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Abstract
First we introduce the notion of Killing structure Jacobi operator for real hypersurfaces in the
complex hyperbolic quadric Q™" = SO‘Z)m/ SO,80,, . Next we give a complete classification of

real hypersurfaces in Q™" = SOgm/ S0,S0,, with Killing structure Jacobi operator.

This work was supported by grant Proj. No. NRF-2018-R1D1A1B-05040381 from Na-
tional Research Foundation of Korea

1. Introduction

In case of Hermitian symmetric space of rank 1, we say a complex projective space CP"
and a complex hyperbolic space CH™. In the complex projective space CP™, a full classi-
fication of real hypersurfaces with isometric Reeb flow was obtained by Okumura in [16].
He proved that the Reeb flow on a real hypersurface in CP" = SU,,,.1/S (U,,U) is isometric
if and only if M is an open part of a tube around a totally geodesic CP* ¢ CP™ for some
k € {0,...,m — 1}. Moreover, Takagi [41] gave a complete classification of homogeneous
hypersurfaces in CP™ and Kimura and etc., [7] considered the notion GTW Reeb parallel
shape operator. In the complex hyperbolic space CH”, Montiel and Romero [13] have given
a complete classification of real hypersurface with isometric Reeb flow.

As another kind of Hermitian symmetric space with rank 2 of non-compact type differ-
ent from the above ones, we can give the example of complex hyperbolic quadric Q™" =
SO;’M /80O,50,,. By using the method given in Kobayashi and Nomizu [12], Chapter XI,
Example 10.6, the complex hyperbolic quadric Q™" = SOQ’m /SO,80,, can be immersed
in indefinite complex hyperbolic space CH{"Jrl as a space-like complex hypersurface (see
Montiel and Romero [15] and Suh [34]). The complex hyperbolic quadric Q" is the non-
g’m /SO,50,, of rank 2 and also can be regarded as
a kind of real Grassmann manifold of all oriented space-like 2-dimensional subspaces in in-
definite flat Riemannian space Rg“z(see Montiel and Romero [14] and [15]). Accordingly,
the complex hyperbolic quadric admits both a complex conjugation structure A and a Kihler
structure J, which anti-commutes with each other, that is, AJ = —JA. Then for m > 2 the
triple (Q™", J,g) is a Hermitian symmetric space of noncompact type with rank 2 and its

minimal sectional curvature is equal to —4 (see Klein [8] and Reckziegel [22]).

compact Hermitian symmetric space SO
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Now let us consider a real hypersurface in the complex hyperbolic quadric Q™" with
isometric Reeb flow. Then from the view of the previous results a natural expectation might
be the totally geodesic Q"~'" c @™*. But, suprisingly, in the complex hyperbolic quadric
Q™ the situation is quite different from the above ones. Recently, Suh [34] has introduced
the following result:

Theorem A.  Let M be a real hypersurface of the complex hyperbolic quadric Q™" =
SO, 5/S0nSO,, m > 3. The Reeb flow on M is isometric if and only if m is even, say m = 2k,
and M is locally congruent to an open part of a tube around a totally geodesic CH* ¢ Q**
or a horosphere whose center at infinity is W-isotropic singular.

Jacobi fields along geodesics of a given Riemannian manifold (M, g) satisfy a well known
differential equation. This equation naturally inspires the so-called Jacobi operator. That is,
if R denotes the curvature operator of M, and X is tangent vector field to M, then the Jacobi
operator Rxe End(T M) with respect to X at xeM, defined by (RxY)(x) = (R(Y, X)X)(x)
for any YeT M, becomes a self adjoint endomorphism of the tangent bundle 7M of M.
Thus, each tangent vector field X to M provides a Jacobi operator Rx with respect to X. In
particular, for the Reeb vector field &, the Jacobi operator R is said to be a structure Jacobi
operator.

Recently Ki, Pérez, Santos and Suh [5] have investigated the Reeb parallel structure Ja-
cobi operator in the complex space form M,,(c), c#0 and have used it to study some principal
curvatures for a tube over a totally geodesic submanifold. In particular, Pérez, Jeong and
Suh [20] have investigated real hypersurfaces M in G»(C™?) with parallel structure Jacobi
operator, that is, VxR = 0 for any tangent vector field X on M. Jeong, Suh and Woo [4]
and Pérez and Santos [18] have generalized such a notion to the recurrent structure Jacobi
operator, that is, (VxR,)Y = B(X)R.Y for a certain 1-form 8 and any vector fields X, Y on
M in G,(C™*?). Moreover, Pérez, Santos and Suh [19] have further investigated the prop-
erty of the Lie &-parallel structure Jacobi operator in complex projective space CP™, that is,
£§R§ = O

The Reeb vector field & is Killing on M in Q™" if and only if g(Vx&,Y) + g(Vyé,X) =0
for any vector fields X and Y on M. As a generalization of such a Killing vector field first
Yano [42] defined the notion of Killing tensor as follows:

A skew symmetric tensor 7;,..; is called a Killing tensor of order r if it satisfies

1l

Vil T,' + Viz =0.

20 drs] i1pel

Next Blair [2] has applied the notion of Killing tensor to a tensor field of T type (1, 1)
on a Riemannian manifold and a geodesic y on M. If we denote by ¥’ the tangent vector
of the geodesic y, then Ty’ is parallel along the geodesic vy for the Killing tensor field 7.
Geometrically, this means that (V,, Ty’ = 0 along a geodesic y on M. If this is the case for
any geodesic on M, we have

(VxT)X =0 orequivalently (VxT)Y + (VyT)X =0

for any vector fields X and Y on M. In this case we say that the tensor 7 is a Killing tensor
field of type (1, 1).



REAL HYPERSURFACES WITH KILLING STRUCTURE JACOBI OPERATOR 3

Now we consider such a situation to the structure Jacobi operator R¢, which is a tensor
field of type (1, 1) on a real hypersurface M in Q"*. The structure Jacobi operator R; of M
in Q™ is said to be Killing if the structure Jacobi operator R satisfies

(Vng)Y + (Vng)X =0

for any X, YeT M, zeM. The equation is equivalent to (VxRs)X = O for any XeT M, zeM,
because of polarization. Moreover, we can give the geometric meaning of the Killing Jacobi
operator as follows:

When we consider a geodesic y with initial conditions such that y(0) = z and y(0) = X.
Then the transformed vector field Rgy is Levi-Civita parallel along the geodesic y of the
vector field X (see Blair [2] and Tachibana [40]).

In addition to the complex structure J there is another distinguished geometric structure
on Q™*, namely a parallel rank two vector bundle 2 which contains an S !-bundle of real
structures, that is, complex conjugations A on the tangent spaces of Q™. This geometric
structure determines a maximal -invariant subbundle Q of the tangent bundle 7 M of a real
hypersurface M in Q™" as follows:

O ={XeT M|AXeT M forall Aelj}.

Recall that a nonzero tangent vector W € Tp,;0™" is called singular if it is tangent to
more than one maximal flat in Q™*. There are two types of singular tangent vectors for the
complex hyperbolic quadric Q"":

1. If there exists a conjugation A € A such that W € V(A), then W is singular. Such a
singular tangent vector is called U-principal.

2. If there exist a conjugation A € A and orthonormal vectors X, Y € V(A) such that
W/IW| = (X +JY)/ V2, then W is singular. Such a singular tangent vector is called
A-isotropic

where V(A) = {X € T|;0™"|AX = X} and JV(A) = {X € T[10™|AX = =X}, [z] € O™, are
the (+1)-eigenspace and (—1)-eigenspace for the involution A on T;;Q™", [z] € O™".

In the study of real hypersurfaces in the complex quadric Q™ we considered the notion
of parallel Ricci tensor, that is, VRic = 0 (see Suh [31]). But from the assumption of Ricci
parallel, it was difficult for us to derive the fact that either the unit normal N is 2-isotropic or
A-principal. So in [31] we gave a classification with the further assumption of A-isotropic.
But fortunately, if we consider a Hopf real hypersurfaces, which is defined by S¢ = a¢ for
the Reeb function a = g(S &, ¢) and the shape operator §, in the complex hyperbolic quadric
Q™ with Killing structure Jacobi operator, we can assert that the unit normal vector field N
becomes either A-isotropic or A-principal as follows:

Main Theorem 1.  Let M be a Hopf real hypersurface in Q™*, m>3, with Killing struc-
ture Jacobi operator. Then the unit normal vector field N is singular, that is, N is U-isotropic
or A-principal.

When we consider a hypersurface M in the complex hyperbolic quadric Q™*, the unit
normal vector field N of M in Q™" can be divided into two cases : N is U-isotropic or
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A-principal (see [34], [35] and [27]). In the first case where M has an U-isotropic unit
normal N, we have asserted in [34] and [35] that M is locally congruent to a tube over a
totally geodesic complex hyperbolic space CH* in Q*" or a horosphere with U-isotropic
unit normal vector field centered at the infinity. In the second case when N is UA-principal
we have proved that M is locally congruent to a tube over a totally geodesic and totally real
submanifold Q"' in Q™" (see [34], [36] and [38]).

In this paper we consider the case that the structure Jacobi operator Rs of M in Q™" is
Killing , that is, (VxR)Y + (VyR)X = 0O for any tangent vector field X and Y on M, and we
prove the following

Main Theorem 2.  There does not exist a Hopf hypersurface in Q™*, m > 3 with Killing
stucture Jacobi operator and N-principal unit normal vector field.

Now it remains to prove the case that the unit normal vector field is UA-isotropic. Then
by our Main Theorems 1 and 2, we give a classification of real hypersurfaces in Q™" with
Killing structure Jacobi operator as follows:

Main Theorem 3.  Let M be a Hopf hypersurface in Q™*, m > 3 with Killing stucture
Jacobi operator. If the Reeb function is constant along the Reeb direction, then M has 4
distinct constant principal curvatures

@, ,3 = O, /11 /12.

Here the corresponding eigen spaces £€T,, Tg = Q*, and T, &T,, = Q, where the principal
curvatures Ay and Ay are two distinct constants given by

al@® = 1)+ a\/(a2 —1-2V2)(@? - 1+2V2)
4

A =

and

A =

@ -1) - cx\/(cx2 —1-2V2)(@® - 1+2V2)
I .

with multiplicities (m — 2) respectively and o* > 2N2 + 1.

Remark 1.1.  In [29] Suh has proved that the Reeb function @ = g(S¢&,¢) is constant
for real hypersurfaces with singular normal vector field in the complex quadric Q™ . But in
the complex hyperbolic quadric Q™ the Reeb function « is constant only if the unit normal
vector field N is A-principal (see Suh, Pérez and Woo [39]). Until now it does not known to
us whether the Reeb function « is constant for real hypersurfaces in the complex hyperbolic
quadric Q™" with A-isotropic unit normal vector field.

The subbundle Q mentioned in Main Theorem 3 is the maximal invariant subbundle of
T,M, zeM, such that Q®Q+ = [£]*, where QO = Span{A&, AN} and [£]* denotes the orthog-
onal complement of the Reeb vector field £ in T,M, zeM, in Q™.

When we consider a parallel structure Jacobi operator on M in Q™*, we know that
(VxRg)Y = O for any vector fields X and Y on M. This gives a condition stronger than
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the notion of Killing structure Jacobi operator. So naturally it satisfies the assumptions of
Killing in Main Theorems 1, 2 and 3. For the case of isotropic unit normal N, it can be
easily checked that the results in our Main Theorem 3 do not satisfy the strong assumption
of parallel structure Jacobi operator. So we also conclude the following

Corollary (see [39]). There does not exist a Hopf hypersurface in the complex hyperbolic
quadric Q™", m>3, with parallel stucture Jacobi operator.

2. The complex hyperbolic quadric

In this section, let us introduce a new known result of the complex hyperbolic quadric
Q™" different from the complex quadric Q™. This section is due to Klein and Suh [10].

The m-dimensional complex hyperbolic quadric Q™" is the non-compact dual of the m-
dimensional complex quadric O™, which is a kind of Hermitian symmetric space of non-
compact type with rank 2 (see Besse [1], and Helgason [3]).

The complex hyperbolic quadric Q™" cannot be realized as a homogeneous complex hy-
persurface of the complex hyperbolic space CH™*!. In fact, Smyth [24, Theorem 3(ii)] has
shown that every homogeneous complex hypersurface in CH™*! is totally geodesic. This
is in marked contrast to the situation for the complex quadric O, which can be realized
as a homogeneous complex hypersurface of the complex projective space CP™*! in such
a way that the shape operator for any unit normal vector to Q™ is a real structure on the
corresponding tangent space of O, see [8] and [22]. Another related result by Smyth, [24,
Theorem 1], which states that any complex hypersurface CH"*! for which the square of the
shape operator has constant eigenvalues (counted with multiplicity) is totally geodesic, also
precludes the possibility of a model of Q™* as a complex hypersurface of CH™*! with the
analogous property for the shape operator.

Therefore we realize the complex hyperbolic quadric Q™" as the quotient manifold
SOg’m/502SOm. As Q]* is isomorphic to the real hyperbolic space RH? = SO(I)’2 /80,, and
Q?" is isomorphic to the Hermitian product of complex hyperbolic spaces CH' x CH',
we suppose m > 3 in the sequel and throughout this paper. Let G := SOg’m be the

transvection group of Q™" and K := S0O,50,, be the isotropy group of Q™ at the “origin”
po ;= eK € Q™. Then

c:G -G, g sgs’! with s:= 1
"
is an involutive Lie group automorphism of G with Fix(c)y = K, and therefore Q™" = G/K

is a Riemannian symmetric space. The center of the isotropy group K is isomorphic to SO,,
and therefore Q" is in fact a Hermitian symmetric space.

The Lie algebra g := so,, of G is given by
s={Xeglm+2,R)|X" 5= —-s-X|

(see [11, p. 59]). In the sequel we will write members of g as block matrices with respect to
the decomposition R”*2 = R @ R™, i.e. in the form
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_ (Xu X2
X= (le Xzz) ’
where X1, Xi12, Xo1, X»> are real matrices of the dimension 2 X 2, 2 X m, m X 2 and m X m,
respectively. Then

X1 X
8= { (3 x2)
The linearisation o, = Ad(s) : g — g of the involutive Lie group automorphism o induces
the Cartan decomposition g = f ® m, where the Lie subalgebra

X, =-Xn, X}, =Xa1, X5y = —Xn } .

t =Eig(o,, 1) = (X € g| sXs7! = X}

X1 0
={ (%" ) | X ==Xu, X5 = —Xzz}
=50y D 50,

is the Lie algebra of the isotropy group K, and the 2m-dimensional linear subspace
m = Eig(r., =) = (X € ol sXs™ ==X} = { (2, )] X = X |

is canonically isomorphic to the tangent space T,,Q™". Under the identification 7,, Q™" =
m, the Riemannian metric g of Q™" (where the constant factor of the metric is chosen so that
the formulae become as simple as possible) is given by

1
gX,Y) = Etr(Yt'X) =tr(Y1p-Xp1) for X, Y em.

g is clearly Ad(K)-invariant, and therefore corresponds to an Ad(G)-invariant Riemannian
metric on Q™. The complex structure J of the Hermitian symmetric space is given by

01

-1 0

JX =Ad(j)X for Xem, where j:= b €K.
"

Because j is in the center of K, the orthogonal linear map J is Ad(K)-invariant, and thus
defines an Ad(G)-invariant Hermitian structure on Q”*. By identifying the multiplication
with the unit complex number i with the application of the linear map J, the tangent spaces
of Q™" thus become m-dimensional complex linear spaces, and we will adopt this point of
view in the sequel.

As mentioned for the complex quadric (again compare [8], [9], and [22]), there is another
important structure on the tangent bundle of the complex quadric besides the Riemannian
metric and the complex structure, namely an S '-bundle U of real structures. The situation
here differs from that of the complex quadric in that for Q"", the real structures in 2 cannot
be interpreted as the shape operator of a complex hypersurface in a complex space form, but
as the following considerations will show, U still plays an important role in the description
of the geometry of Q™.
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Let

Note that we have ay ¢ K, but only ay € O, SO,,. However, Ad(ap) still leaves m invariant,
and therefore defines an R-linear map A, on the tangent space m = T, Q""". A turns out to
be an involutive orthogonal map with AgoJ = —JoA (i.e. Ag is anti-linear with respect to the
complex structure of 7, Q""), and hence a real structure on 7, 0"". But A, commutes with
Ad(g) not for all g € K, but only for g € SO,, € K. More specifically, for g = (g1,92) € K
with g; € SO, and ¢> € SO,,, say g; = (Csfrfg)) _Cf)‘s‘}g)) with 7 € R (so that Ad(g) corresponds
to multiplication with the complex number y := e''), we have

Ago Ad(g) = % - Ad(g) o A .

This equation shows that the object which is Ad(K)-invariant and therefore geometrically
relevant is not the real structure Ag by itself, but rather the “circle of real structures”

A, = {1Apl1 e S} .

A, is Ad(K)-invariant, and therefore generates an Ad(G)-invariant § !_subbundle A of the
endomorphism bundle End(7' Q™"), consisting of real structures on the tangent spaces of
Q™. For any A € U, the tangent line to the fibre of A through A is spanned by JA.

For any p € Q™" and A € U,,, the real structure A induces a splitting
T,0™ =V(A) & JV(A)

into two orthogonal, maximal totally real subspaces of the tangent space 7,Q"". Here V(A)
resp. JV(A) are the (+1)-eigenspace resp. the (—1)-eigenspace of A. For every unit vector
W e T,Q™ there exist ¢ € [0, 5], A € A, and orthonormal vectors X, Y € V(A) so that

W =cos(t) - X +sin(t) - JY

holds; see [22, Proposition 3]. Here ¢ is uniquely determined by W. The vector W is singular,
i.e. contained in more than one Cartan subalgebra of m, if and only if either # = O or t = §
holds. The vectors with ¢ = 0 are called U-principal, whereas the vectors with t = 7 are
called A-isotropic. If W is regular, i.e. 0 < t < 7 holds, then also A and X, Y are uniquely
determined by W.

The singular tangent vectors correspond to the values t = O and t = n/4. If 0 < t < n/4
then the unique maximal flat containing W is RX @ RJY. Later we will need the eigenvalues
and eigenspaces of the Jacobi operator Ry = R(-, W)W for a singular unit tangent vector W.

1. If W is an A-principal singular unit tangent vector with respect to A € 2, then the
eigenvalues of Ry are 0 and 2 and the corresponding eigenspaces are RW@® J(V(A)e
RW) and (V(A) e RW) @ RJW, respectively.

2. If W is an U-isotropic singular unit tangent vector with respectto A € A and X, Y €
V(A), then the eigenvalues of Ry are 0, 1 and 4 and the corresponding eigenspaces
are RWe C(JX +7Y), T,0" ©(CX @ CY) and RJW, respectively.
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Like for the complex quadric, the Riemannian curvature tensor R of Q™" can be fully
described in terms of the “fundamental geometric structures” g, J and . In fact, under
the correspondence 7,,Q™" = m, the curvature R(X,Y)Z corresponds to —[[X, Y], Z] for
X, Y,Z € m, see [12, Chapter XI, Theorem 3.2(1)]. By evaluating the latter expression
explicitly, one can show that one has

RX.VZ = -gX.2)X +g(X.2)Y
-g(UY,2)JX +g(UX,2)JY +29(JX,Y)JZ
—-g(AY, 2)AX + g(AX, 2)AY
-g(JAY,2)JAX + g(JAX,Z)JAY
for arbitrary A € A, . Therefore the curvature of Q™" is the negative of that of the complex

quadric Q™, compare [22, Theorem 1]. This confirms that the symmetric space Q" which
we have constructed here is indeed the non-compact dual of the complex quadric.

3. Some general equations

Let M be a real hypersurface in the complex hyperbolic quadric Q™" and denote by
(¢,&,1m, g) the induced almost contact metric structure. Note that & = —JN, where N is a
(local) unit normal vector field of M. The tangent bundle 7'M of M splits orthogonally into
TM = C @ R¢, where C = ker(n) is the maximal complex subbundle of 7M. The struc-
ture tensor field ¢ restricted to C coincides with the complex structure J restricted to C, and

o& = 0.

At each point z € M we define the maximal 2-invariant subspace of T, M, ze M as follows:

Q.= {XeT,M|AX € T.M forall A € U}

Lemma 3.1 (see [29]). For each z € M we have
(1) If N, is U-principal, then Q, = C,.
(i) If N, is not -principal, there exist a conjugation A € W and orthonormal vectors
X,Y € V(A) such that N, = cos(t)X + sin(¢)JY for some t € (0,7/4]. Then we have
Q.,=C,oCJUX+Y).

We now assume that M is a Hopf hypersurface. Then for the Reeb vector field & the shape
operator S becomes

S&=aé

with the smooth function @ = g(S¢&,&) on M. When we consider a transform JX of the
Kaehler structure J on the complex hyperbolic quadric Q™" for any vector field X on M in
Q"*, we may put

JX = ¢X + n(X)N

for a unit normal N to M.
Then we now consider the Codazzi equation
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(3.1 g(VxS)Y = (VyS)X,2) = —n(X)g(¢Y, Z) + n(Y)g(¢X, Z) + 2n(Z)g(¢X. Y)
—9(X,AN)g(AY,Z) + g(Y, AN)g(AX,Z)
~ g(X, A&)g(JAY. Z) + (Y, A)g(JAX, Z).
Putting Z = & we get
g(Vx$)Y = (VyS)X. &) = 29(¢X. Y)
= g(X, AN)g(Y, A§) + g(Y, AN)g(X, AE)
+9(X, A)g(JY, A&) — g(Y, A§)g(J X, AE).

On the other hand, we have

g(VxS)Y - (Vy$)X, &)
g(VxS)EY) = g((VyS)E, X)
Xa)n(Y) = Yan(X) + ag((Sp + ¢S)X,Y) = 29(SpS X, Y).

Comparing the previous two equations and putting X = ¢ yields

(3.2) Ya = (a)n(Y) - 29(§, AN)g(Y, A§) + 29(Y, AN)g (£, AE).

Reinserting this into the previous equation yields

g((VxS)Y = (VyS)X, &)

= 29, AN)g(X,AON(Y) — 29(X, AN)g(&, Adn(Y)
—29(£, AN)g(Y, A&)n(X) + 2g(Y, AN)g(§, AS)n(X)
+ag((¢pS +SP)X,Y) —2g9(SpS X, Y).

Altogether this implies
0 = 29(SoSX,Y)—ag((@S +SP)X, Y) +29(X,Y)

—9(X,AN)g(Y, A§) + g(Y, AN)g(X, AS)

+9(X, Ad)g(JY, A) — g(Y, A&)g(J X, Af)

—29(¢, AN)g(X, Am(Y) + 2g(X, AN)g(§, A&)n(Y)

+29(&, AN)g(Y, A§)n(X) — 2g9(Y, AN)g(&, A&)n(X).
At each point z € M we can choose A € U, such that

N = cos(t)Z; + sin(t)JZ,

for some orthonormal vectors Z,,Z, € V(A) and 0 < ¢ < % (see Proposition 3 in [22]). Note

that ¢ is a function on M. First of all, since & = —JN, we have

AN = cos()Z, — sin(t)JZ,,
& = sin(1)Z, — cos(t)JZy,
A¢ = sin(t)Z, + cos(1)JZ;.

This implies g(&, AN) = 0 and hence
0 = 29(S¢SX,Y)—ag((¢S + SP)X,Y) +29(pX,Y)
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~-g9(X,AN)g(Y, Aé) + g(Y, AN)g(X, A¢)
+9(X, Aé)g(JY, A€) — g(Y, Aé)g(J X, Aé)
+29(X, AN)g(&, Aén(Y) — 2g(Y, AN)g(€, A& n(X).

We have JA¢ = —AJ¢ = —AN, and inserting this into the previous equation implies

Lemma 3.2. Let M be a Hopf hypersurface in the complex hyperbolic quadric Q™" with
(local) unit normal vector field N. For each point 7 € M we choose A € U, such that
N, = cos(t)Z; + sin(t)JZ, holds for some orthonormal vectors Zy,Z, € V(A) and 0 < t < 7.
Then

0 = 29(S¢SX,Y)—ag((¢S +SP)X, Y) +29(¢X.,Y)
—29(X,AN)g(Y, A&) + 29(Y, AN)g(X, AS)
—29(£, ADIg(Y, AN)n(X) — g(X, AN)n(Y)}
holds for all vector fields X and Y on M.

We can write for any vector field Y on M in Q™"
AY = BY + p(Y)N,
where BY denotes the tangential component of AY and p(Y) = g(AY, N).

If N is -prinicipal, thatis, AN = N, we have p = 0, because p(¥) = g(Y,AN) = g(¥,N) =
0 for any tangent vector field Y on M in Q. So we have AY = BY for any tangent vector
field Y on M in Q™*. Otherwise we can use Lemma 3.1 to calculate p(Y) = g(¥,AN) =
g(Y,AJE) = —g(Y, JAE) = —g(Y, JBE) = —g(Y, ¢ B¢) for any tangent vector field ¥ on M in
Q™. From this, together with Lemma 3.2, we have proved

Lemma 3.3. Let M be a Hopf hypersurface in the complex hyperbolic quadric Q™",
m > 3. Then we have

(2SS — (¢S + S¢) +2¢)X = 2p(X)(BE - B&) + 29(X, BE — BE)PBE,
where the function B is given by B = g(£,A¢) = —g(N, AN).
If the unit normal vector field N is A-principal, we can choose a real structure A € A such
that AN = N. Then we have p = 0 and ¢B¢ = —¢¢ = 0, and therefore
3.3) 28 ¢S — a(¢pS + S¢) = —2¢.
If N is not A-principal, we can choose a real structure A € U as in Lemma 3.1 and get

(3.4) PX)(BE - BE) + g(X. BE — BE)PBE
= — g(X, §(BE — BE)(BE — BE) + g(X, BE — BE)P(BE — BE)
=||B& - BEIF{g(X, U)gU — g(X, pU)U}
=sin*20){g(X, U)pU — g(X, pU)U},

which is equal to 0 on Q and equal to sin’(21)¢X on C © Q. Altogether we have proved:
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Lemma 3.4. Let M be a Hopf hypersurface in the complex hyperbolic quadric O™,
m > 3. Then the tensor field

25¢S —a(¢S + S ¢)
leaves Q and C © Q invariant and we have
25¢S — a(¢pS + S¢) = —2¢ on Q
and
2S4S — (¢S +S¢) = -2B*pon Co Q,
where B = g(A¢, &) = —cos 2t as in section 3.
Then from the equation of Gauss the curvature tensor R of M in complex quadric Q™" is
defined so that

RX.VZ = —g(Y.D)X +g(X.2)Y - g(¢Y, Z)pX + g(¢X,Z)¢Y + 29(¢X, Y)$Z
~g(AY, Z2)AX)" + g(AX, Z)AY)" - g(JAY, Z)(JAX)"
+g(JAX, 2)(JAY) + g(SY,Z)SX — g(SX,Z)S Y,
where (AX)” and S denote the tangential component of the vector field AX and the shape

operator of M in Q™" respectively.

From this, putting ¥ = Z = ¢ and using g(A¢, N) = 0, the structure Jacobi operator is
defined by

R:(X)

R(X, &)¢
—X + n(X)E — gAE, E)AX)T + g(AX, )AE
+g(X, ANYAN)" + g(S&,E)SX — g(S X, )S &

Then we may put the following
AY)T = AY — g(AY, N)N.

Now let us denote by V and V the covariant derivative of M and the covariant derivative
of O™ respectively. Then by using the Gauss and Weingarten formulas we can assert the
following

Lemma 3.5. Let M be a real hypersurface in the complex hyperbolic quadric Q™.
Then
(3.5) Vx(AY)T =g(X)JAY + AVxY + g(SX, Y)AN
—g({g(X)JAY + AVxY + g(S X, Y)AN}, N)N
+ g(AY,N)S X.
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Proof. First let us use the Gauss formula to (AY)” = AY — g(AY, N)N. Then it follows
that

Vx(AY)" =Vx(AY)" - (X, (AY)")
=Vx{AY - g(AY, N)N} - g(S X. (AY)")N
=(VxA)Y + AVxY — g((VxA)Y + AVxY,N)N — g(AY,VxN)N
— gAY, N)VxN = g(S X, (AV)")N,
where o denotes the second fundamental form and N the unit normal vector field on M in

Q™. Then from this, if we use Weingarten formula VyN = —SX, then we get the above
formula. O

By puting Y = ¢ and using g(A¢, N) = 0, we have
(3.6) Vx(AE) =q(X)JAE + ApS X + an(X)AN
—{g(X)g(JAE, N) + g(ApS X, N) + an(X)g(AN, N)}N.
Moreover, let us also use Gauss and Weingarten formula to (AN)” = AN — g(AN, N)N.
Then it follows that
3.7)  Vx(AN)! =Vx(AN)! - o(X, (AN)))
=Vx{AN — g(AN, N)N} - o(X, (AN)")
=(VxA)N + AVxN — g((VxA)N + AVxN, N)
— g(AN, VxN)N — g(AN, N)VxN — o(X, (AN)T)
=q(X)JAN — AS X — g(q(X)JAN — AS X, N)N + g(AN, N)S X.

On the other hand, we know that

(3.8) XB =X(9(A&,8))
=g(VxA)E + AVXE €) + g(AE, Vxé)
=9(q(X)JAE + ApS X + g(S X, E)AN, &) + g(AE, pS X + g(S X, H)N)
=2g(ApS X, &).

4. Some Important Lemmas and Proof of Theorem 1

The curvature tensor R(X, Y)Z for a Hopf real hypersurface M in the complex hyperbolic
quadric Q™" induced from the curvature tensor of Q™" is given in section 3. Now the struc-
ture Jacobi operator R can be rewritten as follows:

4.1 R:(X) =R(X, £)¢
== X +1(X)¢ - BAX)" + g(AX, H)AE + g(AX, NYAN)"
+aSX -g(SX, ESE,
where we have put @ = ¢g(S¢&,¢) and B = g(A&,E), because we assume that M is Hopf.

The Reeb vector field & = —JN and the anti-commuting property AJ = —JA gives that the
function 8 becomes = —g(AN, N). When this function 5 = g(A¢, £) identically vanishes,
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we say that a real hypersurface M in Q™" is U-isotropic as in section 1.

Here let us differentiate the structure Jacobi operator R, along any direction X on M in
the complex hyperbolic quadric Q™. Then (4.1), together with (3.5), (3.6), (3.7), give that

4.2) VxR:(Y) = Vx(Re(Y)) — Re(VxY)
=g(¢S X, V)é + n(Y)$S X — (XB)(AY)"
— B[g(X)JAY + AVxY + g(SX,Y)AN
— g({qg(X)JAY + AVxY + g(S X, Y)AN}, N)N
+ g(AY, N)SX|
+ g(q(X)JAE + ApS X + an(X)AN, Y)AE
+ gAY O)|g(g(TAE + ASS X + an(X)AN
— {g(X)g(JAE,N) + g(ApS X. N) + an(X)g(AN, N)IN |
+ [g(q(X)JAN — ASX + g(AN,N)S X, Y)(AN)”
+g(Y,(AN)){g(X)JAN — ASX + g(AN, N)S X
— 9(q(X)JAN — ASX, N)N}|
+ (Xa)SY + a(VxS)Y — X(@*)n(Y)é
- A(Vxm(N)é = ?n(Y)Vxé,
where we have used g(A&, N) = 0, and N the unit normal to M in Q™.

Here let us assume that the structure Jacobi operator is Killing, that is, (VxRg)Y +(VyRs)X
= 0 for any tangent vector fields X and ¥ on M in Q"*. Then from this, together with (4.1),
we have the following

(4.3) 0 =VxReY)+ VyR:(X)
={g(¢SX.Y) + g(#S Y, X)}¢ + n(Y)$S X + n(X)¢SY
- (XBYAY)" - (YB)AX)"
— Blg(X)JAY + q(Y)JAX + A(VxY + VyX) + 29(S X, Y)AN
— g({g(X)JAY + g(Y)JAX + A(VxY + VyX) + 29(S X, Y)AN}, N)N
+g(AY, N)SX + g(AX, N)S Y |
+[9(g(X)JAE + ApS X + an(X)AN. Y)
+ g(q(Y)JAE + AGS Y + an(Y)AN, X)|Aé
+ g(AY, £)[q(X)JAE + ApS X + an(X)AN
—{a(X)g(JAL, N) + g(ApS X, N) + an(X)g(AN, N)}N]
+ g(AX, £)|q(Y)JAE + APSY + an(Y)AN
—{q(V)g(JAE,N) + g(APS Y, N) + an(Y)g(AN, N)IN |
+ [{g(q(X)JAN - ASX + g(AN,N)S X, Y)
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+g(qg(Y)JAN — AS Y + g(AN, N)S Y, X)}(AN)"

+g(Y, (AN)H{g(X)JAN — AS X — g(q(X)JAN — AS X, N)N
+ g(AN, N)S X}

+ g(X, (AN)T){q(Y)JAN —ASY —g(g(Y)JAN — ASY,N)N
+g(AN, N)S Y}

+ Xa)SY + (Ya)SX + a{(VxS)Y + (VyS)X}

- X(@*M(V)é - (Yo (X)E — a{(Vxm(Y)E + (Vym)(X)E)
— & {n(Y)Vxé + n(X)Vyé).

From this, by taking the inner product of (4.3) with the Reeb vector field £, we have

0 =g((¢S — SPX.Y) — (XB)g(AY. &) — (YB)g(AX. &)
- Bla(X)g(JAY, &) + q(Y)g(JAX, &) + g(A(VxY + VyX), &)
+g(AY, N)g(S X, &) + g(AX, N)g(S Y, &)}
+ {g(g(X)JAE + ApS X + an(X)AN, Y)
+g(q(Y)JAE + APS Y + an(Y)AN, X)}g(Aé, &)
+g(AY, )g(APS X, &) + g(AX, £)g(A$S Y, &)
+g(Y, (AN)){g(q(X)JAN, &) - g(AS X, &) + g(AN, N)g(S X, )}
+g(X. (AN )Ng(q(Y)JAN, &) — g(AS Y. €) + g(AN, N)g(S Y, &)}
+a(Xam(Y) + a(Ya)n(X)
+ afg(VxS)Y.€) + g((VyS$)X. )
- X(@)nY) = Y@ nX) - a*(Vxn)(¥) — & (Vyn)(X).

Then, first, by putting Y = £ and using g(A¢, N) = 0, we have

4.4) 0 == (XB)g(AE, &) — Bg(APS X, &) + Bg(ApS X, &) + Bg(AS X, &)
— (EP)g(AX, &) = Bla(£)g(JAX, &) + g(AV:X, §) + ag(AX, N)}
+19(q(§)JAE + ApS & + aAN, X)}g(AE, &)
+g(X,AN)(q(§) - 22)B

== Plg(AdS X, &) + g(AVeX, &) = (q(6) — 2a)g(X, AN)}.

Here if the function 8 = g(A&,&) = —cos2t = 0, we have 1 = 7. Then the unit normal
vector field N becomes

€
V2

for Z,Z,€V(A) as in section 3, that is, the unit normal N is A-isotropic .

N = (Zl + JZz)

Now hereafter, from (4.4) let us consider the following case

4.5) 0 = {g(A¢S X, &) + g(AVX, &) = (q(&) = 2a)g(X, AN)}.

On the other hand, by using (3.1) for any tangent vector field X LA¢, we have
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(4.6) g(AVeX, &) =g(VeX, A8) = —g(X, V(AL))
== g(q(&)JAL + AN, X) = (q(§) — a)g(AN, X).

Then from (4.5) and (4.6) we have the following for any tangent vector field X orthogonal
to Aé

4.7) 0 =g(A¢S X, &) + (q(§) — @)g(AN, X) — (q(£) — 2a)g(AN, X)
=g(ApS X, &) + ag(AN, X)
=g(SAN + aAN, X).

So it follows that
(4.8) g(SAN), (AN)") = —a(1 - B,
where g((AN)T, (AN)T) = g(AN — g(AN, N)N, AN — g(AN, N)N) = 1 — g(AN, N)*> = 1 - 5°.
On the other hand, by using (3.3) to the second term of (4.5) for X = (AN), we have
(4.9) gAVLAN)', €) =g(q(E)¢ — S& + ag(AN, N)AE, &)
=q(¢) - a - o,

where we have used A> = I and g(AN, N) = —g(A&, &) = —B.
Then by putting X = (AN)” in (4.5) and using (4.8) and (4.9), we have

(4.10) 0 =g(A¢S (AN)", &) + g(AVHAN)" ., €) - (q(¢) — 2a)g9(AN)", (AN)")
=—a(l =) +q) - @ - af’ - (q(&) - 20)(1 - )
=(q(¢) - 20)B’,
where we have used g(A¢S (AN)T, &) = g(S(AN)T,(AN)T) = —a(1 — 8%). Here we note that
&B = 0, because we can calculate the following
&B =£g(A¢,6)
=g(VeAE + AVLE ) + g(AE, V)
=g(q(¢)JAE, &)
=—q(&)g(A¢L,N)
=0.
Now we consider an open subset U" = {peM|B(p)#0} in M. Then by (4.10), we have
Lemma 4.1. Let M be a Hopf real hypersurface in the complex hyperbolic quadric
O™, m>3. Then
q(&) = 2a
holds on U on M in Q™".
Now hereafter unless otherwise stated, on such an open subset U" let us prove that the

unit vector field N in the complex hyperbolic quadric Q™" is UA-principal. Then by Lemma
4.1 and (4.4), we have the following for any tangent vector field X on M

g(APS X, &) + g(AV:X, &) = 0.
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From this, by putting X = A¢ and using g(A&, A¢) = 1, we know that

(4.11) 0 = g(APS AL, €) = g(SAE, (AN)').

Moreover, for any X LA¢ the second term in the left side of the above equation becomes
JAVEX,E) = —g(X, VLAE) = ag(AN)T, X),

where in the third equality we have used Lemma 4.1. Consequently, for any tangent vector
field X LA¢ we conclude

0 =g(ApS X, &) + g(AVeX, £)
=9(X,S(AN)") + ag((AN)", X)
=g(S(AN)! + a(AN)T, X).
Moreover, by (4.11) we also know that
g(S (AN + a(AN)T, A¢) = 0.
So these two equations give the following

Lemma 4.2. Let M be a Hopf real hypersurface in the complex hyperbolic quadric
O™, m > 3. Then

SAN)T = —a(AN)T
holds on U on M in Q™".

Now let us differentiate the equation in Lemma 4.2. Then it follows that
(VxS)YAN)" + SVx(AN)" = =(Xa)(AN)" — aVx(AN)".

From this, by taking the inner product with the Reeb vector field £ and using the formulas
(3.3), we have

0 =g((AN)", (Vx$)é)
+ 209(q(X)JAN — AS X — g(¢(X)JAN — AS X, N)N, &)
+ 2a9(AN, N)g(S X, £)
=g(AN)T, apS X — S pS X)
+2c{q(X)g(AE, &) — g(S X, AE) + g(AN, N)g(S X, £)}.

Then by putting X = (AN)” and using Lemma 4.2, we have ag((AN)") = 0. When the
function @ = 0, in section 3, Sg(Y, AN) = 0 for any tangent vector field ¥ on M. Then on the
open subset U = {peM | B(p)+#0} in M we conclude

Lemma 4.3. Let M be a Hopf real hypersurface in the complex hyperbolic quadric
O™, m>3. Then either

g(AN)) =0

or the unit normal vector field N is N-principal.
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On the other hand, by putting X = ¢ in (3.3) and using Lemma 4.1, we have
(4.12) VAAN)" =(q(€) - @AE + ag(AN, N)¢
=a(AE - BE).
Differentiating the equation in Lemma 4.2 along the Reeb direction & and using (4.12)
implies
(4.13) (VeSHAN)" = = SVLAN)" - (¢a)(AN)" — aV-(AN)"
= — a(SAE - ) — (£a)(AN)' - o?(A€ — ).
Moreover, differentiating S¢& = a¢ and using Lemma 4.2, we get the following
(4.14) (VamrS)é ={(AN) a}¢ + apS (AN)" — S¢S (AN)"
={(AN)" a}¢ — &*$(AN)" + aS p(AN)" .
Then substracting (4.14) from (4.13) and Lemma 4.2 give
@15 g(VeSAN) = (Vianyr$HE(AN)) = —(¢a)(1 - )
== g(@AN)",(AN)") = g(&, AE)g(JAAN)', (AN))
=0,

where in the second equality we have used the equation of Codazzi (3.1) in section 3. Then
it follows that

éa=0 or B*=1.

When the latter part 5 = +1 occurs on U’, then AN = +N. So we know that the unit
normal vector filed N is A-principal. When £a = 0, if we use the derivative formula Y« and
g(&é,AN) = 0 in section 3, we have the following

Lemma 4.4. Let M be a Hopf real hypersurface in the complex hyperbolic quadric
O™, m > 3. Then either

grad a = 2B(AN)T

or the unit normal vector field N is U-principal.

Now let us consider the first formula in Lemma 4.4. Then by differentiating the above
formula it follows that

(4.16) Vygrad @ =2(XB)(AN)T + 28Vx(AN)"
=4g(ApS X, E)(AN)T + 2B{q(X)JAN — AS X
— g(¢(X)JAN — AS X, N)N + g(AN, N)S X}.
Then we have
(4.17)  g(Vxgrad @, ) =4g(ApS X, £)g(AN)" . Y) + 2B{q(X)g(JAN,Y) — g(AS X, V)}
+2Bg(AN, N)g(S X, Y).

Since g(Vxgrad a,Y) = g(Vygrad a, X) and Lemma 4.2, we have
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(4.18) 0 = 2B{q(X)g(JAN.Y) - q(Y)g9(JAN, X)} - 2B{g(AS X, Y) — g(AS Y, X)}.
So on the open subset U = {peM | B(p)#0} in M it follows that

qg(X)g(JAN,Y) — q(Y)g(JAN, X) = g(AS X,Y) — g(AS Y, X).
From this, by putting X = &, we know that

SAE = —aA€ + Bgrad q.

Then differentiating this formula gives
(4.19) (VxS)HAE + SVXAE = —(Xa)Aé — aVxA¢ + (XPB)grad g + BV xgrad q.

First let us take the inner product of (4.19) with Y and make the skew-symmetric part with
respect X and Y. Next we use g(Vxgrad ¢,Y) = g(Vygrad ¢, X) to the obtained equation.
Then finally by putting X = £, we have
(4.20) g((VeS)AE,Y) = g(VyS)AE, &) + g(S (VA Y) — g(S (VyAL), &)

== (Ea)g(A&,Y) + (Ya)g(A¢, &)
— alg(VeAE, Y) = g(VyAE, )} + (EB)g(Y) = (YB)q(£).

In this equation (4.20), we want to use the following formulas

q(&) =2a, &a=0, &B=0,

“4.21) Ve(AE) =2aJAE + aAN - {2ag(JAE, N) + ag(AN, N)}N
=—aAN — affN
= — a(AN)T,

and

(4.22) g(Vy(AS), &) =q(Y)g(JAE, &) + g(ApS Y, &)

=g(SY,AN) = —ag((AN)", Y).
Then by the help of (4.21) and (4.22), the equation (4.20) can be reformed as
(423) G((VESIAE, Y) = g((Vy$)AE,£) + 2a7g((AN), Y)
=(Ya)B - 2a(YP).

On the other hand, if we use the equation of Codazzi (3.1) in the first term of (4.23), we
have

(4.24) g((VeS)AEY) =g((VeS)Y, AL) = g((VyS)E, AS)
—9(@Y, A) + g(Y, AN)g(AE, AS) — g(&, AD)g(JAY, A).
Then substituting (4.24) into the first term of (4.23) gives
(4.25) —g(BY, AE) + g(Y, AN)g(AE, A&) — (£, Ad)g(JAY, Aé) + 27 g((AN)", Y)
=(Yo)B - 2a(YP)
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=28g(Y, AN) + 4a’g(Y, (AN)"),

where in the second equality we have used £éa = 0 in (3.2) of section 3, Lemma 4.2 and (3.8)
in the following formula

YB =2g(A$S Y, &) = 29(S Y, AJE)
=2g(SY, (AN)") = —2ag(Y, (AN)").

In (4.25) the first two terms of the left side cancelled out each other and the third term
vanishes identically. The fourth term 2a2g((AN)T, Y) can be deleted with the second term in
the right side of (4.25). So (4.25) implies 2(a? +8?)g(Y, AN) = 0 for any tangent vector field
Y on M, which means that on the open subset U" = {peM | 5(p)#0} the unit normal vector
field N is A-principal AN = g(AN, N)N.

Summing up the above discussions, we can prove our Main Theorem 1 in the introduction.

By virtue of Main Theorem 1, we can distinguish two classes of real hypersurfaces in
the complex hyperbolic quadric Q" with Killing structure Jacobi operator : those that have
A-principal unit normal, and those that have 2-isotropic unit normal vector field N. We treat
the respective cases in sections 5 and 6.

5. Killing structure Jacobi operator with 2-principal normal

In this section we consider a real hypersurface M in the complex hyperbolic quadric
Q™ with A-principal unit normal vector field. Then the unit normal vector field N satisfies
AN = N for a complex conjugation A€. Naturally, we have also the following

Aé=—¢ and JAE=-JE=—N.

Then the structure Jacobi operator Ry is given by
(5.1) Re(X) = =X +2n(X)é + AX + g(S&,6)SX — g(S X, S E.
Since we assume that M is Hopf, (5.1) becomes

(5.2) Re(X) = =X + 2n(X)é + AX + aSX — o’n(X)&.

By the assumption of the Killing structure Jacobi operator R, the derivative of R; along
any tangent vector field Y on M is given by

(5.3) (VyRe)(X) = Vy(Re(X)) — Re(VyX)
= 2{(Vym(X)E + n(X)Vyé} + (VyAX + (Ya)S X
+a(VyS)X — (Yo n(X)é
- *(Vym(X)E€ - a’n(X)Vyé.
We can write
AY = BY + p(Y)N,

where BY denotes the tangential component of AY and p(Y) = g(AY,N) = g(Y,AN) =
g(Y,N) = 0. So for any tangent vector field Y on M the vector field AY(= BY) also becomes
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a tangent vector field on M in Q. Then it follows

(5.4) (VyA)X =Vy(AX) - AVyX
=Vy(AX) — o(Y,AX) — AVyX
=(VyA)X + AVyX — o(Y,AX) — AVyX
=q(Y)JAX + Ac(Y, X) — o(Y, AX)
=q(Y)JAX + g(S X, Y)AN — g(SY,AX)N,
where we have used the equation of Gauss in the second equality and the Weingarten formula
in the fifth equality. From this, together with (5.3) and using that U-principal, the Killing
structure Jacobi operator gives
(5.5) 0 =(VyR)(X) + (VxR)(Y)
=2 + Ny X)E + n(X)Vyé)
+ Q2+ @)(Vxm(é +n(Y)Vxé}
+{g(N)JAX + g(S X, Y)N — g(SY,AX)N}
+ {g(X)JAY + g(SY, X)N — g(S X, AY)N}
+ (Ya)SX + a(VyS)X — (Yo )n(X)é
+(X)SY + a(VxS)Y — (XaP)n(Y)E.
From this, taking the inner product of (5.5) with the Reeb vector field &, and using the
constancy of the Reeb function @ in Lemma 3.2, we have
(5.0) 0 =2+ a*)g(¢S Y, X) + g(¢S X, V)} + ag((VyS)X + (VxS)Y, &)
=29((¢S - SP)Y, X)
where we have used g(JAX, ¢) = —g(AX,N) = —g(X,AN) = —g(X, N) = 0 for any tangent
vector field X on M in Q™" and (VxS)¢é = apSX — S¢S X. The formula (5.6) means that
the shape operator S commutes with the structure tensor ¢. Then by Theorem A in the
introduction, M is locally congruent to an open part of a tube around a totally geodesic

CH* c Q%" or a horosphere whose center at infinity is A-isotropic singular. That is, the
Reeb flow on M is isometric.

On the other hand, we want to introduce the following proposition (see Suh [34]).
Proposition 5.1.  Let M be a real hypersurface in Q™", m>3, with isometric Reeb flow.

Then the unit normal vector field N is N-isotropic everywhere.

By Proposition 5.1, we know that the unit normal vector field N of M is U-isotropic,
not A-principal. This rules out the existence of an A-principal unit normal N together with
Killing structure Jacobi operator. So we give the proof of our Main Theorem 2 with -
principal unit normal N.

6. Killing structure Jacobi operator with 2l-isotropic normal

In this section we assume that the unit normal vector field N is A-isotropic and the Reeb
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function @ = g(Sé&,&) is constant along the Reeb direction &, that is, é& = 0. Then the
normal vector field N can be written as

1
N = —(Z1 + JZz)
V2

for Z,,7Z,€V(A), where V(A) denotes a (+1)-eigenspace of the complex conjugation A€.
Then it follows that

1 1 1
AN = —(Z, - JZ,), AJIN = ——(JZ, + Z,), and JN = —(JZ, - Z).
V2 V2 V2

Then it gives that
g(é,Aé) = g(JN,AJN) = 0,9(¢,AN) = 0 and g(AN, N) = 0.

By virtue of these formulas for UA-isotropic unit normal, the structure Jacobi operator can be
given as follows:

(6.1) R:(X) =R(X, £)§
== X +1(X)¢ + g(AX, )AL + g(JAX, §)JAL
+9(SE,6)SX - g(SX,£)SE.

On the other hand, we know that JA¢ = —JAJN = AJ?N = —-AN, and g(JAX,&) =
—g(AX, J§) = —g(AX, N). Then the structure Jacobi operator R can be rearranged as fol-
lows:

(6.2) R:(X) = = X + n(X)é + g(AX, £)A¢ + g(X, AN)AN
+aSX -’ nX)E.

Then by differentiating (6.2), we obtain

(6.3) VyR:(X) =Vy(Re(X)) — Re(VyX)

=(Vym(X)¢ + n(X)Vy¢ + g(X, Vy(A)AL
+g(X, AHVy(AS) + g(X, Vy(AN))AN + g(X,AN)Vy(AN)

+ (Y)S X + a(Vy$)X — (YoP)n(X)é
— & (VymXE - a®n(X)Vyé.
Here let us consider the equation of Gauss. It is given by
VY =VyY + (X, Y)

for any vector fields X and Y on M in Q™", where VxY = (VxV)T and o(X,Y) respec-
tively denote the tangential and normal component on 7.M of VxY in T,Q™*, zeM. The
Weingarten formula is given by

VxN = -SX

for an A-isotropic unit normal vector field N. Here S denotes the shape operator of M in the
complex hyperbolic quadric Q" derived from the unit normal N. Then by using these two
equations to some terms in (6.3), we have the following :
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Vy(Aé) =Vy(A€) - o(Y, A¢)
=(VyA)¢ + AVyé — o(Y, A¢)
=q(Y)JAE + A{¢S Y +n(SY)N} = g(S Y, AE)N

and

Vy(AN) =Vy(AN) — o(Y, AN)
=(VyA)N + AVyN — o(Y,AN)
=q(Y)JAN — ASY — g(SY,AN)N.
Substituting these formulas into (6.3) and using the assumption of Killing structure Jacobi
operator, we have
(6.4) 0 =VyR:(X) + VxRe(Y)
=g(¢SY, X)¢ + n(X)pSY
+g(@S X, V)& +n(Y)pS X
+1{q(Y)g(A&, X) + g(AS Y, X) + g(S Y, §)g(AN, X)}A&
+1{g(X)g(A&,Y) + g(ApS X, Y) + g(S X, £)g(AN, Y)}AE
+g(X, AD{q(Y)JAE + AgSY + g(SY,H)AN — g(S Y, AE)N}
+ (Y AOG(X)IAE + APS X + g(SX, AN — g(S X, AE)N)
+{g(V)g(X,AN) — g(X,ASY)}AN
+{qg(X)g(Y,AN) — g(Y,AS X)}AN
+ g(X,AN){q(Y)JAN — ASY — g(SY, AN)N}
+ g(Y,AN){g(X)JAN — AS X — g(SX,AN)N}
+ (Ya)S X + a(VyS)X — (Yo m(X)é
+ (Xa)SY + a(VxS)Y — (XaH)n(Y)é
— &GS Y. X)é — a’n(X)¢S Y
— *g(@S X, V)¢ — a’n(Y )¢S X.
Taking the inner product of (6.4) with the unit normal N and using the properties of -
isotropic, that is, g(A&, &) = 0, g(AN, N) = 0, it follows that
(6.5) 0 =g(X,A)g(ApSY,N) — g(X, A&)g(S Y, AE)
+g(Y,AD)g(A¢S X, N) — g(Y, A§)g(S X, A)
—9g(X,AN)g(ASY,N) — g(X,AN)g(S Y, AN)
—g(Y,AN)g(AS X, N) — g(Y,AN)g(S X, AN).

From this, putting X = AN and using that N is U-isotropic and A¢ = ¢AN, we have
0=-2g(ASY,N) —2g(Y,AN)g(S AN, AN) + 2g(Y,A¢)g(ApS AN, N).
By putting Y = AN, we get g(SAN, AN) = 0. Then the above equation reduces to
g(ASY,N) = g(Y,A§)g(ApS AN, N).
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So it follows that
SAN =g(A¢S AN, N)AE

=—g(SAN, pAN)AE

=—g(SAN,A§AE,
where we have used A¢é = ¢AN. Then this gives that g(SAN, A¢) = 0, which implies
(6.6) SAN =0 and S¢A¢=0.
Then (6.5) reduces to the following
(6.7) 0 =9(X,AH)g(A¢S Y, N) — g(X, A§)g(S ¥, AE)

+9g(Y,A5)g(A¢S X, N) - g(Y, A§)g(S X, AE).

By putting X = A¢ in (6.7) and using A¢ = ¢AN, it follows that

g(SY,AL) + g(Y, Ad)g(S A&, AE) = 0
for any vector field Y on M in Q™*. This gives
SAE = —g(SAL, ADAL.

Then by taking the inner product with A¢, we know g(SAE,A¢) = 0. From this, together
with the above equation, we have

(6.8) SAé =0 and S¢AN =0.
Putting X = ¢ into (6.4), and using (6.8) and the A-isotropic property g(A¢, &) = 0, we have
(6.9) 0 =¢SY +{q(£)g(A¢, Y) + ag(AN, Y)}AE

+g(Y, AD{q(E)AE + aAN — g(S&, AN}
+{q(©)g(Y,AN) — ag(Y, A)}AN + g(Y, AN){q(£)AN — aA&}

+ (Ya)aé + a(VyS)é — (Yah)é — a?pSY
+(E@)SY + a(VeS)Y — (a”)n(Y)é

=¢SY +2q(£)g(A&, Y)AE + 2q(§)g(Y,AN)AN
—aSPSY + (£)SY — (£aPm(Y)éE + a(VeS)Y.

On the other hand, SA¢ = 0 implies (V:5)AE + SV(AE) = 0. By the equation of Gauss,
the following holds

Ve(AE) =V(AE) — o (€, A)
=q(€)JAE + g(SE E)AN — g(SE AEN
=q(&)JAE + aAN.

This gives S(V¢(AE)) = q(£)SJAE + aSAN = 0 from (6.6). From this, together with the
above formula, we have

(6.10) (VeSHAE = 0.
By taking the inner product of (6.9) with A¢ and AN respectively, and using (6.6), (6.8)
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and (6.10), we know that
q(&)AE =0 and g(§)AN =0.
By virtue of these formulas, (6.9) reduces to the following
(6.11) 0=¢SY —aS¢SY + (£a)SY — (EaP)n(Y)é + a(V:S)Y.
On the other hand, by using the equation of Codazzi, we have
(VeS)Y =(VyS)E = pY + g(AN, Y)AE + g(Y, AD)PAL
=Ya) +adSY —S¢SY — ¢Y
+g(AN, Y)AE + g(Y, AE)PAE.

Then by the properties of M being Hopf and with 2-isotropic unit normal vector field, we
have

Ya = g((VeS)Y,8) = g((VeS)E, Y) = (Ean(Y).

From this, together with the assumption of é& = 0 in section 6, it follows that the Reeb
function « is constant for a real hypersurface in Q™" with 2-isotropic unit normal. Then the
derivative of the shape operator S along the Reeb direction £ is given by

~a(VeS)Y = a*¢SY + aSpSY
+agY — ag(AN, Y)AE — ag(Y, AH)PAS.
From this, by (6.11) and using the constancy of the Reeb function a, we know that
(6.12) 0=pSY —2aS¢SY + a*¢pSY
— a¢Y + ag(AN, Y)AE + ag(Y, A)PAE.

Then for any YeQ such that S Y = 1Y, where Y is orthogonal to the vector fields A¢ and AN,
(6.12) reduces to the following

(6.13) 2018 ¢Y = (1a” — a + )Y,
Then (6.13) gives a#0.

In fact, if the Reeb function @ = 0, from (6.13) it follows that 4 = 0. From this, together
with (6.6) and (6.8), the shape operator S becomes identically vanishing. That is, M is
totally geodesic. Then by the equation of Codazzi in section 3, we have a contradiction.

Naturally we should have 2a4#0. If the function A4 = 0, then (6.13) also implies that the
Reeb function a vanishes. So also the contradiction appears. This fact gives

al -2 Pl-a+ 2
SoY = Y = Y.
¢ 21— a/¢ 2al ¢
It can be written as follows:
(6.14) 22 +a(l -+ a* =0.

Then the discriminant of (6.14) is given by
D =ca*(1 - %)’ -8a” = a*{(a® - 1) - 8}.
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Then the solution has two roots as follows:

—a(l - cxz)-_l-a/\/(a/z —1-2V2)(@® -1 +2V2)
1 .
When @2 > 2V2 + 1, we have two distinct roots A, and A, of the equation (6.14).

Now let us consider the case that o> = 2V2 + 1. Then we may put @ = \/2\/5 + 1. In this

case we have
—a(l - a?) 1
PRI €l N Y, UL
b 4 2

Here let us put 6 = —/V2+ 1. Then the shape operator S has three distinct constant

principal curvatures such that

[ 1 22 + 1
=42V2+1, B=y=0, and 6=- «/§+5:_ ‘f; ,

The corresponding eigen spaces are given by £é€Ty, A¢,ANeT; = Q* and T5 = Q with
multiplicities 1, 2 and 2m — 4 respectively.

[y}

On the other hand, on the distribution Q let us introduce an important formula mentioned
in section 3 as follows:

(6.15) 28¢SY — (¢S + SP)Y = =2¢Y

for any tangent vector field Y on M in Q™ (see also [29] , pages 1350050-11). Soif SY = 6Y
in (6.15), then (26 — @)S @Y = (ad — 2)¢pY, which gives

ad -2
20—«
because if 20 — @ = 0, then @d — 2 = 0. This implies a?> =4, then @ = 2 and 6 = 1. In this
case M is locally congruent to a horosphere whose center at infinity is U-isotropic singular.

(6.16) S¢Y = ¢,

On the other hand, let us consider S¢Y = 0¢Y for 20#a, because Ts = Q. From this,
together with the above equation, we have

F—ad+1=0

Then & + 1 = V2 + 3. But&® + 1 = a6 = —/2V2 + 1\/2‘/—“ % — 2. This gives a

contradiction. So thlS case can not be happened.
Accordingly, the shape operator S can be expressed as
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a 0 0 O 0 O 0]
000 O 0 O 0
000 O 0 0 0
000 4 0 0 0
S = : :
0O 0 -~ 4 O
0 0 -+ 0 4
o 00 0 --- 0 0 - A

where the principal curvatures are constants and are given by

a@®-1)+ a/\/(a/2 —1-2V2)(a? - 1 +2V2)
4

1

and respectively

ma%-n—aJm#—1—2v5m2—1+2v5
= 4 .

By virtue of Remark below, we note that the horosphere whose center at infinity is -
isotropic singular can not be appeared. Then we give a complete proof of our Main Theorem
3.

A

REMARK 6.1. Let us check that a tube around the totally geodesic CH* ¢ Q%" or a horo-
sphere whose center at infinity is 2-isotropic singular. Then by Theorem A in the intro-
duction, the tube has a commuting shape operator, that is, S¢ = ¢S and the unit normal
N is U-isotropic and the Reeb curvature @ = ¢g(S¢&, &) is constant (see Suh [34]). By the
A-isotropic unit normal, the properties g(Aé, &) = 0 and g(AN, N) = 0 hold on M. Moreover
from the expression of this tube we know that SA¢ = 0 and SAN = 0, by differentiating we
also confirm that (Vz5)A¢ = 0 and (V:S)AN = 0.

Now we assume that the tube admits a Killing structure Jacobi operator. Then by the
same process as in the proof of our Main Theorem 2, the principal curvature of the tube
should satisfies (6.14), that is,

22 +a(l-a®)A+a? =0.

Then two roots coth r and tanh r of the tube should satisfy 1 = Ay = cothr-tanhr = "72 Then
2 = o’ = coth’r + tanh?r + 2 implies coth?r + tanh’s = 0. This makes a contradiction. So
the tube does not admit a Killing structure Jacobi operator. Then naturally the tube around
the totally geodesic CH* ¢ Q*" or the horosphere does not have a parallel structure Jacobi
operator, which is more strong condition than Killing structure Jacobi operator.
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