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Abstract

I investigate the optimal investment timing model in which investment is feasible in only one

of the two regimes, which shift at Poisson jump times. I derive the option value and investment

threshold in closed forms. I also prove that some solutions in previous models are obtained as the

limits of the solution. The closed-form solution can be useful as a new framework to study real

option problems with the illiquidity of option exercise opportunities.
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1 Introduction

In project valuation involving high uncertainty and managerial flexibility, the real option value

(ROV) method adds value to the net present value (NPV) method (see [1]). An increasing number

of papers have investigated various problems in the ROV framework (for a recent review, refer to

[2]). Most of these studies presume that an option holder can exercise his/her real option at an

arbitrary time, analogous to American call and put options. However, this assumption does not

always hold true for real-world problems.

For example, consider a firm that will expand its business by acquiring (a certain section of)

another firm. If a hostile acquisition is too costly, the firm begins by searching for a target that

may potentially agree to be acquired. Only if the firm finds such a target and the negotiation

and/or bidding process succeeds, the firm can acquire the target assets. Otherwise, the firm begins

by searching for another target. In this case, the firm can exercise the acquisition option, not at

an arbitrary time but only while it has a potential target satisfying certain conditions. Similarly,

in an asset liquidation problem, a firm can sell illiquid assets at fair prices not at an arbitrary time

but only while it finds a potential buyer satisfying certain conditions.

This paper captures the illiquidity of option exercise opportunities by a regime switching model.

More precisely, I examine the optimal investment timing problem where investment is feasible in

only one of the two regimes, which shift at Poisson jump times. The feasible regime is called the

good regime, while the infeasible regime is called the bad regime. Most notably, I derive the value

function and investment threshold in closed forms. Because of its simplicity (i.e., the closed-form

solution), the proposed model can be useful as a new framework to study real option problems with

the illiquidity of option exercise opportunities (including but not limited to acquisition and asset

liquidation).

I also show the following results. The option value and investment threshold increase as the

arrival rate of the good (bad) regime increases (decreases). In other words, the value of waiting

increases for a project with higher liquidity of option exercise opportunities. The solution converges

to that of the standard ROV model in [1] as the arrival rate of the bad (good) regime goes to zero

(infinity). The solution converges to that of the optimal stopping problem constrained within

Poisson jump times in [3], as the arrival rate of the bad regime goes to infinity. The solution

converges to that of the ROV model in which the option is lost at the first Poisson jump time, as

the arrival rate of the good regime goes to zero. The solution converges to that of the NPV model,

as the arrival rates of the good and bad regimes go to zero and infinity, respectively. Thus, the

closed-form solution in this paper fills the gaps in these previous models.

Lastly, I note differences from existent ROV models with regime switching. The model is

regarded as a simplified version of a more general ROV model with regime switching (e.g., [4], [5],

and [6]), where investment is also feasible in the bad regime. One cannot obtain a closed-form

solution in the general model because the general problem is reduced to two nonlinear equations

for two investment thresholds. By restricting investment in only one regime, I resolve this issue
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and reduce the problem to one linear equation for one investment threshold, which leads to the

closed-form solution.

The closed-form solution has an advantage over nonclosed-form solutions in previous literature

because it allows us to examine comparative statics, as wells as economic implications, without

specifying parameter values. In fact, by virtue of the closed-form solution, this paper, unlike

previous papers, clarifies the limiting results and the relation among the previous models. In

particular, I show that the closed-form solution in the regime switching model nests that of [3],

although previous papers are unaware of this link. In terms of application, this paper is more

relevant to the illiquidity of searching and matching than macroeconomic shocks, although previous

papers focus shocks from macroeconomic conditions by regime switching.

2 Model Setup

I examine an ROV model with regime switching as follows. Consider a firm that has an option to

invest in a project. In one of the regimes (called the good regime), the firm can invest in the project

at an arbitrary time, whereas in the other regime (called the bad regime), the firm is not allowed

to invest. The bad regime shifts to the good regime at a Poisson jump time with the arrival rate

λ(> 0), whereas the good regime shifts to the bad regime at a Poisson jump time with the arrival

rate η(> 0). The investment project requires the initial investment cost I and generates a profit

X(t), which follows a geometric Brownian motion

dX(t) = µX(t)dt+ σX(t)dB(t) (t > 0), X(0) = x,

whereB(t) denotes the standard Brownian motion defined in a filtered probability space (Ω,F ,P, {Ft})

and µ, σ(> 0) and x(> 0) are constants. For the model tractability, I assume that B(t) is indepen-

dent of the Poisson processes. A positive constant r denotes the discount rate, and for convergence

I assume that r > µ.

I denote by V (x) and U(x) the option values in the bad and good regimes, respectively. The

regime-switching model can be regarded as a simplified version of more general models by [4] [5],

and [6], where investment is feasible in any regime.

3 Model Solution

Following [4], I can solve the model. I presume that the firm’s optimal policy is a threshold policy

expressed as inf{t ≥ 0 | X(t) ≥ x∗ in the good regime}. Note that the optimality of the threshold

policy under more general conditions is shown in [6]. Then, the value functions V (x) and U(x)

satisfy ordinary differential equations (ODEs)

µxV ′(x) + 0.5σ2x2V ′′(x) + λ(U(x)− V (x)) = rV (x), (x < x∗), (1)

µxV ′(x) + 0.5σ2x2V ′′(x) + λ(x− I − V (x)) = rV (x), (x > x∗), (2)

µxU ′(x) + 0.5σ2x2U ′′(x) + η(V (x)− U(x)) = rU(x) (x < x∗), (3)
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where λ(U(x) − V (x)) in (1) and λ(x − I − V (x)) in (2) reflect that V (x) changes to U(x) and

x − I when the bad regime shifts to the good regime, whereas η(V (x) − U(x)) in (3) means that

U(x) changes to V (x) when the good regime switches to the bad regime.

The boundary conditions are limx→0 V (x) = 0, limx→∞ V (x)/x < ∞, limx→0 U(x) = 0, U(x) =

x − I (x ≥ x∗), and the continuous differentiability of V (x) and U(x) at x = x∗. The first four

boundary conditions are trivial. The continuous differentiability of U(x) is the smooth pasting

condition in [1], whereas the continuous differentiability of V (x) follows from Theorem 4.4.9 in [7]

(see [4]). By solving ODE (1)–(3), I have the following proposition, where I define, for y > 0,

βy = 0.5− µ

σ2
+

√( µ

σ2
− 0.5

)2

+
2(r + y)

σ2
(> 1), (4)

γy = 0.5− µ

σ2
−
√( µ

σ2
− 0.5

)2

+
2(r + y)

σ2
(< 0), (5)

and for simplicity, I denote β = β0 and γ = γ0.

Proposition 1

V (x) =


A1x

β − λ

η
A2x

βλ+η (x < x∗),

λx

r + λ− µ
− λI

r + λ
+A3x

γλ (x ≥ x∗),
(6)

U(x) =

 A1x
β +A2x

βλ+η (x < x∗),

x− I (x ≥ x∗),
(7)

where the investment threshold x∗ and coefficients A1, A2, A3 are

x∗ =
(β(r + λ)(βλ+ηη + λ(βλ+η − γλ))− γλη(βλ+ηr + βλ))(r + λ− µ)I

(λ(β − 1)(βλ+η − γλ)(r + λ+ η − µ) + η(β − γλ)(βλ+η − 1)(r − µ))(r + λ)
, (8)

A1 =
(βλ+η − 1)x∗ − βλ+ηI

(βλ+η − β)x∗β , (9)

A2 =
βI − (β − 1)x∗

(βλ+η − β)x∗βλ+η
, (10)

A3 =
1

x∗γλ

(
A1x

∗β − λ

η
A2x

∗βλ+η − λx∗

r + λ− µ
+

λI

r + λ

)
. (11)

Proof I define f(x) = U(x)λ/η + V (x) and g(x) = U(x)− V (x). By (1) and (3), I have

µxf ′(x) + 0.5σ2x2f ′′(x) = rf(x), (x < x∗), (12)

µxg′(x) + 0.5σ2x2g′′(x) + (λ+ η)g(x) = rg(x), (x < x∗). (13)

A general solution to ODE (12) with the boundary condition limx→0 f(x) = 0, which follows from

limx→0 V (x) = limx→0 U(x) = 0, is expressed as B1x
β , where B1 is an indefinite coefficient. A

general solution to ODE (13) with the boundary condition limx→0 g(x) = 0, which follows from

limx→0 V (x) = limx→0 U(x) = 0, is expressed as B2x
βλ+η , where B2 is an indefinite coefficient.

Then, I have the expressions (6) and (7) for x < x∗ by taking Ai = Biη/(λ + η) (i = 1, 2). A

general solution to ODE (2) with the boundary condition limx→∞ V (x)/x < ∞, is expressed as (6)

for x ≥ x∗, where A3 is an indefinite coefficient.
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Below, I will derive x∗ and Ai (i = 1, 2, 3) by the continuous differentiability of V (x) and U(x)

at x = x∗. By the continuous differentiability of U(x) at x = x∗, I have

A1x
∗β +A2x

∗βλ+η = x∗ − I,

βA1x
∗β + βλ+ηA2x

∗βλ+η = x∗,

which lead to

A1x
∗β =

(βλ+η − 1)x∗ − βλ+ηI

βλ+η − β
, (14)

A2x
∗βλ+η =

(1− β)x∗ + βI

βλ+η − β
. (15)

By the continuous differentiability of V (x) at x = x∗, I have

A1x
∗β − λ

η
A2x

∗βλ+η =
λx∗

r + λ− µ
− λI

r + λ
+A3x

∗γλ , (16)

βA1x
∗β − λβλ+η

η
A2x

∗βλ+η =
λx∗

r + λ− µ
+ γλA3x

∗γλ , (17)

which lead to

(β − γλ)A1x
∗β − λ(βλ+η − γλ)

η
A2x

∗βλ+η =
λ(1− γλ)x

∗

r + λ− µ
+

λγλI

r + λ
. (18)

By substituting (14) and (15) into (18), I have

(β − γλ)((βλ+η − 1)x∗ − βλ+ηI)

βλ+η − β
− λ(βλ+η − γλ)((1− β)x∗ + βI)

η(βλ+η − β)
=

λ(1− γλ)x
∗

r + λ− µ
+

λγλI

r + λ
(19)(

η(β − γλ)(βλ+η − 1) + λ(β − 1)(βλ+η − γλ)

η(βλ+η − β)
− λ(1− γλ)

r + λ− µ

)
x∗ =

(
ηβλ+η(β − γλ) + λβ(βλ+η − γλ)

η(βλ+η − β)

+
λγλ
r + λ

)
I,

by which I can derive x∗ in (8). By (14), (15), and (16), I can derive A1, A2, and A3 in (9), (10),

and (11), respectively. The proof is complete. □
In the good regime, the firm invests in the project at time t satisfying X(t) ≥ x∗. The upper

equation in (7) stands for the value of waiting when the option value is higher than the investment

payoff, i.e, U(x) > x − I. The lower equation in (7) equals the investment payoff. The upper

equation in (6) stands for the value of waiting when the option value is higher than the investment

payoff. The lower equation in (6) stands for the value of waiting, when the option value is lower

than the investment payoff. In the bad regime, for X(t) ≥ x∗, the firm wishes to invest but has to

wait for the good regime arrival. The first and second terms of the lower equation in (6) stand for

the expected payoff of investing whenever the good regime arrives. The last term A3x
γλ stands for

the value of the option to change the policy when X(t) falls below x∗.

Notably, in Proposition 1, the value function and investment threshold are derived in closed

forms. I can easily extend the closed-form solution into those of the optimal investment and

financing models by [8], [9], and [10], although I omit the details. Models with closed-form solutions

(e.g., models of [1]) are dominant in the ROV literature primarily because closed-form solutions

enable us to study comparative statics and economic implications regardless of parameter values. In
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this sense, the closed-form solution of Proposition 1 has an advantage over nonclosed-form solutions

of [4] and [6], although they study more general models allowing investment in any regime.

Below, I explain how the exercise assumption addresses the difficulties in the previous papers.

In a general model allowing investment in the bad regime (say, the payoff bx − Ib(< x − I)),

ODEs (1)–(3) are unchanged, but the boundary condition to ODE (2) becomes the continuous

differentiability condition at the investment threshold in the bad regime (say, x∗
b(> x∗)) rather

than limx→∞ V (x)/x < ∞. Then, V (x) has an extra term A4x
βλ for x ∈ [x∗, x∗

b) and becomes

bx − Ib for x ≥ x∗
b . The equations are reduced to two nonlinear equations for x∗ and x∗

b rather

than a linear equation for x∗ like (19) because (16) and (17) have extra terms A4x
βλ and βλA4x

βλ ,

respectively. The two nonlinear equations cannot be solved analytically. In this paper, by excluding

investment in the bad regime, I reduce the equations to the linear equation (19), which leads to

the closed-form solution. This derivation technique has never been seen in previous literature.

By virtue of the closed-form solution in Proposition 1, I can show the following proposition.

Proposition 2 V (x), U(x), and x∗ monotonically increase (decrease) in λ (η). As η → 0, U(x)

and x∗ converge to those (denoted by V i(x) and xi) of the standard ROV model in [1]. As η → ∞,

V (x), U(x), and x∗ converge to those (denoted by V j(x), U j(x), and xj) of [3] who study the optimal

stopping problem constrained within Poisson jump times. As λ → 0, U(x) and x∗ converge to those

(denoted by V k(x) and xk) of the ROV model in which the investment option is killed at the first

Poisson jump time with the arrival rate η. As λ → ∞, U(x) and x∗ converge to V i(x) and xi. As

λ → 0 and η → ∞, U(x) and x∗ converge to those (denoted by V n(x) and xn) of the NPV model.

Proof By definition of the problem, V (x) and U(x) monotonically increase (decrease) in λ (η). The

monotonicity of x∗ follows from the monotonicity of U(x) and x∗ = min{x ≥ 0 | U(x) = x− I}.

By (8), I have

lim
η→0

x∗ =
(β(r + λ)λ(βλ − γλ)(r + λ− µ)I

λ(β − 1)(βλ − γλ)(r + λ− µ)(r + λ)

=
βI

β − 1
(= xi), (20)

where (20) equals the investment threshold xi of the standard ROV model in [1]. By substituting

(20) into (10), I have limη→0 A2 = 0. Then, by (9), for x < xi, I have

lim
η→0

U(x) =
( x

xi

)β 1

βλ − β

(
(βλ − 1)βI

β − 1
− βλI

)
=

( x

xi

)β I

β − 1
(= V i(x)), (21)

where (21) equals the option value of the standard ROV model.

Next, suppose η → ∞. Note that limη→∞ βλ+η = ∞ follows from (4). Then, by (8)–(11), I
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have

lim
η→∞

x∗ =
(β(r + λ)− γλr)(r + λ− µ)I

(λ(β − 1) + (β − γλ)(r − µ))(r + λ)
(= xj), (22)

lim
η→∞

A1 =
xj − I

xjβ
, (23)

lim
η→∞

A2 = 0, (24)

lim
η→∞

A3 =
1

xjγλ

(
(r − µ)xj

r + λ− µ
− rI

r + λ

)
, (25)

where (22) equals the threshold xj for the optimal stopping problem constrained within Poisson

jump times (i.e., (15) in [3]). By (22)–(25), I can see that limη→0 V (x) and limη→0 U(x) also agree

with the value functions V j(x) and U j(x) of the problem (i.e., (13), (14), and (16) in [3]).

Now, suppose λ → 0. By (8), I have

lim
λ→0

x∗ =
(βrβηη − γηβηr)(r − µ)I

η(β − γ)(βη − 1)(r − µ)r
,

=
βηI

βη − 1
(= xk), (26)

where (26) equals the threshold xk of the ROV model in which the option is lost at the first Poisson

jump time with the arrival rate η. By substituting (26) into (9), I have limλ→0 A1 = 0. Then, for

x < xk, I have

lim
λ→0

U(x) =
( x

xk

)βη 1

βη − β

(
βI − (β − 1)βηI

βη − 1

)
=

( x

xk

)βη I

βη − 1
(= V k(x)), (27)

where (27) equals the corresponding option value.

Note that limλ→∞ βλ+η/λ = limλ→∞ γλ/λ = 0 follows from (4) and (5), respectively. By taking

λ → ∞ in (8)–(11), I can show

lim
λ→∞

x∗ =
βI

β − 1
(= xi),

lim
λ→∞

A1 =
xi − I

xiβ
,

lim
λ→∞

A2 = 0.

By taking η → ∞ in (26) and (27), I have

lim
λ→0
η→∞

x∗ = (r − µ)I(= xn),

lim
λ→0
η→∞

U(x) =

 0 (x < I),

x− I (x ≥ I),
(= V n(x))

which agree with the investment threshold and value function of the NPV model. The proof is

complete. □
Proposition 2 shows that the model solution nests several solutions in the previous models.

With a higher λ (or a lower η), the firm stays in the good regime longer, and hence, the value of
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deferring investment increases. Then, the option value and investment threshold increase with a

higher λ (or a lower η). For λ → ∞ or η → 0, the solution converges to the standard ROV solution

in [1].

With a higher η, the good regime ends sooner, and hence, the value of deferring investment

decreases. As the good regime immediately changes to the bad regime for η → ∞, the firm has to

decide whether or not to invest as soon as the good regime arrives. Then, the solution converges

to that of the optimal stopping problem constrained within Poisson jump times in [3].

With a lower λ, the bad regime is less likely to change to the good regime. For λ → 0, the

investment option will never return once the firm faces the bad regime. Then, the solution converges

to that of the ROV model with the possibility that the option disappears. Especially for λ → 0

and η → ∞, the good regime immediately changes to the bad regime and will never return. Hence,

the solution converges to that of the NPV model in which the firm has to decide whether to invest

now or never.

The limiting results are not shown in the regime switching literature (e.g., [4] and [6]) because

nonclosed-form solutions prevent us from calculating the limits analytically. In particular, no study

on the ROV models with regime switching is aware of the relation with [3]. The two strands of

research have developed independently. This paper first shows that the solution of [3] is a limiting

solution in the ROV model with regime switching. Indeed, the closed-form solution in Proposition

1 generalizes that of [3].

Lastly, I see the results in numerical examples. The baseline parameters are set at r = 0.07, µ =

0.05, σ = 0.2, I = 1, x = 1, λ = 1, and η = 1. Then, I have V (x) = 0.5205, U(x) = 0.5205, x∗ =

4.522 in the current model, V i(x) = 0.522, xi = 4.766 in the standard ROVmodel, V j(x) = U j(x) =

0.5194, xj = 4.044 in the model constrained within Poisson jump times, V k(x) = 0.0603, xk = 1.179

in the ROV model killed by the first Poisson jump time, and V n(x) = 0, xn = 1 in the NPV model.

Note that U(x) − V (x) is approximately 2 × 10−12 for x = 1. Figure 1 shows U(x) and x∗ for

varying levels of λ and η. I omit depicting V (x) because differences between V (x) and U(x) are

quite small and invisible in most areas. I can see that the option value and investment threshold

increase with a higher λ (or a lower η). I can also check the limiting results in Proposition 2.
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