2]l = C(|rPoo| |+ Peol lo+1| Pael lo+-1[2]lo)

holds with @ defined by (5.4) with M =M,. Since (1—Aky(D,))f€$™ and P
is microlocally elliptic on supp (1—f) it is easy to see that

(=7 Yol Lyt (L — o) fotl |y
HIP, flullA+NIIP, 2y full = C(I1Pullot-lull),  #ECTRT).

By means of above two estimates we obtain

(5:24) IIKD > poille= C(l1yrPoy |+ || Pullo+-l]lo) »

which shows that (5.2) holds. Indeed, (5.2) follows from (5.24) with ¢ re-
placed by D3¢ (|| =1).

(5.23)

From now on we shall consider the case when coefficients of P depend on
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Lemma 5.4. There exists an integer my>0 depending only on the dimension
n of (x,y) variables and satisfying the following: For a fixed integer N>0 take
a sequence {r;} Y5 C C5(RY) in the proof of Lemma 5.2 such that the integer
Iy of (5.13) s sufficiently larger than m,. Then, there exists a conttant C, inde-
pendent of j and N such that for any s=1 the estimate

NP, KiJyrwolly < CNUKD DR ol loA- (") Dy >Rl sl o)
(5.25) H(CNYII A ool lo4-C N0 s |y

j7 kE{O’ 1) R N}y Yro = d)) Yy =1,
holds with w defined for ue C3(R") by (5.4).

Proof. Since each term of (5.25) has a common devisor s* it suffices to
show it when s=1. Take a symbol f(£, ) in S? 4 such that

{f=1 on suppf

supp f 1€ =3In|} N{IEl+ ]9l =1/3}.
Note

[P, AfWrw = [P, AAT* FAMr w0+ [P, ASJ(1— F)ve;X, fhyue
= Qﬁlla"lf;‘w_‘—RhMu )

and set

qo("?,a % & 77) = (lOg <771>)kp(x’ ¥ & ﬂ)f(E: 7)) .

Then we have the expansion of the symbol of O
#(0) = — 3 03((log r))D5p(x, 3, &, 7)(l0g <) (&, mla!

_ "A=0Y o _(( -ine

3!1%—‘;'2 So ! {0, “e
0% DY (n+08, x, y+2, &, 1)(log <nD)*dzdL}do

= (%, 3, & n)+ g%, 3, & 7)(log <) ~*.
It is clear that ||¢\(x,y, D,, Dy)\lr,ﬂ’fwllo is estimated above by the first three
terms of the right hand side of (5.25) with s=1. If g,x,y, &, ) denotes the

symbol of g(x, y, D, D) (x")X\(x, D,, D,)f(D,, D,) then we have §,E Sy,
In view of (5.13) and (log <{»>~*)<%> ' < N* we see that semi-norms of g, defined by

(5.26)

7160 — 7. 1®|-3F
AN ,,fﬂ%f;,sl‘;ﬁ’{'qZéﬂ;(x’y’ E, n)IME, )"~}

(I=0,1,2, -, l,—2n)

are estimated above by C,N'***?* where C,is a constant independent of N.
Then it follows from Theorem 1.6 of Chapter 7 of [3] that ||g,(x, y, D, D,)
hyu(D,)ull, is estimated above by the fourth term of the right hand side of
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(5.25) with s=1. By noting the expansion of the symbol of R we can easily
see || Rk, is estimated above by the same term. Q.E.D.

Lemma 5.5. Let my, ¢, V and {yr;}} be the same as in Lemma 5.4.
Then for any s=1 there exists a constant Cs=Cs(p, V) independent of s, j and N
such that the estimate

AL 2 wollo+ 1A <D N ool lo-+ [|AS g (x") A<D ool
(5:27) < C(IIPASr ool o+ N5+ |y
j) kE{O, °t% N}, '\1’0= ¢’ ’ "J"N=‘l" ’
holds for w defined by (5.4) with M =M,, where M, is a constant independent of
N and j.
Proof. By setting u=A%Jw in (3.6) we have
IKD R ol l5+ 1l (') XD DR ool
=< C(Re(PAir;w, K jo0)+ || A o] [§)
< C(Re(PA! " jw, K214 a0)
+Re([P, BJAT R0, Kb 20)+ || Bl 0] [5)
Here and in what follows we denote by the same notation C different constants
independent of 5, j and N. Note
[PAJAT R = [P, AJAT fANr w0+ [P, KJAT (1= F)ur %o f Rl
= QOA.’:‘II‘j‘w‘f‘RnghMu )
where f is the same as in the proof of Lemma 5.4. By noting the expansion
of a(Qy) as (5.26) we see that
10Kk jaolly < C(IKD DAk wollo+ || 2"} A<D >R ol lg+N "ol

Similarly we obtain

(5.28)

1R A kgl o< CN "o**s*lull, .

Consequently, for any x>0 and some constant Cy we obtain
Re([P, A,)A7 A, Aiyr,w)
(5.29) < u(IKD Ak 0| [§+ | g(#") <Dy Kl o0l [§
+ Cu(N o5 1l |5+ Kb 0] ) -
It follows from (5.28) and (5.29) that for any x>0 there exists a constant C}
such that
IKD DK el 5+l g(x") <D, >R 5 201 1§
= ullRE Y w0l -+ CL(IPAY e o0l 1§

1R 5 o] |34 (N ™0 *s*)? ua]12) (cf. (5.9)).
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From this we obtain (5.27) with % replaced by 2—1 because we have

CAlRN ][5 (1/2)|| A%y o0 I§
if M, is large enough. Q.E.D.
Lemma 5.6. Let my, ¢ and + be the same as in Lemma 5.4. Let s=1
and let w be a function defined for uCy(R") by (5.4) with M =M,, where M,

is the same as in Lemma 5.5. Then, there exists constant C,= Cy(p, ¥r) and
Ce=Cy(p, V) independent of s such that for any integer N>0

1A D Spwlly < 2G| AP,
+CYANY([|Peollo+ el o)+ CeN =0+ ¥V *(sV +-C) [l -

Proof. For a fixed N>0 assume that slog<{y>=2C,CsN on supp @.
Then it follows from Lemmas 5.4 and 5.5 that

(5.31) NP, Ailr ol <1211 PR w0l o+ CN "o+ Jul |,

(5.30)

because we have 2C,CsN || Ak w|l,<||A*+r 0], and we may assume Cs=1.
From (5.31) we have

(5.32) PR joolly < 21| AL P oo+ 2CN "o+,
By the similar way as in the proof of Lemma 5.4, it is easy to see

3P, Al jollo=< CiN || wllo-+CiN "o s |yully »

l®|=1

5.33 ~
O3 S0P, K el CNTo

In view of [P, ¥;]1= 2} PjP®/a!, it follows from (5.13) and (5.33) that
the estimate il
”KIsv_j[P, "I"i]‘l"jﬂw”o
(5.34) < (CYNYPIAY 4 psw0llo+Co/ N IAY KD 419l
+CI N [ull,

holds in place of (5.16). Then, by using (5.32) and (5.27) (instead of (5.6)),
we can obtain (5.30) as in the proof of Lemma 5.2 because we have C{N/s¥ /<

(CY+s¥)N¥ and
CiN||AY=iyPay||, < || AP |y +(CLN)Y [[y-Paol | -

When slog<{»>=<C,N on suppw the estimate (5.30) is obvious from (5.27) with
k=0. Q.E.D.

As in the proof of Lemma 5.3 it follows from Lemma 5.6 that we have
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IKD,>"¢D >$ullo= C(¢, ¥) (IKD,> e Puw|lo~+ |1 Peol o+l lo)

because we have, in view of st=x=1/3,

120N2m0+2(e37)2N(N!)2/(2N) !< o .

From (5.35) and (5.23) we also have (5.24) when coefficients of P depend also
on y. Since (5.2) follows from (5.24), we have completed the proof of Lemma

3.6.
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