

Title	REAL HYPERSURFACES WITH KILLING STRUCTURE JACOBI OPERATOR IN THE COMPLEX HYPERBOLIC QUADRIC
Author(s)	Suh, Young Jin
Citation	Osaka Journal of Mathematics. 2021, 58(1), p. 1-28
Version Type	VoR
URL	https://doi.org/10.18910/78987
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

REAL HYPERSURFACES WITH KILLING STRUCTURE JACOBI OPERATOR IN THE COMPLEX HYPERBOLIC QUADRIC

YOUNG JIN SUH

(Received October 3, 2018, revised August 21, 2019)

Abstract

First we introduce the notion of Killing structure Jacobi operator for real hypersurfaces in the complex hyperbolic quadric $Q^{m*} = SO_{2,m}^0/SO_2SO_m$. Next we give a complete classification of real hypersurfaces in $Q^{m*} = SO_{2,m}^0/SO_2SO_m$ with Killing structure Jacobi operator.

This work was supported by grant Proj. No. NRF-2018-R1D1A1B-05040381 from National Research Foundation of Korea

1. Introduction

In case of Hermitian symmetric space of rank 1, we say a complex projective space $\mathbb{C}P^m$ and a complex hyperbolic space $\mathbb{C}H^m$. In the complex projective space $\mathbb{C}P^m$, a full classification of real hypersurfaces with isometric Reeb flow was obtained by Okumura in [16]. He proved that the Reeb flow on a real hypersurface in $\mathbb{C}P^m = SU_{m+1}/S(U_mU_1)$ is isometric if and only if M is an open part of a tube around a totally geodesic $\mathbb{C}P^k \subset \mathbb{C}P^m$ for some $k \in \{0, \dots, m-1\}$. Moreover, Takagi [41] gave a complete classification of homogeneous hypersurfaces in $\mathbb{C}P^m$ and Kimura and etc., [7] considered the notion GTW Reeb parallel shape operator. In the complex hyperbolic space $\mathbb{C}H^m$, Montiel and Romero [13] have given a complete classification of real hypersurface with isometric Reeb flow.

As another kind of Hermitian symmetric space with rank 2 of non-compact type different from the above ones, we can give the example of complex hyperbolic quadric $Q^{m*} = SO_{2,m}^0/SO_2SO_m$. By using the method given in Kobayashi and Nomizu [12], Chapter XI, Example 10.6, the complex hyperbolic quadric $Q^{m*} = SO_{2,m}^0/SO_2SO_m$ can be immersed in indefinite complex hyperbolic space $\mathbb{C}H_1^{m+1}$ as a space-like complex hypersurface (see Montiel and Romero [15] and Suh [34]). The complex hyperbolic quadric Q^{m*} is the non-compact Hermitian symmetric space $SO_{2,m}^0/SO_2SO_m$ of rank 2 and also can be regarded as a kind of real Grassmann manifold of all oriented space-like 2-dimensional subspaces in indefinite flat Riemannian space \mathbb{R}_2^{m+2} (see Montiel and Romero [14] and [15]). Accordingly, the complex hyperbolic quadric admits both a complex conjugation structure A and a Kähler structure J , which anti-commutes with each other, that is, $AJ = -JA$. Then for $m \geq 2$ the triple (Q^{m*}, J, g) is a Hermitian symmetric space of noncompact type with rank 2 and its minimal sectional curvature is equal to -4 (see Klein [8] and Reckziegel [22]).

Now let us consider a real hypersurface in the complex hyperbolic quadric Q^{m*} with isometric Reeb flow. Then from the view of the previous results a natural expectation might be the totally geodesic $Q^{m-1*} \subset Q^{m*}$. But, surprisingly, in the complex hyperbolic quadric Q^{m*} the situation is quite different from the above ones. Recently, Suh [34] has introduced the following result:

Theorem A. *Let M be a real hypersurface of the complex hyperbolic quadric $Q^{m*} = SO_{m,2}^o/SO_m SO_2$, $m \geq 3$. The Reeb flow on M is isometric if and only if m is even, say $m = 2k$, and M is locally congruent to an open part of a tube around a totally geodesic $\mathbb{C}H^k \subset Q^{2k*}$ or a horosphere whose center at infinity is \mathfrak{A} -isotropic singular.*

Jacobi fields along geodesics of a given Riemannian manifold (M, g) satisfy a well known differential equation. This equation naturally inspires the so-called Jacobi operator. That is, if R denotes the curvature operator of M , and X is tangent vector field to M , then the Jacobi operator $R_X \in \text{End}(T_x M)$ with respect to X at $x \in M$, defined by $(R_X Y)(x) = (R(Y, X)X)(x)$ for any $Y \in T_x M$, becomes a self adjoint endomorphism of the tangent bundle TM of M . Thus, each tangent vector field X to M provides a Jacobi operator R_X with respect to X . In particular, for the Reeb vector field ξ , the Jacobi operator R_ξ is said to be a *structure Jacobi operator*.

Recently Ki, Pérez, Santos and Suh [5] have investigated the Reeb parallel structure Jacobi operator in the complex space form $M_m(c)$, $c \neq 0$ and have used it to study some principal curvatures for a tube over a totally geodesic submanifold. In particular, Pérez, Jeong and Suh [20] have investigated real hypersurfaces M in $G_2(\mathbb{C}^{m+2})$ with parallel structure Jacobi operator, that is, $\nabla_X R_\xi = 0$ for any tangent vector field X on M . Jeong, Suh and Woo [4] and Pérez and Santos [18] have generalized such a notion to the recurrent structure Jacobi operator, that is, $(\nabla_X R_\xi)Y = \beta(X)R_\xi Y$ for a certain 1-form β and any vector fields X, Y on M in $G_2(\mathbb{C}^{m+2})$. Moreover, Pérez, Santos and Suh [19] have further investigated the property of the Lie ξ -parallel structure Jacobi operator in complex projective space $\mathbb{C}P^m$, that is, $\mathcal{L}_\xi R_\xi = 0$.

The Reeb vector field ξ is *Killing* on M in Q^{m*} if and only if $g(\nabla_X \xi, Y) + g(\nabla_Y \xi, X) = 0$ for any vector fields X and Y on M . As a generalization of such a Killing vector field first Yano [42] defined the notion of *Killing tensor* as follows:

A skew symmetric tensor $T_{i_1 \dots i_r}$ is called a *Killing tensor* of order r if it satisfies

$$\nabla_{i_1} T_{i_2 \dots i_{r+1}} + \nabla_{i_2} T_{i_1 \dots i_{r+1}} = 0.$$

Next Blair [2] has applied the notion of Killing tensor to a tensor field of T type $(1, 1)$ on a Riemannian manifold and a geodesic γ on M . If we denote by γ' the tangent vector of the geodesic γ , then $T\gamma'$ is parallel along the geodesic γ for the Killing tensor field T . Geometrically, this means that $(\nabla_{\gamma'} T)\gamma' = 0$ along a geodesic γ on M . If this is the case for any geodesic on M , we have

$$(\nabla_X T)X = 0 \quad \text{or equivalently} \quad (\nabla_X T)Y + (\nabla_Y T)X = 0$$

for any vector fields X and Y on M . In this case we say that the tensor T is a *Killing tensor field of type $(1, 1)$* .

Now we consider such a situation to the structure Jacobi operator R_ξ , which is a tensor field of type $(1, 1)$ on a real hypersurface M in Q^{m*} . The structure Jacobi operator R_ξ of M in Q^m is said to be *Killing* if the structure Jacobi operator R_ξ satisfies

$$(\nabla_X R_\xi)Y + (\nabla_Y R_\xi)X = 0$$

for any $X, Y \in T_z M$, $z \in M$. The equation is equivalent to $(\nabla_X R_\xi)X = 0$ for any $X \in T_z M$, $z \in M$, because of polarization. Moreover, we can give the geometric meaning of the Killing Jacobi operator as follows:

When we consider a geodesic γ with initial conditions such that $\gamma(0) = z$ and $\dot{\gamma}(0) = X$. Then the transformed vector field $R_\xi \dot{\gamma}$ is Levi-Civita *parallel* along the geodesic γ of the vector field X (see Blair [2] and Tachibana [40]).

In addition to the complex structure J there is another distinguished geometric structure on Q^{m*} , namely a parallel rank two vector bundle \mathfrak{A} which contains an S^1 -bundle of real structures, that is, complex conjugations A on the tangent spaces of Q^{m*} . This geometric structure determines a maximal \mathfrak{A} -invariant subbundle \mathcal{Q} of the tangent bundle TM of a real hypersurface M in Q^{m*} as follows:

$$\mathcal{Q} = \{X \in T_z M \mid AX \in T_z M \text{ for all } A \in \mathfrak{A}\}.$$

Recall that a nonzero tangent vector $W \in T_{[z]} Q^{m*}$ is called singular if it is tangent to more than one maximal flat in Q^{m*} . There are two types of singular tangent vectors for the complex hyperbolic quadric Q^{m*} :

1. If there exists a conjugation $A \in \mathfrak{A}$ such that $W \in V(A)$, then W is singular. Such a singular tangent vector is called \mathfrak{A} -principal.
2. If there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $W/\|W\| = (X + JY)/\sqrt{2}$, then W is singular. Such a singular tangent vector is called \mathfrak{A} -isotropic

where $V(A) = \{X \in T_{[z]} Q^{m*} \mid AX = X\}$ and $JV(A) = \{X \in T_{[z]} Q^{m*} \mid AX = -X\}$, $[z] \in Q^{m*}$, are the $(+1)$ -eigenspace and (-1) -eigenspace for the involution A on $T_{[z]} Q^{m*}$, $[z] \in Q^{m*}$.

In the study of real hypersurfaces in the complex quadric Q^m we considered the notion of parallel Ricci tensor, that is, $\nabla \text{Ric} = 0$ (see Suh [31]). But from the assumption of Ricci parallel, it was difficult for us to derive the fact that either the unit normal N is \mathfrak{A} -isotropic or \mathfrak{A} -principal. So in [31] we gave a classification with the further assumption of \mathfrak{A} -isotropic. But fortunately, if we consider a Hopf real hypersurfaces, which is defined by $S\xi = \alpha\xi$ for the Reeb function $\alpha = g(S\xi, \xi)$ and the shape operator S , in the complex hyperbolic quadric Q^{m*} with Killing structure Jacobi operator, we can assert that the unit normal vector field N becomes either \mathfrak{A} -isotropic or \mathfrak{A} -principal as follows:

Main Theorem 1. *Let M be a Hopf real hypersurface in Q^{m*} , $m \geq 3$, with Killing structure Jacobi operator. Then the unit normal vector field N is singular, that is, N is \mathfrak{A} -isotropic or \mathfrak{A} -principal.*

When we consider a hypersurface M in the complex hyperbolic quadric Q^{m*} , the unit normal vector field N of M in Q^{m*} can be divided into two cases : N is \mathfrak{A} -isotropic or

\mathfrak{A} -principal (see [34], [35] and [27]). In the first case where M has an \mathfrak{A} -isotropic unit normal N , we have asserted in [34] and [35] that M is locally congruent to a tube over a totally geodesic complex hyperbolic space $\mathbb{C}H^k$ in Q^{2k*} or a horosphere with \mathfrak{A} -isotropic unit normal vector field centered at the infinity. In the second case when N is \mathfrak{A} -principal we have proved that M is locally congruent to a tube over a totally geodesic and totally real submanifold Q^{m-1*} in Q^{m*} (see [34], [36] and [38]).

In this paper we consider the case that the structure Jacobi operator R_ξ of M in Q^{m*} is Killing, that is, $(\nabla_X R_\xi)Y + (\nabla_Y R_\xi)X = 0$ for any tangent vector field X and Y on M , and we prove the following

Main Theorem 2. *There does not exist a Hopf hypersurface in Q^{m*} , $m \geq 3$ with Killing structure Jacobi operator and \mathfrak{A} -principal unit normal vector field.*

Now it remains to prove the case that the unit normal vector field is \mathfrak{A} -isotropic. Then by our Main Theorems 1 and 2, we give a classification of real hypersurfaces in Q^{m*} with Killing structure Jacobi operator as follows:

Main Theorem 3. *Let M be a Hopf hypersurface in Q^{m*} , $m \geq 3$ with Killing structure Jacobi operator. If the Reeb function is constant along the Reeb direction, then M has 4 distinct constant principal curvatures*

$$\alpha, \quad \beta = 0, \quad \lambda_1 = \lambda_2.$$

Here the corresponding eigen spaces $\xi \in T_\alpha$, $T_\beta = Q^\perp$, and $T_{\lambda_1} \oplus T_{\lambda_2} = Q$, where the principal curvatures λ_1 and λ_2 are two distinct constants given by

$$\lambda_1 = \frac{\alpha(\alpha^2 - 1) + \alpha\sqrt{(\alpha^2 - 1 - 2\sqrt{2})(\alpha^2 - 1 + 2\sqrt{2})}}{4}$$

and

$$\lambda_2 = \frac{\alpha(\alpha^2 - 1) - \alpha\sqrt{(\alpha^2 - 1 - 2\sqrt{2})(\alpha^2 - 1 + 2\sqrt{2})}}{4}.$$

with multiplicities $(m - 2)$ respectively and $\alpha^2 > 2\sqrt{2} + 1$.

REMARK 1.1. In [29] Suh has proved that the Reeb function $\alpha = g(S\xi, \xi)$ is constant for real hypersurfaces with singular normal vector field in the complex quadric Q^m . But in the complex hyperbolic quadric Q^{m*} the Reeb function α is constant only if the unit normal vector field N is \mathfrak{A} -principal (see Suh, Pérez and Woo [39]). Until now it does not known to us whether the Reeb function α is constant for real hypersurfaces in the complex hyperbolic quadric Q^{m*} with \mathfrak{A} -isotropic unit normal vector field.

The subbundle Q mentioned in Main Theorem 3 is the maximal invariant subbundle of $T_z M$, $z \in M$, such that $Q \oplus Q^\perp = [\xi]^\perp$, where $Q^\perp = \text{Span}\{A\xi, AN\}$ and $[\xi]^\perp$ denotes the orthogonal complement of the Reeb vector field ξ in $T_z M$, $z \in M$, in Q^{m*} .

When we consider a parallel structure Jacobi operator on M in Q^{m*} , we know that $(\nabla_X R_\xi)Y = 0$ for any vector fields X and Y on M . This gives a condition stronger than

the notion of Killing structure Jacobi operator. So naturally it satisfies the assumptions of Killing in Main Theorems 1, 2 and 3. For the case of isotropic unit normal N , it can be easily checked that the results in our Main Theorem 3 do not satisfy the strong assumption of parallel structure Jacobi operator. So we also conclude the following

Corollary (see [39]). *There does not exist a Hopf hypersurface in the complex hyperbolic quadric Q^{m*} , $m \geq 3$, with parallel structure Jacobi operator.*

2. The complex hyperbolic quadric

In this section, let us introduce a new known result of the complex hyperbolic quadric Q^{m*} different from the complex quadric Q^m . This section is due to Klein and Suh [10].

The m -dimensional complex hyperbolic quadric Q^{m*} is the non-compact dual of the m -dimensional complex quadric Q^m , which is a kind of Hermitian symmetric space of non-compact type with rank 2 (see Besse [1], and Helgason [3]).

The complex hyperbolic quadric Q^{m*} cannot be realized as a homogeneous complex hypersurface of the complex hyperbolic space $\mathbb{C}H^{m+1}$. In fact, Smyth [24, Theorem 3(ii)] has shown that every homogeneous complex hypersurface in $\mathbb{C}H^{m+1}$ is totally geodesic. This is in marked contrast to the situation for the complex quadric Q^m , which can be realized as a homogeneous complex hypersurface of the complex projective space $\mathbb{C}P^{m+1}$ in such a way that the shape operator for any unit normal vector to Q^m is a real structure on the corresponding tangent space of Q^m , see [8] and [22]. Another related result by Smyth, [24, Theorem 1], which states that any complex hypersurface $\mathbb{C}H^{m+1}$ for which the square of the shape operator has constant eigenvalues (counted with multiplicity) is totally geodesic, also precludes the possibility of a model of Q^{m*} as a complex hypersurface of $\mathbb{C}H^{m+1}$ with the analogous property for the shape operator.

Therefore we realize the complex hyperbolic quadric Q^{m*} as the quotient manifold $SO_{2,m}^0/SO_2SO_m$. As Q^{1*} is isomorphic to the real hyperbolic space $\mathbb{R}H^2 = SO_{1,2}^0/SO_2$, and Q^{2*} is isomorphic to the Hermitian product of complex hyperbolic spaces $\mathbb{C}H^1 \times \mathbb{C}H^1$, we suppose $m \geq 3$ in the sequel and throughout this paper. Let $G := SO_{2,m}^0$ be the transvection group of Q^{m*} and $K := SO_2SO_m$ be the isotropy group of Q^{m*} at the “origin” $p_0 := eK \in Q^{m*}$. Then

$$\sigma : G \rightarrow G, \quad g \mapsto sgs^{-1} \quad \text{with} \quad s := \begin{pmatrix} -1 & & & & \\ & -1 & & & \\ & & 1 & & \\ & & & 1 & \\ & & & & \ddots \\ & & & & & 1 \end{pmatrix}$$

is an involutive Lie group automorphism of G with $\text{Fix}(\sigma)_0 = K$, and therefore $Q^{m*} = G/K$ is a Riemannian symmetric space. The center of the isotropy group K is isomorphic to SO_2 , and therefore Q^{m*} is in fact a Hermitian symmetric space.

The Lie algebra $\mathfrak{g} := \mathfrak{so}_{2,m}$ of G is given by

$$\mathfrak{g} = \{X \in \mathfrak{gl}(m+2, \mathbb{R}) \mid X^T \cdot s = -s \cdot X\}$$

(see [11, p. 59]). In the sequel we will write members of \mathfrak{g} as block matrices with respect to the decomposition $\mathbb{R}^{m+2} = \mathbb{R}^2 \oplus \mathbb{R}^m$, i.e. in the form

$$X = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix},$$

where $X_{11}, X_{12}, X_{21}, X_{22}$ are real matrices of the dimension 2×2 , $2 \times m$, $m \times 2$ and $m \times m$, respectively. Then

$$\mathfrak{g} = \left\{ \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \mid X_{11}^t = -X_{11}, X_{12}^t = X_{21}, X_{22}^t = -X_{22} \right\}.$$

The linearisation $\sigma_L = \text{Ad}(s) : \mathfrak{g} \rightarrow \mathfrak{g}$ of the involutive Lie group automorphism σ induces the Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$, where the Lie subalgebra

$$\begin{aligned} \mathfrak{k} &= \text{Eig}(\sigma_*, 1) = \{X \in \mathfrak{g} \mid sXs^{-1} = X\} \\ &= \left\{ \begin{pmatrix} X_{11} & 0 \\ 0 & X_{22} \end{pmatrix} \mid X_{11}^t = -X_{11}, X_{22}^t = -X_{22} \right\} \\ &\cong \mathfrak{so}_2 \oplus \mathfrak{so}_m \end{aligned}$$

is the Lie algebra of the isotropy group K , and the $2m$ -dimensional linear subspace

$$\mathfrak{m} = \text{Eig}(\sigma_*, -1) = \{X \in \mathfrak{g} \mid sXs^{-1} = -X\} = \left\{ \begin{pmatrix} 0 & X_{12} \\ X_{21} & 0 \end{pmatrix} \mid X_{12}^t = X_{21} \right\}$$

is canonically isomorphic to the tangent space $T_{p_0}Q^{m*}$. Under the identification $T_{p_0}Q^{m*} \cong \mathfrak{m}$, the Riemannian metric g of Q^{m*} (where the constant factor of the metric is chosen so that the formulae become as simple as possible) is given by

$$g(X, Y) = \frac{1}{2} \text{tr}(Y^t \cdot X) = \text{tr}(Y_{12} \cdot X_{21}) \quad \text{for } X, Y \in \mathfrak{m}.$$

g is clearly $\text{Ad}(K)$ -invariant, and therefore corresponds to an $\text{Ad}(G)$ -invariant Riemannian metric on Q^{m*} . The complex structure J of the Hermitian symmetric space is given by

$$JX = \text{Ad}(j)X \quad \text{for } X \in \mathfrak{m}, \quad \text{where } j := \begin{pmatrix} 0 & 1 & & & \\ -1 & 0 & & & \\ & & 1 & & \\ & & & 1 & \\ & & & & \ddots \\ & & & & & 1 \end{pmatrix} \in K.$$

Because j is in the center of K , the orthogonal linear map J is $\text{Ad}(K)$ -invariant, and thus defines an $\text{Ad}(G)$ -invariant Hermitian structure on Q^{m*} . By identifying the multiplication with the unit complex number i with the application of the linear map J , the tangent spaces of Q^{m*} thus become m -dimensional complex linear spaces, and we will adopt this point of view in the sequel.

As mentioned for the complex quadric (again compare [8], [9], and [22]), there is another important structure on the tangent bundle of the complex quadric besides the Riemannian metric and the complex structure, namely an S^1 -bundle \mathfrak{A} of real structures. The situation here differs from that of the complex quadric in that for Q^{m*} , the real structures in \mathfrak{A} cannot be interpreted as the shape operator of a complex hypersurface in a complex space form, but as the following considerations will show, \mathfrak{A} still plays an important role in the description of the geometry of Q^{m*} .

Let

$$a_0 := \begin{pmatrix} 1 & & & & \\ & -1 & & & \\ & & 1 & & \\ & & & 1 & \\ & & & & \ddots \\ & & & & & 1 \end{pmatrix}.$$

Note that we have $a_0 \notin K$, but only $a_0 \in O_2 SO_m$. However, $\text{Ad}(a_0)$ still leaves \mathfrak{m} invariant, and therefore defines an \mathbb{R} -linear map A_0 on the tangent space $\mathfrak{m} \cong T_{p_0} Q^{m*}$. A_0 turns out to be an involutive orthogonal map with $A_0 \circ J = -J \circ A_0$ (i.e. A_0 is anti-linear with respect to the complex structure of $T_{p_0} Q^{m*}$), and hence a real structure on $T_{p_0} Q^{m*}$. But A_0 commutes with $\text{Ad}(g)$ not for all $g \in K$, but only for $g \in SO_m \subset K$. More specifically, for $g = (g_1, g_2) \in K$ with $g_1 \in SO_2$ and $g_2 \in SO_m$, say $g_1 = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix}$ with $t \in \mathbb{R}$ (so that $\text{Ad}(g_1)$ corresponds to multiplication with the complex number $\mu := e^{it}$), we have

$$A_0 \circ \text{Ad}(g) = \mu^{-2} \cdot \text{Ad}(g) \circ A_0.$$

This equation shows that the object which is $\text{Ad}(K)$ -invariant and therefore geometrically relevant is not the real structure A_0 by itself, but rather the “circle of real structures”

$$\mathfrak{A}_{p_0} := \{\lambda A_0 | \lambda \in S^1\}.$$

\mathfrak{A}_{p_0} is $\text{Ad}(K)$ -invariant, and therefore generates an $\text{Ad}(G)$ -invariant S^1 -subbundle \mathfrak{A} of the endomorphism bundle $\text{End}(TQ^{m*})$, consisting of real structures on the tangent spaces of Q^{m*} . For any $A \in \mathfrak{A}$, the tangent line to the fibre of \mathfrak{A} through A is spanned by JA .

For any $p \in Q^{m*}$ and $A \in \mathfrak{A}_p$, the real structure A induces a splitting

$$T_p Q^{m*} = V(A) \oplus JV(A)$$

into two orthogonal, maximal totally real subspaces of the tangent space $T_p Q^{m*}$. Here $V(A)$ resp. $JV(A)$ are the $(+1)$ -eigenspace resp. the (-1) -eigenspace of A . For every unit vector $W \in T_p Q^{m*}$ there exist $t \in [0, \frac{\pi}{4}]$, $A \in \mathfrak{A}_p$ and orthonormal vectors $X, Y \in V(A)$ so that

$$W = \cos(t) \cdot X + \sin(t) \cdot JY$$

holds; see [22, Proposition 3]. Here t is uniquely determined by W . The vector W is singular, i.e. contained in more than one Cartan subalgebra of \mathfrak{m} , if and only if either $t = 0$ or $t = \frac{\pi}{4}$ holds. The vectors with $t = 0$ are called \mathfrak{A} -principal, whereas the vectors with $t = \frac{\pi}{4}$ are called \mathfrak{A} -isotropic. If W is regular, i.e. $0 < t < \frac{\pi}{4}$ holds, then also A and X, Y are uniquely determined by W .

The singular tangent vectors correspond to the values $t = 0$ and $t = \pi/4$. If $0 < t < \pi/4$ then the unique maximal flat containing W is $\mathbb{R}X \oplus \mathbb{R}JY$. Later we will need the eigenvalues and eigenspaces of the Jacobi operator $R_W = R(\cdot, W)W$ for a singular unit tangent vector W .

1. If W is an \mathfrak{A} -principal singular unit tangent vector with respect to $A \in \mathfrak{A}$, then the eigenvalues of R_W are 0 and 2 and the corresponding eigenspaces are $\mathbb{R}W \oplus J(V(A) \ominus \mathbb{R}W)$ and $(V(A) \ominus \mathbb{R}W) \oplus \mathbb{R}JW$, respectively.
2. If W is an \mathfrak{A} -isotropic singular unit tangent vector with respect to $A \in \mathfrak{A}$ and $X, Y \in V(A)$, then the eigenvalues of R_W are 0, 1 and 4 and the corresponding eigenspaces are $\mathbb{R}W \oplus \mathbb{C}(JX + Y)$, $T_z Q^m \ominus (\mathbb{C}X \oplus \mathbb{C}Y)$ and $\mathbb{R}JW$, respectively.

Like for the complex quadric, the Riemannian curvature tensor \bar{R} of Q^{m*} can be fully described in terms of the “fundamental geometric structures” g , J and \mathfrak{A} . In fact, under the correspondence $T_{p_0}Q^{m*} \cong \mathfrak{m}$, the curvature $\bar{R}(X, Y)Z$ corresponds to $-[[X, Y], Z]$ for $X, Y, Z \in \mathfrak{m}$, see [12, Chapter XI, Theorem 3.2(1)]. By evaluating the latter expression explicitly, one can show that one has

$$\begin{aligned}\bar{R}(X, Y)Z &= -g(Y, Z)X + g(X, Z)Y \\ &\quad -g(JY, Z)JX + g(JX, Z)JY + 2g(JX, Y)JZ \\ &\quad -g(AY, Z)AX + g(AX, Z)AY \\ &\quad -g(JAY, Z)JAX + g(JAX, Z)JAY\end{aligned}$$

for arbitrary $A \in \mathfrak{A}_{p_0}$. Therefore the curvature of Q^{m*} is the negative of that of the complex quadric Q^m , compare [22, Theorem 1]. This confirms that the symmetric space Q^{m*} which we have constructed here is indeed the non-compact dual of the complex quadric.

3. Some general equations

Let M be a real hypersurface in the complex hyperbolic quadric Q^{m*} and denote by (ϕ, ξ, η, g) the induced almost contact metric structure. Note that $\xi = -JN$, where N is a (local) unit normal vector field of M . The tangent bundle TM of M splits orthogonally into $TM = \mathcal{C} \oplus \mathbb{R}\xi$, where $\mathcal{C} = \ker(\eta)$ is the maximal complex subbundle of TM . The structure tensor field ϕ restricted to \mathcal{C} coincides with the complex structure J restricted to \mathcal{C} , and $\phi\xi = 0$.

At each point $z \in M$ we define the maximal \mathfrak{A} -invariant subspace of $T_z M$, $z \in M$ as follows:

$$\mathcal{Q}_z = \{X \in T_z M \mid AX \in T_z M \text{ for all } A \in \mathfrak{A}_z\}.$$

Lemma 3.1 (see [29]). *For each $z \in M$ we have*

- (i) *If N_z is \mathfrak{A} -principal, then $\mathcal{Q}_z = \mathcal{C}_z$.*
- (ii) *If N_z is not \mathfrak{A} -principal, there exist a conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $N_z = \cos(t)X + \sin(t)JY$ for some $t \in (0, \pi/4]$. Then we have $\mathcal{Q}_z = \mathcal{C}_z \ominus \mathbb{C}(JX + Y)$.*

We now assume that M is a Hopf hypersurface. Then for the Reeb vector field ξ the shape operator S becomes

$$S\xi = \alpha\xi$$

with the smooth function $\alpha = g(S\xi, \xi)$ on M . When we consider a transform JX of the Kaehler structure J on the complex hyperbolic quadric Q^{m*} for any vector field X on M in Q^{m*} , we may put

$$JX = \phi X + \eta(X)N$$

for a unit normal N to M .

Then we now consider the Codazzi equation

$$\begin{aligned}
(3.1) \quad g((\nabla_X S)Y - (\nabla_Y S)X, Z) &= -\eta(X)g(\phi Y, Z) + \eta(Y)g(\phi X, Z) + 2\eta(Z)g(\phi X, Y) \\
&\quad - g(X, AN)g(AY, Z) + g(Y, AN)g(AX, Z) \\
&\quad - g(X, A\xi)g(JAY, Z) + g(Y, A\xi)g(JAX, Z).
\end{aligned}$$

Putting $Z = \xi$ we get

$$\begin{aligned}
g((\nabla_X S)Y - (\nabla_Y S)X, \xi) &= 2g(\phi X, Y) \\
&\quad - g(X, AN)g(Y, A\xi) + g(Y, AN)g(X, A\xi) \\
&\quad + g(X, A\xi)g(JY, A\xi) - g(Y, A\xi)g(JX, A\xi).
\end{aligned}$$

On the other hand, we have

$$\begin{aligned}
&g((\nabla_X S)Y - (\nabla_Y S)X, \xi) \\
&= g((\nabla_X S)\xi, Y) - g((\nabla_Y S)\xi, X) \\
&= (X\alpha)\eta(Y) - (Y\alpha)\eta(X) + \alpha g((S\phi + \phi S)X, Y) - 2g(S\phi S X, Y).
\end{aligned}$$

Comparing the previous two equations and putting $X = \xi$ yields

$$(3.2) \quad Y\alpha = (\xi\alpha)\eta(Y) - 2g(\xi, AN)g(Y, A\xi) + 2g(Y, AN)g(\xi, A\xi).$$

Reinserting this into the previous equation yields

$$\begin{aligned}
&g((\nabla_X S)Y - (\nabla_Y S)X, \xi) \\
&= 2g(\xi, AN)g(X, A\xi)\eta(Y) - 2g(X, AN)g(\xi, A\xi)\eta(Y) \\
&\quad - 2g(\xi, AN)g(Y, A\xi)\eta(X) + 2g(Y, AN)g(\xi, A\xi)\eta(X) \\
&\quad + \alpha g((\phi S + S\phi)X, Y) - 2g(S\phi S X, Y).
\end{aligned}$$

Altogether this implies

$$\begin{aligned}
0 &= 2g(S\phi S X, Y) - \alpha g((\phi S + S\phi)X, Y) + 2g(\phi X, Y) \\
&\quad - g(X, AN)g(Y, A\xi) + g(Y, AN)g(X, A\xi) \\
&\quad + g(X, A\xi)g(JY, A\xi) - g(Y, A\xi)g(JX, A\xi) \\
&\quad - 2g(\xi, AN)g(X, A\xi)\eta(Y) + 2g(X, AN)g(\xi, A\xi)\eta(Y) \\
&\quad + 2g(\xi, AN)g(Y, A\xi)\eta(X) - 2g(Y, AN)g(\xi, A\xi)\eta(X).
\end{aligned}$$

At each point $z \in M$ we can choose $A \in \mathfrak{A}_z$ such that

$$N = \cos(t)Z_1 + \sin(t)JZ_2$$

for some orthonormal vectors $Z_1, Z_2 \in V(A)$ and $0 \leq t \leq \frac{\pi}{4}$ (see Proposition 3 in [22]). Note that t is a function on M . First of all, since $\xi = -JN$, we have

$$\begin{aligned}
AN &= \cos(t)Z_1 - \sin(t)JZ_2, \\
\xi &= \sin(t)Z_2 - \cos(t)JZ_1, \\
A\xi &= \sin(t)Z_2 + \cos(t)JZ_1.
\end{aligned}$$

This implies $g(\xi, AN) = 0$ and hence

$$0 = 2g(S\phi S X, Y) - \alpha g((\phi S + S\phi)X, Y) + 2g(\phi X, Y)$$

$$\begin{aligned}
& -g(X, AN)g(Y, A\xi) + g(Y, AN)g(X, A\xi) \\
& + g(X, A\xi)g(JY, A\xi) - g(Y, A\xi)g(JX, A\xi) \\
& + 2g(X, AN)g(\xi, A\xi)\eta(Y) - 2g(Y, AN)g(\xi, A\xi)\eta(X).
\end{aligned}$$

We have $JA\xi = -AJ\xi = -AN$, and inserting this into the previous equation implies

Lemma 3.2. *Let M be a Hopf hypersurface in the complex hyperbolic quadric Q^{m*} with (local) unit normal vector field N . For each point $z \in M$ we choose $A \in \mathfrak{A}_z$ such that $N_z = \cos(t)Z_1 + \sin(t)JZ_2$ holds for some orthonormal vectors $Z_1, Z_2 \in V(A)$ and $0 \leq t \leq \frac{\pi}{4}$. Then*

$$\begin{aligned}
0 = & 2g(S\phi S X, Y) - \alpha g((\phi S + S\phi)X, Y) + 2g(\phi X, Y) \\
& - 2g(X, AN)g(Y, A\xi) + 2g(Y, AN)g(X, A\xi) \\
& - 2g(\xi, A\xi)\{g(Y, AN)\eta(X) - g(X, AN)\eta(Y)\}
\end{aligned}$$

holds for all vector fields X and Y on M .

We can write for any vector field Y on M in Q^{m*}

$$AY = BY + \rho(Y)N,$$

where BY denotes the tangential component of AY and $\rho(Y) = g(AY, N)$.

If N is \mathfrak{A} -principal, that is, $AN = N$, we have $\rho = 0$, because $\rho(Y) = g(Y, AN) = g(Y, N) = 0$ for any tangent vector field Y on M in Q^{m*} . So we have $AY = BY$ for any tangent vector field Y on M in Q^{m*} . Otherwise we can use Lemma 3.1 to calculate $\rho(Y) = g(Y, AN) = g(Y, AJ\xi) = -g(Y, JA\xi) = -g(Y, JB\xi) = -g(Y, \phi B\xi)$ for any tangent vector field Y on M in Q^{m*} . From this, together with Lemma 3.2, we have proved

Lemma 3.3. *Let M be a Hopf hypersurface in the complex hyperbolic quadric Q^{m*} , $m \geq 3$. Then we have*

$$(2S\phi S - \alpha(\phi S + S\phi) + 2\phi)X = 2\rho(X)(B\xi - \beta\xi) + 2g(X, B\xi - \beta\xi)\phi B\xi,$$

where the function β is given by $\beta = g(\xi, A\xi) = -g(N, AN)$.

If the unit normal vector field N is \mathfrak{A} -principal, we can choose a real structure $A \in \mathfrak{A}$ such that $AN = N$. Then we have $\rho = 0$ and $\phi B\xi = -\phi\xi = 0$, and therefore

$$(3.3) \quad 2S\phi S - \alpha(\phi S + S\phi) = -2\phi.$$

If N is not \mathfrak{A} -principal, we can choose a real structure $A \in \mathfrak{A}$ as in Lemma 3.1 and get

$$\begin{aligned}
(3.4) \quad & \rho(X)(B\xi - \beta\xi) + g(X, B\xi - \beta\xi)\phi B\xi \\
& = -g(X, \phi(B\xi - \beta\xi))(B\xi - \beta\xi) + g(X, B\xi - \beta\xi)\phi(B\xi - \beta\xi) \\
& = \|B\xi - \beta\xi\|^2\{g(X, U)\phi U - g(X, \phi U)U\} \\
& = \sin^2(2t)\{g(X, U)\phi U - g(X, \phi U)U\},
\end{aligned}$$

which is equal to 0 on Q and equal to $\sin^2(2t)\phi X$ on $C \ominus Q$. Altogether we have proved:

Lemma 3.4. *Let M be a Hopf hypersurface in the complex hyperbolic quadric Q^{m*} , $m \geq 3$. Then the tensor field*

$$2S\phi S - \alpha(\phi S + S\phi)$$

leaves \mathcal{Q} and $\mathcal{C} \ominus \mathcal{Q}$ invariant and we have

$$2S\phi S - \alpha(\phi S + S\phi) = -2\phi \text{ on } \mathcal{Q}$$

and

$$2S\phi S - \alpha(\phi S + S\phi) = -2\beta^2\phi \text{ on } \mathcal{C} \ominus \mathcal{Q},$$

where $\beta = g(A\xi, \xi) = -\cos 2t$ as in section 3.

Then from the equation of Gauss the curvature tensor R of M in complex quadric Q^{m*} is defined so that

$$\begin{aligned} R(X, Y)Z &= -g(Y, Z)X + g(X, Z)Y - g(\phi Y, Z)\phi X + g(\phi X, Z)\phi Y + 2g(\phi X, Y)\phi Z \\ &\quad -g(AY, Z)(AX)^T + g(AX, Z)(AY)^T - g(JAY, Z)(JAX)^T \\ &\quad + g(JAX, Z)(JAY)^T + g(SY, Z)SX - g(SX, Z)SY, \end{aligned}$$

where $(AX)^T$ and S denote the tangential component of the vector field AX and the shape operator of M in Q^{m*} respectively.

From this, putting $Y = Z = \xi$ and using $g(A\xi, N) = 0$, the structure Jacobi operator is defined by

$$\begin{aligned} R_\xi(X) &= R(X, \xi)\xi \\ &= -X + \eta(X)\xi - g(A\xi, \xi)(AX)^T + g(AX, \xi)A\xi \\ &\quad + g(X, AN)(AN)^T + g(S\xi, \xi)SX - g(SX, \xi)S\xi. \end{aligned}$$

Then we may put the following

$$(AY)^T = AY - g(AY, N)N.$$

Now let us denote by ∇ and $\bar{\nabla}$ the covariant derivative of M and the covariant derivative of Q^{m*} respectively. Then by using the Gauss and Weingarten formulas we can assert the following

Lemma 3.5. *Let M be a real hypersurface in the complex hyperbolic quadric Q^{m*} . Then*

$$\begin{aligned} (3.5) \quad \nabla_X(AY)^T &= q(X)JAY + A\nabla_X Y + g(SX, Y)AN \\ &\quad - g(\{q(X)JAY + A\nabla_X Y + g(SX, Y)AN\}, N)N \\ &\quad + g(AY, N)SX. \end{aligned}$$

Proof. First let us use the Gauss formula to $(AY)^T = AY - g(AY, N)N$. Then it follows that

$$\begin{aligned}\nabla_X(AY)^T &= \bar{\nabla}_X(AY)^T - \sigma(X, (AY)^T) \\ &= \bar{\nabla}_X\{AY - g(AY, N)N\} - g(SX, (AY)^T)N \\ &= (\bar{\nabla}_X A)Y + A\bar{\nabla}_X Y - g((\bar{\nabla}_X A)Y + A\bar{\nabla}_X Y, N)N - g(AY, \bar{\nabla}_X N)N \\ &\quad - g(AY, N)\bar{\nabla}_X N - g(SX, (AY)^T)N,\end{aligned}$$

where σ denotes the second fundamental form and N the unit normal vector field on M in Q^{m*} . Then from this, if we use Weingarten formula $\bar{\nabla}_X N = -SX$, then we get the above formula. \square

By putting $Y = \xi$ and using $g(A\xi, N) = 0$, we have

$$\begin{aligned}(3.6) \quad \nabla_X(A\xi) &= q(X)JA\xi + A\phi SX + \alpha\eta(X)AN \\ &\quad - \{q(X)g(JA\xi, N) + g(A\phi SX, N) + \alpha\eta(X)g(AN, N)\}N.\end{aligned}$$

Moreover, let us also use Gauss and Weingarten formula to $(AN)^T = AN - g(AN, N)N$. Then it follows that

$$\begin{aligned}(3.7) \quad \nabla_X(AN)^T &= \bar{\nabla}_X(AN)^T - \sigma(X, (AN)^T) \\ &= \bar{\nabla}_X\{AN - g(AN, N)N\} - \sigma(X, (AN)^T) \\ &= (\bar{\nabla}_X A)N + A\bar{\nabla}_X N - g((\bar{\nabla}_X A)N + A\bar{\nabla}_X N, N) \\ &\quad - g(AN, \bar{\nabla}_X N)N - g(AN, N)\bar{\nabla}_X N - \sigma(X, (AN)^T) \\ &= q(X)JAN - ASX - g(q(X)JAN - ASX, N)N + g(AN, N)SX.\end{aligned}$$

On the other hand, we know that

$$\begin{aligned}(3.8) \quad X\beta &= X(g(A\xi, \xi)) \\ &= g((\bar{\nabla}_X A)\xi + A\bar{\nabla}_X \xi, \xi) + g(A\xi, \bar{\nabla}_X \xi) \\ &= g(q(X)JA\xi + A\phi SX + g(SX, \xi)AN, \xi) + g(A\xi, \phi SX + g(SX, \xi)N) \\ &= 2g(A\phi SX, \xi).\end{aligned}$$

4. Some Important Lemmas and Proof of Theorem 1

The curvature tensor $R(X, Y)Z$ for a Hopf real hypersurface M in the complex hyperbolic quadric Q^{m*} induced from the curvature tensor of Q^{m*} is given in section 3. Now the structure Jacobi operator R_ξ can be rewritten as follows:

$$\begin{aligned}(4.1) \quad R_\xi(X) &= R(X, \xi)\xi \\ &= -X + \eta(X)\xi - \beta(AX)^T + g(AX, \xi)A\xi + g(AX, N)(AN)^T \\ &\quad + \alpha SX - g(SX, \xi)S\xi,\end{aligned}$$

where we have put $\alpha = g(S\xi, \xi)$ and $\beta = g(A\xi, \xi)$, because we assume that M is Hopf. The Reeb vector field $\xi = -JN$ and the anti-commuting property $AJ = -JA$ gives that the function β becomes $\beta = -g(AN, N)$. When this function $\beta = g(A\xi, \xi)$ identically vanishes,

we say that a real hypersurface M in Q^{m*} is \mathfrak{A} -isotropic as in section 1.

Here let us differentiate the structure Jacobi operator R_ξ along any direction X on M in the complex hyperbolic quadric Q^{m*} . Then (4.1), together with (3.5), (3.6), (3.7), give that

$$\begin{aligned}
(4.2) \quad \nabla_X R_\xi(Y) &= \nabla_X(R_\xi(Y)) - R_\xi(\nabla_X Y) \\
&= g(\phi S X, Y)\xi + \eta(Y)\phi S X - (X\beta)(AY)^T \\
&\quad - \beta[q(X)JAY + A\nabla_X Y + g(S X, Y)AN \\
&\quad - g(\{q(X)JAY + A\nabla_X Y + g(S X, Y)AN\}, N)N \\
&\quad + g(AY, N)SX] \\
&\quad + g(q(X)JA\xi + A\phi S X + \alpha\eta(X)AN, Y)A\xi \\
&\quad + g(AY, \xi)[g(q(X)JA\xi + A\phi S X + \alpha\eta(X)AN \\
&\quad - \{q(X)g(JA\xi, N) + g(A\phi S X, N) + \alpha\eta(X)g(AN, N)\}N] \\
&\quad + [g(q(X)JAN - AS X + g(AN, N)SX, Y)(AN)^T \\
&\quad + g(Y, (AN)^T)\{q(X)JAN - AS X + g(AN, N)SX \\
&\quad - g(q(X)JAN - AS X, N)N\}] \\
&\quad + (X\alpha)SY + \alpha(\nabla_X S)Y - X(\alpha^2)\eta(Y)\xi \\
&\quad - \alpha^2(\nabla_X \eta)(Y)\xi - \alpha^2\eta(Y)\nabla_X \xi,
\end{aligned}$$

where we have used $g(A\xi, N) = 0$, and N the unit normal to M in Q^{m*} .

Here let us assume that the structure Jacobi operator is Killing, that is, $(\nabla_X R_\xi)Y + (\nabla_Y R_\xi)X = 0$ for any tangent vector fields X and Y on M in Q^{m*} . Then from this, together with (4.1), we have the following

$$\begin{aligned}
(4.3) \quad 0 &= \nabla_X R_\xi(Y) + \nabla_Y R_\xi(X) \\
&= \{g(\phi S X, Y) + g(\phi S Y, X)\}\xi + \eta(Y)\phi S X + \eta(X)\phi S Y \\
&\quad - (X\beta)(AY)^T - (Y\beta)(AX)^T \\
&\quad - \beta[q(X)JAY + q(Y)JAX + A(\nabla_X Y + \nabla_Y X) + 2g(S X, Y)AN \\
&\quad - g(\{q(X)JAY + q(Y)JAX + A(\nabla_X Y + \nabla_Y X) + 2g(S X, Y)AN\}, N)N \\
&\quad + g(AY, N)SX + g(AX, N)SY] \\
&\quad + [g(q(X)JA\xi + A\phi S X + \alpha\eta(X)AN, Y) \\
&\quad + g(q(Y)JA\xi + A\phi S Y + \alpha\eta(Y)AN, X)]A\xi \\
&\quad + g(AY, \xi)[q(X)JA\xi + A\phi S X + \alpha\eta(X)AN \\
&\quad - \{q(X)g(JA\xi, N) + g(A\phi S X, N) + \alpha\eta(X)g(AN, N)\}N] \\
&\quad + g(AX, \xi)[q(Y)JA\xi + A\phi S Y + \alpha\eta(Y)AN \\
&\quad - \{q(Y)g(JA\xi, N) + g(A\phi S Y, N) + \alpha\eta(Y)g(AN, N)\}N] \\
&\quad + [g(q(X)JAN - AS X + g(AN, N)SX, Y)
\end{aligned}$$

$$\begin{aligned}
& + g(q(Y)JAN - ASY + g(AN, N)SY, X)(AN)^T \\
& + g(Y, (AN)^T)\{q(X)JAN - ASX - g(q(X)JAN - ASX, N)N \\
& + g(AN, N)SX\} \\
& + g(X, (AN)^T)\{q(Y)JAN - ASY - g(q(Y)JAN - ASY, N)N \\
& + g(AN, N)SY\} \\
& + (X\alpha)SY + (Y\alpha)SX + \alpha\{(\nabla_X S)Y + (\nabla_Y S)X\} \\
& - X(\alpha^2)\eta(Y)\xi - (Y\alpha^2)\eta(X)\xi - \alpha^2\{(\nabla_X \eta)(Y)\xi + (\nabla_Y \eta)(X)\xi\} \\
& - \alpha^2\{\eta(Y)\nabla_X \xi + \eta(X)\nabla_Y \xi\}.
\end{aligned}$$

From this, by taking the inner product of (4.3) with the Reeb vector field ξ , we have

$$\begin{aligned}
0 = & g((\phi S - S\phi)X, Y) - (X\beta)g(AY, \xi) - (Y\beta)g(AX, \xi) \\
& - \beta\{q(X)g(JAY, \xi) + q(Y)g(JAX, \xi) + g(A(\nabla_X Y + \nabla_Y X), \xi) \\
& + g(AY, N)g(SX, \xi) + g(AX, N)g(SY, \xi)\} \\
& + \{g(q(X)JA\xi + A\phi S X + \alpha\eta(X)AN, Y) \\
& + g(q(Y)JA\xi + A\phi S Y + \alpha\eta(Y)AN, X)\}g(A\xi, \xi) \\
& + g(AY, \xi)g(A\phi S X, \xi) + g(AX, \xi)g(A\phi S Y, \xi) \\
& + g(Y, (AN)^T)\{g(q(X)JAN, \xi) - g(ASX, \xi) + g(AN, N)g(SX, \xi)\} \\
& + g(X, (AN)^T)\{g(q(Y)JAN, \xi) - g(ASY, \xi) + g(AN, N)g(SY, \xi)\} \\
& + \alpha(X\alpha)\eta(Y) + \alpha(Y\alpha)\eta(X) \\
& + \alpha\{g((\nabla_X S)Y, \xi) + g((\nabla_Y S)X, \xi)\} \\
& - X(\alpha^2)\eta(Y) - Y(\alpha^2)\eta(X) - \alpha^2(\nabla_X \eta)(Y) - \alpha^2(\nabla_Y \eta)(X).
\end{aligned}$$

Then, first, by putting $Y = \xi$ and using $g(A\xi, N) = 0$, we have

$$\begin{aligned}
(4.4) \quad 0 = & - (X\beta)g(A\xi, \xi) - \beta g(A\phi S X, \xi) + \beta g(A\phi S X, \xi) + \beta g(A\phi S X, \xi) \\
& - (\xi\beta)g(AX, \xi) - \beta\{q(\xi)g(JAX, \xi) + g(A\nabla_\xi X, \xi) + \alpha g(AX, N)\} \\
& + \{g(q(\xi)JA\xi + A\phi S \xi + \alpha AN, X)\}g(A\xi, \xi) \\
& + g(X, AN)(q(\xi) - 2\alpha)\beta \\
& - \beta\{g(A\phi S X, \xi) + g(A\nabla_\xi X, \xi) - (q(\xi) - 2\alpha)g(X, AN)\}.
\end{aligned}$$

Here if the function $\beta = g(A\xi, \xi) = -\cos 2t = 0$, we have $t = \frac{\pi}{4}$. Then the unit normal vector field N becomes

$$N = \frac{1}{\sqrt{2}}(Z_1 + JZ_2)$$

for $Z_1, Z_2 \in V(A)$ as in section 3, that is, the unit normal N is \mathfrak{A} -isotropic.

Now hereafter, from (4.4) let us consider the following case

$$(4.5) \quad 0 = \{g(A\phi S X, \xi) + g(A\nabla_\xi X, \xi) - (q(\xi) - 2\alpha)g(X, AN)\}.$$

On the other hand, by using (3.1) for any tangent vector field $X \perp A\xi$, we have

$$(4.6) \quad \begin{aligned} g(A\nabla_\xi X, \xi) &= g(\nabla_\xi X, A\xi) = -g(X, \nabla_\xi(A\xi)) \\ &= -g(q(\xi)JA\xi + \alpha AN, X) = (q(\xi) - \alpha)g(AN, X). \end{aligned}$$

Then from (4.5) and (4.6) we have the following for any tangent vector field X orthogonal to $A\xi$

$$(4.7) \quad \begin{aligned} 0 &= g(A\phi S X, \xi) + (q(\xi) - \alpha)g(AN, X) - (q(\xi) - 2\alpha)g(AN, X) \\ &= g(A\phi S X, \xi) + \alpha g(AN, X) \\ &= g(SAN + \alpha AN, X). \end{aligned}$$

So it follows that

$$(4.8) \quad g(S(AN)^T, (AN)^T) = -\alpha(1 - \beta^2),$$

where $g((AN)^T, (AN)^T) = g(AN - g(AN, N)N, AN - g(AN, N)N) = 1 - g(AN, N)^2 = 1 - \beta^2$.

On the other hand, by using (3.3) to the second term of (4.5) for $X = (AN)^T$, we have

$$(4.9) \quad \begin{aligned} g(A\nabla_\xi(AN)^T, \xi) &= g(q(\xi)\xi - S\xi + \alpha g(AN, N)A\xi, \xi) \\ &= q(\xi) - \alpha - \alpha\beta^2, \end{aligned}$$

where we have used $A^2 = I$ and $g(AN, N) = -g(A\xi, \xi) = -\beta$.

Then by putting $X = (AN)^T$ in (4.5) and using (4.8) and (4.9), we have

$$(4.10) \quad \begin{aligned} 0 &= g(A\phi S(AN)^T, \xi) + g(A\nabla_\xi(AN)^T, \xi) - (q(\xi) - 2\alpha)g((AN)^T, (AN)^T) \\ &= -\alpha(1 - \beta^2) + q(\xi) - \alpha - \alpha\beta^2 - (q(\xi) - 2\alpha)(1 - \beta^2) \\ &= (q(\xi) - 2\alpha)\beta^2, \end{aligned}$$

where we have used $g(A\phi S(AN)^T, \xi) = g(S(AN)^T, (AN)^T) = -\alpha(1 - \beta^2)$. Here we note that $\xi\beta = 0$, because we can calculate the following

$$\begin{aligned} \xi\beta &= \xi g(A\xi, \xi) \\ &= g((\bar{\nabla}_\xi A)\xi + A\bar{\nabla}_\xi\xi, \xi) + g(A\xi, \bar{\nabla}_\xi\xi) \\ &= g(q(\xi)JA\xi, \xi) \\ &= -q(\xi)g(A\xi, N) \\ &= 0. \end{aligned}$$

Now we consider an open subset $\mathcal{U} = \{p \in M \mid \beta(p) \neq 0\}$ in M . Then by (4.10), we have

Lemma 4.1. *Let M be a Hopf real hypersurface in the complex hyperbolic quadric Q^{m*} , $m \geq 3$. Then*

$$q(\xi) = 2\alpha$$

holds on \mathcal{U} on M in Q^{m*} .

Now hereafter unless otherwise stated, on such an open subset \mathcal{U} let us prove that the unit vector field N in the complex hyperbolic quadric Q^{m*} is \mathfrak{A} -principal. Then by Lemma 4.1 and (4.4), we have the following for any tangent vector field X on M

$$g(A\phi S X, \xi) + g(A\nabla_\xi X, \xi) = 0.$$

From this, by putting $X = A\xi$ and using $g(A\xi, A\xi) = 1$, we know that

$$(4.11) \quad 0 = g(A\phi S A\xi, \xi) = g(SA\xi, (AN)^T).$$

Moreover, for any $X \perp A\xi$ the second term in the left side of the above equation becomes

$$g(A\nabla_\xi X, \xi) = -g(X, \nabla_\xi A\xi) = \alpha g((AN)^T, X),$$

where in the third equality we have used Lemma 4.1. Consequently, for any tangent vector field $X \perp A\xi$ we conclude

$$\begin{aligned} 0 &= g(A\phi S X, \xi) + g(A\nabla_\xi X, \xi) \\ &= g(X, S(AN)^T) + \alpha g((AN)^T, X) \\ &= g(S(AN)^T + \alpha(AN)^T, X). \end{aligned}$$

Moreover, by (4.11) we also know that

$$g(S(AN)^T + \alpha(AN)^T, A\xi) = 0.$$

So these two equations give the following

Lemma 4.2. *Let M be a Hopf real hypersurface in the complex hyperbolic quadric Q^{m*} , $m \geq 3$. Then*

$$S(AN)^T = -\alpha(AN)^T$$

holds on \mathcal{U} on M in Q^{m*} .

Now let us differentiate the equation in Lemma 4.2. Then it follows that

$$(\nabla_X S)(AN)^T + S\nabla_X(AN)^T = -(X\alpha)(AN)^T - \alpha\nabla_X(AN)^T.$$

From this, by taking the inner product with the Reeb vector field ξ and using the formulas (3.3), we have

$$\begin{aligned} 0 &= g((AN)^T, (\nabla_X S)\xi) \\ &\quad + 2\alpha g(q(X)JAN - ASX - g(q(X)JAN - ASX, N)N, \xi) \\ &\quad + 2\alpha g(AN, N)g(SX, \xi) \\ &= g((AN)^T, \alpha\phi S X - S\phi S X) \\ &\quad + 2\alpha\{q(X)g(A\xi, \xi) - g(SX, A\xi) + g(AN, N)g(SX, \xi)\}. \end{aligned}$$

Then by putting $X = (AN)^T$ and using Lemma 4.2, we have $\alpha q((AN)^T) = 0$. When the function $\alpha = 0$, in section 3, $\beta g(Y, AN) = 0$ for any tangent vector field Y on M . Then on the open subset $\mathcal{U} = \{p \in M \mid \beta(p) \neq 0\}$ in M we conclude

Lemma 4.3. *Let M be a Hopf real hypersurface in the complex hyperbolic quadric Q^{m*} , $m \geq 3$. Then either*

$$q((AN)^T) = 0$$

or the unit normal vector field N is \mathfrak{A} -principal.

On the other hand, by putting $X = \xi$ in (3.3) and using Lemma 4.1, we have

$$(4.12) \quad \begin{aligned} \nabla_\xi(AN)^T &= (q(\xi) - \alpha)A\xi + \alpha g(AN, N)\xi \\ &= \alpha(A\xi - \beta\xi). \end{aligned}$$

Differentiating the equation in Lemma 4.2 along the Reeb direction ξ and using (4.12) implies

$$(4.13) \quad \begin{aligned} (\nabla_\xi S)(AN)^T &= -S\nabla_\xi(AN)^T - (\xi\alpha)(AN)^T - \alpha\nabla_\xi(AN)^T \\ &= -\alpha(SA\xi - \alpha\beta\xi) - (\xi\alpha)(AN)^T - \alpha^2(A\xi - \beta\xi). \end{aligned}$$

Moreover, differentiating $S\xi = \alpha\xi$ and using Lemma 4.2, we get the following

$$(4.14) \quad \begin{aligned} (\nabla_{(AN)^T} S)\xi &= \{(AN)^T\alpha\}\xi + \alpha\phi S(AN)^T - S\phi S(AN)^T \\ &= \{(AN)^T\alpha\}\xi - \alpha^2\phi(AN)^T + \alpha S\phi(AN)^T. \end{aligned}$$

Then subtracting (4.14) from (4.13) and Lemma 4.2 give

$$(4.15) \quad \begin{aligned} g((\nabla_\xi S)(AN)^T - (\nabla_{(AN)^T} S)\xi, (AN)^T) &= -(\xi\alpha)(1 - \beta^2) \\ &= -g(\phi(AN)^T, (AN)^T) - g(\xi, A\xi)g(JA(AN)^T, (AN)^T) \\ &= 0, \end{aligned}$$

where in the second equality we have used the equation of Codazzi (3.1) in section 3. Then it follows that

$$\xi\alpha = 0 \quad \text{or} \quad \beta^2 = 1.$$

When the latter part $\beta = \pm 1$ occurs on \mathcal{U} , then $AN = \pm N$. So we know that the unit normal vector field N is \mathfrak{A} -principal. When $\xi\alpha = 0$, if we use the derivative formula $Y\alpha$ and $g(\xi, AN) = 0$ in section 3, we have the following

Lemma 4.4. *Let M be a Hopf real hypersurface in the complex hyperbolic quadric Q^{m*} , $m \geq 3$. Then either*

$$\text{grad } \alpha = 2\beta(AN)^T$$

or the unit normal vector field N is \mathfrak{A} -principal.

Now let us consider the first formula in Lemma 4.4. Then by differentiating the above formula it follows that

$$(4.16) \quad \begin{aligned} \nabla_X \text{grad } \alpha &= 2(X\beta)(AN)^T + 2\beta\nabla_X(AN)^T \\ &= 4g(A\phi S X, \xi)(AN)^T + 2\beta\{q(X)JAN - AS X \\ &\quad - g(q(X)JAN - AS X, N)N + g(AN, N)SX\}. \end{aligned}$$

Then we have

$$(4.17) \quad \begin{aligned} g(\nabla_X \text{grad } \alpha, Y) &= 4g(A\phi S X, \xi)g((AN)^T, Y) + 2\beta\{q(X)g(JAN, Y) - g(AS X, Y)\} \\ &\quad + 2\beta g(AN, N)g(S X, Y). \end{aligned}$$

Since $g(\nabla_X \text{grad } \alpha, Y) = g(\nabla_Y \text{grad } \alpha, X)$ and Lemma 4.2, we have

$$(4.18) \quad 0 = 2\beta\{q(X)g(JAN, Y) - q(Y)g(JAN, X)\} - 2\beta\{g(AS X, Y) - g(AS Y, X)\}.$$

So on the open subset $\mathcal{U} = \{p \in M \mid \beta(p) \neq 0\}$ in M it follows that

$$q(X)g(JAN, Y) - q(Y)g(JAN, X) = g(AS X, Y) - g(AS Y, X).$$

From this, by putting $X = \xi$, we know that

$$SA\xi = -\alpha A\xi + \beta \text{grad } q.$$

Then differentiating this formula gives

$$(4.19) \quad (\nabla_X S)A\xi + S \nabla_X A\xi = -(X\alpha)A\xi - \alpha \nabla_X A\xi + (X\beta) \text{grad } q + \beta \nabla_X \text{grad } q.$$

First let us take the inner product of (4.19) with Y and make the skew-symmetric part with respect X and Y . Next we use $g(\nabla_X \text{grad } q, Y) = g(\nabla_Y \text{grad } q, X)$ to the obtained equation. Then finally by putting $X = \xi$, we have

$$(4.20) \quad \begin{aligned} g((\nabla_\xi S)A\xi, Y) - g((\nabla_Y S)A\xi, \xi) + g(S(\nabla_\xi A\xi), Y) - g(S(\nabla_Y A\xi), \xi) \\ = -(\xi\alpha)g(A\xi, Y) + (Y\alpha)g(A\xi, \xi) \\ - \alpha\{g(\nabla_\xi A\xi, Y) - g(\nabla_Y A\xi, \xi)\} + (\xi\beta)q(Y) - (Y\beta)q(\xi). \end{aligned}$$

In this equation (4.20), we want to use the following formulas

$$q(\xi) = 2\alpha, \quad \xi\alpha = 0, \quad \xi\beta = 0,$$

$$(4.21) \quad \begin{aligned} \nabla_\xi(A\xi) &= 2\alpha JA\xi + \alpha AN - \{2\alpha g(JA\xi, N) + \alpha g(AN, N)\}N \\ &= -\alpha AN - \alpha\beta N \\ &= -\alpha(AN)^T, \end{aligned}$$

and

$$(4.22) \quad \begin{aligned} g(\nabla_Y(A\xi), \xi) &= q(Y)g(JA\xi, \xi) + g(A\phi S Y, \xi) \\ &= g(S Y, AN) = -\alpha g((AN)^T, Y). \end{aligned}$$

Then by the help of (4.21) and (4.22), the equation (4.20) can be reformed as

$$(4.23) \quad \begin{aligned} g((\nabla_\xi S)A\xi, Y) - g((\nabla_Y S)A\xi, \xi) + 2\alpha^2 g((AN)^T, Y) \\ = (Y\alpha)\beta - 2\alpha(Y\beta). \end{aligned}$$

On the other hand, if we use the equation of Codazzi (3.1) in the first term of (4.23), we have

$$(4.24) \quad \begin{aligned} g((\nabla_\xi S)A\xi, Y) &= g((\nabla_\xi S)Y, A\xi) = g((\nabla_Y S)\xi, A\xi) \\ &\quad - g(\phi Y, A\xi) + g(Y, AN)g(A\xi, A\xi) - g(\xi, A\xi)g(JAY, A\xi). \end{aligned}$$

Then substituting (4.24) into the first term of (4.23) gives

$$(4.25) \quad \begin{aligned} -g(\phi Y, A\xi) + g(Y, AN)g(A\xi, A\xi) - g(\xi, A\xi)g(JAY, A\xi) + 2\alpha^2 g((AN)^T, Y) \\ = (Y\alpha)\beta - 2\alpha(Y\beta) \end{aligned}$$

$$= 2\beta^2 g(Y, AN) + 4\alpha^2 g(Y, (AN)^T),$$

where in the second equality we have used $\xi\alpha = 0$ in (3.2) of section 3, Lemma 4.2 and (3.8) in the following formula

$$\begin{aligned} Y\beta &= 2g(A\phi SY, \xi) = 2g(SY, AJ\xi) \\ &= 2g(SY, (AN)^T) = -2\alpha g(Y, (AN)^T). \end{aligned}$$

In (4.25) the first two terms of the left side cancelled out each other and the third term vanishes identically. The fourth term $2\alpha^2 g((AN)^T, Y)$ can be deleted with the second term in the right side of (4.25). So (4.25) implies $2(\alpha^2 + \beta^2)g(Y, AN) = 0$ for any tangent vector field Y on M , which means that on the open subset $\mathcal{U} = \{p \in M \mid \beta(p) \neq 0\}$ the unit normal vector field N is \mathfrak{A} -principal $AN = g(AN, N)N$.

Summing up the above discussions, we can prove our Main Theorem 1 in the introduction.

By virtue of Main Theorem 1, we can distinguish two classes of real hypersurfaces in the complex hyperbolic quadric Q^{m*} with Killing structure Jacobi operator : those that have \mathfrak{A} -principal unit normal, and those that have \mathfrak{A} -isotropic unit normal vector field N . We treat the respective cases in sections 5 and 6.

5. Killing structure Jacobi operator with \mathfrak{A} -principal normal

In this section we consider a real hypersurface M in the complex hyperbolic quadric Q^{m*} with \mathfrak{A} -principal unit normal vector field. Then the unit normal vector field N satisfies $AN = N$ for a complex conjugation $A \in \mathfrak{A}$. Naturally, we have also the following

$$A\xi = -\xi, \quad \text{and} \quad JA\xi = -J\xi = -N.$$

Then the structure Jacobi operator R_ξ is given by

$$(5.1) \quad R_\xi(X) = -X + 2\eta(X)\xi + AX + g(S\xi, \xi)SX - g(SX, \xi)S\xi.$$

Since we assume that M is Hopf, (5.1) becomes

$$(5.2) \quad R_\xi(X) = -X + 2\eta(X)\xi + AX + \alpha SX - \alpha^2\eta(X)\xi.$$

By the assumption of the Killing structure Jacobi operator R_ξ , the derivative of R_ξ along any tangent vector field Y on M is given by

$$\begin{aligned} (5.3) \quad (\nabla_Y R_\xi)(X) &= \nabla_Y(R_\xi(X)) - R_\xi(\nabla_Y X) \\ &= 2\{(\nabla_Y\eta)(X)\xi + \eta(X)\nabla_Y\xi\} + (\nabla_Y A)X + (Y\alpha)SX \\ &\quad + \alpha(\nabla_Y S)X - (Y\alpha^2)\eta(X)\xi \\ &\quad - \alpha^2(\nabla_Y\eta)(X)\xi - \alpha^2\eta(X)\nabla_Y\xi. \end{aligned}$$

We can write

$$AY = BY + \rho(Y)N,$$

where BY denotes the tangential component of AY and $\rho(Y) = g(AY, N) = g(Y, AN) = g(Y, N) = 0$. So for any tangent vector field Y on M the vector field $AY (= BY)$ also becomes

a tangent vector field on M in Q^{m*} . Then it follows

$$\begin{aligned}
 (5.4) \quad (\nabla_Y A)X &= \nabla_Y(AX) - A\nabla_Y X \\
 &= \bar{\nabla}_Y(AX) - \sigma(Y, AX) - A\nabla_Y X \\
 &= (\bar{\nabla}_Y A)X + A\bar{\nabla}_Y X - \sigma(Y, AX) - A\nabla_Y X \\
 &= q(Y)JAX + A\sigma(Y, X) - \sigma(Y, AX) \\
 &= q(Y)JAX + g(SX, Y)AN - g(SY, AX)N,
 \end{aligned}$$

where we have used the equation of Gauss in the second equality and the Weingarten formula in the fifth equality. From this, together with (5.3) and using that \mathfrak{A} -principal, the Killing structure Jacobi operator gives

$$\begin{aligned}
 (5.5) \quad 0 &= (\nabla_Y R_\xi)(X) + (\nabla_X R_\xi)(Y) \\
 &= (2 + \alpha^2)\{(\nabla_Y \eta)(X)\xi + \eta(X)\nabla_Y \xi\} \\
 &\quad + (2 + \alpha^2)\{(\nabla_X \eta)(Y)\xi + \eta(Y)\nabla_X \xi\} \\
 &\quad + \{q(Y)JAX + g(SX, Y)N - g(SY, AX)N\} \\
 &\quad + \{q(X)JAY + g(SY, X)N - g(SX, AY)N\} \\
 &\quad + (Y\alpha)SX + \alpha(\nabla_Y S)X - (Y\alpha^2)\eta(X)\xi \\
 &\quad + (X\alpha)SY + \alpha(\nabla_X S)Y - (X\alpha^2)\eta(Y)\xi.
 \end{aligned}$$

From this, taking the inner product of (5.5) with the Reeb vector field ξ , and using the constancy of the Reeb function α in Lemma 3.2, we have

$$\begin{aligned}
 (5.6) \quad 0 &= (2 + \alpha^2)\{g(\phi SY, X) + g(\phi SX, Y)\} + \alpha g((\nabla_Y S)X + (\nabla_X S)Y, \xi) \\
 &= 2g((\phi S - S\phi)Y, X)
 \end{aligned}$$

where we have used $g(JAX, \xi) = -g(AX, N) = -g(X, AN) = -g(X, N) = 0$ for any tangent vector field X on M in Q^{m*} and $(\nabla_X S)\xi = \alpha\phi SX - S\phi SX$. The formula (5.6) means that the shape operator S commutes with the structure tensor ϕ . Then by Theorem A in the introduction, M is locally congruent to an open part of a tube around a totally geodesic $\mathbb{C}H^k \subset Q^{2k*}$ or a horosphere whose center at infinity is \mathfrak{A} -isotropic singular. That is, the Reeb flow on M is isometric.

On the other hand, we want to introduce the following proposition (see Suh [34]).

Proposition 5.1. *Let M be a real hypersurface in Q^{m*} , $m \geq 3$, with isometric Reeb flow. Then the unit normal vector field N is \mathfrak{A} -isotropic everywhere.*

By Proposition 5.1, we know that the unit normal vector field N of M is \mathfrak{A} -isotropic, not \mathfrak{A} -principal. This rules out the existence of an \mathfrak{A} -principal unit normal N together with Killing structure Jacobi operator. So we give the proof of our Main Theorem 2 with \mathfrak{A} -principal unit normal N .

6. Killing structure Jacobi operator with \mathfrak{A} -isotropic normal

In this section we assume that the unit normal vector field N is \mathfrak{A} -isotropic and the Reeb

function $\alpha = g(S\xi, \xi)$ is constant along the Reeb direction ξ , that is, $\xi\alpha = 0$. Then the normal vector field N can be written as

$$N = \frac{1}{\sqrt{2}}(Z_1 + JZ_2)$$

for $Z_1, Z_2 \in V(A)$, where $V(A)$ denotes a $(+1)$ -eigenspace of the complex conjugation $A \in \mathfrak{A}$. Then it follows that

$$AN = \frac{1}{\sqrt{2}}(Z_1 - JZ_2), \quad AJN = -\frac{1}{\sqrt{2}}(JZ_1 + Z_2), \quad \text{and} \quad JN = \frac{1}{\sqrt{2}}(JZ_1 - Z_2).$$

Then it gives that

$$g(\xi, A\xi) = g(JN, AJN) = 0, \quad g(\xi, AN) = 0 \quad \text{and} \quad g(AN, N) = 0.$$

By virtue of these formulas for \mathfrak{A} -isotropic unit normal, the structure Jacobi operator can be given as follows:

$$\begin{aligned} (6.1) \quad R_\xi(X) &= R(X, \xi)\xi \\ &= -X + \eta(X)\xi + g(AX, \xi)A\xi + g(JAX, \xi)JA\xi \\ &\quad + g(S\xi, \xi)SX - g(SX, \xi)S\xi. \end{aligned}$$

On the other hand, we know that $JA\xi = -JAJN = AJ^2N = -AN$, and $g(JAX, \xi) = -g(AX, J\xi) = -g(AX, N)$. Then the structure Jacobi operator R_ξ can be rearranged as follows:

$$\begin{aligned} (6.2) \quad R_\xi(X) &= -X + \eta(X)\xi + g(AX, \xi)A\xi + g(X, AN)AN \\ &\quad + \alpha SX - \alpha^2\eta(X)\xi. \end{aligned}$$

Then by differentiating (6.2), we obtain

$$\begin{aligned} (6.3) \quad \nabla_Y R_\xi(X) &= \nabla_Y(R_\xi(X)) - R_\xi(\nabla_Y X) \\ &= (\nabla_Y\eta)(X)\xi + \eta(X)\nabla_Y\xi + g(X, \nabla_Y(A\xi))A\xi \\ &\quad + g(X, A\xi)\nabla_Y(A\xi) + g(X, \nabla_Y(AN))AN + g(X, AN)\nabla_Y(AN) \\ &\quad + (Y\alpha)SX + \alpha(\nabla_Y S)X - (Y\alpha^2)\eta(X)\xi \\ &\quad - \alpha^2(\nabla_Y\eta)(X)\xi - \alpha^2\eta(X)\nabla_Y\xi. \end{aligned}$$

Here let us consider the equation of Gauss. It is given by

$$\bar{\nabla}_X Y = \nabla_X Y + \sigma(X, Y)$$

for any vector fields X and Y on M in Q^{m*} , where $\nabla_X Y = (\bar{\nabla}_X Y)^T$ and $\sigma(X, Y)$ respectively denote the tangential and normal component on $T_z M$ of $\bar{\nabla}_X Y$ in $T_z Q^{m*}$, $z \in M$. The Weingarten formula is given by

$$\bar{\nabla}_X N = -SX$$

for an \mathfrak{A} -isotropic unit normal vector field N . Here S denotes the shape operator of M in the complex hyperbolic quadric Q^{m*} derived from the unit normal N . Then by using these two equations to some terms in (6.3), we have the following :

$$\begin{aligned}
\nabla_Y(A\xi) &= \bar{\nabla}_Y(A\xi) - \sigma(Y, A\xi) \\
&= (\bar{\nabla}_Y A)\xi + A\bar{\nabla}_Y \xi - \sigma(Y, A\xi) \\
&= q(Y)JA\xi + A\{\phi S Y + \eta(S Y)N\} - g(S Y, A\xi)N
\end{aligned}$$

and

$$\begin{aligned}
\nabla_Y(AN) &= \bar{\nabla}_Y(AN) - \sigma(Y, AN) \\
&= (\bar{\nabla}_Y A)N + A\bar{\nabla}_Y N - \sigma(Y, AN) \\
&= q(Y)JAN - AS Y - g(S Y, AN)N.
\end{aligned}$$

Substituting these formulas into (6.3) and using the assumption of Killing structure Jacobi operator, we have

$$\begin{aligned}
(6.4) \quad 0 &= \nabla_Y R_\xi(X) + \nabla_X R_\xi(Y) \\
&= g(\phi S Y, X)\xi + \eta(X)\phi S Y \\
&\quad + g(\phi S X, Y)\xi + \eta(Y)\phi S X \\
&\quad + \{q(Y)g(A\xi, X) + g(A\phi S Y, X) + g(S Y, \xi)g(AN, X)\}A\xi \\
&\quad + \{q(X)g(A\xi, Y) + g(A\phi S X, Y) + g(S X, \xi)g(AN, Y)\}A\xi \\
&\quad + g(X, A\xi)\{q(Y)JA\xi + A\phi S Y + g(S Y, \xi)AN - g(S Y, A\xi)N\} \\
&\quad + g(Y, A\xi)\{q(X)JA\xi + A\phi S X + g(S X, \xi)AN - g(S X, A\xi)N\} \\
&\quad + \{q(Y)g(X, AN) - g(X, AS Y)\}AN \\
&\quad + \{q(X)g(Y, AN) - g(Y, AS X)\}AN \\
&\quad + g(X, AN)\{q(Y)JAN - AS Y - g(S Y, AN)N\} \\
&\quad + g(Y, AN)\{q(X)JAN - AS X - g(S X, AN)N\} \\
&\quad + (Y\alpha)S X + \alpha(\nabla_Y S)X - (Y\alpha^2)\eta(X)\xi \\
&\quad + (X\alpha)S Y + \alpha(\nabla_X S)Y - (X\alpha^2)\eta(Y)\xi \\
&\quad - \alpha^2 g(\phi S Y, X)\xi - \alpha^2 \eta(X)\phi S Y \\
&\quad - \alpha^2 g(\phi S X, Y)\xi - \alpha^2 \eta(Y)\phi S X.
\end{aligned}$$

Taking the inner product of (6.4) with the unit normal N and using the properties of \mathfrak{A} -isotropic, that is, $g(A\xi, \xi) = 0$, $g(AN, N) = 0$, it follows that

$$\begin{aligned}
(6.5) \quad 0 &= g(X, A\xi)g(A\phi S Y, N) - g(X, A\xi)g(S Y, A\xi) \\
&\quad + g(Y, A\xi)g(A\phi S X, N) - g(Y, A\xi)g(S X, A\xi) \\
&\quad - g(X, AN)g(AS Y, N) - g(X, AN)g(S Y, AN) \\
&\quad - g(Y, AN)g(AS X, N) - g(Y, AN)g(S X, AN).
\end{aligned}$$

From this, putting $X = AN$ and using that N is \mathfrak{A} -isotropic and $A\xi = \phi AN$, we have

$$0 = -2g(AS Y, N) - 2g(Y, AN)g(S AN, AN) + 2g(Y, A\xi)g(A\phi S AN, N).$$

By putting $Y = AN$, we get $g(S AN, AN) = 0$. Then the above equation reduces to

$$g(AS Y, N) = g(Y, A\xi)g(A\phi S AN, N).$$

So it follows that

$$\begin{aligned} SAN &= g(A\phi SAN, N)A\xi \\ &= -g(SAN, \phi AN)A\xi \\ &= -g(SAN, A\xi)A\xi, \end{aligned}$$

where we have used $A\xi = \phi AN$. Then this gives that $g(SAN, A\xi) = 0$, which implies

$$(6.6) \quad SAN = 0 \quad \text{and} \quad S\phi A\xi = 0.$$

Then (6.5) reduces to the following

$$\begin{aligned} (6.7) \quad 0 &= g(X, A\xi)g(A\phi SY, N) - g(X, A\xi)g(SY, A\xi) \\ &\quad + g(Y, A\xi)g(A\phi SX, N) - g(Y, A\xi)g(SX, A\xi). \end{aligned}$$

By putting $X = A\xi$ in (6.7) and using $A\xi = \phi AN$, it follows that

$$g(SY, A\xi) + g(Y, A\xi)g(SA\xi, A\xi) = 0$$

for any vector field Y on M in Q^{m*} . This gives

$$SA\xi = -g(SA\xi, A\xi)A\xi.$$

Then by taking the inner product with $A\xi$, we know $g(SA\xi, A\xi) = 0$. From this, together with the above equation, we have

$$(6.8) \quad SA\xi = 0 \quad \text{and} \quad S\phi AN = 0.$$

Putting $X = \xi$ into (6.4), and using (6.8) and the \mathfrak{A} -isotropic property $g(A\xi, \xi) = 0$, we have

$$\begin{aligned} (6.9) \quad 0 &= \phi SY + \{q(\xi)g(A\xi, Y) + \alpha g(AN, Y)\}A\xi \\ &\quad + g(Y, A\xi)\{q(\xi)A\xi + \alpha AN - g(S\xi, A\xi)N\} \\ &\quad + \{q(\xi)g(Y, AN) - \alpha g(Y, A\xi)\}AN + g(Y, AN)\{q(\xi)AN - \alpha A\xi\} \\ &\quad + (Y\alpha)\alpha\xi + \alpha(\nabla_Y S)\xi - (Y\alpha^2)\xi - \alpha^2\phi SY \\ &\quad + (\xi\alpha)SY + \alpha(\nabla_\xi S)Y - (\xi\alpha^2)\eta(Y)\xi \\ &= \phi SY + 2q(\xi)g(A\xi, Y)A\xi + 2q(\xi)g(Y, AN)AN \\ &\quad - \alpha S\phi SY + (\xi\alpha)SY - (\xi\alpha^2)\eta(Y)\xi + \alpha(\nabla_\xi S)Y. \end{aligned}$$

On the other hand, $SA\xi = 0$ implies $(\nabla_\xi S)A\xi + S\nabla_\xi(A\xi) = 0$. By the equation of Gauss, the following holds

$$\begin{aligned} \nabla_\xi(A\xi) &= \bar{\nabla}_\xi(A\xi) - \sigma(\xi, A\xi) \\ &= q(\xi)JA\xi + g(S\xi, \xi)AN - g(S\xi, A\xi)N \\ &= q(\xi)JA\xi + \alpha AN. \end{aligned}$$

This gives $S(\nabla_\xi(A\xi)) = q(\xi)SJA\xi + \alpha SAN = 0$ from (6.6). From this, together with the above formula, we have

$$(6.10) \quad (\nabla_\xi S)A\xi = 0.$$

By taking the inner product of (6.9) with $A\xi$ and AN respectively, and using (6.6), (6.8)

and (6.10), we know that

$$q(\xi)A\xi = 0 \quad \text{and} \quad q(\xi)AN = 0.$$

By virtue of these formulas, (6.9) reduces to the following

$$(6.11) \quad 0 = \phi SY - \alpha S\phi SY + (\xi\alpha)SY - (\xi\alpha^2)\eta(Y)\xi + \alpha(\nabla_\xi S)Y.$$

On the other hand, by using the equation of Codazzi, we have

$$\begin{aligned} (\nabla_\xi S)Y &= (\nabla_Y S)\xi - \phi Y + g(AN, Y)A\xi + g(Y, A\xi)\phi A\xi \\ &= (Y\alpha)\xi + \alpha\phi SY - S\phi SY - \phi Y \\ &\quad + g(AN, Y)A\xi + g(Y, A\xi)\phi A\xi. \end{aligned}$$

Then by the properties of M being Hopf and with \mathfrak{A} -isotropic unit normal vector field, we have

$$Y\alpha = g((\nabla_\xi S)Y, \xi) = g((\nabla_\xi S)\xi, Y) = (\xi\alpha)\eta(Y).$$

From this, together with the assumption of $\xi\alpha = 0$ in section 6, it follows that the Reeb function α is constant for a real hypersurface in Q^{m*} with \mathfrak{A} -isotropic unit normal. Then the derivative of the shape operator S along the Reeb direction ξ is given by

$$\begin{aligned} -\alpha(\nabla_\xi S)Y &= -\alpha^2\phi SY + \alpha S\phi SY \\ &\quad + \alpha\phi Y - \alpha g(AN, Y)A\xi - \alpha g(Y, A\xi)\phi A\xi. \end{aligned}$$

From this, by (6.11) and using the constancy of the Reeb function α , we know that

$$(6.12) \quad \begin{aligned} 0 &= \phi SY - 2\alpha S\phi SY + \alpha^2\phi SY \\ &\quad - \alpha\phi Y + \alpha g(AN, Y)A\xi + \alpha g(Y, A\xi)\phi A\xi. \end{aligned}$$

Then for any $Y \in Q$ such that $SY = \lambda Y$, where Y is orthogonal to the vector fields $A\xi$ and AN , (6.12) reduces to the following

$$(6.13) \quad 2\alpha\lambda S\phi Y = (\lambda\alpha^2 - \alpha + \lambda)\phi Y.$$

Then (6.13) gives $\alpha \neq 0$.

In fact, if the Reeb function $\alpha = 0$, from (6.13) it follows that $\lambda = 0$. From this, together with (6.6) and (6.8), the shape operator S becomes identically vanishing. That is, M is totally geodesic. Then by the equation of Codazzi in section 3, we have a contradiction.

Naturally we should have $2\alpha\lambda \neq 0$. If the function $\lambda = 0$, then (6.13) also implies that the Reeb function α vanishes. So also the contradiction appears. This fact gives

$$S\phi Y = \frac{\alpha\lambda - 2}{2\lambda - \alpha}\phi Y = \frac{\alpha^2\lambda - \alpha + \lambda}{2\alpha\lambda}\phi Y.$$

It can be written as follows:

$$(6.14) \quad 2\lambda^2 + \alpha(1 - \alpha^2)\lambda + \alpha^2 = 0.$$

Then the discriminant of (6.14) is given by

$$D = \alpha^2(1 - \alpha^2)^2 - 8\alpha^2 = \alpha^2\{(\alpha^2 - 1)^2 - 8\}.$$

Then the solution has two roots as follows:

$$\lambda = \frac{-\alpha(1-\alpha^2) \pm \alpha\sqrt{(\alpha^2-1-2\sqrt{2})(\alpha^2-1+2\sqrt{2})}}{4}.$$

When $\alpha^2 > 2\sqrt{2} + 1$, we have two distinct roots λ_1 and λ_2 of the equation (6.14).

Now let us consider the case that $\alpha^2 = 2\sqrt{2} + 1$. Then we may put $\alpha = \sqrt{2\sqrt{2} + 1}$. In this case we have

$$\lambda_1 = \lambda_2 = \frac{-\alpha(1-\alpha^2)}{4} = -\sqrt{2\sqrt{2} + \frac{1}{2}}.$$

Here let us put $\delta = -\sqrt{2\sqrt{2} + \frac{1}{2}}$. Then the shape operator S has three distinct constant principal curvatures such that

$$\alpha = \sqrt{2\sqrt{2} + 1}, \quad \beta = \gamma = 0, \quad \text{and} \quad \delta = -\sqrt{2\sqrt{2} + \frac{1}{2}} = -\sqrt{\frac{2\sqrt{2} + 1}{2}}.$$

The corresponding eigen spaces are given by $\xi \in T_0$, $A\xi, AN \in T_\beta = Q^\perp$ and $T_\delta = Q$ with multiplicities 1, 2 and $2m - 4$ respectively.

On the other hand, on the distribution Q let us introduce an important formula mentioned in section 3 as follows:

$$(6.15) \quad 2S\phi S Y - \alpha(\phi S + S\phi)Y = -2\phi Y$$

for any tangent vector field Y on M in Q^m (see also [29], pages 1350050-11). So if $S Y = \delta Y$ in (6.15), then $(2\delta - \alpha)S\phi Y = (\alpha\delta - 2)\phi Y$, which gives

$$(6.16) \quad S\phi Y = \frac{\alpha\delta - 2}{2\delta - \alpha}\phi Y,$$

because if $2\delta - \alpha = 0$, then $\alpha\delta - 2 = 0$. This implies $\alpha^2 = 4$, then $\alpha = 2$ and $\delta = 1$. In this case M is locally congruent to a horosphere whose center at infinity is \mathfrak{A} -isotropic singular.

On the other hand, let us consider $S\phi Y = \delta\phi Y$ for $2\delta \neq \alpha$, because $T_\delta = Q$. From this, together with the above equation, we have

$$\delta^2 - \alpha\delta + 1 = 0.$$

Then $\delta^2 + 1 = \sqrt{2} + \frac{3}{2}$. But $\delta^2 + 1 = \alpha\delta = -\sqrt{2\sqrt{2} + 1}\sqrt{\frac{2\sqrt{2} + 1}{2}} = -\frac{\sqrt{2}}{2} - 2$. This gives a contradiction. So this case can not be happened.

Accordingly, the shape operator S can be expressed as

$$S = \begin{bmatrix} \alpha & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \lambda_1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \lambda_1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & \lambda_2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & \lambda_2 \end{bmatrix}$$

where the principal curvatures are constants and are given by

$$\lambda_1 = \frac{\alpha(\alpha^2 - 1) + \alpha\sqrt{(\alpha^2 - 1 - 2\sqrt{2})(\alpha^2 - 1 + 2\sqrt{2})}}{4}$$

and respectively

$$\lambda_2 = \frac{\alpha(\alpha^2 - 1) - \alpha\sqrt{(\alpha^2 - 1 - 2\sqrt{2})(\alpha^2 - 1 + 2\sqrt{2})}}{4}.$$

By virtue of Remark below, we note that the horosphere whose center at infinity is \mathfrak{A} -isotropic singular can not be appeared. Then we give a complete proof of our Main Theorem 3.

REMARK 6.1. Let us check that a tube around the totally geodesic $\mathbb{C}H^k \subset Q^{2k^*}$ or a horosphere whose center at infinity is \mathfrak{A} -isotropic singular. Then by Theorem A in the introduction, the tube has a commuting shape operator, that is, $S\phi = \phi S$ and the unit normal N is \mathfrak{A} -isotropic and the Reeb curvature $\alpha = g(S\xi, \xi)$ is constant (see Suh [34]). By the \mathfrak{A} -isotropic unit normal, the properties $g(A\xi, \xi) = 0$ and $g(AN, N) = 0$ hold on M . Moreover from the expression of this tube we know that $SA\xi = 0$ and $SAN = 0$, by differentiating we also confirm that $(\nabla_\xi S)A\xi = 0$ and $(\nabla_\xi S)AN = 0$.

Now we assume that the tube admits a Killing structure Jacobi operator. Then by the same process as in the proof of our Main Theorem 2, the principal curvature of the tube should satisfies (6.14), that is,

$$2\lambda^2 + \alpha(1 - \alpha^2)\lambda + \alpha^2 = 0.$$

Then two roots $\coth r$ and $\tanh r$ of the tube should satisfy $1 = \lambda\mu = \coth r \cdot \tanh r = \frac{\alpha^2}{2}$. Then $2 = \alpha^2 = \coth^2 r + \tanh^2 r + 2$ implies $\coth^2 r + \tanh^2 r = 0$. This makes a contradiction. So the tube does not admit a Killing structure Jacobi operator. Then naturally the tube around the totally geodesic $\mathbb{C}H^k \subset Q^{2k^*}$ or the horosphere does not have a parallel structure Jacobi operator, which is more strong condition than Killing structure Jacobi operator.

ACKNOWLEDGEMENTS. The present author would like to express his hearty thanks to the referee for his/her valuable comments and suggestions to improve the first version of our manuscript.

References

- [1] A.L. Besse: *Einstein Manifolds*, Springer-Verlag, Berlin, 2008.
- [2] D.E. Blair: *Almost contact manifolds with Killing structure tensors*, Pacific J. Math. **39** (1971), 285–292.
- [3] S. Helgason: Differential geometry, Lie groups and symmetric spaces, Graduate Studies in Mathematics **34**, American Mathematical Society, Providence, RI, 2001.
- [4] I. Jeong, Y.J. Suh and C. Woo: *Real hypersurfaces in complex two-plane Grassmannian with recurrent structure Jacobi operator*; in *Real and complex submanifolds*, Springer Proc. in Math. & Statistics **106** (2014), 267–278.
- [5] U-H. Ki, J.D. Pérez, F.G. Santos and Y.J. Suh: *Real hypersurfaces in complex space form with ξ -parallel Ricci tensor and structure Jacobi operator*, J. Korean Math. Soc. **44** (2007), 307–326.
- [6] M. Kimura: *Real hypersurfaces and complex submanifolds in complex projective space*, Trans. Amer. Math. Soc. **296** (1986), 137–149.
- [7] M. Kimura, I. Jeong, H. Lee and Y.J. Suh: *Real hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster Reeb parallel shape operator*, Monatsh. Math. **171** (2013), 357–376.
- [8] S. Klein: *Totally geodesic submanifolds of the complex quadric*, Differential Geom. Appl. **26** (2008), 79–96.
- [9] S. Klein: *Totally geodesic submanifolds of the complex and the quaternionic 2-Grassmannians*, Trans. Amer. Math. Soc. **361** (2009), 4927–4967.
- [10] S. Klein and Y.J. Suh: *Contact real hypersurfaces in the complex hyperbolic quadric*, Ann. Mat. Pura Appl. **198(4)** (2019), 1481–1494.
- [11] A.W. Knapp: *Lie Groups Beyond an Introduction*, Progress in Mathematics **140**, Birkhäuser Boston, Inc., Boston, MA, 2002.
- [12] S. Kobayashi and K. Nomizu: *Foundations of Differential Geometry*, Vol. II, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996.
- [13] S. Montiel and A. Romero: *On some real hypersurfaces in a complex hyperbolic space*, Geom. Dedicata **20** (1986), 245–261.
- [14] S. Montiel and A. Romero: *Holomorphic sectional curvatures indefinite complex Grassmann manifolds*, Math. Proc. Cambridge Philos. Soc. **93** (1983), 121–125.
- [15] S. Montiel and A. Romero: *Complex Einstein hypersurfaces of indefinite complex space forms*, Math. Proc. Cambridge Philos. Soc. **94** (1983), 495–508.
- [16] M. Okumura: *On some real hypersurfaces of a complex projective space*, Trans. Amer. Math. Soc. **212** (1975), 355–364.
- [17] J.D. Pérez: *Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space*, Ann. Mat. Pura Appl. **194** (2015), 1781–1794.
- [18] J.D. Pérez and F.G. Santos: *Real hypersurfaces in complex projective space with recurrent structure Jacobi operator*, Differential Geom. Appl. **26** (2008), 218–223.
- [19] J.D. Pérez, F.G. Santos and Y.J. Suh: *Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie ξ -parallel*, Differential Geom. Appl. **22** (2005), 181–188.
- [20] J.D. Pérez, I. Jeong and Y.J. Suh: *Real hypersurfaces in complex two-plane Grassmannian with parallel structure Jacobi operator*, Acta. Math. Hungar. **22** (2009), 173–186.
- [21] J.D. Pérez, F.G. Santos and Y.J. Suh: *Real hypersurfaces in complex projective space whose structure Jacobi operator is D-parallel*, Bull. Belg. Math. Soc. Simon Stevin **13** (2006), 459–469.
- [22] H. Reckziegel: *On the geometry of the complex quadric*; in *Geometry and Topology of Submanifolds VIII* (Brussels/Nordfjordeid 1995), World Sci. Publ., River Edge, NJ, 1995, 302–315.
- [23] B. Smyth: *Differential geometry of complex hypersurfaces*, Ann. Math. **85** (1967), 246–266.
- [24] B. Smyth: *Homogeneous complex hypersurfaces*, J. Math. Soc. Japan **20** (1968), 643–647.
- [25] K. Nomizu: *On the rank and curvature of non-singular complex hypersurfaces in complex projective space*, J. Math. Soc. Japan **21** (1967), 266–269.
- [26] Y.J. Suh: *Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor*, Proc. Roy. Soc. Edinburgh Sect. A **142** (2012), 1309–1324.
- [27] Y.J. Suh: *Real hypersurfaces in complex two-plane Grassmannians with harmonic curvature*, J. Math. Pures Appl. **100** (2013), 16–33.
- [28] Y.J. Suh: *Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians*, Adv. in Appl. Math. **50** (2013), 645–659.

- [29] Y.J. Suh: *Real hypersurfaces in the complex quadric with Reeb parallel shape operator*, *Internat. J. Math.* **25** (2014), 1450059, 17pp.
- [30] Y.J. Suh: *Real hypersurfaces in the complex quadric with Reeb invariant shape operator*, *Differential Geom. Appl.* **38** (2015), 10–21.
- [31] Y.J. Suh: *Real hypersurfaces in the complex quadric with parallel Ricci tensor*, *Adv. Math.* **281** (2015), 886–905.
- [32] Y.J. Suh: *Real hypersurfaces in the complex quadric with harmonic curvature*, *J. Math. Pures Appl.* **106** (2016), 393–410.
- [33] Y.J. Suh: *Real hypersurfaces in the complex quadric with parallel normal Jacobi operator*, *Math. Nachr.* **290** (2017), 442–451.
- [34] Y.J. Suh: *Real hypersurfaces in the complex hyperbolic quadrics with isometric Reeb flow*, *Commun. Contemp. Math.* **20** (2018), 1750031, 20pp.
- [35] Y.J. Suh: *Real hypersurfaces in the complex hyperbolic quadric with parallel normal Jacobi operator*, *Mediterr. J. Math.* **15** (2018), no. 159, 14pp.
- [36] Y.J. Suh and D.H. Hwang: *Real hypersurfaces in the complex hyperbolic quadric with Reeb parallel shape operator*, *Ann. Mat. Pura Appl.* **196** (2017), 1307–1326.
- [37] Y.J. Suh and C. Woo: *Real hypersurfaces in complex hyperbolic two-plane Grassmannians with parallel Ricci tensor*, *Math. Nachr.* **287** (2014), 1524–1529.
- [38] Y.J. Suh, G. Kim and C. Woo: *Pseudo anti-commuting Ricci tensor and Ricci soliton real hypersurfaces in complex hyperbolic two-plane Grassmannians*, *Math. Nachr.* **291** (2018), 1574–1594.
- [39] Y.J. Suh, J.D. Pérez and C. Woo: *Real hypersurfaces in the complex hyperbolic quadric with parallel structure Jacobi operator*, *Publ. Math. Debrecen* **94** (2019), 75–107.
- [40] S. Tachibana: *On Killing tensors in a Riemannian space*, *Tohoku Math. J.* **20** (1968), 257–264.
- [41] R. Takagi: *On homogeneous real hypersurfaces in a complex projective space*, *Osaka J. Math.* **10** (1973), 495–506.
- [42] K. Yano: *Some remarks on tensor fields and curvature*, *Ann. of Math.* **55** (1952), 328–347.

Kyungpook National University
 College of Natural Sciences
 Department of Mathematics
 and Research Institute of Real &
 Complex Manifolds
 Daegu 41566
 Republic of Korea
 e-mail: yjsuh@knu.ac.kr