On a transitive transformation group of a compact group manifold

Ozeki, Hideki

Osaka Journal of Mathematics. 14(3) P.519-P.531

1977

publisher

https://doi.org/10.18910/7892

10.18910/7892

Osaka University
ON A TRANSITIVE TRANSFORMATION GROUP OF
A COMPACT GROUP MANIFOLD

HIDEKI OZEKI

(Received June 10, 1976)

1. Introduction. Let K be a connected compact Lie group and H a closed subgroup of K. Suppose a connected Lie subgroup G of K acts simply transitively on the coset space K/H by the left translation. Then the composition mapping

$$F: G \times H \to K$$

defined by $F(g, h) = gh$ ($g \in G$, $h \in H$) gives rise to a diffeomorphism of the product manifold $G \times H$ onto K. Consequently, for their Lie algebras, we have

$$\mathfrak{f} = \mathfrak{g} + \mathfrak{h} \quad \text{(direct sum of vector spaces).}$$

We shall prove in this paper the following:

Theorem 1. Let \mathfrak{f} be a compact Lie algebra. Suppose there exist two subalgebras \mathfrak{g} and \mathfrak{h} of \mathfrak{f} such that

$$\mathfrak{f} = \mathfrak{g} + \mathfrak{h} \quad \text{(direct sum of vector spaces).}$$

Then there exist a direct sum decomposition

$$\mathfrak{f} = \mathfrak{g}_1 \oplus \mathfrak{h}_1$$

of Lie algebras and Lie algebra homomorphisms

$$\varphi: \mathfrak{g}_1 \to \mathfrak{h}_1 \quad \text{and} \quad \psi: \mathfrak{h}_1 \to \mathfrak{g}_1$$

with the following properties:

(i) $\mathfrak{g} = \{(X, \varphi(X)) | X \in \mathfrak{g}_1\}$.

(ii) $\mathfrak{h} = \{\psi(Y), Y \in \mathfrak{h}_1\}$.

(iii) $\psi \circ \varphi$ has no non-zero fixed vector.

As a result we see that the Lie algebra \mathfrak{f} is isomorphic with the direct sum $\mathfrak{g} \oplus \mathfrak{h}$ of Lie algebras. This theorem gives us an infinitesimal characterization of a homogeneous space of the type mentioned in the above. Some
application and remarks will be added after its proof.

Such a homogeneous space is related with a study of isometries of a compact group manifold. Let G be a connected compact Lie group and choose a left invariant Riemannian metric $d\sigma$ on G. Denote by K the identity component of the isometry group of $(G, d\sigma)$. We identify an element g of G with its left translation L_g on G. Ochiai-Takahashi [2] proved that if G is simple then G is normal in K. Their theorem follows immediately from our Theorem 1. The conclusion of their theorem does not hold in general if G is not simple, as our example shows. However, our Theorem 3 asserts that if G is simply connected then we have a similar conclusion by a suitable change of the action of G on the space.

2. Recall that a Lie algebra \mathfrak{f} is said to be compact if it can be represented as a Lie algebra of a compact Lie group. For a compact Lie algebra \mathfrak{f}, we denote by $c(\mathfrak{f})$ its center and by $s(\mathfrak{f})$ its maximal semi-simple ideal, so that we have $s(\mathfrak{f}) = [\mathfrak{f}, \mathfrak{f}]$ and

\[
\mathfrak{f} = s(\mathfrak{f}) \oplus c(\mathfrak{f})
\]

(direct sum of Lie algebras). The same notation will be used for a connected Lie group K when the Lie algebra \mathfrak{k} of K is compact. $c(K)$ and $s(k)$ are the connected Lie subgroups of K corresponding to Lie subalgebras $c(\mathfrak{f})$ and $s(\mathfrak{f})$ respectively.

Note that a connected Lie group K has a compact Lie algebra if and only if K has a bi-invariant Riemannian metric and also that any subalgebra of a compact Lie algebra is compact. In the sequel, for a Lie group homomorphism, the induced Lie algebra homomorphism is denoted by the same symbol.

Lemma 1. Let K, G and H be connected Lie groups with Lie algebras \mathfrak{k}, \mathfrak{g} and \mathfrak{h} respectively. Suppose \mathfrak{k} is compact. Let $\phi: G \to K$ and $\psi: H \to K$ be Lie group homomorphisms such that the induced homomorphisms $\phi: \mathfrak{g} \to \mathfrak{k}$ and $\psi: \mathfrak{h} \to \mathfrak{k}$ are both injective and

\[
\mathfrak{k} = \phi(\mathfrak{g}) + \psi(\mathfrak{h}) \quad (\text{direct sum of vector spaces}).
\]

Then the composition mapping

\[
F: G \times H \to K
\]

defined by $F(g, h) = \phi(g) \cdot \psi(h)$ is a covering map.

Proof. In general, we denote the left translation and the right translation of a group induced by an element x in it by L_x and R_x respectively. Then, for the mapping F, we have the following commutative diagram:
for $(g, h) \in G \times H$. This gives an identity

$$F = (L_{\phi(g)} \circ R_{\psi(h)}) \circ F \circ (L_{g^{-1}} \circ R_{h^{-1}}).$$

Taking the differentials, we have

$$(dF)_{(g, h)} = (d(L_{\phi(g)} \circ R_{\psi(h)}))_e \circ (dF)_{(g, h)} \circ (d(L_{g^{-1}} \circ R_{h^{-1}}))_{(g, h)}.$$

We identify $T_{(g, h)}(G \times H)$ with $\Gamma_0(G) + \Gamma_0(H)$ (direct sum of vector spaces). Since $(dF)_{(g, h)}| T_{(g)}(G) = \phi$ and $(dF)_{(g, h)}| T_{(h)}(H) = \psi$, our assumption in the lemma implies that $(dF)_{(g, h)}$ gives an isomorphism of $T_{(g, h)}(G \times H)$ onto $T_{(g, h)}(K)$. By the above identity, we see that $(dF)_{(g, h)}$ is isomorphic at each point (g, h) of $G \times H$. Since \mathfrak{t} is compact, we can choose a bi-invariant Riemannian metric $d\mathfrak{s}^2$ on K. Then $d\mathfrak{s}^2 = F^*(d\mathfrak{s}^2)$ gives a Riemannian metric on the manifold $G \times H$, which is locally isometric with $(K, d\mathfrak{s}^2)$ via F. In virtue of the first commutative diagram, the Riemannian metric $d\mathfrak{s}^2$ on $G \times H$ is $L(G)$ and $R(H)$-invariant, and hence it is complete. Thus we see that F is a locally isometric mapping of a complete Riemannian manifold $(G \times H, d\mathfrak{s}^2)$ into $(K, d\mathfrak{s}^2)$. This proves that F is a covering map.

Lemma 2. Let \mathfrak{g} be a compact Lie algebra, and let \mathfrak{g} and \mathfrak{h} be two subalgebras of \mathfrak{k} such that

$$\mathfrak{k} = \mathfrak{g} + \mathfrak{h} \quad (\text{direct sum of vector spaces}).$$

Then, \mathfrak{k} is isomorphic with the direct sum $\mathfrak{g} \oplus \mathfrak{h}$ of Lie algebras. Consequently, we have

$$\dim \mathfrak{c}(\mathfrak{k}) = \dim \mathfrak{c}(\mathfrak{g}) + \dim \mathfrak{c}(\mathfrak{h}).$$

Proof. For \mathfrak{g}, \mathfrak{h} and \mathfrak{k}, choose simply connected Lie groups G, H and K with the corresponding Lie algebras respectively. Let

$$\phi: \mathfrak{g} \to \mathfrak{k} \quad \text{and} \quad \psi: \mathfrak{h} \to \mathfrak{k}$$

be the inclusion mappings. They induce Lie group homomorphisms

$$\phi: G \to K \quad \text{and} \quad \psi: H \to K.$$

The composition mapping F of the product manifold $G \times H$ into K defined by

$$F(g, h) = \phi(g) \psi(h)$$

is a covering map by Lemma 1. Since K is assumed to be simply connected, we
have a diffeomorphism of $G \times H$ onto K. \mathfrak{f} is compact and hence \mathfrak{g} and \mathfrak{h} are compact. Since G, H and K are simply connected and their Lie algebras are compact, we see $G = s(G) \times c(G)$, $H = s(H) \times c(H)$ and $K = s(K) \times c(K)$. Since F is a diffeomorphism of the product manifold $G \times H$ onto K we see

$$\dim c(K) = \dim c(G) + \dim c(H)$$

and hence

$$\dim c(\mathfrak{f}) = \dim c(\mathfrak{g}) + \dim c(\mathfrak{h}).$$

Note that $s(K)$ is a maximal compact subgroup of K. Also we see that F induces a homotopy equivalence between $s(G) \times s(H)$ and $s(K)$.

A theorem in homotopy theory ([3], [4]) states that if two simply connected compact Lie groups are homotopically equivalent then they are isomorphic as Lie groups. Thus, we see that the Lie group $s(K)$ is isomorphic with the direct product $s(G) \times s(H)$ of Lie groups. Finally we can conclude that the Lie algebra \mathfrak{f} is isomorphic with the direct sum $s(\mathfrak{g}) \oplus s(\mathfrak{h})$ of Lie algebras.

$q.e.d.$

Corollary 1. Under the same assumption as above, we have

$$s(\mathfrak{f}) = s(\mathfrak{g}) + s(\mathfrak{h}) \quad (\text{direct sum of vector spaces}).$$

Proof. Since \mathfrak{f} and $\mathfrak{g} \oplus \mathfrak{h}$ are isomorphic, $s(\mathfrak{f})$ and $s(\mathfrak{g}) \oplus s(\mathfrak{h})$ are isomorphic. Especially, we have

$$\dim s(\mathfrak{f}) = \dim s(\mathfrak{g}) + \dim s(\mathfrak{h}).$$

On the other hand, we know

$$s(\mathfrak{f}) = [\mathfrak{f}, \mathfrak{f}], \quad s(\mathfrak{g}) = [\mathfrak{g}, \mathfrak{g}], \quad s(\mathfrak{h}) = [\mathfrak{h}, \mathfrak{h}].$$

Thus, we have

$$s(\mathfrak{f}) \supset s(\mathfrak{g}) \quad \text{and} \quad s(\mathfrak{f}) \supset s(\mathfrak{h}).$$

The assumption $\mathfrak{f} = \mathfrak{g} + \mathfrak{h}$ (direct sum of vector spaces) shows that $s(\mathfrak{g}) + s(\mathfrak{h})$ is a direct sum of vector spaces in $s(\mathfrak{f})$. The first equality on dimension proves our corollary. $q.e.d.$

3. Theorem 1 will follow easily from the following:

Proposition 1. Let \mathfrak{t} be a compact Lie algebra and let \mathfrak{g} and \mathfrak{h} be its subalgebras such that

$$\mathfrak{t} = \mathfrak{g} + \mathfrak{h} \quad (\text{direct sum of vector spaces}).$$

Then \mathfrak{t} has a direct sum decomposition of Lie algebras
\(\mathfrak{t} = \mathfrak{l} \oplus \mathfrak{l}' \)

with the following properties:

(i) The projection \(\pi \) of \(\mathfrak{t} \) onto \(\mathfrak{l} \) with respect to the above decomposition induces an isomorphism of \(\mathfrak{g} \) onto \(\mathfrak{l} \).

(ii) \(\mathfrak{t} = \mathfrak{t} + \mathfrak{h} \) (direct sum of vector spaces).

Proof. We prove the proposition by induction on \(\dim \mathfrak{t} \). When \(\dim \mathfrak{t} = 1 \), the proposition holds since \(\mathfrak{t} = \mathfrak{g} \) or \(\mathfrak{t} = \mathfrak{h} \). Now assume that the proposition holds when \(\dim \mathfrak{t} < N \). Let \(\dim \mathfrak{t} = N \). To simplify the argument we prepare the following:

Sublemma. Suppose \(\mathfrak{t} \) has a non-trivial proper ideal \(\mathfrak{t}_1 \) such that

\[\mathfrak{t}_1 = (\mathfrak{g} \cap \mathfrak{t}_1) + (\mathfrak{h} \cap \mathfrak{t}_1) \] (direct sum of vector spaces).

Then the assertion of Proposition 1 holds for \(\mathfrak{t}, \mathfrak{g} \) and \(\mathfrak{h} \).

Proof. For \(\mathfrak{t}_1 \), we choose a complementary ideal \(\mathfrak{t}_2 \) so that we have a direct sum decomposition

\[\mathfrak{t} = \mathfrak{t}_1 \oplus \mathfrak{t}_2 . \]

Let \(\pi_2 \) be the projection of \(\mathfrak{t} \) onto \(\mathfrak{t}_2 \). We have

\[
\begin{align*}
\dim \mathfrak{g} & = \dim (\mathfrak{g} \cap \mathfrak{t}_1) + \dim \pi_2(\mathfrak{g}) , \\
\dim \mathfrak{h} & = \dim (\mathfrak{h} \cap \mathfrak{t}_1) + \dim \pi_2(\mathfrak{g}) .
\end{align*}
\]

Thus,

\[
\dim \mathfrak{t}_2 = \dim \mathfrak{t} - \dim \mathfrak{t}_1 = \dim \pi_2(\mathfrak{g}) + \dim \pi_2(\mathfrak{h}) .
\]

Since \(\mathfrak{t} = \mathfrak{g} + \mathfrak{h} \), \(\mathfrak{t}_2 = \pi_2(\mathfrak{t}) \) is spanned by \(\pi_2(\mathfrak{g}) \) and \(\pi_2(\mathfrak{h}) \), and hence we have

\[\mathfrak{t}_2 = \pi_2(\mathfrak{g}) + \pi_2(\mathfrak{h}) \] (direct sum of vector spaces).

Consider \(\mathfrak{t}_1 \) and its subalgebras \(\mathfrak{g} \cap \mathfrak{t}_1 \) and \(\mathfrak{h} \cap \mathfrak{t}_1 \) and also \(\mathfrak{t}_2 \) and its subalgebras \(\pi_2(\mathfrak{g}) \) and \(\pi_2(\mathfrak{h}) \). By the inductive hypothesis, we have direct sum decompositions

\[\mathfrak{t}_1 = I_1 \oplus I_1' \quad \text{and} \quad \mathfrak{t}_2 = I_2 \oplus I_2' \]

with the properties:

i. The projections \(\mathfrak{g} \cap \mathfrak{t}_1 \rightarrow I_1 \) and \(\pi_2(\mathfrak{g}) \rightarrow I_2 \) are isomorphisms.

ii. \(\mathfrak{t}_1 = \mathfrak{t}_1 + \mathfrak{h} \cap \mathfrak{t}_1, \mathfrak{t}_2 = \mathfrak{t}_2 + \pi_2(\mathfrak{h}) \) (direct sums of vector spaces).

Let

\[I = I_1 \oplus I_2 \quad \text{and} \quad I' = I_1' \oplus I_2' . \]
We claim that the direct sum decomposition

$$\mathfrak{I} = \mathfrak{I} \oplus \mathfrak{I}'$$

satisfies the required properties.

First suppose \(X \in \mathfrak{g} \cap \mathfrak{I} \). Then \(\pi_\mathfrak{I}(X) \in \pi_\mathfrak{I}(\mathfrak{g}) \cap \mathfrak{I}' \). However \(\pi_\mathfrak{I}(\mathfrak{g}) \cap \mathfrak{I}' = \{0\} \) from the assumption. Thus \(\pi_\mathfrak{I}(X) = 0 \), and hence \(X \in \mathfrak{I} \). Then \(X \in (\mathfrak{g} \cap \mathfrak{I}) \cap \mathfrak{I}' = \{0\} \). Consequently we have \(\mathfrak{g} \cap \mathfrak{I}' = \{0\} \). This shows that the projection of \(\mathfrak{g} \) into \(\mathfrak{I} \) with respect to \(\mathfrak{I} \oplus \mathfrak{I}' \) is injective. Since they have the same dimension, we have the property (i). Next suppose \(\mathfrak{I} \cap \mathfrak{h} \in X \). \(\pi_\mathfrak{I}(X) \in \pi_\mathfrak{I}(\mathfrak{h}) \cap \mathfrak{I}' = \{0\} \), and hence \(X \in \mathfrak{I} \). We see that \(X \in \mathfrak{I} \cap (\mathfrak{h} \cap \mathfrak{I}) = \{0\} \). Thus, we have \(\mathfrak{I} \cap \mathfrak{h} = \{0\} \). Since \(\dim \mathfrak{I} = \dim \mathfrak{I} + \dim \mathfrak{h} \), we see \(\mathfrak{I} = \mathfrak{I} + \mathfrak{h} \) (direct sum of vector spaces). Thus we have the property (ii) also. q.e.d.

We continue our proof of Proposition 1. First consider easy cases.

(1) \textit{Suppose} \(\mathfrak{I} \) is abelian.

Then \(\mathfrak{I} = \mathfrak{g} \) and \(\mathfrak{I}' = \mathfrak{h} \) satisfy the required properties.

(2) \textit{Suppose} \(\mathfrak{I} \) is simple.

Then, by Lemma 2 we see \(\mathfrak{I} = \mathfrak{g} \) or \(\mathfrak{I} = \mathfrak{h} \). Thus our assertion holds trivially.

(3) \textit{Suppose} \(\mathfrak{g} \) contains a non-trivial proper ideal, say \(\mathfrak{i}_1 \), of \(\mathfrak{I} \).

Then choose a complementary ideal \(\mathfrak{i}_2 \) of \(\mathfrak{i}_1 \) in \(\mathfrak{I} \), so that we have

$$\mathfrak{I} = \mathfrak{i}_1 \oplus \mathfrak{i}_2.$$

Clearly, \(\mathfrak{i}_1 \cap \mathfrak{g} = \mathfrak{i}_1, \mathfrak{i}_1 \cap \mathfrak{h} \subset \mathfrak{g} \cap \mathfrak{h} = \{0\} \). Applying the above sublemma we see that Proposition 1 holds in this case.

(4) \textit{Suppose} \(\mathfrak{h} \) contains a non-trivial proper ideal, say \(\mathfrak{i}_1 \), of \(\mathfrak{I} \).

Then again we have \(\mathfrak{i}_1 \cap \mathfrak{g} = \{0\} \), and \(\mathfrak{i}_1 \cap \mathfrak{h} = \mathfrak{i}_1 \). Thus we can apply the sublemma in this case also.

(5) \textit{Suppose} \(\mathfrak{I} \) is not semi-simple.

We may suppose \(\mathfrak{I} \) is not abelian. Then the semi-simple part \(s(\mathfrak{I}) \) is a non-trivial proper ideal of \(\mathfrak{I} \). By Corollary 1, we have

$$s(\mathfrak{I}) = s(\mathfrak{g}) + s(\mathfrak{h}) \quad \text{(direct sum of vector spaces)}.$$

Since \(s(\mathfrak{g}) \subset \mathfrak{g} \cap s(\mathfrak{I}), s(\mathfrak{h}) \subset \mathfrak{h} \cap s(\mathfrak{I}) \) and \(\mathfrak{g} \cap s(\mathfrak{I}) = \{0\} \), we have \(s(\mathfrak{g}) = \mathfrak{g} \cap s(\mathfrak{I}) \) and \(s(\mathfrak{h}) = \mathfrak{h} \cap s(\mathfrak{I}) \). Thus

$$s(\mathfrak{I}) = \mathfrak{g} \cap s(\mathfrak{I}) + \mathfrak{h} \cap s(\mathfrak{I})$$

is a direct sum of vector spaces, and hence we can apply our sublemma.
The above argument shows that we may suppose \(f \) is semi-simple and not simple.

(6) Suppose \(f \) is semi-simple and all simple factors of \(f \) are mutually isomorphic with each other.

In this case we shall show that either \(g \) or \(h \) contains a proper ideal of \(f \), so that the proposition holds by (3) or (4). Suppose neither \(g \) nor \(h \) contains a non trivial proper ideal of \(f \). Let

\[
\begin{align*}
\mathfrak{f} &= \sum_{i \in I} \mathfrak{i}_i, \quad g = \sum_{j \in \mathcal{S}} g_j \quad \text{and} \quad h = \sum_{k \in K} h_k
\end{align*}
\]

be the decompositions of \(\mathfrak{f} \), \(g \) and \(h \) into simple factors. By the present assumption, all \(\mathfrak{i}_i \)'s are mutually isomorphic. By Lemma 2, we see also that all \(g_j \)'s, \(h_k \)'s and \(\mathfrak{i}_i \)'s are mutually isomorphic, and that

\[
|I| = |J| + |K|
\]

where \(|\cdot|\) indicates the number of elements.

Denote by \(\pi_i \), the projection of \(f \) onto \(\mathfrak{i}_i \). One sees that

\[
\begin{align*}
\pi_i(g_j) &= \mathfrak{i}_i \quad \text{or} \quad \{0\}, \\
\pi_i(h_k) &= \mathfrak{i}_i \quad \text{or} \quad \{0\}
\end{align*}
\]

for all \(i, j, k \). Put

\[
\begin{align*}
A_j &= \{i \in I | \pi_i(g_j) \neq \{0\}\}, \\
B_k &= \{i \in I | \pi_i(h_k) \neq \{0\}\}
\end{align*}
\]

for each \(j \in J \) and \(k \in K \). Let \(j_1, j_2 \in J \), and \(j_1 \neq j_2 \). Then \([\pi_i(g_{j_1}), \pi_i(g_{j_2})] = 0\). Thus \(A_{j_1} \cap A_{j_2} = \emptyset \). Hence \(A_j \)'s are mutually disjoint and so are \(B_k \)'s.

Suppose \(A_j \) consists of exactly one element, say \(i \). Then we see \(g_i = \mathfrak{i}_i \) and hence \(g \) contains a non trivial proper ideal. This is a contradiction. Thus each \(A_j \) contains at least two elements. Similarly we have \(|B_k| \geq 2\). Thus we have

\[
\sum |A_j| + \sum |B_k| \geq 2(|J| + |K|) = 2|I|
\]

On the other hand,

\[
\sum |A_j| \leq |I| \quad \text{and} \quad \sum |B_k| \leq |I|.
\]

Combining together, we see

\[
|A_j| = |B_k| = 2
\]

for every \(j \in J \) and \(k \in K \).

By an elementary combinatorial argument one can decompose the index set \(I \) into two disjoint subsets \(I_1 \) and \(I_2 \) such that, for every \(j, k \), the sets \(A_j \cap I_i \),
$A_1 \cap I_2, B_1 \cap I_1$ and $B_1 \cap I_2$ are all non empty. Let

$$\alpha_1 = \sum_{i \in I_1} \mathfrak{g} \text{ and } \alpha_2 = \sum_{j \in I_2} \mathfrak{g},$$

so that we have $\mathfrak{g} = \alpha_1 \oplus \alpha_2$. Denote by p_i the projection of \mathfrak{g} onto α_i (for $i=1, 2$). It follows from our construction that the homomorphisms $p_1|\mathfrak{g}, p_2|\mathfrak{g}, p_1|\mathfrak{h}$ and $p_2|\mathfrak{h}$ are all onto isomorphisms. Using the decomposition $\mathfrak{g} = \alpha_1 \oplus \alpha_2$, we can write

$$\mathfrak{g} = \{(X, \phi(X)) | X \in \alpha_1\}$$

and

$$\mathfrak{h} = \{(\psi(Y), Y) | Y \in \alpha_2\}$$

by suitable onto isomorphisms $\phi: \alpha_1 \rightarrow \alpha_2$ and $\psi: \alpha_2 \rightarrow \alpha_1$. Consider an automorphism $\psi \circ \phi$ of α_1. By a result due to Borel and Mostow [1], every automorphism of a semi-simple Lie algebra has a non-zero fixed vector. Thus, we have an element X in α_1 such that $X \neq 0$ and $\psi(\phi(X)) = X$. Then we have

$$(X, \phi(X)) = (\psi(\phi(X)), \phi(X)) \in \mathfrak{g} \cap \mathfrak{h} = \{0\} .$$

This is a contradiction. Thus, in this case, either \mathfrak{g} or \mathfrak{h} contains a proper ideal of \mathfrak{g}.

(7) Suppose \mathfrak{g} is semi-simple and \mathfrak{g} contains at least two simple ideals which are not isomorphic.

Choose a simple ideal \mathfrak{a} of \mathfrak{g} such that $\dim \mathfrak{a}$ is minimal among the simple ideals of \mathfrak{g}. Let \mathfrak{g}_0 be the direct sum of all simple ideals isomorphic to \mathfrak{a}, and \mathfrak{g}_1 the complementary ideal, so that we have

$$\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 .$$

Similarly, decompose \mathfrak{g} and \mathfrak{h} as

$$\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \text{ and } \mathfrak{h} = \mathfrak{h}_0 \oplus \mathfrak{h}_1 ,$$

where \mathfrak{g}_0 (resp. \mathfrak{h}_0) is the direct sum of all simple ideals in \mathfrak{g} (resp. \mathfrak{h}) isomorphic to \mathfrak{a}.

In virtue of Lemma 2, we see that \mathfrak{g}_0 and \mathfrak{g}_1 are isomorphic with $\mathfrak{g}_0 \oplus \mathfrak{h}_0$ and $\mathfrak{g}_1 \oplus \mathfrak{h}_1$ respectively. We claim that the ideal \mathfrak{g}_0 satisfies the required condition in the sublemma. Let π_0 and π_1 be the projections of \mathfrak{g} onto \mathfrak{g}_0 and \mathfrak{g}_1 respectively. Consider $\pi_0|\mathfrak{g}_1: \mathfrak{g}_1 \rightarrow \mathfrak{g}_0$. From the definitions of \mathfrak{g}_0 and \mathfrak{g}_1, we see $\pi_0|\mathfrak{g}_1 = \{0\}$. Thus, $\mathfrak{g}_0 \subset \mathfrak{g}_1$. Similarly we have $\mathfrak{h}_1 \subset \mathfrak{g}_1$. Thus, $\mathfrak{g}_1 \supset \mathfrak{g}_1 + \mathfrak{h}_1$. Since $\mathfrak{g}_1 \cap \mathfrak{h}_1 = \{0\}$ and $\dim \mathfrak{g}_1 = \dim \mathfrak{g}_1 + \dim \mathfrak{h}_1$, we conclude that

$$\mathfrak{g}_1 = \mathfrak{g}_1 + \mathfrak{h}_1 \text{ (direct sum of vector spaces).}$$
Since $\mathfrak{f} = \mathfrak{g} + \mathfrak{h}$ is a direct sum of vector spaces, we see that $(\mathfrak{f}_1 \cap \mathfrak{g}) \cap (\mathfrak{f}_1 \cup \mathfrak{h}) = \{0\}$. On the other hand, $\mathfrak{f}_1 \cap \mathfrak{g} \supset \mathfrak{g}_i$ and $\mathfrak{f}_1 \cap \mathfrak{h} \supset \mathfrak{h}_i$, and also $\mathfrak{f}_i = \mathfrak{g}_i + \mathfrak{h}_i$ (direct sum of vector spaces). It follows that $\mathfrak{g}_i = \mathfrak{g} \cap \mathfrak{f}_i$ and $\mathfrak{h}_i = \mathfrak{h} \cap \mathfrak{f}_i$ and hence

$$\mathfrak{f}_i = (\mathfrak{g}_i \cap \mathfrak{f}_i) + (\mathfrak{h}_i \cap \mathfrak{f}_i) \quad (\text{direct sum of vector spaces}).$$

This proves our claim.

Thus we have completed the proof of Proposition 1.

4. Now we can prove Theorem 1

Proof of Theorem 1. First assume that \mathfrak{f} is semi-simple. Apply Proposition 1 to \mathfrak{f}, \mathfrak{g} and \mathfrak{h}. We get a direct sum decomposition

$$\mathfrak{f} = \mathfrak{g} \oplus \mathfrak{h}$$

with the properties:

(i) The projection of \mathfrak{f} onto \mathfrak{g} with respect to the above decomposition induces an isomorphism of \mathfrak{g} onto \mathfrak{g}.

(ii) $\mathfrak{f} = \mathfrak{g} \oplus \mathfrak{h}$ (direct sum of vector spaces).

Again apply Proposition 1 to \mathfrak{f}, \mathfrak{h} and \mathfrak{I}. We have a direct sum decomposition

$$\mathfrak{f} = \mathfrak{m} \oplus \mathfrak{m}'$$

with the properties:

(i') The projection of \mathfrak{f} onto \mathfrak{m} with respect to this decomposition induces an isomorphisms of \mathfrak{m} onto \mathfrak{m}.

(ii') $\mathfrak{f} = \mathfrak{m} \oplus \mathfrak{I}$ (direct sum of vector spaces).

Since \mathfrak{m} and \mathfrak{I} are both ideals of \mathfrak{f}, we have a direct sum

$$\mathfrak{f} = \mathfrak{m} \oplus \mathfrak{I}$$

of Lie algebras. The assumption that \mathfrak{f} is semi-simple implies $\mathfrak{m} = \mathfrak{I}'$. Thus, with respect to the direct sum

$$\mathfrak{f} = \mathfrak{g} \oplus \mathfrak{h}$$

we see that the projections of \mathfrak{f} onto \mathfrak{g} and \mathfrak{h} induce isomorphisms of \mathfrak{g} and \mathfrak{h} onto \mathfrak{g} and \mathfrak{h} respectively. Setting $\mathfrak{g}_i = \mathfrak{g} \cap \mathfrak{f}_i$ and $\mathfrak{h}_i = \mathfrak{h} \cap \mathfrak{f}_i$, we see that the decomposition

$$\mathfrak{f} = \mathfrak{g}_i \oplus \mathfrak{h}_i$$

satisfies the first two properties. The third property follows from $\mathfrak{g} \cap \mathfrak{h} = \{0\}$.

In fact, suppose $\psi(\phi(X)) = X$ for $X \in \mathfrak{g}_i$. Then, $(\mathbf{X}, \phi(X)) = (\psi(\phi(X)),$
Consider the general case. By Corollary 1, we have

\[s(\mathfrak{f}) = s(\mathfrak{g}) + s(\mathfrak{h}) \] (direct sum of vector spaces).

Also by Lemma 1, \(\dim c(\mathfrak{f}) = \dim c(\mathfrak{g}) + \dim c(\mathfrak{h}) \). It is easily seen that the projection \(\pi \) of \(\mathfrak{f} \) onto \(c(\mathfrak{f}) \) induces

\[c(\mathfrak{f}) = \pi(c(\mathfrak{g})) + \pi(c(\mathfrak{h})) \] (direct sum of vector spaces).

From the first argument, we can choose a direct sum decomposition

\[s(\mathfrak{f}) = \mathfrak{g}_1' \oplus \mathfrak{h}_1' \]

such that the projections of \(s(\mathfrak{f}) \) onto \(\mathfrak{g}_1' \) and \(\mathfrak{h}_1' \) induce isomorphisms of \(s(\mathfrak{g}) \) and \(s(\mathfrak{h}) \) onto \(\mathfrak{g}_1' \) and \(\mathfrak{h}_1' \) respectively. Now put

\[\mathfrak{g}_1 = \mathfrak{g}_1' \oplus \pi(c(\mathfrak{g})) \]

and

\[\mathfrak{h}_1 = \mathfrak{h}_1' \oplus \pi(c(\mathfrak{h})) \] .

we have a direct sum decomposition

\[\mathfrak{f} = \mathfrak{g}_1 \oplus \mathfrak{h}_1 . \]

We claim that this decomposition satisfies the required properties in Theorem 1. The first two are easy. The last one follows from the first two and \(\mathfrak{g} \cap \mathfrak{h} = \{0\} \).

Q.E.D.

REMARK 1. The converse of Theorem 1 holds. Let \(\mathfrak{g}_1 \) and \(\mathfrak{h}_1 \) be Lie algebras, and let \(\phi: \mathfrak{g}_1 \to \mathfrak{h}_1 \) and \(\psi: \mathfrak{g}_1 \to \mathfrak{g}_1 \) be Lie algebra homomorphisms such that \(\psi \circ \phi \) has no non-zero fixed vector. In the direct sum \(\mathfrak{g}_1 \oplus \mathfrak{h}_1 = \mathfrak{f} \) of Lie algebras, define \(\mathfrak{g} \) and \(\mathfrak{h} \) by (i) and (ii). Then \(\mathfrak{g} \) and \(\mathfrak{h} \) are subalgebras and we have

\[\mathfrak{f} = \mathfrak{g} + \mathfrak{h} \] (direct sum of vector spaces).

REMARK 2. Suppose \(M = K/H \) is a homogeneous space of the type mentioned in the introduction. Then the action of \(K \) on \(K/H \) is almost effective if and only if \(\psi \) is injective.

REMARK 3. Let \(M = K/H \) be as above. By the theorem of Borel-Mostow cited before, the Lie algebra homomorphism \(\psi \circ \phi = 0 \) if \(\mathfrak{g} \) is simple. Thus we see that if \(G \) is simple and the \(K \)-action on \(K/H \) is almost effective then \(G \) is normal. Thus, Ochiai-Takahashi's theorem follows from Theorem 1.

5. Now we consider a homogeneous space of the type mentioned in the introduction. Let \(M = K/H \) be a homogeneous space of a connected compact
Lie group K. We assume that a connected Lie subgroup G acts simply transitively on K/H. Since K/H is compact, G is necessarily compact. The composition mapping

$$F: G \times H \to K$$

is a diffeomorphism, so that we have

$$\mathfrak{f} = \mathfrak{g} + \mathfrak{h} \quad \text{(direct sum of vector spaces)},$$

for their Lie algebras. Applying Theorem 1, we have a direct sum decomposition

$$\mathfrak{f} = \mathfrak{g}_1 \oplus \mathfrak{h}_1$$

and homomorphisms $\phi: \mathfrak{g}_1 \to \mathfrak{h}_1$ and $\psi: \mathfrak{h}_1 \to \mathfrak{g}_1$ such that we have

$$\mathfrak{g} = \{(X, \phi(X)) | X \in \mathfrak{g}_1\},$$

$$\mathfrak{h} = \{((Y, Y)) | Y \in \mathfrak{h}_1\}.$$

Further, as we see from the proof of Theorem 1, we can assume that

$$c(\mathfrak{g}_1) = \pi(c(\mathfrak{g})), $$

where π denotes the projection of \mathfrak{f} onto its center.

Let G_1 be the connected Lie subgroup of K corresponding to the subalgebra \mathfrak{g}_1. Since \mathfrak{g}_1 is an ideal of \mathfrak{f}, G_1 is a normal subgroup of K. Next we claim that G_1 is compact. Since $s(G_1)$ is closed in K since it is semi-simple. Thus it suffices to show that $c(G_1)$ is compact. However, from our construction, $c(\mathfrak{g}_1) = \pi(c(\mathfrak{g})).$ Consider the Lie group homomorphism $\pi: K \to K/s(K)$. $\pi|c(K)$ is a finite covering map. Thus $c(G_1)$ is closed in $c(K)$ if and only if $\pi(c(G_1))$ is closed. On the other hand, $c(G)$ is compact, and hence $\pi(c(G))$ is compact. $c(\mathfrak{g}_1) = \pi(c(\mathfrak{g}))$ implies that $\pi(c(G_1)) = \pi(c(G))$. Thus, $c(G_1)$ is closed, and hence G_1 is compact. From the property that $\mathfrak{f} = \mathfrak{g}_1 \oplus \mathfrak{h}_1$ and $\mathfrak{h}_1 = \{((\psi(Y), Y)) | Y \in \mathfrak{h}_1\}$, we have

$$\mathfrak{f} = \mathfrak{g}_1 + \mathfrak{h} \quad \text{(direct sum of vector spaces)}.$$

By Lemma 1, the composition mapping

$$G_1 \times H \to K$$

defines a covering map. Consequently, G_1 acts transitively on the coset space K/H. Furthermore, fix a point p in K/H. Then the mapping

$$G_1 \to K/H$$

defined by $g \to g(p)$ is a covering map. Thus, if $G(\simeq K/H)$ is simply connected, then G_1 is also simply connected. Thus we have proved the following:
Theorem 2. Let K be a connected compact Lie group and H a closed subgroup of K. Assume that a connected Lie subgroup G acts simply transitively on the homogeneous space K/H by the left translation. Then there exists a connected closed normal subgroup G_1 of K such that G_1 acts transitively on K/H and G_1 is locally isomorphic with G as Lie groups.

Theorem 3. Under the same assumption as in Theorem 2, assume further that G is simply connected. Then there exists a connected closed normal subgroup G_1 of K such that G_1 is isomorphic with G as Lie groups and G_1 acts simply transitively on K/H.

6. We give here two examples. The first one shows that the conclusion of Ochiai-Takahashi's theorem does not hold any more if G is not simple.

Example 1. Let A be a connected compact semi-simple Lie group and α its Lie algebra. We put

$$
K = A \times A \times A,
$$

$$
G = \{(x, y, z) | x, y \in A\},
$$

$$
H = \{(e, z, z) | z \in A\}.
$$

H is a closed subgroup of K. Consider the homogeneous space K/H. We see easily that G acts simply transitively on K/H. G is compact semi-simple and not simple. Choose a K-invariant Riemannian metric ds^2 on K/H. Since K/H can be identified with G, ds^2 is a left-invariant Riemannian metric on G. From the definition, K is contained in the identity-component of isometries of $(K/H=G, ds^2)$. G is not normal in K, thus G is not normal in the identity-component of isometries.

For this example, an explicit description of Theorem 1 is as follows:

$$
\mathfrak{f} = \mathfrak{a} \oplus \mathfrak{a} \oplus \mathfrak{a}.
$$

Let

$$
g_1 = \{(X, Y, 0) | X, Y \in \mathfrak{a}\},
$$

$$
\mathfrak{h}_1 = \{(0, 0, Z) | Z \in \mathfrak{a}\}.
$$

Define $\phi : g_1 \to \mathfrak{h}_1$ by

$$
\phi((X, Y, 0)) = (0, 0, X)
$$

and $\psi : \mathfrak{h}_1 \to g_1$ by

$$
\psi((0, 0, Z)) = (0, Z, 0).
$$

Then we have

$$
g = \{(X, \phi(X)) \in g_1 \oplus \mathfrak{h}_1 | X \in g_1\},
$$

$$
g = \{\psi(Y) | Y \in g_1 \oplus \mathfrak{h}_1, Y \in \mathfrak{h}_1\}.
The next example shows that the conclusion of Theorem 3 does not hold if G is not simply connected.

Example 2. We choose two simply connected compact Lie groups A and B with the following properties:
1. There exists an injective homomorphism j of A into B.
2. The center $Z(A)$ of A is non-trivial and $j(Z(A)) \cap Z(B) = \{e\}$.

For instance, choose positive integers m and n such that $n > m > 2$. Then $A = SU(m)$, $B = SU(n)$ and the canonical injection of $SU(m)$ into $SU(n)$ satisfy the required properties.

Let $K = A \times B \times A$, $G_1 = A \times B \times \{e\}$, $G = \{(a, b, a) | a \in A, b \in B\}$, $H = \{(e, j(a), a) | a \in A\}$, $\Gamma = \{(x, e, x) | x \in Z(A)\}$.

The Lie algebras of A and B are denoted by \mathfrak{a} and \mathfrak{b} respectively. Γ is a finite group contained in the center of K. We consider the quotient group $K = K/\Gamma$, and denote by π the canonical projection of K onto \bar{K}. $\bar{H} = \pi(H)$ is a closed subgroup of \bar{K}. Consider K/\bar{H}. We claim that no normal subgroup of K acts simply transitively on K/\bar{H}. Suppose a normal subgroup G_1' of \bar{K} acts simply transitively on K/\bar{H}. Then its Lie algebra \mathfrak{g}_1' satisfies

$$ \mathfrak{k} = \mathfrak{g}_1' + \mathfrak{g} \quad \text{(direct sum of vector spaces)}, $$

where $\mathfrak{h} = \{(0, j(X), X) | X \in \mathfrak{a}\}$. Since \mathfrak{g}_1' is an ideal of \mathfrak{k}, we see $\mathfrak{g}_1' = \mathfrak{g}_1 = \{(X, Y, 0) | X \in \mathfrak{a}, Y \in \mathfrak{b}\}$. It follows that $\pi(G_1) = G_1'$. However, $\pi(G_1)$ is simply connected because $\pi(G_1) = G_1/(G_1 \cap \Gamma) \cong G_1$. This is a contradiction.

Osaka University

References

