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1. Introduction. Let K be a connected compact Lie group and H a
closed subgroup of K. Suppose a connected Lie subgroup G of K acts simply
transitively on the coset space K/H by the left translation. Then the com-
position mapping

F: GxH—-K

defined by F(g, h)=gh (¢=G, heH) gives rise to a diffeomorphism of the
product manifold Gx H onto K. Consequently, for their Lie algebras, we have

t =g+0h (direct sum of vector spaces).
We shall prove in this paper the following:

Theorem 1. Let t be a compact Lie algebra. Suppose there exist two sub-
algebras g and Yy of ¥ such that

t=gq-+b (direct sum of vector spaces).
Then there exist a direct sum decomposition
E=g,Ph
of Lie algebras and Lie algebra homomorphisms

@: g—>h; and ih—g
with the following properties:

(i) ¢={X, (X)) XEg}.
(i) b= A{(W(Y), V)| YEh}.
(iii) +Jrog has no non-zero fixed vector.
As a result we see that the Lie algebra f is isomorphic with the direct

sum g-Ph of Lie algebras. This theorem gives us an infinitesimal characteriza-
tion of a homogencous space of the type mentioned in the above. Some
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application and remarks will be added after its proof.

Such a homogeneous space is related with a study of isometries of a compact
group manifold. Let G be a connected compact Lie group and choose a left
invariant Riemannian metric ds* on G. Denote by K the identity component
of the isometry group of (G, ds?). We identify an element g of G with its left
translation L, on G. Ochiai-Takahashi [2] proved that if G is simple then G is
normal in K. Their theorem follows immediately from our Theorem 1. The
conclusion of their theorem does not hold in general if G is not simple, as our
example shows. However, our Theorem 3 asserts that if G is simply connected
then we have a similar conclusion by a suitable change of the action of G' on
the space.

2. Recall that a Lie algebra f is said to be compact if it can be represented
as a Lie algebra of a compact Lie group. For a compact Lie algebra £, we denote
by c(f) its center and by s(f) its maximal semi-simple ideal, so that we have

s(f)=[t, f] and
P = s(t)Pc(t)

(direct sum of Lie algebras). The same notation will be used for a connected Lie
group K when the Lie algebra ¥ of K is compact. ¢(K) and s(k) are the connected
Lie subgroups of K corresponding to Lie subalgebras c(f) and s(f) respectively.

Note that a connected Lie group K has a compact Lie algebra if and only if
K has a bi-invariant Riemannian metric and also that any subalgebra of a compact
Lie algebra is compact. In the sequel, for a Lie group homomorphism, the
induced Lie algebra homomorphism is denoted by the same symbol.

Lemma l. Let K, G and H be connected Lie groups with Lie algebras t, g
and Yy respectively. Suppose t is compact. Let ¢: G—K and \y: H—K be Lie
group homomorphisms such that the induced homomorphisms ¢: g—*t and : H—%
are both injective and

t = o(g)+v(B) (direct sum of vector spaces).
Then the composition mapping
F:GxH—-K
defined by F(g, h)=¢(g): V(h) is a covering map.

Proof. In general, we denote the left translation and the right translation
of a group induced by an element x in it by L, and R, respectively. Then, for
the mapping F, we have the following commutative diagram:
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F
GxH—K
(I"g) Rh) 1 F ‘[Ld’(g)oR‘P(ll)
GxH—K
for (g, h)€ Gx H. This gives an indentity
F= (Ld’(g)oR‘P(h))oFo(Lg‘l, Rh‘l) .

Taking the differentials, we have

(@F) g, = (d(Log)oRotiy. ))e °(AF )o,00(A( Ly 10 Ry-1))gn -

We identify T ,(GxH) with T/(G)+ T, (H)=g+b (direct sum of vector
spaces). Since (dF) | T, (G)=¢ and (dF),,,| T, (H)=+), our assumption in
the lemma implies that (dF), givesan isomorphism of T ,(GXH) onto
T(K)=t. By the above identity, we see that (dF) , is isomorphic at each
point (g, k) of Gx H. Since f is compact, we can choose a bi-invariant Riemen-
nian metric ds? on K. Then d§*=F*(ds?) gives a Riemannian metric on the
manifold G X H, which is locally isometric with (K, ds?) via F. In virtue of the
first commutative diagram, the Riemannian metric d$° on GX H is L(G) and
R(H)-invariant, and hence it is complete. Thus we see that F is a locally iso-
metric mapping of a complete Riemannian manifold (G x H, ds?) into (K, ds?).
This proves that F is a covering map. q.e.d.

Lemma 2. Lett be a compact Lie algebra, and let g and Y be two subalgebras
of ¥ such that

E=g+% (direct sum of vector spaces).
Then, ¥ is isomorphic with the direct sum qBY of Lie algebras. consequently, we have
dim c(f) = dim c(g)+dim c(§) .

Proof. For g, § and £, choose simply connected Lie groups G, H and K
with the corresponding Lie algebras respectively. Let

¢: g—f and +: h—of

be the inclusion mappings. They induce Lie group homomorphisms
¢: G-K and +: H-K.

The composition mapping F of the product manifold G x H into K defined by
Fg, h) = $(&)¥(h)

is a covering map by Lemma 1. Since K is assumed to be simply connected, we
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have a diffeomorphism of GX H onto K. t is compact and hence g and ) arc
compact. Since G, H and K are simply connected and their Lie algebras are
compact, we see G=s(G) X ¢(G), H=s(H)x ¢(H) and K=s(K)xc(K). Since F
is a diffeomorphism of the product manifold G x H onto K we see

dim ¢(K) = dim ¢(G)-+dim c¢(H)
and hence
dim ¢(f) = dim ¢(g)+-dim c(b) .

Note that s(K) is a maximal compact subgroup of K. Also we see that F induces
a homotopy equivalence between s(G) X s(H) and s(K).

A theorem in homotopy theory ([3], [4]) states that if two simply connected
compact Lie groups are homotopicall equivalent then they are isomorphic as Lie
groups. Thus, we see that the Lie group s(K) is isomorphic with the direct
product s(G) x s(H) of Lie groups. Finally we can conclude that the Lie algebra
f is isomorphic with the direct sum g} of Lie algebras. q.e.d.

Corollary 1. Under the same assumption as above, we have
s(f) = s(g)+s(h) (direct sum of vector spaces).

Proof. Since f and gB) are isomorphic, s(f) and s(g)Ps(h) are isomorphic.
Especially, we have

dim s(t) = dim s(g)--dim s(p) .
On the other hand, we know
s(f) =[t, £], s(g) = [g, al. s(b) = [b, b].
Thus, we have
s(t)>s(g) and s(f)Ds(h).

The assumption f=g+ (direct sum of vector spaces) shows that s(g)+s()
is a direct sum of vector spaces in s(f). The first equality on dimension proves
our corollary. q.e.d.

3. Theorem 1 will follow easily from the following:

Proposition 1. Let  be a compact Lie algebra and let g and Y be its sub-
algebras such that

f = qg+Y (direct sum of vector spaces).

Then t has a direct sum decomposition of Lie algebras
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t=Ipl

with the following properties:

(1) The projection x of t onto | with respect to the above decomposition induces
an isomorphism of g onto |.

(i1) t=t-+Y (direct sum of vector spaces).

Proof. We prove the propoosition by induction on dim f. When dim {=1,
the proposition holds since f=g or f=). Now assume that the proposition
holds when dim f<<N. Let dimf=N. To simplify the argument we prepare
the following:

Sublemma. Suppose £ has a non-trivial proper ideal ¥, such that
LE=(@Nnt)+ONE) (direct sum of vector spaces).
Then the assertion of Proposition 1 holds for ¥, g and ¥).

Proof. For ¥, we choose a complementary ideal ¥, so that we have a direct
sum decomposition

f=tpt,.
Let 7, be the projection of f onto f,. We have

dim g = dim g N¥,+dim m(g),

dim § = dim hN {4 dim 7z,(g) .
Thus,

dim f, = dim f—dim ¥,

= dim 7z,(g)+dim 7z,(h) .
Since =g--9, f,=m,(f) is spanned by z,(g) and =,(})), and hence we have
t, = my(g)+my(h) (direct sum of vector spaces).

Consider f, and its subalgebras g N f, and h N ¥, and also ¥, and its subalgebras 7,(g)
and 7,(§). By the inductive hypothesis, we have direct sum decompositions

f,=LPL and t,= LD

with the properties:
i. The projections g N f,—I; and z,(g)—1, are isomorphisms.
ii. t=[+bnft, L,=0+n,(h) (direct sums of vector spaces).
Let

[=L®), and V=Y'3Y .
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We claim that the direct sum decomposition
=1l

satisfies the required properties.

First suppose XegNl’. Then ny(X)En,(g)NI,/. However z(g)NL'=
{0} from the assumption. Thus =y(X)=0, and hence Xe&f. Then
Xe(@nt)nl/={0}. Consequently wehavegN!'={0}. This shows that the
projection of g into [ with respect to [&DI’ is injective. Since they have the same
dimension, we have the property (i). NextsupposeINheX. #(X)ez,(h)Nl,=
{0}, and hence X <f,. We see that Xl N (HN¥t)={0}. Thus, we have

INH={0}. Since dim f=dim [4-dim §, we see ¥=I+} (direct sum of vector
spaces). Thus we have the property (ii) also. q.e.d.

We continue our proof of Proposition 1. First consider easy cases.

(1) Suppose ¥ is abelian.
Then {=g and I'=} satisfy the required properties.

(2) Suppose t is simple.
Then, by Lemma 2 we see f=qg or ¥=Y. Thus our assertion holds
trivially.

(3) Suppose g contains a non-trivial proper ideal, say f;, of f.
Then choose a complementary ideal £, of £, in £, so that we have

f =Dt .

Clearly, £, ng=t, ,Nhcgnh={0}. Applying the above sublemma we see that
Proposition 1 holds in this case.

(4) Suppose § contains a non-trivial proper ideal, say f,, of f.
Then again we have ,Ng={0}, and ¥, Nh=%,. Thus we can apply the
sublemma in this case also.

(5) Suppose ¥ is not semi-simple.
We may suppose f is not abelian. Then the semi-simple part s(t) is a non-
trivial proper ideal of £. By Corollary 1, we have

s(f)=s(g)+s(h) (direct sum of vector spaces).

Since s(g) g Ns(E), s(h) chNs(t) and (g N s(E)) N (HNs(E))= {0}, we have s(g)=
gNs(t) and s(h)=hNs(f). Thus

s(f) = gnNs(®)+HNs(f)

is a direct sum of vector spaces, and hence we can apply our sublemma.
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The above argument shows that we may suppose f is semi-simple and not
simple.

(6) Suppose t is semi-simple and all simple factors of f are mutually isomorphic
with each other.

In this case we shall show that either g or § contains a proper ideal of £, so
that the proposition holds by (3) or (4). Suppose neither g nor §) contains a non
trivial proper ideal of . Let

f=2f.-,9=2g,- and h=231h,
el jer kEK

be the decompositions of f, g and § into simple factors. By the present assump-
tion, all £’s are mutually isomorphic. By Lemma 2, we see also that all g;’s,
h,’s and £;’s are mutually isomorphic, and that

"= [JI+IK]

where || indicates the number of elements.
Denote by z; the projection of f onto ;. One sees that

z{g;) =% or {0},
z(h) =1 or {0}

for all z, j, k. Put
A;= {iel|n(g;)*+{0}},
B, = {iel|x(f,)=* {0}}

for each j€J and k€K. Letj, j,€J, and j,#17,. Then [r(g; ), z4g;,)]=0.
Thus 4; NA4;,=¢. Hence 4,’s are mutually disjoint and so are B,’s.

Suppose 4, consists of exactly one element, say . Then we see g;=¢t; and
hence g contains a non trivial proper ideal. This is a contradiction. Thus each
A, contains at least two elements. Similarly we have |B,|>2. Thus we have

24,14+ 22 1B 22(1J 1+ 1K) = 21|
On the other hand,

2 4;I<[I] and 2} |B| <|I].
Combining together, we see

|4;| = |By] =2

for every j€ J and kK.
By an elementary combinatorial argument one can decompose the index set
I into two disjoint subsets I; and I, such that, for every j, &, the sets 4,N1,,
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4,01, By,N1, and B,NI, are all non empty. Let
=% and a=3%,
IEI'1

€1,
so that we have f=a,a,. Denote by p, the projection of t onto a, (for i=1, 2).
It follows from our construction that the homomorphisms p,|g, p,|g, P9 and
p2|b are all onto isomorphisms. Using the decomposition f=a,dPa,, we can
write

g = {(X, p(X)) | X€a}

and
b= {(WY), V)| Yea,}

by suitable onto isomorphisms ¢: a,—a, and +r: a,—>a,. Consider an automor-
phism +ro¢ of a,. By a result due to Borel and Mostow [1], every automorphism
of a semi-simple Lie algebra has a non-zero fixed vector. Thus, we have an
element X in q, such that X 40 and y(¢(X))=X. Then we have

(X, (X)) = (W(H(X)), (X)) EgNh = {0} .

This is a contradiction. Thus, in this case, either g or ) contains a proper ideal
of £.

(7) Suppose ¥ is semi-simple and ¥ contains at least two simple ideals which are
not isomorphic.

Choose a simple ideal a of f such that dim a is minimal among the simple
ideals of £. Let £, be the direct sum of all simple ideals isomorphic to a, and §,
the complementary ideal, so that we have

t=1,Pt,.

Similarly, decompose g and § as

g =g>Pg and hH=hDYh,,

where g, (resp. ) is the direct sum of all simple ideals in g (resp. §) isomorphic
to a.

In virtue of Lemma 2, we see that ¥, and f, are isomorphic with g,p¥, and
8,Dh, respectively. We claim that the ideal £, satisfies the required condition in
the sublemma. Let z, and =, be the projections of { onto f, and f, respectively.
Consider 7,: g,—>f,. From the definitions of g, and f, we see =,|g,= {0}.
Thus, g;cf,. Similarly we have h,C¥,. Thus, ,Dg,+Y,. Since g,Nh,= {0}
and dim f,=dim g,+dim §,, we conclude that

£, = g,+0h, (direct sum of vector spaces).
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Since =g+ is a direct sum of vector spaces, we see that (£, Ng) N (,UH)= {0}.
On the other hand, ¥, Ng>Dg, and ¥, NHDY,, and also f,=g,+¥, (direct sum of
vector spaces). It follows that ;=g N ¥, and h,=HhN¥, and hence

L=(@nt)+(®NE) (direct sum of vector spaces).

This proves our claim.
Thus we have completed the proof of Proposition 1.

4. Now we can prove Theorem 1
Proof of Theorem 1. First assume that f is semi-simple. Apply Proposi-
tion 1 to £, g and . We get a direct sum decomposition

f=1pl

with the properties:
(i) The projection of  onto [ with respect to the above decomposition induces
an isomorphism of g onto [.
(ify t=I4% (direct sum of vector spaces).

Again apply Proposition 1 to f, h and I. We have a direct sum decom-
position

f=mPm’

with the properties:
(i) The projection of ¥ onto m with respect to this decomposition induces an
isomorphisms of § onto m.

(ii") t=m+4I[ (direct sum of vector spaces).
Since m and I are both ideals of ¥, we have a direct sum
f=mopl

of Lie algebras. The assumption that £ is semi-simple implies m=I’. Thus,
with respect to the direct sum

f=I1pr

we see that the projections of f onto I and !’ induce isomorphisms of g and )
onto I and I’ respectively. Setting g,=I, and =1, we see that the decom-
position

t=g,Dh

satisfies the first two properties. The third property follows from g N §= {0}.
In fact, suppose Y(p(X))=X for X&g,. Then, (X, ¢(X))=(Y($(X)),
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HX)egnNh=1{0}. Thus X=0.
Consider the general case. By Corollary 1, we have

s(f) = s(g)+s(h) (direct sum of vector spaces).

Also by Lemma 1, dim c(f)=dim c(g)+dim c(§). It is easily seen that the pro-
jection 7 of £ onto c(f) induces

c(f) = =(c(g))+n(c(h)) (direct sum of vector spaces).

From the first rgument, we can choose a direct sum decomposition

S(f) = gl, SN

such that the projections of s(t) onto g,” and §,” induce isomorphisms of s(g) and
s(h) onto g, and §,” respectively. Now put

a1 = @) D=(c(g))

and
b, = bl'@”(c(b)) .

we have a direct sum decomposition

=g, .

We claim that this decomposition satisfies the required properties in Theorem 1.
The first two are easy. The last one follows from the first two and gNHh={0}.
Q.E.D.

RemarRk 1. The converse of Theorem 1 holds. Let g, and 9, be Lie
algebras, and let ¢:g,—b, and +r: h,—g, be Lie algebra homomorphisms such that
ro¢ has no non-zero fixed vector. In the direct sum g,cph,=*¥ of Lie algebras,
define g and § by (i) and (ii). Then g and Y are subalgebras and we have

f=g-+b (direct sum of vector spaces).

ReMARK 2. Suppose M=K/H is a homogeneous space space of the type
mentioned in the introduction. Then the action of K on K/H is almost effective
if and only if ) is injective.

ReMARK 3. Let M=K/H be as above. By the theorem of Borel-Mostow
cited before, the Lie algebra homomorphism +rop=0 if g is simple. Thus we
see that if G is simple and the K-action on K/H is almost effective then G is
normal. Thus, Ochiai-Takahashi’s theorem follows from Theorem 1.

5. Now we consider a homogeneous space of the type mentioned in the
introduction. Let M=K/H be a homogeneous space of a connected compact
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Lie group K. We assume that a connected Lie subgroup G acts simply transi-
tively on K/H. Since K/H is compact, G is necessarily compact. The com-
position mapping

F: GxH—-K
is a diffeomorphism, so that we have

t =g+b (direct sum of vector spaces),

for their Lie algebras. Applying Theorem 1, we have a direct sum decomposition

= glEBbl

and homomorphisms ¢: g,—bh, and +r: §;—g, such that we have

g = {(X o(X)|XEg} ,
b= {(H(Y), V)|Yebh}.

Further, as we see from the proof of Theorem 1, we can assume that

o(a,) = =(c(a))

where = denotes the projection of ¥ onto its center.

Let G, be the connected Lie subgroup of K corresponding to the subalgebra
g, Since g, is an ideal of ¥, G, is a normal subgroup of K. Next we claim that
G, is compact. s(G,) is closed in K since it is semi-simple. Thus it suffices to
show that ¢(G,) is compact. However, from our construction, c(g,)=7(c(g)).
Consider the Lie group homomorphism #: K—K/[s(K). #|c(K) is a finite
covering map. Thus ¢(G)) is closed in ¢(K) if and only if #(c(G,)) is closed.
On the other hand, ¢(G) is compact, and hence #(c(G)) is compact. c(g,)=mn(c(@))
implies that #(c(G,))=#(c(G)). Thus, ¢(G)) is closed, and hence G, is compact.
From the property that ¥=g,9p, and h= {(¢(Y), Y)| Y €bh,;}, we have

t=q,+b (direct sum of vector spaces).
By Lemma 1, the composition mapping
G, xH—-K

defines a covering map. Consequently, G, acts transitively on the coset space
K/H. Furthermore, fix a point p in K/H. Then the mapping

G,—~K/H

defined by g—g(p) is a covering map. Thus, if G(=K/H) is simply connected,
then G| is also simply connected. Thus we have proved the following:
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Theorem 2. Let K be a connected compact Lie group and H a closed subgroup
of K. Assume that a connected Lie subgroup G acts simply transitively on the
homogeneous space K/H by the left translation. Then there exists a connected
closed normal subgroup G, of K such that G, acts transitively on K[H and G, is
locally isomorphic with G as Lie groups.

Theorem 3. Under the same assumption as in Theorem 2, assume further that
G is simply connected. Then there exists a connected closed normal subgroup G,
of K such that G, is isomorphic with G as Lie groups and G, acts simply transitively
on K/H.

6. We give here two examples. The first one shows that the conclusion of
Ochiai-Takahashi’s theorem does not hold any more if G is not simple.

ExampLE 1. Let 4 be a connected compact semi-simple Lie group and a
its Lie algebra. We put

K=AXxAXA,

G = {(x, y, x)|x, yE A4},

H = {(e, 2, 2)|2€ 4} .
H is a closed subgroup of K. Consider the homogeneous space K/H. We see
easily that G acts simply transitively on K/H. G is compact semi-simple and
not simple. Choose a K-invariant Riemannian metric ds? on K/H. Since K/H
can be identified with G, ds? is a left -invariant Riemannian metric on G. From
the definition, K is contained in the identity-component of isometries of
(K/H=G, ds*). G is not nomal in K, thus G is not normal in the identity-
component of isometries.

For this example, an explicit description of Theorem 1 is as follows:

= ahaPa.
Let g =1{X Y 0)]X, Yead},
b =1{0,0,2)|Z€a} .

Define ¢: g,—b, by

#((X, Y, 0)) = (0, 0, X)
and yr: B;—>g, by

¥((0, 0, Z)) = (0, Z, 0)..
Then we have

g = {(X, ¢(X))€q,Ph | X Eg} ,
g= {(W(Y), V)egPg{YeEh}.
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The next example shows that the conclusion of Theorem 3 does not hold if
G is not simply connected.

ExampLE 2. We choose two simply connected compact Lie groups A and B
with the following properties:
1. There exists an injective homomorphism j of 4 into B.
2. The center Z(A) of A is non-trivial and

JZ(A)NZ(B) = {e} .
For instance, choose positive integers m and n such that n>>m>2. Then
A=_8U(m), B=SU(n) and the canonical injection of SU(m) into SU(n) satisfy

the required properties.
Let

K =AxBxA,

G, = AXBx {e},

G = {(a, b, a)lacA, b B},

H = {(e)j(a)v a)lac 4},

T = {(x, ¢, x)|xZ(4)} .
The Lie algebras of 4 and B are denoted by a and b respectively. T is a finite
group contained in the center of K. We consider the quotient group K=K|T',
and denote by = the canonical projection of K onto K. H==(H) is a closed
subgroup of K. Consider K/H. One can easily show that the group G=n(G)
acts simply transitively on K/H. We claim that no normal subgroup of K acts
simply transitively on K/H. Suppose a normal subgroup G,’ of K acts simply
transitively on K/H. Then its Lie algebra g’ satisfies

f=g,/+g (direct sum of vector spaces),

where h={(0, j(X), X)|X<a}. Since g, is an ideal of f, we see g/'=g,=
{X,Y,0)|Xq, Yeb}. It follows that =(G,)=G,. However, =(G,)is
simply connected because z(G,)=G,/(G, NT)=G,. This is a contradiction.
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