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Introduction. In the recent paper [5] Kusuoka-Strook gave a sufficient

condition of hypoellipticity for degenerate elliptic operators of second order,

as an application of the Malliavin calculus (see Theorem 8.13 of [5], cf. [4]).

Their method is applicable even to infinitely degenerate elliptic operators which

do not satisfy the famous sufficient condition given by Hϋrmander [2]. One

of remarkable results by means of their condition is as follows: Let L be a

differential operator of the form Q2

Xί+d2

X2+σ(x1)
2d2

y in R3, where σ^C00, σ(0)=0,

o (^1)>0(Λ?1={=0), σ(x1)=σ(—x1) and σ is non-decreasing in [0, oo). Then L is

hypoelliptic in R3 if σ satisfies

(*) lim I *! log σ(x1) \ = 0 (Theorem 8.41 of [5]).

The condition (*) allows the infinite degeneracy of σ at ^=0. For example,

if σ(x1)=exp ( — l / \ X ι \ 8 ) for δ>0 the condition (*) means δ<l. The main

purpose of the present paper is to show the sufficiency of the condition (*)

by using the theory of pseudodiίferential operators. In [5] it is proved that

the condition (*) is necessary for L to be hypoelliptic. The author [7] has

given a simple proof of the necessity of (*) without using the Malliavin calculus.

The arguments in [7] apply to degenerate elliptic operators of higher order

(see Theorem 3 of [7]).

As to the operator L we remark that an operator dl1+σ(x1)
2dy (—L—dl2) is

hypoelliptic in Rllty without the condition (*). This result is due to Fediί [1]

(cf. [6]), who studied the criterion of hypoellipticity by means of apriori

estimates. Such criteria have been investigated by Treves [9] and Oleinik-

Radkevich [8]. Our proof of the hypoellipticity of L will be done by improving
criteria studied by [8] and [1].

To explain the idea of the present paper we consider a simple case σ(xl)=

exp (— l/|#ιlδ), δ>0. Then L degenerates infinitely at x1 = Q, and hence

Hϋrmander's sufficient condition does not apply to L. In the proof of hypo-

ellipticity by means of apriori estimates, the technical difficulty comes from

the fact that for any /e>0 subelliptic estimate
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does not hold (see Theorem 1.2 of [6]), where || ||, denotes the norm of the
Sobolev space Hs for real s. However, by means of Poincarό's inequality we
have the following estimate

where <Z)J,>=v'l -\-D2

y (see Lemma 5.1 of Section 5). The main idea is based

on the fact that if 0<δ<l then the repeated use of the above estimate with

logarithmic regularity up gives the regularity up of polynomial order.
The plan of this paper is as follows: In Section 1 we state our main

theorem, which is formulated for a differential operator P = a(x, yy Dx) +

g(x')b(x, y, Dy) in Rn

x^ x=(x', #"), having a slightly more general form than L
(see Remark 2 of Theorem 1.1 in Section 1). In Section 2 we give a new cri-
terion of the hypoellipticity, which is composed of five apriori estimates. In
Section 3 we show that P satisfies each estimate. Sections 4 and 5 are devoted
to the proof of two lemmas, which play important roles in Section 3. The dis-
cussion of Section 4 is similar to the one of Section 5 of [6] and is employed to
estimate the commutator between P and the cut off function of y variables. In
Section 5 we estimate the commutator between P and the cut off function of y!1

variables. For this estimation we need a condition similar to (*) (see (1.4) in
Section 1).

As studied in [6], the method of this paper seems to be extendible to in-
finitely degenerate elliptic operators of higher order, which will be investigated
in the future. Finally we remark that the method of the present paper does
not apply to all results of [5], for example, the hypoellipticity of an operator

#l9ϊ1+9ίa+σ (#1)
2(95l+(3;ϊ852). It is also furtue work to show the hypoellipticity

for this operator by extending our method.

1. Main result

Let P=p(x, yy Dx, Dy) be a differential operator of second order with C°°-
coefficients of the form

(1.1) P = a(x,y,Dx)+g(x')b(x9yyDy) in Rn = R^xR;Zy

where x=(x', x") ̂  R",1 X R"b . Assume the following :

1°) a(x,y, Dx) and b(x,yyDy) are strongly elliptic with respect to x and
y, respectively, that is,

(1.2) Re a(x, y, ξ)^Cl\ξ\* for large \ξ\,

(1.3) Reb(x,y, v)^c2\η\2 for large \ι,\,
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where q and c2 are positive constants.

2°) g(xf) belongs to C~(Λ?/), £(0)=0 and g(x')>0 for x'Φθ.

Theorem 1.1. Let P satisfy Γ) and 2°). ^Assume that g(xf) satisfies

(1.4)

Then P is hypoelliptίc in R". Namely, for any u^^)'(Rn) and for any open set
Ω ofRn it follows that Pu<=C~(Ω) implies u<=C°°(Ω).

REMARK 1. If x" variables do not exist this theorem is included in Theo-

rem 1.1 of [6].

REMARK 2. Set

Then g0(x') satisfies conditions 2°) and (1.4). In view of this function we see
that Theorem 1.1 is slightly more general than Theorem 8.41 of [5] because
gΌ(x') is not expressed in the form go(x')= σ(x')2 for any non-negative C°°-func-
tion σ (see Remark 2 of Theorem 1.1 of [6]).

In what follows we shall tacitly use the notation in [6] and Kumano-go
[3]. For example, we often write φcc^ for φ, ^eC^OR") if ψ(x)=l in
a neighborhood of supp φ.

2. Criterion of hypoellipticity

In this section we shall give an improvement of the criterion of hypo-
ellipticity studied by [8], [1] and refined by [6].

Let Ω be an open set of Rn and let P(x, Dx) be a differential operator of
order m with coefficients in C°°(Ω). We assume:

(I) For any compact set K of Ω and any N>0 there exists a constant
Cl=Cl(K, N) such that

(2.1) INIo^QdlΛllβ+IMI^) , u^C«(K) .

(II) For any compact set K of Ω, any β (\β\ Φθ), any μ>0 and any

N>0 there exists a constant C2=C2(K, β, μ, N) such that

(2.2) \\Pw«\\-w£μ\\Pu\\ι+C2M-N, u<ΞCZ(K), (|/3| ΦO),

where p(f»(x, ξ)=Dξp(x, ξ) and Dx=-idx.

(Ill) For any compact set K of Ω, any a and any N>0 there exists a
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constant C3=C3(J£, a, N) such that

(2.3) \\P^u\\Q^C3(\\Pu\\Q+\\u\\,N) ,

where p™(x,ξ)=d&(x,ξ).

(IV) For any #0eΩ and any neighborhood U of #0 there exist φ(#) and
such that

(#) = 1 in some neighborhood of x0 ,

CC'xJr (, ίAαί is, \Jr = 1 zw α neighborhood o/supp φ) ,

and the estimate

(2.4)

holds for any compact set K of Ω and any AΓ>0, where C4 is a constant depend-
ing on Ky Ny φ and ψ. Here /c is a positive number smaller than 1, independ-
ent of K, N, φ and ψ.

(V) For any compact set K of Ω, any β ( \ β \ ΦO), any μ>0, any N<0
and any -v/r(#)^CίΓ(Ω) there exists a constant C5=C5(7£, β, μ,N, -ψ*) such that

(2.5) ll^P^ull^^μll^Pu^+C^Pu^+Ml.^, u^Cΐ(K), (|/9| ΦO),

where K is the same as in (IV).

Theorem 2.1. Assume that a differential operator P=ρ(χy Dx) satisfies
above conditions (I)-(V). Then for any ^e^'(Ω), for any open set Ω'ccΩ
and for any reals it follows that Pv^Hl°c(Ω') implies ϋeffioc(β'). Therefore,
P is hypoelliptic in Ω.

As in §2 of [6] we employ a pseudodifferential operator ΛS>M with a symbol

<£>'(!+£<£>)"* for real ί, 8>0 and ft^O. We denote Λ,§0'§' simply by Λs.

Lemma 2.1 (cf. Lemma 2.10 of [6]). Let P satisfy the condition (II).
Then, for any compact set K of Ω, any β (\β\ Φθ), any real sy any μ>0, ΛΓ>0,
£>0 and k^G there exists a constant C=C(K, β, s, μ, N, k) independent of 6
such that

(2.6) ||A,_lβUi^(p)ιι||o^A*l|Λβi».tΛ||o+C|MUJ, , ueC?(K) .

Furthermore, for any K o/Ω, any real sy s', any μ>0, ΛΓ>0, £>0 and k^Q there
exists a constant C'=C'(Ky sy s', μ, N, k) independent of 8 such that

(2.7)

Proof. The former assertion of the lemma is the same as in Lemma 2.10
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of [6]. The estimate (2.7) easily follows from (2.6) and the expansion formula

(2.8) [P,ΛM,J- Σ (=^ΛΏ>tP(-)eS-".
o<\Λ\<s+m+jy a\ Q.E.D.

Lemma 2.2. Let φ(x) belong to Co(Ω) and let P satisfy conditions (II)
and (III). Then, for any compact set K of Ω, any real s, any £>0, k^O there

exists a constant C=C(Ky s, N, K) independent of 8 such that

(2.9) ||ΛM

Proof. When s=k=Q, the estimate (2.9) easily follows from the condi-
tion (III). In fact, noting the Leibniz formula

[P,Φ] = Σ Φo<|*|<;*

we have

> ; Σ \\Pmu\\0)^C(\\Pu\\0+\\u\\.N) ,

Here and in what follows we denote by the same notation C different constants
(independent of 8 ). In the general case, by means of (2.7) we have

Using the expansion formula

(2.11) Λs,Mφ = Σ Φc*)Λ(*Uα! mod

we have

By the similar argument in the beginning of the proof of Lemma 2.10 of [6],
it follows from (2.10) that

By means of (2.6) and the expansion formula similar to (2.8) we have

Combining above four estimat e we have(2.9). Q.E.D.

Lemma 2.3. Let P satisfy conditions (II) and (V). Then, for any com-
pact set K of Ω, any (\β\ Φθ), any real s, any £, μ, N>0 and any k^O there
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exists a constant C=C(K, s, μ, N, k) independent of€ such that

(2 12} HΛ

( ' '

where κ>0 and ψeC Γ(Ω) are the same as in the condition (V).

Proof. The lemma follows from the almost same way as in the proof of
Lemma 2.10 in [6], As in its beginning, from (2.5) we have

Replace the operator P and the term IM|_jv in the proof of Lemma 2.10 of [6]
by -ψP and \\Pλs-κ,k,k>ΐu\\Q+\\u\\_N, respectively.

Then it follows that

Using (2.7) for the term ||PΛS_M tt*||0 we obtain (2.12). Q.E.D.

By the same way as in getting the corollary of Lemma 2.10 of [6] we have

Corollary 2.4. Let P satisfy conditions (II) and (V). Then, for any com-
pact set K of Ω, any real s, s', any ΛΓ>0, £>0 and k^O there exists a constant
C=C(K, s, s', N, k) independent of 8 such that

Lemma 2.5. Let P satisfy conditions (II)-(V). Then, for any compact
set K of Ω, any real s, any £>0, ^>0 and k ̂  0 there exists a constant C =
C(K, s, N, k) independent of 8 such that

(214) IIA<
( ' }

where K and φ, ι/reCΓ(Ω) are the same as in the condition (IV).

Proof. It follows from (2.7) that

In view of the expansion formula (2.11) we have
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By means of (2.9) with s=«, &=0 and (2.6) we have for | a \ ΦO

The conjunction of above three estimates gives

1 ' j

Substituting ΛJft_e« into (2.4) we obtain

(2.16)
V }

Noting estimates (2.7) and (2.13), we obtain (2.14) from (2.15) and (2.16).
Q.E.D.

REMARK. Set k=s0+m+N+κ for s0>0. Then, for any v^H.NΓ\<S'(K)

the estimate

||ΛS+M,5PH|0^

holds, where s^s0 and C is a constant independent of 6. This fact follows

from (2.14) by the same way as in the remark of Lemma 2.11 in [6].

Proof of Theorem 2.1. Let XQ be any fixed point in Ω' and let ty(x)

such that ty(x) = 1 in a neighborhood U(xQ) of XQ. Then, for any natural

number /we can find finite sequences {φy}y=ι, {'Ψ'yH-iClC'^Ω') such that

and we have

(2 17) \\Pφj^\\<^C(K9 N, φy, ψy
' u<=C7(K), (j=l, -,/),

for any K of Ω and AT>0, where /c is some positive number. Indeed, from

the condition (IV), we can take φ1? ^1^C^(U(x0)) such that φiCCψ^, φi=l
in some neighborhood V(x0) of x0 and satisfies (2.4). For XQ and the neigh-

borhood V(xQ) we can take again φz, ^2eC5°(F(^0)) such that φ2ccψ2, φ2Ξl in
some neighborhood of XQ and satisfies (2.4). Repeating these steps / times, we
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have sequences {$y}/=1, fhH=ιCC;r(Ω'). Set φj=φI_j+1, ψ y=^|.y+ι (j'=l,
•••, /). Then, {φy}y=1 and {i/ry}y=1 are desired sequences. As well-known, for
v^β' there exists a JV>0 such that v^H^N. Let us choose / bigger than
(s+m+N)/κ. By means of Lemma 2.11 in [6] and its remark, for φ
8'(K) ( , where .?C=supρ ψ>) the estimate

(2.18)

holds for a constant C independent of 8 and &=s+w+JV. From (2.17) and
the remark of Lemma 2.5 it is easy to see that if Λ=ί+w+ΛΓ, then for any
s'-^s the estimate

(2 19)1 ' j

holds because of ^jPφj+l=^jP and φj+1v=φj+1Λlrv. From (2.18) and (2.19)
we have

Applying (2.19) to the second term of the right hand side, we have

Applying again (2.19) to the third term on the right hand side, and repeating
the same procedure, we have

Since ψ jPvGH, from the hypothesis of the theorem, and since
for any £>0, we obtain from (2.17) of [6]

Letting £ tend to 0, we finally obtain

This shows v belongs to H9 in some neighborhood of XQ. Since x0 is arbitrary
point in IV we can complete the proof. Q.E.D.

We end this section by the following corollary:

Corollary 2.6. Assume that for a constant C we have

(2.20) ί(*,f)Φθ if i r i^Cir ' l and \ξ"\ large enough,
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where ξ=(ξ', ξ"). Then we can ameliorate Theorem 2.1. Namely, we can replace
the multi-index β=(β', /?") in conditions (II) and (V) by the multi-index βr with
respect to x' variables (x=(x'y

Proof. Take a symbol %(f) in S?,0 such that X=l on {|f '| ̂ C|£"|} Π

{|f I ̂ 2} andX=Oon{ | f / | ^C | f / / | /2} § U{| f |^ l } . If PvtΞHlΓ(Ω') we have
(l-X(Z>,))i>e£ft?en') and PXϋ=Pto-P(l-%)ί;efrϊ>c(Ω/) because it follows
from (2.20) that there exists a microlocal parametrix of P on supp (1 — %). Since
£ and f ' are equivalent on supp%, we can replace the pseudodifferential operator

Λs,k,t by a pseudodifferential operator with a symbol (l+£<f '»"~*<f 'X, which
permits the amelioration of Theorem 2.1. Q.E.D.

3. Proof of Theorem 1.1

Let P=p(x,y,DχyDy) = A+gB = a(x,y,Dx)+g(xf)b(x,y,Dy) denote the
differential operator in Theorem 1.1. In view of Theorem 2.1, for the proof
of Theorem 1.1 it suffices to show that P satisfies conditions (I)-(V) in Section
2. (Talking more accurately about the plan of the proof, we shall use Corollary
2.6 in checking (V)).

Since conditions (I)-(V) are stated for a compact set K of Rn, we may
assume, without loss of generality, that g(x'} and coefficients of A and B belong
to tB~(Rn), and g(xf) satisfy for any 6 >0

(3.1) g(x')^C9>0 on i\

Lemma 3.1. Set Ωn= {(x,y)<=Rn , \x'\<6}. Then, for any £>0, any
a, any real s and any N>0 there exist constants C(£, s, N) and C(£, or, s, N) stick

that

(3.2) I

(3.3) \\P™u\\.£C(e, a, s,

Proof is the same as in Lemma 3.1 of [6].

Lemma 3.2. Let φ0(x') be a function in C°°(Rty such that for any
φ0(a})— 0 on {\x'\ iS£}, where φ0(Λ)=DΛ

x,φQ. Then, for any £>0, any real s and
any N>Q there exists a constant C(£, s, N) such that

(3.4) H[P,φJ«II.^C(e,ί,ΛO(||Λ||.-ι+IMI-*), «eC?(Λ ).

The lemma easily follows from Lemma 3.1 by the same way as in the proof
of Lemma 3.2 of [6].

Lemma 3.3. For any μ>0 and any N>Q there exists a constant C(μ, N)

such that
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(3.5) M^μ\\Pu\\0+C(μ,N)\\u\\.N,

Proof. From conditions 1°) and 2°) for P it is easy to see

(A, «)
(

Let φ0(ίc')eCΓ(Λ";)such that supp φ0c{| *'[<£, φ0(*')=l} on {|«'|^£/2}.
Then, on account of Poincare's inequality we have

(3.7) IIΦo^llo^δ(£)||<^>||0^δ(£)||<ί)>||0 , UZΞC^R") ,

where 8(6) j 0 (6 j 0). From (3.7) and the estimate obtained by setting u=φ0u
in (3.6) we have

Using this and the preceding two lemmas we obtain (3.5), by the similar way
as in the proof of Lemma 3.3 of [6]. Q.E.D.

It follows from Lemma 3.3 that P satisfies the condition (I). Now, we
shall check conditions (II) and (III).

Lemma 3.4. For any β (\β\ ΦO), any μ and N>0 there exists a constant

C(/3, μ, N) such that

(3.8) \\P^u\\^^μ\\Pu\\Q+C(βy μ

For any a and any ΛΓ>0 there exists a constant C(α, N) such that

(3.9) HPw«llo^C(

Proof. On account of (3.5) it suffices to check (3.8) for \β\=l and (3.9)
for |α| —1. It is clear that for \a\ =1 we have

From this and (3.6) we have (3.9) for |α|=l. Since g(xr) is non-negative
function we have

xf) I ̂ CV^*7) in a neighborhood of x'=Q , (/ = 1, — , n{) ,

for a constant Cλ (see Remark 1 of Theorem 1.1 of [6]). In view of this in-
equality we have for | β \ = 1

, Me Co (If) .

Since we have
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\\<D^\\0+\]g(xt)^D^\\^C(^ (A, «)
( ' )

for any μ>0 and some constant Cμ, we get (3.8) for |/9| =1. Q.E.D.

In order to check conditions (IV) and (V) we state two preparatory lemmas
which will be proved in the following two sections.

Lemma 3.5. Let K be equal to 1/3. For any N>0 there exists a constant
C(N) such that

(3.10) II^X^^IIβ^qΛOίllΛllβ+IMI^) , utΞCϊ(Rn) .

Lemma 3.6. Let /c be 1/3 and let φι(x") and -v/^tf") be functions in

Co(R"ϊ) such that ^CCi^. Then, for any N>0 there exists a constant C(N)
such that

(3.11)

We give a corollary to Lemma 3.5.

Corollary 3.7. Let K be equal to 1/3 and let φ2(y)<=CZ(Rϊ*). For any
N>Q there exists a constant C(N) such that

(3.12) ||[P, φ2]u\\κ^C(N)(\\Pu\\Q+\\u\\-N) ,

Proof. Let/(£, η) be a symbol in Sιι0 such that

/=ι on

Since P is microlocally elliptic on {| ξ \ ̂  | -η \} it is easy to see

(3.14) ||(l-/)ιι||1+β+||[P,/>||ίc^C(||Λ||β+|NUΛr),

In view of the microlocal ellipticity of P we also have

(3.15) ||[P, φ2]>||2^C(||^0<^>1+^llo+l|P^llo+IM^ .

Together with (3.14), estimates (3.15) and (3.10) give (3.12). Q.E.D.

We shall show that P satisfies the condition (IV). Since P=p(x,y, Dx, Dy)
is elliptic except x'=Q and the assumptions of p are invariant under the trans-
lation with respect to x" and y variables, it suffices to check the condition (IV)
for the origin and its arbitrary neighborhood U= Uxf X Ϊ7Λ// X Uy. Let φ(x9 y)

be a CSrίCT) function such that φ(x, y}=φQ(x')φ](x//)φ2(y\ where φt(x')^Cΐ(uJ)
satisfies φ0(β>)=0 near #'=0 for \a\ ΦO. Note that for
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PΦ(χ, y)u =

φPu+φλφQ[P, φ2>+Φι[Λ Φo]φ2u+[P, ΦJΦOΦ2".

Let ψ(x,y) be a C%(U) functions such that ψ(#,jO=Ψo(#θΨι(*//)'Ψl2θ') an(i
φcc-ψ' (in particular φjCCψΊ). Then it follows from Corollary 3.7, Lemma
3.2 and Lemma 3.6 that for *=l/3

(3.16) HPφtt||.^l|C(||ψΛ||lt+||Λ||o+IMI^) , neC^lf) .

Indeed, the estimate is obvious because we see by means of Lemma 2.2 that
for any real s and any φ(xy y) e C°°(Rn) there exists a constant C(s, φ) such that

(3.17) \\Pφu\\9£C(s, ^(IIΛIL+IMI^) , ueC0-(Λ") .

To complete the proof of Theorem 1.1 it remains to check the condition
(V). Note Corollary 2.6 at the end of Section 2 and the fact tbatp(x,y,ξ,ιj)ΦQ
if 0< I ΎJ I ̂  I ξ I and | ξ \ large enough. Then it suffices to show, in place of the
condition (V), that for any multi-index /3ΦO with respect to only y variables,
and for any μ>0 and any ΛΓ>0 there exists a constant C—C(β, μ, N) such that

(3.18) ||(ΨP)0)«II.-^ ,

From now on we shall prove the following estimate stronger than (3.18)

(3.19) \\(*P)w\\*-Cβ^C(\\Pu\\0+\\u\\-N), u<=C?(R"), ( |/S |ΦO).

By means of (3.5), the estimate (3.19) is obvious if |/§|^>3. Note that for

It follows from Lemma 3.5 that for Λ=l/3 and 0< | β \ <L2

IW*')(ψ5)<ίi)«ll.-ίι^l^(*'K^+*«llβ^Ci(||Λ||0+||«||_lί) ,

On the other hand, for the case | J3 \ =2 it follows from (3.6) that

||(ψ^)(»«||..,ir,^C||<Z)^ «||0^q||ftί||β+|M|_/ί) , «e

and for | β \ = 1 we have from the ellipticity of A with respect to x variables
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Here we used (3.5), (3.6), Lemma 3.5 and the fact that

IP, <Dt, Z^'-'MlβSSCIKA.XZ),, Z '̂-^loίSCIKZ),/"!!. .

Thus we obtain (3.19), which completes the proof of Theorem 1.1.

4. Proof of Lemma 3.5

As stated in the proof of Lemma 3.4, from the property of non-negative
function we have for any β with | β \ ^2

(4.1) I dbg(x') I ̂  Cβg(xr)l-<WM in a neighborhood of x' = 0 ,

where Cβ is a constant depending on β. Since P is elliptic except for x'=0
the estimate (3.10) holds for MeCS°(Λw\Ωε), where Ωg is the same as in Lemma
3.1. In view of Lemma 3.2 it suffices to show (3.10) for fieC^O,). There-
fore, we may assume that (4.1) holds for all x' by modifying g(x') out of some
neighborhood of #'=0.

Let φ0(ί), φ^t) and φz(t) be C°°-functions in [0, oo) such that

suppφ0(ί)c[0, 1), φ0(0=l on [0,1/2],

supple [0,2), &(*)=! on [0,1],

supp φ2(t) C(l, oo) , &(f) = 1 in [2, oo)

and

(4.2) &+&=! » [0,oo).

Set \(ξ, η)=(\ξ\ 6+<3?>4)1/6. Then λ(£, 9?) satisfies inequalities (2.5) and (2.6) in
[6], so it is a basic weight function associated with pseudodiίferential operators.

Lemma 4.1. Set %/*', ξ, η} = $j(g(x')\(ξ, η)) (j= 0, 1, 2).
DX,D,) belongs to Ŝ ,,, zσAere 1=(1, •», 1) αwίί d=(S1( -, δβί, 0, -, 0), δt=l/2.
Furthermore we have

(4.3) χ1+XI = /.

The lemma follows from (4.1) and (4.2), by the same way as in the proof
of Proposition 5.1 of [6]. (About the definition of S\l s see Definition 2.3 of

Lemma 4.2. There exist a constant C0 such that

(4.4) ll^'K^y^illo^CodlP^Ho+ll^llo), («=l/3),

if *!=*!(*', D,, Dy)u for toeCSr(Λ").

Proof. Let fyt) be a C~-f unction in [0, oo) such that
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[0,3), &(*)=! on [0,2].

Set %3(#', -η)=φz(s(x')\(Q, 97)). Then, clearly we have X3(x'9Dy)vl=v1. Using
the fact that^Λ/^S^X^3 on supp %3(#', η) we have

From this and (3.6) we obtain (4.4). Q.E.D.

As in §5 of [6], we consider an operator p(x,y,Dx,DJ) which is obtained
by modifying p(x, y, Dx> Dy) in "a neighborhood of x'=G" as follows: Set

2(*. y, £> -n) = <*(χ> y, f )+te(*X& ?)+%o(*', £> ??))M& ιΓl*(*> J> ??) -
Then we have

Lemma 4.3. 2>=ϊ>(x,y, Dx, Dy) belongs to Sj f l f8 and p(x, y, ξ, η) satisfies
(H)-condition, in the following sense:

i) There exists a constant £0>0 such that

(4.5) \p(x, y, ξ, rj) I ̂ c0\(ξ, tf for large | ζ | + | , | .

ii) For any a and β there exists a constant Caβ such that

\m(χ, y, ξ,
for large \ξ\ + \η\,

where d=(8lt -, δx,, 0, « , 0), 8t=l/2.

The proof is done by using (4.1), similarly as in the proof of Proposition
5.3 of [6].

By means of Proposition 2.7 of [6] and Lemma 4.3 we have a parametrix
r.i.s such that for PeSlΛΛ

(4.7) I=QP+K,

furthermore

(4.8)
<r(Qo) = ϊ>(x, y, ξ, -η) l for large \ζ\ + \η\.

Lemma 4.4. Set v2=X2(x'y Dχy Dy)ufor ut=C%(Rn). Then, for any ΛΓ>0
there exists a constant C(N) such that

(4.9)

where tc=l/3.

Proof. By checking symbols of </>„ Dy>
l+lίQ0 and g(x')<f>yy

2QQ we see
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that they belong to SJil§8. Note that PX2=P%2 mod 3"°°. In view of (4.7)
and (4.8) we obtain (4.9) by means of L2-bcundedness of the operator belonging
to SJplil (see Proposition 2.5 of [6]). Q.E.D.

Lemma 4.5. For any ΛΓ>0 there exists a constant C(N) such that for

/=1, 2 we have

(4.10) \\[P,^]U\\^C(N)(\\Pu\\0+\\u\\.N), u<=CZ(R"),

where κ=l/3.

Proof. It follows from Lemmas 4.1 and 4.3 that we have the expansion
formula

[P, %,] =
°<iβ (cf. (2.10) of [6]),

where N0=3N+6. From (4.7) we have

[P, %y] = [P, Xj]QP= Σ (-lΓ'%$)P(

(SρP/tf !/3! mod Sϊ#.

In view of (4.6) it is not difficult to see %$>^£!δ e S ŝ for |α+/3|Φθ.
Noting ΛK=<DX, />,>«€ Sifto we obtain (4.10). Q.E.D.

Noting Lemma 3.3 and using the division u=X1u+X2
u for

as in the proof of Lemma 4.1 of [6] we obtain (3.10) by means of Lemmas 4.2,
4.4 and 4.5. We have completed the proof of Lemma 3.5.

5. Proof of Lemma 3.6

In this section we denote φι(x") and ψι(x") in Lemma 3.6 simply by φ(xf')

and i|r(#")> respectively. Let K, be 1/3 and use the division u=XιU+<X,2

u~vιJr^2
for u&C%(Rn) in the preceding section. By means of Lemmas 4.4 and 4.5

it is easy to see that for any N>Q and any φ(x") ^ Co'(jR^Λ) there exists a
constant C(Ny φ) such that

(5.1) ||[P, φ]v2\\^C(N9 φ)(||A||o+IMI-*) , u^C^(Rn) ,

because [P, φ] belongs to S\tQ. In view of Lemmas 3.3 and 4.5, for the proof
of Lemma 3.6 it suffices to show for a constant C(φ, i/r)

(5.2) ||[P, φtoll^Cίφ, ΨJdlψΛdU+IIAHo+IMDβ ,

provided that φ, ψ e C^/Zjί?) satisfy φCCi/r .

It follows from the hypothesis (1.4) of Theorem 1.1 that for any s^l there
exists a cΛ>0 such that
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(5.3) k'l^log^))-1 on slippy if <?> *̂, ,

because (*', f , 17) e supp ̂  implies g(x')<v>2'3 ^ 3. Set /^ (/>,) = φ2(M~l<Dyy)
for a Λf^3, where φ2(t)^C°°(Rl) is the same as in §4. Let/(£, η) be the sym-
bol in ιSΊ0

f0 defined by (3.13) in Section 3. Set

(5.4) w^h^D^x'tD^D^D^DJu for

and let As denote an operator with a symbol s log <??>. To make clear the idea
of this section, first we shall prove (5.2) by assuming that coefficients of P are
independent of y.

Lemma 5.1. Assume that coefficients of P are independent of y. For any
real s^l there exists a M5^3 such that for zΰ defined by (5.4) with M^MS we
have

(5.5) l|AfrlloΉ&<A>llo£CollPHIo ,

where C0 is a constant independent of s, and moreover for any integer &^0 and

any ψ(x") e C*5(P$> ) the estimate

(5.6) ll

holds with the same constant C0 in (5.5) (independent of k and ψ).

Proof. By setting u=w in (3.6) we have

(5.7) ||<Z>>,||?+||£(*r^>II^C(Re (Pto,

Here and in what follows we denote different constants independent of s by
the same notation C. Since it follows that [P, Xj=0 from (5.7) we obtain

(5.8) ||<z)>||g+||̂ ')1/2<£>>II^C(Re (pirX a,«0+IMI§) .

From this we see that for any μ>0 there exists a constant Cμ independent of s
such that

(5.9) ||<Z)>»l|S+||̂ *0I\ί>>IIS^A ll4«'IIS+cι

(.(l|PA71»||+||«||g).

By means of Poincarό's inequalities it follows from (5.3) that for a constant C
independent of 5 we have

(5.10) l|(ίiog<,»a>||i tβ.ι,^cι|/).1Λ|ii«(,.1) */ M^C,,

where tΰ is the Fourier transform of w with respect to y. In fact, in view of
(5.3) and (5.4) we have

supp 0 C {(*, η) |^|^ (s
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Integrating (5.10) with respect to η we obtain

(5.11) \\ZfO\\teC\\Djo\\l (^C||<D,>α||S).

Set Ms= max (Mo, c^ 3). Then, combining (5.9) and (5.11) we have

for w with M^MS. Replacing iA by f^sw we obtain (5.5) because C||XS20||0 is
estimated above by ||λfa>||0/2 if Ms is large enough such that 2C^ log<T7> on
supp tΰ. The derivation of (5.5) is still valid even if we replace w by Ajψ α?

for any integer β^O and any ψe CS(S$,). So, we obtain (5.6). Q.E.D.

Lemma 5.2. Assume that coefficients of P are independent of y. Let
s^l and let w be defined by (5.4) with M^MS> where Ms is defined by Lemma

5.1. Let φ, ψ&CZ(R"%) satisfy φccψ>. Then there exists a constant Cί=
CΊ(φ, Λ/T) independent of s such that for any integer ΛΓ>0

(5.12) ||Λ^Ar>Φ«llo^^

Proof. For any integer ΛΓ>0 there exists a sequence {ψv(#")} J-i
such that

and for a fixed integer /0^2 we have

(5.13) |Z>?^y|:g(C2ΛO"J| for

where C2=C2(φ, -ψ1, /0) is a constant independent of j and N. In fact, we can
find such a sequence by dividing N times a space between supp φ and the com-
plement of {xff\-\lτ—\} and by noting Lemma 1.1 of Chapter V of [10] (The
constant C2 is given in the form C^=C^ for a constant C2 independent of 70).
In view of [P, λj=0, it follows from (5.6) that

(5 14) ||Af

Noting that the estimate

holds for a constant C" independent of s and JV, from (5.14) and (5.6) we have

(5.15) llAf

By means of (5.13), there exists a constant C£ independent of s, j and JV such
that

(5.16) ||Ay-'[P, ψytyy+iHIo^Cί^
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Assume that for a fixed N we have slogζηy^CίN on suρp#>, where €0 is the
Fourier transform of w with respect to j\ Then, since we have CzNU&^'
^||λf-> +1α>||0 it follows from (5.16) that

Applying (5.6) to the second term of the right hand side we obtain

(5.17) HPAy-V^llβ^llλf-V/tollβ+CoCίΛΓIIPAr-'-Vy+iwIlβ

(7=1, -, ΛΓ-1, ψ, = ψ) .

By means of (3.9) in Lemma 3.4 we have

(5.18)

where C" is a constant independent of s and N. In view of (5.13), there exists
a constant C3 independent of s, j, and N such that

IhMlo^cjhHi, (/ = o, -, jv-i, -ΨΌ = Φ)
Set CΊ= max (C0C3, ClC'C3, C0C'2C3> C0C'2C"). Then it follows from (5.15),
(5.17) and (5.18) that

|A|f +1<Dxyφw\ |0 ̂  Cil I ΛtyPwl |β+ 23 CίΛΓ'-'l I A* -

(5.19)

//" s log <0?>^ QΛΓ ow supp w .

From this we obtain (5.12) if slog^y^QN on supp w because C{NJ\\Ά.y
^||Af^|rPw||0. We can remove the assumption s log ̂ ^^QAΓ on supptί). In
fact, if slog<37>^CyV on suppw) it follows from (5.6) that the estimate

holds for some constant C$ independent of s, j and N. Taking Cj such that
Q^CoCa furthermore we can complete the proof of the lemma. Q.E.D.

Lemma 5.3. Assume that coefficients of P are independent of y. Let
s^l and let zΰ, φ and ι|r be the same as in Lemma 5.2. Then there exists a positive
number τ(^l/3) independent of s and a constant C(φ, ψ>) such that

(5.20) ||<Z),yτ<ί>,><Hloϊϊ C(φ,

Proof. It follows from (5.12) that for any integer N>0

(5.12)' \\^+1<,Dxyφw\\l^

where/=||Pw||0+||w||β. Multiplying both sides by τ2N+2j(2N+2)\ for 0<τ^ 1/3
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and using the Stirling formula N2N^e2N(2N)l we have

where Ptΰ denotes the Fourier transform of Pw with respect to y. Let IN denote

the right hand side of (5.21). Multiplying both sides of (5.12)' by τ2N+ll

(2N+l)l again, we also see that

because we have log<^X^ 1 by means of Ms^3. Hence we have

Note ΣMog<?>τy/m!=:<97yτ and take r small enough such that rCle<\.
m = 0

Then, summing (5.22) with respect to AT— 1, 2, ••• we obtain (5.20) because it

follows from Lemma 5.1 that { { Σ (log <?7>TT \<P1>ΦM \ 2dxdηlm \ is estimated
J J m = Q

above by the constant times ofj2. Q.E.D.

Assume that coefficients of P are independent of y. Since r is independent
of s we can choose s^.1 such that sτ=fc=l/3. For s chosen above take Ms of

Lemma 5.1. Then, since ||<D>HI« ίs estimated above by C(||<jD,><e<DjC>φ«||0+
||<D,>||o) it follows from (5.20) and (3.6) that

||<D,>φ«||β̂ ^^

holds with w defined by (5.4) with M^MS. Since (l-hM(Dy))f^S"0° and P

is microlocally elliptic on supp (I—/) it is easy to see that

2 l
(' }

By means of above two estimates we obtain

(5.24)

which shows that (5.2) holds. Indeed, (5.2) follows from (5.24) with φ re-
placed by Z)?//φ ( I a \ = 1).

From now on we shall consider the case when coefficients of P depend on

y
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Lemma 5.4. There exists an integer m^>Q depending only on the dimension
n of (x,y) variables and satisfying the following: For a fixed integer ΛΓ>0 take

a sequence {ψj}]j~ιdC^(R^) in the proof of Lemma 5.2 such that the integer
/o of (5.13) is sufficiently larger than mQ. Then, there exists a conttant C4 inde-
pendent ofj and N such that for any s^\ the estimate

^Mlo^QΛW
(5.25)

holds with to defined for u^C^(Rn) by (5.4).

Proof. Since each term of (5.25) has a common devisor $* it suffices to
show it when s=l. Take a symbol f(ξ, η) in *S?fo such that

ί /= 1 on supp/

tsupp/c{|£| £
Note

[P, A*]ψyW = [P, Aϊ]A

and set

sV, *, * ξ, Ώ) = (log <7'»*ί(*, y, ξ,
Then we have the expansion of the symbol of Q

σ(Q) == — Σ 9?((l°g (?i/>yi)DΛyP(χι y* ζy

(5.26) _,v

I=2 o

It is clear that !!<&(#, y, Z)Λ, D^^lw\\Q is estimated above by the first three
terms of the right hand side of (5.25) with s=l. If qJ^Xyy, ?> >?) denotes the
symbol of q2(x, y, Dx, DJψj^X^x, Dx, Dy}f(Dx, Dy) then we have <72<ΞSλ

0

tl.8.
In view of (5.13) and (log^X*)^^"1^ Nk we see that semi-norms of q2 defined by

§ 2 7 = max βup
l*l + lβ!£/ B2n

(7=0, 1,2, -,/0-2/z)

are estimated above by C/7V/+*+2Λ, where C, is a constant independent of N.
Then it follows from Theorem 1.6 of Chapter 7 of [3] that \\9£x,y,Dx,Dy)
hM(Dy)u\\0 is estimated above by the fourth term of the right hand side of
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(5.25) with ί=l. By noting the expansion of the symbol of R we can easily
see ||ΛAflf#Ho is estimated above by the same term. Q.E.D.

Lemma 5.5. Let m0, φ, ψ and fψ1/}/^1 be the same as in Lemma 5.4.
Then for any s^l there exists a constant C5=C5(φ, ψ) independent of s, j and N

such that the estimate

(5.27)

j, &<= {0, »., N}, ψ o = Ψ , ψN=ψ ,

holds for 10 defined by (5.4) laiih M^MS, τϋhere Ms is a constant independent of
N andj.

Proof. By setting M=A* <|r#w in (3.6) we have

( ' '

+Re([P,

Here and in what follows we denote by the same notation C different constants
independent of s, j and N". Note

[PAlAΓ^iψyw = [P, AjArW^y

where / is the same as in the proof of Lemma 5.4. By noting the expansion

of σ(ζ)0) as (5.26) we see that

||0,£fcMloSC{||<ι>.>2ftMloΉ^
Similarly we obtain

Consequently, for any μ>0 and some constant Cμ we obtain

Re([P,

(5.29) ^

It follows from (5.28) and (5.29) that for any μ>0 there exists a constant C'μ
such that

(cf. (5.9)) .
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From this we obtain (5.27) with k replaced by k—ί because we have

if Ms is large enough. Q.E.D.

Lemma 5.6. Let m0, φ and ψ* be the same as in Lemma 5.4. Let s^l
and let w be a function defined for u^C^(Rn) by (5.4) with M^MS, where Ms

is the same as in Lemma 5.5. Then, there exists constant d^C^φ, -\Jr) and
C6=C6(φ, ψ) independent of s such that for any integer N>0

l|ΛΓ
( ' }

Proof. For a fixed N>0 assume that ί log <5?> Jΐ 2C4C5ΛΓ on supp fO.
Then it follows from Lemmas 5.4 and 5.5 that

(5.31)

because we have 2C4C5N\\&k

styjW\\Q^\\&.k

s

+1tyjw\\Q and we may assume C5^l.
From (5.31) we have

(5.32) I IPΛfcM |o ̂  2| | A*Pψ^| |0+2CΛΓwo+*+¥+1| \u\ |β

By the similar way as in the proof of Lemma 5.4, it is easy to see

f Σ II[P^ AaΨHIo^Cί^Ί^
(5 33^ J I Λ I =

In view of [P, ψy]= Σ ψMP™la\, it follows from (5.13) and (5.33) that
the estimate

(5.34) ^ (Cί'ΛO2! l^-'̂ -nwl lβ+Cί'JV| I Ar'<jD,

holds in place of (5.16). Then, by using (5.32) and (5.27) (instead of (5.6)),
we can obtain (5.30) as in the proof of Lemma 5.2 because we have CfAΓV"'^

(C?+s»)N» and

When slogζη}£*CιN on suppai the estimate (5.30) is obvious from (5.27) with
*=0. Q.E.D.

As in the proof of Lemma 5.3 it follows from Lemma 5.6 that we have
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(5.35) IIWXAr^βΊlo^Cίφ, ^XIKΰ^P^llo+IIPHIo+IMIo)

because we have, in view of ίτ=Λ=l/3,

US ΛΓ2*o+2(eίτW/

From (5.35) and (5.23) we also have (5.24) when coefficients of P depend also
on^y. Since (5.2) follows from (5.24), we have completed the proof of Lemma

3.6.
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