<table>
<thead>
<tr>
<th>Title</th>
<th>On a transitive transformation group of a compact group manifold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ozeki, Hideki</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 14(3) P.519-P.531</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1977</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/7892</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/7892</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
ON A TRANSITIVE TRANSFORMATION GROUP OF
A COMPACT GROUP MANIFOLD

HIDEKI OZEKI

(Received June 10, 1976)

1. Introduction. Let K be a connected compact Lie group and H a closed subgroup of K. Suppose a connected Lie subgroup G of K acts simply transitively on the coset space K/H by the left translation. Then the composition mapping

$$F: G \times H \rightarrow K$$

defined by $F(g, h) = gh \ (g \in G, \ h \in H)$ gives rise to a diffeomorphism of the product manifold $G \times H$ onto K. Consequently, for their Lie algebras, we have

$$\mathfrak{f} = \mathfrak{g} + \mathfrak{h} \quad \text{(direct sum of vector spaces)}.$$

We shall prove in this paper the following:

Theorem 1. Let \mathfrak{f} be a compact Lie algebra. Suppose there exist two subalgebras \mathfrak{g} and \mathfrak{h} of \mathfrak{f} such that

$$\mathfrak{f} = \mathfrak{g} + \mathfrak{h} \quad \text{(direct sum of vector spaces)}.$$

Then there exist a direct sum decomposition

$$\mathfrak{f} = \mathfrak{g}_1 \oplus \mathfrak{h}_1$$

of Lie algebras and Lie algebra homomorphisms

$$\varphi: \mathfrak{g}_1 \rightarrow \mathfrak{h}_1 \quad \text{and} \quad \psi: \mathfrak{h}_1 \rightarrow \mathfrak{g}_1$$

with the following properties:

(i) $\mathfrak{g} = \{X, \varphi(X)\mid X \in \mathfrak{g}_1\}$.

(ii) $\mathfrak{h} = \{\psi(Y), \ Y \in \mathfrak{h}_1\}$.

(iii) $\psi \circ \varphi$ has no non-zero fixed vector.

As a result we see that the Lie algebra \mathfrak{f} is isomorphic with the direct sum $\mathfrak{g} \oplus \mathfrak{h}$ of Lie algebras. This theorem gives us an infinitesimal characterization of a homogeneous space of the type mentioned in the above. Some
Such a homogeneous space is related with a study of isometries of a compact group manifold. Let G be a connected compact Lie group and choose a left invariant Riemannian metric ds^2 on G. Denote by K the identity component of the isometry group of (G, ds^2). We identify an element g of G with its left translation L_g on G. Ochiai-Takahashi [2] proved that if G is simple then G is normal in K. Their theorem follows immediately from our Theorem 1. The conclusion of their theorem does not hold in general if G is not simple, as our example shows. However, our Theorem 3 asserts that if G is simply connected then we have a similar conclusion by a suitable change of the action of G on the space.

2. Recall that a Lie algebra \mathfrak{f} is said to be compact if it can be represented as a Lie algebra of a compact Lie group. For a compact Lie algebra \mathfrak{f}, we denote by $c(\mathfrak{f})$ its center and by $s(\mathfrak{f})$ its maximal semi-simple ideal, so that we have $s(\mathfrak{f}) = [\mathfrak{f}, \mathfrak{f}]$ and

$$\mathfrak{f} = s(\mathfrak{f}) \oplus c(\mathfrak{f})$$

(direct sum of Lie algebras). The same notation will be used for a connected Lie group K when the Lie algebra \mathfrak{f} of K is compact. $c(K)$ and $s(k)$ are the connected Lie subgroups of K corresponding to Lie subalgebras $c(\mathfrak{f})$ and $s(\mathfrak{f})$ respectively.

Note that a connected Lie group K has a compact Lie algebra if and only if K has a bi-invariant Riemannian metric and also that any subalgebra of a compact Lie algebra is compact. In the sequel, for a Lie group homomorphism, the induced Lie algebra homomorphism is denoted by the same symbol.

Lemma 1. Let K, G and H be connected Lie groups with Lie algebras \mathfrak{k}, \mathfrak{g} and \mathfrak{h} respectively. Suppose \mathfrak{k} is compact. Let $\phi: G \to K$ and $\psi: H \to K$ be Lie group homomorphisms such that the induced homomorphisms $\phi: \mathfrak{g} \to \mathfrak{k}$ and $\psi: \mathfrak{h} \to \mathfrak{k}$ are both injective and

$$\mathfrak{k} = \phi(\mathfrak{g}) + \psi(\mathfrak{h}) \quad (\text{direct sum of vector spaces}).$$

Then the composition mapping

$$F: G \times H \to K$$

defined by $F(g, h) = \phi(g) \cdot \psi(h)$ is a covering map.

Proof. In general, we denote the left translation and the right translation of a group induced by an element x in it by L_x and R_x respectively. Then, for the mapping F, we have the following commutative diagram:
for \((g, h) \in G \times H\). This gives an identity
\[
F = (L_{\phi(g)} \circ R_{\psi(h)}) \circ F \circ (L_{g^{-1}}, R_{h^{-1}})
\]
Taking the differentials, we have
\[
(dF)_{(e,e)} = (d(L_{\phi(g)} \circ R_{\psi(h)})) \circ (dF)_{(e,e)} \circ (d(L_{g^{-1}}, R_{h^{-1}}))_{(e,e)}
\]
We identify \(T_{(e,e)}(G \times H)\) with \(\Gamma_{\phi}(G) + \Gamma_{\psi}(H)\) (direct sum of vector spaces). Since \((dF)_{(e,e)} \mid T_{e}(G) = \phi \) and \((dF)_{(e,e)} \mid T_{e}(H) = \psi\), our assumption in the lemma implies that \((dF)_{(e,e)}\) gives an isomorphism of \(T_{(e,e)}(G \times H)\) onto \(T_{e}(K) = \mathfrak{f}\). By the above identity, we see that \((dF)_{(e,e)}\) is isomorphic at each point \((g, h)\) of \(G \times H\). Since \(\mathfrak{f}\) is compact, we can choose a bi-invariant Riemannian metric \(d\mathfrak{s}^2\) on \(K\). Then \(d\mathfrak{s}^2 = F^*(d\mathfrak{s}^2)\) gives a Riemannian metric on the manifold \(G \times H\), which is locally isometric with \((K, d\mathfrak{s}^2)\) via \(F\). In virtue of the first commutative diagram, the Riemannian metric \(d\mathfrak{s}^2\) on \(G \times H\) is \(L(G)\) and \(R(H)\)-invariant, and hence it is complete. Thus we see that \(F\) is a locally isometric mapping of a compact Riemannian manifold \((G \times H, d\mathfrak{s}^2)\) into \((K, d\mathfrak{s}^2)\). This proves that \(F\) is a covering map.

Lemma 2. Let \(\mathfrak{t}\) be a compact Lie algebra, and let \(\mathfrak{g}\) and \(\mathfrak{h}\) be two subalgebras of \(\mathfrak{t}\) such that

\[
\mathfrak{t} = \mathfrak{g} + \mathfrak{h} \quad \text{(direct sum of vector spaces)}.
\]
Then, \(\mathfrak{t}\) is isomorphic with the direct sum \(\mathfrak{g} \oplus \mathfrak{h}\) of Lie algebras. Consequently, we have

\[
\dim c(\mathfrak{t}) = \dim c(\mathfrak{g}) + \dim c(\mathfrak{h}).
\]

Proof. For \(\mathfrak{g}, \mathfrak{h}\) and \(\mathfrak{t}\), choose simply connected Lie groups \(G, H\) and \(K\) with the corresponding Lie algebras respectively. Let

\[
\phi : \mathfrak{g} \to \mathfrak{t} \quad \text{and} \quad \psi : \mathfrak{h} \to \mathfrak{t}
\]
be the inclusion mappings. They induce Lie group homomorphisms

\[
\phi : G \to K \quad \text{and} \quad \psi : H \to K.
\]
The composition mapping \(F\) of the product manifold \(G \times H\) into \(K\) defined by

\[
F(g, h) = \phi(g) \psi(h)
\]
is a covering map by Lemma 1. Since \(K\) is assumed to be simply connected, we
have a diffeomorphism of $G \times H$ onto K. \mathfrak{f} is compact and hence \mathfrak{g} and \mathfrak{h} are compact. Since G, H and K are simply connected and their Lie algebras are compact, we see $G = s(G) \times c(G)$, $H = s(H) \times c(H)$ and $K = s(K) \times c(K)$. Since F is a diffeomorphism of the product manifold $G \times H$ onto K we see

$$\dim c(K) = \dim c(G) + \dim c(H)$$

and hence

$$\dim c(\mathfrak{f}) = \dim c(\mathfrak{g}) + \dim c(\mathfrak{h}).$$

Note that $s(K)$ is a maximal compact subgroup of K. Also we see that F induces a homotopy equivalence between $s(G) \times s(H)$ and $s(K)$.

A theorem in homotopy theory ([3], [4]) states that if two simply connected compact Lie groups are homotopically equivalent then they are isomorphic as Lie groups. Thus, we see that the Lie group $s(K)$ is isomorphic with the direct product $s(G) \times s(H)$ of Lie groups. Finally we can conclude that the Lie algebra \mathfrak{f} is isomorphic with the direct sum $\mathfrak{g} \oplus \mathfrak{h}$ of Lie algebras. q.e.d.

Corollary 1. Under the same assumption as above, we have

$$s(\mathfrak{f}) = s(\mathfrak{g}) + s(\mathfrak{h}) \quad (\text{direct sum of vector spaces}).$$

Proof. Since \mathfrak{f} and $\mathfrak{g} \oplus \mathfrak{h}$ are isomorphic, $s(\mathfrak{f})$ and $s(\mathfrak{g}) \oplus s(\mathfrak{h})$ are isomorphic. Especially, we have

$$\dim s(\mathfrak{f}) = \dim s(\mathfrak{g}) + \dim s(\mathfrak{h}).$$

On the other hand, we know

$$s(\mathfrak{f}) = [\mathfrak{f}, \mathfrak{f}], \quad s(\mathfrak{g}) = [\mathfrak{g}, \mathfrak{g}], \quad s(\mathfrak{h}) = [\mathfrak{h}, \mathfrak{h}].$$

Thus, we have

$$s(\mathfrak{f}) \supset s(\mathfrak{g}) \quad \text{and} \quad s(\mathfrak{f}) \supset s(\mathfrak{h}).$$

The assumption $\mathfrak{f} = \mathfrak{g} \oplus \mathfrak{h}$ (direct sum of vector spaces) shows that $s(\mathfrak{g}) \oplus s(\mathfrak{h})$ is a direct sum of vector spaces in $s(\mathfrak{f})$. The first equality on dimension proves our corollary. q.e.d.

3. Theorem 1 will follow easily from the following:

Proposition 1. Let \mathfrak{f} be a compact Lie algebra and let \mathfrak{g} and \mathfrak{h} be its subalgebras such that

$$\mathfrak{f} = \mathfrak{g} + \mathfrak{h} \quad (\text{direct sum of vector spaces}).$$

Then \mathfrak{f} has a direct sum decomposition of Lie algebras
$\mathfrak{t} = \mathfrak{l} \oplus \mathfrak{l}'$

with the following properties:

(i) The projection π of \mathfrak{t} onto \mathfrak{l} with respect to the above decomposition induces an isomorphism of \mathfrak{g} onto \mathfrak{l}.

(ii) $\mathfrak{t} = \mathfrak{t} + \mathfrak{h}$ (direct sum of vector spaces).

Proof. We prove the proposition by induction on $\dim \mathfrak{t}$. When $\dim \mathfrak{t} = 1$, the proposition holds since $\mathfrak{t} = \mathfrak{g}$ or $\mathfrak{t} = \mathfrak{h}$. Now assume that the proposition holds when $\dim \mathfrak{t} < N$. Let $\dim \mathfrak{t} = N$. To simplify the argument we prepare the following:

Sublemma. Suppose \mathfrak{t} has a non-trivial proper ideal \mathfrak{t}_1 such that

$$\mathfrak{t}_1 = (\mathfrak{g} \cap \mathfrak{t}_1) + (\mathfrak{h} \cap \mathfrak{t}_1) \quad (\text{direct sum of vector spaces}).$$

Then the assertion of Proposition 1 holds for \mathfrak{t}, \mathfrak{g} and \mathfrak{h}.

Proof. For \mathfrak{t}_1, we choose a complementary ideal \mathfrak{t}_2 so that we have a direct sum decomposition

$$\mathfrak{t} = \mathfrak{t}_1 \oplus \mathfrak{t}_2.$$

Let π_2 be the projection of \mathfrak{t} onto \mathfrak{t}_2. We have

$$\dim \mathfrak{g} = \dim \mathfrak{g} \cap \mathfrak{t}_1 + \dim \pi_2(\mathfrak{g}),$$

$$\dim \mathfrak{h} = \dim \mathfrak{h} \cap \mathfrak{t}_1 + \dim \pi_2(\mathfrak{h}).$$

Thus,

$$\dim \mathfrak{t}_2 = \dim \mathfrak{t} - \dim \mathfrak{t}_1$$

$$= \dim \pi_2(\mathfrak{g}) + \dim \pi_2(\mathfrak{h}).$$

Since $\mathfrak{t} = \mathfrak{g} + \mathfrak{h}$, $\mathfrak{t}_2 = \pi_2(\mathfrak{t})$ is spanned by $\pi_2(\mathfrak{g})$ and $\pi_2(\mathfrak{h})$, and hence we have

$$\mathfrak{t}_2 = \pi_2(\mathfrak{g}) + \pi_2(\mathfrak{h}) \quad (\text{direct sum of vector spaces}).$$

Consider \mathfrak{t}_1 and its subalgebras $\mathfrak{g} \cap \mathfrak{t}_1$ and $\mathfrak{h} \cap \mathfrak{t}_1$, and also \mathfrak{t}_2 and its subalgebras $\pi_2(\mathfrak{g})$ and $\pi_2(\mathfrak{h})$. By the inductive hypothesis, we have direct sum decompositions

$$\mathfrak{t}_1 = \mathfrak{I}_1 \oplus \mathfrak{I}_1' \quad \text{and} \quad \mathfrak{t}_2 = \mathfrak{I}_2 \oplus \mathfrak{I}_2'$$

with the properties:

i. The projections $\mathfrak{g} \cap \mathfrak{t}_1 \rightarrow \mathfrak{I}_1$ and $\pi_2(\mathfrak{g}) \rightarrow \mathfrak{I}_2$ are isomorphisms.

ii. $\mathfrak{t}_1 = \mathfrak{I}_1 + \mathfrak{h} \cap \mathfrak{t}_1$, $\mathfrak{t}_2 = \mathfrak{I}_2 + \pi_2(\mathfrak{h})$ (direct sums of vector spaces).

Let

$$\mathfrak{I} = \mathfrak{I}_1 \oplus \mathfrak{I}_2 \quad \text{and} \quad \mathfrak{I}' = \mathfrak{I}_1' \oplus \mathfrak{I}_2'.$$
We claim that the direct sum decomposition

\[\mathfrak{g} = I \oplus I' \]

satisfies the required properties.

First suppose \(X \in g \cap I' \). Then \(\pi_2(X) \in \pi_2(g) \cap I'_2 \). However \(\pi_2(g) \cap I'_2 = \{0\} \) from the assumption. Thus \(\pi_2(X) = 0 \), and hence \(X \in I \). Then \(X \in (g \cap I) \cap I' = \{0\} \). Consequently we have \(g \cap I' = \{0\} \). This shows that the projection of \(g \) into \(I \) with respect to \(I \oplus I' \) is injective. Since they have the same dimension, we have the property (i). Next suppose \(I \cap h \in X \). \(\pi_2(X) \in \pi_2(h) \cap I_2 = \{0\} \), and hence \(X \in I \). We see that \(X \in I \cap (h \cap I) = \{0\} \). Thus, we have \(I \cap h = \{0\} \). Since \(\dim I = \dim I + \dim h \), we see \(I = I + h \) (direct sum of vector spaces). Thus we have the property (ii) also. q.e.d.

We continue our proof of Proposition 1. First consider easy cases.

1. **Suppose** \(\mathfrak{g} \) is abelian.
 Then \(I = g \) and \(I' = h \) satisfy the required properties.

2. **Suppose** \(\mathfrak{g} \) is simple.
 Then, by Lemma 2 we see \(I = g \) or \(I = h \). Thus our assertion holds trivially.

3. **Suppose** \(g \) contains a non-trivial proper ideal, say \(I_1 \), of \(I \).
 Then choose a complementary ideal \(I_2 \) of \(I_1 \) in \(I \), so that we have \(I = I_1 \oplus I_2 \).

 Clearly, \(I_1 \cap g = I_1 \), \(I_1 \cap h \subseteq g \cap h = \{0\} \). Applying the above sublemma we see that Proposition 1 holds in this case.

4. **Suppose** \(h \) contains a non-trivial proper ideal, say \(I_1 \), of \(I \).
 Then again we have \(I_1 \cap g = \{0\} \), and \(I_1 \cap h = I_1 \). Thus we can apply the sublemma in this case also.

5. **Suppose** \(\mathfrak{g} \) is not semi-simple.
 We may suppose \(\mathfrak{g} \) is not abelian. Then the semi-simple part \(s(g) \) is a non-trivial proper ideal of \(\mathfrak{g} \). By Corollary 1, we have

 \[s(\mathfrak{g}) = s(g) + s(h) \quad \text{(direct sum of vector spaces).} \]

 Since \(s(g) \subseteq g \cap s(\mathfrak{g}) \), \(s(h) \subseteq h \cap s(\mathfrak{g}) \) and \((g \cap s(\mathfrak{g})) \cap (h \cap s(\mathfrak{g})) = \{0\} \), we have \(s(g) = g \cap s(\mathfrak{g}) \) and \(s(h) = h \cap s(\mathfrak{g}) \). Thus

 \[s(\mathfrak{g}) = g \cap s(\mathfrak{g}) + h \cap s(\mathfrak{g}) \]

 is a direct sum of vector spaces, and hence we can apply our sublemma.
The above argument shows that we may suppose \(f \) is semi-simple and not simple.

(6) Suppose \(f \) is semi-simple and all simple factors of \(f \) are mutually isomorphic with each other.

In this case we shall show that either \(g \) or \(h \) contains a proper ideal of \(f \), so that the proposition holds by (3) or (4). Suppose neither \(g \) nor \(h \) contains a non trivial proper ideal of \(f \). Let

\[
\begin{align*}
 f &= \sum_{i \in I} t_i, \\
 g &= \sum_{j \in J} g_j, \\
 h &= \sum_{k \in K} h_k
\end{align*}
\]

be the decompositions of \(f, g \) and \(h \) into simple factors. By the present assumption, all \(t_i \)'s are mutually isomorphic. By Lemma 2, we see also that all \(g_j \)'s, \(h_k \)'s and \(t_i \)'s are mutually isomorphic, and that

\[
|I| = |J| + |K|
\]

where \(| \cdot | \) indicates the number of elements.

Denote by \(\pi_i \) the projection of \(f \) onto \(t_i \). One sees that

\[
\begin{align*}
 \pi_i(g_j) &= t_i \text{ or } \{0\}, \\
 \pi_i(h_k) &= t_i \text{ or } \{0\}
\end{align*}
\]

for all \(i, j, k \). Put

\[
\begin{align*}
 A_j &= \{i \in I \mid \pi_i(g_j) \neq \{0\}\}, \\
 B_k &= \{i \in I \mid \pi_i(h_k) \neq \{0\}\}
\end{align*}
\]

for each \(j \in J \) and \(k \in K \). Let \(j_1, j_2 \in J \), and \(j_1 \neq j_2 \). Then \([\pi_i(g_{j_1}), \pi_i(g_{j_2})]=0 \). Thus \(A_{j_1} \cap A_{j_2} = \emptyset \). Hence \(A_j \)'s are mutually disjoint and so are \(B_k \)'s.

Suppose \(A_j \) consists of exactly one element, say \(i \). Then we see \(g_i = t_i \) and hence \(g \) contains a non trivial proper ideal. This is a contradiction. Thus each \(A_j \) contains at least two elements. Similarly we have \(|B_k| \geq 2 \). Thus we have

\[
\sum |A_j| + \sum |B_k| \geq 2(|J| + |K|) = 2|I|
\]

On the other hand,

\[
\sum |A_j| \leq |I| \quad \text{and} \quad \sum |B_k| \leq |I|.
\]

Combining together, we see

\[
\begin{align*}
 |A_j| &= |B_k| = 2
\end{align*}
\]

for every \(j \in J \) and \(k \in K \).

By an elementary combinatorial argument one can decompose the index set \(I \) into two disjoint subsets \(I_1 \) and \(I_2 \) such that, for every \(j, k \), the sets \(A_j \cap I_i \),
A_i \cap I_2, B_k \cap I_1 \text{ and } B_k \cap I_2 \text{ are all non empty. Let}
\alpha_i = \sum \iota_i \text{ and } \alpha_2 = \sum \iota_2,

so that we have \mathfrak{f} = \alpha_1 \oplus \alpha_2. \text{ Denote by } p_i \text{ the projection of } \mathfrak{f} \text{ onto } \alpha_i \text{ (for } i=1, 2). \text{ It follows from our construction that the homomorphisms } p_1 | \mathfrak{g}, p_2 | \mathfrak{g}, p_1 | \mathfrak{h} \text{ and } p_2 | \mathfrak{h} \text{ are all onto isomorphisms. Using the decomposition } \mathfrak{f} = \alpha_1 \oplus \alpha_2, \text{ we can write}
\mathfrak{g} = \{(X, \phi(X)) | X \in \alpha_1\}

and
\mathfrak{h} = \{(\psi(Y), Y) | Y \in \alpha_2\}

by suitable onto isomorphisms \phi: \alpha_1 \rightarrow \alpha_2 \text{ and } \psi: \alpha_2 \rightarrow \alpha_1. \text{ Consider an automorphism } \phi \circ \psi \text{ of } \alpha_1. \text{ By a result due to Borel and Mostow } [1], \text{ every automorphism of a semi-simple Lie algebra has a non-zero fixed vector. Thus, we have an element } X \text{ in } \alpha_1 \text{ such that } X \neq 0 \text{ and } \psi(\phi(X)) = X. \text{ Then we have}
(X, \phi(X)) = (\psi(\phi(X)), \phi(X)) \in \mathfrak{g} \cap \mathfrak{h} = \{0\}.

This is a contradiction. Thus, in this case, either \mathfrak{g} \text{ or } \mathfrak{h} \text{ contains a proper ideal of } \mathfrak{f}.

(7) \text{ Suppose } \mathfrak{f} \text{ is semi-simple and } \mathfrak{f} \text{ contains at least two simple ideals which are not isomorphic.}

Choose a simple ideal } \alpha \text{ of } \mathfrak{f} \text{ such that dim } \alpha \text{ is minimal among the simple ideals of } \mathfrak{f}. \text{ Let } \mathfrak{f}_0 \text{ be the direct sum of all simple ideals isomorphic to } \alpha, \text{ and } \mathfrak{f}_1 \text{ the complementary ideal, so that we have}
\mathfrak{f} = \mathfrak{f}_0 \oplus \mathfrak{f}_1.

Similarly, decompose \mathfrak{g} \text{ and } \mathfrak{h} \text{ as}
\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \text{ and } \mathfrak{h} = \mathfrak{h}_0 \oplus \mathfrak{h}_1,

where \mathfrak{g}_0 \text{ (resp. } \mathfrak{h}_0) \text{ is the direct sum of all simple ideals in } \mathfrak{g} \text{ (resp. } \mathfrak{h}) \text{ isomorphic to } \alpha.

In virtue of Lemma 2, we see that \mathfrak{f}_0 \text{ and } \mathfrak{f}_1 \text{ are isomorphic with } \mathfrak{g}_0 \oplus \mathfrak{h}_0 \text{ and } \mathfrak{g}_1 \oplus \mathfrak{h}_1 \text{ respectively. We claim that the ideal } \mathfrak{f}_1 \text{ satisfies the required condition in the sublemma. Let } \pi_0 \text{ and } \pi_1 \text{ be the projections of } \mathfrak{f} \text{ onto } \mathfrak{f}_0 \text{ and } \mathfrak{f}_1 \text{ respectively. Consider } \pi_0: \mathfrak{g}_1 \rightarrow \mathfrak{f}_0. \text{ From the definitions of } \mathfrak{g}_1 \text{ and } \mathfrak{f}_0, \text{ we see } \pi_0|\mathfrak{g}_1 = \{0\}. \text{ Thus, } \mathfrak{g}_1 \subseteq \mathfrak{f}_1. \text{ Similarly we have } \mathfrak{h}_1 \subseteq \mathfrak{f}_1. \text{ Thus, } \mathfrak{f}_1 \supseteq \mathfrak{g}_1 + \mathfrak{h}_1. \text{ Since } \mathfrak{g}_1 \cap \mathfrak{h}_1 = \{0\} \text{ and dim } \mathfrak{f}_1 = \text{dim } \mathfrak{g}_1 + \text{dim } \mathfrak{h}_1, \text{ we conclude that}
\mathfrak{f}_1 = \mathfrak{g}_1 + \mathfrak{h}_1 \text{ (direct sum of vector spaces).}
Since $\mathfrak{t} = \mathfrak{g} + \mathfrak{h}$ is a direct sum of vector spaces, we see that $(\mathfrak{t} \cap \mathfrak{g}) \cap (\mathfrak{t} \cup \mathfrak{h}) = \{0\}$. On the other hand, $\mathfrak{t} \cap \mathfrak{g} \supseteq \mathfrak{g}_i$ and $\mathfrak{t} \cap \mathfrak{h} \supseteq \mathfrak{h}_i$, and also $\mathfrak{t} = \mathfrak{g}_i + \mathfrak{h}_i$ (direct sum of vector spaces). It follows that $\mathfrak{g}_i = \mathfrak{g} \cap \mathfrak{t}_i$ and $\mathfrak{h}_i = \mathfrak{h} \cap \mathfrak{t}_i$ and hence

$$\mathfrak{t}_i = (\mathfrak{g} \cap \mathfrak{t}_i) + (\mathfrak{h} \cap \mathfrak{t}_i) \quad \text{(direct sum of vector spaces)}.$$

This proves our claim.

Thus we have completed the proof of Proposition 1.

4. Now we can prove Theorem 1

Proof of Theorem 1. First assume that \mathfrak{t} is semi-simple. Apply Proposition 1 to \mathfrak{t}, \mathfrak{g} and \mathfrak{h}. We get a direct sum decomposition

$$\mathfrak{t} = \mathfrak{I} \oplus \mathfrak{I}'$$

with the properties:

(i) The projection of \mathfrak{t} onto \mathfrak{I} with respect to the above decomposition induces an isomorphism of \mathfrak{g} onto \mathfrak{I}.

(ii) $\mathfrak{t} = \mathfrak{I} + \mathfrak{h}$ (direct sum of vector spaces).

Again apply Proposition 1 to \mathfrak{t}, \mathfrak{h} and \mathfrak{I}. We have a direct sum decomposition

$$\mathfrak{t} = \mathfrak{m} \oplus \mathfrak{m}'$$

with the properties:

(i') The projection of \mathfrak{t} onto \mathfrak{m} with respect to this decomposition induces an isomorphisms of \mathfrak{h} onto \mathfrak{m}.

(ii') $\mathfrak{t} = \mathfrak{m} + \mathfrak{I}$ (direct sum of vector spaces).

Since \mathfrak{m} and \mathfrak{I} are both ideals of \mathfrak{t}, we have a direct sum

$$\mathfrak{t} = \mathfrak{m} \oplus \mathfrak{I}$$

of Lie algebras. The assumption that \mathfrak{t} is semi-simple implies $\mathfrak{m} = \mathfrak{I}'$. Thus, with respect to the direct sum

$$\mathfrak{t} = \mathfrak{I} \oplus \mathfrak{I}'$$

we see that the projections of \mathfrak{t} onto \mathfrak{I} and \mathfrak{I}' induce isomorphisms of \mathfrak{g} and \mathfrak{h} onto \mathfrak{I} and \mathfrak{I}' respectively. Setting $\mathfrak{g}_i = \mathfrak{I}_i$ and $\mathfrak{h}_i = \mathfrak{I}'_i$, we see that the decomposition

$$\mathfrak{t} = \mathfrak{g}_i \oplus \mathfrak{h}_i$$

satisfies the first two properties. The third property follows from $\mathfrak{g} \cap \mathfrak{h} = \{0\}$.

In fact, suppose $\psi(\phi(\mathfrak{X})) = \mathfrak{X}$ for $\mathfrak{X} \in \mathfrak{g}_i$. Then, $(\mathfrak{X}, \phi(\mathfrak{X})) = (\psi(\phi(\mathfrak{X})), \psi(\phi(\mathfrak{X})))$.
\(\phi(X) \subseteq g \cap h = \{0\} \). Thus \(X = 0 \).

Consider the general case. By Corollary 1, we have

\[s(\mathfrak{f}) = s(g) + s(h) \quad (\text{direct sum of vector spaces}). \]

Also by Lemma 1, \(\dim c(\mathfrak{f}) = \dim c(g) + \dim c(h) \). It is easily seen that the projection \(\pi \) of \(\mathfrak{f} \) onto \(c(\mathfrak{f}) \) induces

\[c(\mathfrak{f}) = \pi(c(g)) + \pi(c(h)) \quad (\text{direct sum of vector spaces}). \]

From the first argument, we can choose a direct sum decomposition

\[s(\mathfrak{f}) = g' \oplus h', \]

such that the projections of \(s(\mathfrak{f}) \) onto \(g' \) and \(h' \) induce isomorphisms of \(s(g) \) and \(s(h) \) onto \(g' \) and \(h' \) respectively. Now put

\[g_1 = g' + \pi(c(g)) \]

and

\[h_1 = h' + \pi(c(h)). \]

we have a direct sum decomposition

\[\mathfrak{f} = g_1 \oplus h_1. \]

We claim that this decomposition satisfies the required properties in Theorem 1. The first two are easy. The last one follows from the first two and \(g \cap h = \{0\} \).

Q.E.D.

Remark 1. The converse of Theorem 1 holds. Let \(g_1 \) and \(h_1 \) be Lie algebras, and let \(\phi: g_1 \to h_1 \) and \(\psi: h_1 \to g_1 \) be Lie algebra homomorphisms such that \(\psi \circ \phi \) has no non-zero fixed vector. In the direct sum \(g_1 \oplus h_1 = \mathfrak{f} \) of Lie algebras, define \(g \) and \(h \) by (i) and (ii). Then \(g \) and \(h \) are subalgebras and we have

\[\mathfrak{f} = g + h \quad (\text{direct sum of vector spaces}). \]

Remark 2. Suppose \(M = K/H \) is a homogeneous space of the type mentioned in the introduction. Then the action of \(K \) on \(K/H \) is almost effective if and only if \(\psi \) is injective.

Remark 3. Let \(M = K/H \) be as above. By the theorem of Borel-Mostow cited before, the Lie algebra homomorphism \(\psi \circ \phi = 0 \) if \(g \) is simple. Thus we see that if \(G \) is simple and the \(K \)-action on \(K/H \) is almost effective then \(G \) is normal. Thus, Ochiai-Takahashi’s theorem follows from Theorem 1.

5. Now we consider a homogeneous space of the type mentioned in the introduction. Let \(M = K/H \) be a homogeneous space of a connected compact
Lie group K. We assume that a connected Lie subgroup G acts simply transitively on K/H. Since K/H is compact, G is necessarily compact. The composition mapping

$$F: G \times H \rightarrow K$$

is a diffeomorphism, so that we have

$$\mathfrak{f} = \mathfrak{g} \oplus \mathfrak{h} \quad \text{(direct sum of vector spaces)},$$

for their Lie algebras. Applying Theorem 1, we have a direct sum decomposition

$$\mathfrak{f} = \mathfrak{g}_1 \oplus \mathfrak{h}_1$$

and homomorphisms $\phi: \mathfrak{g}_1 \rightarrow \mathfrak{h}_1$ and $\psi: \mathfrak{h}_1 \rightarrow \mathfrak{g}_1$ such that we have

$$\begin{align*}
\mathfrak{g} &= \{(X, \phi(X)) \mid X \in \mathfrak{g}_1\}, \\
\mathfrak{h} &= \{(\psi(Y), Y) \mid Y \in \mathfrak{h}_1\}.
\end{align*}$$

Further, as we see from the proof of Theorem 1, we can assume that

$$\mathfrak{c}(\mathfrak{g}_1) = \pi(\mathfrak{c}(\mathfrak{g})),$$

where π denotes the projection of \mathfrak{f} onto its center.

Let G_1 be the connected Lie subgroup of K corresponding to the subalgebra \mathfrak{g}_1. Since \mathfrak{g}_1 is an ideal of \mathfrak{f}, G_1 is a normal subgroup of K. Next we claim that G_1 is compact. $s(G_1)$ is closed in K since it is semi-simple. Thus it suffices to show that $\mathfrak{c}(G_1)$ is compact. However, from our construction, $\mathfrak{c}(G_1) = \tau(\mathfrak{c}(\mathfrak{g}))$.

Consider the Lie group homomorphism $\pi: K \rightarrow K/\mathfrak{s}(K)$. $\pi|\mathfrak{c}(K)$ is a finite covering map. Thus $\mathfrak{c}(G_1)$ is closed in $\mathfrak{c}(K)$ if and only if $\pi(\mathfrak{c}(G_1))$ is closed. On the other hand, $\mathfrak{c}(G)$ is compact, and hence $\pi(\mathfrak{c}(G))$ is compact. $\mathfrak{c}(G_1) = \pi(\mathfrak{c}(G))$ implies that $\pi(\mathfrak{c}(G_1)) = \pi(\mathfrak{c}(G))$. Thus, $\mathfrak{c}(G_1)$ is closed, and hence G_1 is compact. From the property that $\mathfrak{f} = \mathfrak{g}_1 \oplus \mathfrak{h}_1$ and $\mathfrak{h} = \{(\psi(Y), Y) \mid Y \in \mathfrak{h}_1\}$, we have

$$\mathfrak{f} = \mathfrak{g}_1 \oplus \mathfrak{h}_1 \quad \text{(direct sum of vector spaces)}.$$

By Lemma 1, the composition mapping

$$G_1 \times H \rightarrow K$$

defines a covering map. Consequently, G_1 acts transitively on the coset space K/H. Furthermore, fix a point p in K/H. Then the mapping

$$G_1 \rightarrow K/H$$

defined by $g \mapsto g(p)$ is a covering map. Thus, if $G(\approx K/H)$ is simply connected, then G_1 is also simply connected. Thus we have proved the following:
Theorem 2. Let K be a connected compact Lie group and H a closed subgroup of K. Assume that a connected Lie subgroup G acts simply transitively on the homogeneous space K/H by the left translation. Then there exists a connected closed normal subgroup G_1 of K such that G_1 acts transitively on K/H and G_1 is locally isomorphic with G as Lie groups.

Theorem 3. Under the same assumption as in Theorem 2, assume further that G is simply connected. Then there exists a connected closed normal subgroup G_1 of K such that G_1 is isomorphic with G as Lie groups and G_1 acts simply transitively on K/H.

6. We give here two examples. The first one shows that the conclusion of Ochiai-Takahashi's theorem does not hold any more if G is not simple.

Example 1. Let A be a connected compact semi-simple Lie group and α its Lie algebra. We put

$$K = A \times A \times A,$$

$$G = \{(x, y, x)| x, y \in A\},$$

$$H = \{(e, z, z)| z \in A\}.$$

H is a closed subgroup of K. Consider the homogeneous space K/H. We see easily that G acts simply transitively on K/H. G is compact semi-simple and not simple. Choose a K-invariant Riemannian metric ds^2 on K/H. Since K/H can be identified with G, ds^2 is a left -invariant Riemannian metric on G. From the definition, K is contained in the identity-component of isometries of $(K/H = G, ds^2)$. G is not normal in K, thus G is not normal in the identity-component of isometries.

For this example, an explicit description of Theorem 1 is as follows:

Let

$$g_1 = \{(X, Y, 0)| X, Y \in \alpha\},$$

$$h_1 = \{(0, 0, Z)| Z \in \alpha\}.$$

Define $\phi: g_1 \to h_1$ by

$$\phi((X, Y, 0)) = (0, 0, X)$$

and $\psi: h_1 \to g_1$ by

$$\psi((0, 0, Z)) = (0, Z, 0).$$

Then we have

$$g = \{(X, \phi(X)) \in g_1 \oplus h_1| X \in g_1\},$$

$$g = \{\psi(Y), Y) \in g_1 \oplus g_1\{Y \in h_1\}.$$
The next example shows that the conclusion of Theorem 3 does not hold if G is not simply connected.

Example 2. We choose two simply connected compact Lie groups A and B with the following properties:
1. There exists an injective homomorphism j of A into B.
2. The center $Z(A)$ of A is non-trivial and

 $j(Z(A)) \cap Z(B) = \{e\}$.

For instance, choose positive integers m and n such that $n > m > 2$. Then $A = SU(m)$, $B = SU(n)$ and the canonical injection of $SU(m)$ into $SU(n)$ satisfy the required properties.

Let

$K = A \times B \times A$,
$G_1 = A \times B \times \{e\}$,
$G = \{(a, b, a) | a \in A, b \in B\}$,
$H = \{(e, j(a), a) | a \in A\}$,
$\Gamma = \{(x, e, x) | x \in Z(A)\}$.

The Lie algebras of A and B are denoted by \mathfrak{a} and \mathfrak{b} respectively. Γ is a finite group contained in the center of K. We consider the quotient group $K = K/\Gamma$, and denote by π the canonical projection of K onto \tilde{K}. $\tilde{H} = \pi(H)$ is a closed subgroup of \tilde{K}. Consider \tilde{K}/\tilde{H}. We claim that no normal subgroup of \tilde{K} acts simply transitively on \tilde{K}/\tilde{H}. Suppose a normal subgroup G_1' of \tilde{K} acts simply transitively on \tilde{K}/\tilde{H}. Then its Lie algebra \mathfrak{g}_1' satisfies

$\mathfrak{f} = \mathfrak{g}_1' + \mathfrak{g}$ (direct sum of vector spaces),

where $\mathfrak{h} = \{(0, j(X), X) | X \in \mathfrak{a}\}$. Since \mathfrak{g}_1' is an ideal of \mathfrak{f}, we see $\mathfrak{g}_1' = \mathfrak{g}_1 = \{(X, Y, 0) | X \in \mathfrak{a}, Y \in \mathfrak{b}\}$. It follows that $\pi(G_1) = G_1'$. However, $\pi(G_1)$ is simply connected because $\pi(G_1) = G_1/(G_1 \cap \Gamma) = G_1$. This is a contradiction.

References

