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Abstract
In [4], we introduced special types of fusions, so called simple-ribbon fusions on links. A knot

obtained from the trivial knot by a finite sequence of simple-ribbon fusions is called a simple-
ribbon knot. Every ribbon knot with ≤ 9 crossings is a simple-ribbon knot. In this paper, we
give a formula for the Alexander polynomials of simple-ribbon knots. Using the formula, we
determine if a knot with 10 crossings is a simple-ribbon knot. Every simple-ribbon fusion can
be realized by “elementary” simple-ribbon fusions. We call a knot an m-simple-ribbon knot if
the knot is obtained from the trivial knot by a finite sequence of elementary m-simple-ribbon
fusions for a fixed positive integer m. We provide a condition for a simple-ribbon knot to be
both of an m-simple-ribbon knot and an n-simple-ribbon knot for positive integers m and n.

1. Introduction

1. Introduction
Knots and links are assumed to be ordered and oriented, and they are considered up to

ambient isotopy in an oriented 3-sphere S 3. In [4], we introduced special types of fusions, so
called simple-ribbon fusions. A (m-)ribbon fusion on a link � is an m-fusion ([3, Definition
13.1.1]) on the split union of � and an m-component trivial link  such that each component
of  is attached to a component of � by a single band. Note that any knot obtained from the
trivial knot by a finite sequence of ribbon fusions is a ribbon knot ([3, Definition 13.1.9]),
and that any ribbon knot can be obtained from the trivial knot by ribbon fusions. Here we
only define an elementary simple-ribbon fusion. A general simple-ribbon fusion can be
realized by elementary simple-ribbon fusions. Refer [4] for precise definition.

Let � be a link and  = O1 ∪ · · · ∪Om the m-component trivial link which is split from �.
Let  = D1∪· · ·∪Dm be a disjoint union of non-singular disks with ∂Di = Oi and Di∩� = ∅
(i = 1, · · · ,m), and let  = B1 ∪ · · · ∪ Bm be a disjoint union of disks for an m-fusion, called
bands, on the split union of � and  satisfying the following (see Figure 1 for example):

(i) Bi ∩ � = ∂Bi ∩ � = { a single arc };
(ii) Bi ∩  = ∂Bi ∩ Oi = { a single arc }; and

(iii) Bi ∩ int  = Bi ∩ int Di+1 = { a single arc of ribbon type }.

Let L be a link obtained from the split union of � and  by the m-fusion along , i.e.,
L = (� ∪  ∪ ∂) − int( ∩ �) − int( ∩ ). Then we say that L is obtained from � by
an elementary (m-)simple-ribbon fusion or an elementary (m-)SR-fusion (with respect to
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Fig.1. ribbon knots with less than or equal to nine crossings

 ∪ ). If a knot K is obtained from the trivial knot O by a finite sequence of elementary
SR-fusions, then we call K a simple-ribbon knot (or an SR-knot). Since an elementary SR-
fusion is a ribbon fusion, any SR-knot is a ribbon knot. We also call the trivial knot an
SR-knot. As illustrated in Figure 1, all the ribbon knots with ≤ 9 crossings are SR-knots.

Let Ḋi and Ḃi be disks and f : ∪i

(
Ḋi ∪ Ḃi

)
→ S 3 an immersion such that f (Ḋi) = Di and

f (Ḃi) = Bi. We denote the arc of int Di ∩ Bi−1 by αi and let Bi,1 and Bi,2 be the subdisks of
Bi such that Bi,1 ∪ Bi,2 = Bi, Bi,1 ∩ Bi,2 = αi+1, and Bi,1 ∩ ∂Di � ∅. Take a point bi on int αi

(i = 1, . . ., m) and an arc βi on Di ∪ Bi,1 so that βi ∩ (αi ∪αi+1) = ∂βi = bi ∪ bi+1 and oriented
from bi+1 to bi (see Figure 2). Then β = ∪iβi is an oriented simple loop and we call β an
attendant knot of ∪. Moreover, we denote the pre-images of αi (resp. bi) on Ḋi and Ḃi−1

by α̇i and α̈i (resp. ḃi and b̈i), respectively.

Fig.2

 ∪  is oriented so that induced orientations on boundaries are compatible with the
orientation of �. Then we can see that each band Bi intersects with Di+1 in two ways, i.e.
when we pass through αi+1 from Bi,2 to Bi,1, we pass through Di+1 either from the negative
side to the positive side of Di+1, or from the positive side to the negative side of Di+1. In the
former and latter cases, we say that Bi is positive and negative, respectively. Then we have
the following.
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Theorem 1.1. Let K be a knot obtained from a knot k by an elementary m-SR-fusion
with an attendant knot β and with p positive bands. Let l = lk(β, k) and ϕ(t ; m, p, l) =
(1 − t)m − t l(−t)p. Then we have the following.

(1.1) ΔK(t) � Δk(t)ϕ(t ; m, p, l)ϕ(t−1 ; m, p, l)

Remark. We can also write ΔK(t) as Δk(t)ϕ(t ; m, p, l)ϕ(t ; m,m−p,−l), i.e.

(1.2) ΔK(t) � Δk(t) {(1 − t)m − t l(−t)p} {(1 − t)m − t−l(−t)m−p}
Corollary 1.2. Let K be a knot obtained from a knot k by a finite sequence of elementary

SR-fusions, i.e., there exists a finite sequence k = K0, K1, . . . , KN = K of knots such that Ki

is obtained from Ki−1 by an elementary mi-SR-fusion with an attendant knot βi and with pi

positive bands (i = 1, . . . ,N). Let li = lk(βi,Ki−1) and ϕ(t ; mi, pi, li) = (1 − t)mi − t li(−t)pi .
Then we have the following.

(1.3) ΔK(t) � Δk(t)
N∏

i=1

ϕ(t ; mi, pi, li)ϕ(t−1 ; mi, pi, li)

As mentioned in the beginning, all the ribbon knots with ≤ 9 crossings are SR-knots.
Using Corollary 1.2, we can determine if a ribbon knot with 10 crossings is an SR-knot. To
do this, we use a value derived from the Alexander polynomial. For a knot K, let Δ′K(t) be
the polynomial such that Δ′K(t) � ΔK(t) and Δ′K(0) � 0. Then define δ2(K) as 0 if |Δ′K(2)| = 0
and as the largest odd factor of |Δ′K(2)| if |Δ′K(2)| � 0. Note that if K is a simple-ribbon knot,
then δ2(K) is a product of the integers of the form 2s ± 1 (s = 0, 1, 2, . . .) from Corollary 1.2.

Lemma 1.3. If K is a simple-ribbon knot such that δ2(K) = 1, then we have the following
for a non-negative integer n.

(1.4) Δ′K(t) = 1 or (1 − 6t + 11t2 − 6t3 + t4)n

Proof. Since K is a simple-ribbon knot, we have the following from Corollary 1.2, where
N (≥ 1), mi (≥ 1), pi (0 ≤ pi ≤ mi), and li are integers (i = 1, 2, . . . ,N).

ΔK(t) �
∏N

i=1{(1 − t)mi − t li(−t)pi} {(1 − t)mi − t−li(−t)mi−pi}
�

∏N
i=1{tpi+li + (−1)mi−(pi+1)(t − 1)mi} {tmi−(pi+li) + (−1)pi+1(t − 1)mi}

Let gi(t) = tpi+li+(−1)mi−(pi+1)(t−1)mi and hi(t) = tmi−(pi+li)+(−1)pi+1(t−1)mi . Then we have
that Δ′K(2) = 2q ∏N

i=1 gi(2)hi(2) for an integer q. Since δ2(K) = 1, each of |gi(2)| and |hi(2)| is
a power of 2, and thus 2−1 = |2−1 − 1|, 2 = 20 + 1, or 1 = 21 − 1 (i = 1, 2, . . . ,N). Thus, each
of pi + li and mi − (pi + li) is −1, 0, or 1 for each i, and hence mi = (pi + li) + (mi − (pi + li))
is 1 or 2, since mi > 0. Therefore we have that (gi(2), hi(2),mi) = (20 + 1, 21 − 1, 1),
(21 − 1, 20 + 1, 1), or (21 − 1, 21 − 1, 2). In the first two cases and the last case, we have that
gi(t)hi(t) = {t0+ (t−1)}{t1− (t−1)} = t and gi(t)hi(t) = {t− (t−1)2}2 = 1−6t+11t2−6t3+ t4,
respectively. Hence we obtain the conclusion. �

Proposition 1.4. Among the 16 ribbon knots with 10 crossings, 1042, 1075, 1087, 1099,
10129, 10137, 10140, 10153, and 10155 are simple-ribbon knots and 103, 1022, 1035, 1048, 10123,
51 � 5∗1, and 52 � 5∗2 are not.
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Proof. The former statement is from Figure 3. To show the latter statement, we consider
δ2 for each knot. Since δ2(1022) = 11, δ2(1048) = 7×13 = 1×91, and δ2(51 �5∗1) = 11×11 =
1 × 121 from Table 1 and none of 11, 13, 91, and 121 is 2s ± 1 for a non-negative integer s,
we know that these 3 knots are not simple-ribbon knots. For the other 4 knots, we have that
δ2(103) = δ2(1035) = δ2(10123) = δ2(52 � 5∗2) = 1, and the following from Table 1. Hence we
know that they are not simple-ribbon knots from Lemma 1.3.

Δ′103
(t) = 6 − 13t + 6t2, Δ′1035

(t) = 2 − 12t + 21t2 − 12t3 + 2t4,

Δ′10123
(t) = (1 − 3t + 3t2 − 3t3 + t4)2, Δ′52 � 5∗2

(t) = 4 − 12t + 17t2 − 12t3 + 4t4 �

Fig.3

Note that the above proof of Proposition 1.4 implies that for any ribbon knot K with ≤ 10
crossings, if ΔK(t) can be written as equation (1.3), then K is a simple-ribbon knot. However,
it does not hold in general.

Theorem 1.5. For any polynomial Δ(t) =
∏N

i=1 ϕ(t ; mi, pi, li)ϕ(t−1 ; mi, pi, li), there exists
a ribbon knot whose Alexander polynomial is Δ(t) and which is not a simple-ribbon knot.

If an SR-knot is obtained from the trivial knot by a finite sequence of elementary m-SR-
fusions for a fixed positive integer m, then we call the SR-knot m-SR-knot. For example, 89

is a 2-SR-knot and 31 � 3∗1 is a 1-SR-knot and also a 2-SR-knot as we can see in Figure 1.
It is natural to ask if there exists a simple-ribbon knot which is an m-SR-knot and also an
n-SR-knot for distinct positive integers m and n other than 31 � 3∗1. We give a partial answer
to this question using equation (1.3). Let m be a positive integer and m the set of non-trivial
m-SR-knots. Then we have the following.

Theorem 1.6. If m ∩ n � ∅ for positive integers m and n with m > n, then we have
either that (m, n) = (3, 1), (3, 2), or (2n, n).
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2. Proofs of Theorem 1.1 and Theorem 1.5

2. Proofs of Theorem 1.1 and Theorem 1.5
Let K be a knot obtained from a knot k by an elementary m-SR-fusion with respect to

 ∪  with its attendant knot β. Let F be a Seifert surface for k. Here we may take F so
that F ∩  = ∅. Let  = F ∪ ( ∪ ). We first transform  into “standard” position and
construct a Seifert surface FK for K from  in standard position. Then, we calculate ΔK(t)
using FK .

We may take F so that the intersections with ∪ are only arcs of intF and . Then we
divide the set of singularities of intF∩Bi into two: one which consists of intF∩Bi,1, denoted
by i, and the other which consists of intF ∩Bi,2, denoted by i. Thus the set of singularities
of  is ∪iαi ∪ ∪i(i ∪ i). We say that  is in standard position if 1 ∪ · · · ∪ m−1 = ∅ and
1∪ · · · ∪m = ∅ (see Figure 9 for example). To transform  into standard position, we need
the following three transformations. Here note that each transformation changes neither m,
p, nor the knot type of β.

Sliding a disk along a band : Deforming Di+1 by deformation retraction into a regular
neighborhood of Bi and slide Di+1 along Bi toward Di. Here Bi+1 follows Di+1 (see Figure
4 for example). We allow Di+1 ∪ Bi+1 to pass through F. Then an additional intersection of
Bi+1 and F is created.

Winding a band along k : Winding Bi along k = ∂F in a regular neighborhood of Bi ∩ k
either from negative side to positive side or from positive side to negative side (see Figure 5
for example). Here an additional intersection of Bi and F is created.

Tubing F : Removing two disks δ1 and δ2 from int F and attatch an annulus S 1 × [1, 2] so
that S 1 × {i} = ∂δi (i = 1, 2) and the result is orientable (see Figure 6 for example).

Proposition 2.1. Let K be a knot obtained from a knot k by an elementary m-SR-fusion
with respect to  ∪  with its attendant knot β. Let F be a Seifert surface for k such that
F ∩  = ∅ and let  = F ∪ ( ∪ ). Then we may transform  into standard position by
sliding a disk along a band, winding a band along k, and tubing F.

Proof. First if 1 ∪ · · · ∪ m−1 � ∅, then take the smallest index i such that i � ∅ and
slide Di+1 along Bi just next to Di so that i = ∅ (See Figure 4 for example). Then slide Dj+1

along Bj inductively just next to Dj so that  j = ∅ ( j = i + 1, . . . ,m − 1).

Next if 1 ∪ · · · ∪ m � ∅, then take an arbitrary i � ∅ and let t1, . . ., tp be its singularities
which are placed close to Bi ∩ k on Bi in this order. Assume that Bi is oriented as from
Bi ∩ k towards Bi ∩Di and let σ(t j) be the signed intersection number of Bi and F at t j. First
wind Bi along k depending on σ(t j) ( j = 1, . . . , p). If σ(t j) = 1 (resp. −1), then wind Bi

along k = ∂F from negative side to positive side (resp. from positive side to negative side)
as illustrated in Figure 5. Here we make these transformations from j = 1 to j = p in this
order, and notice that each transformation creates a new intersection t′j with σ(t′j) = −σ(t j).
Then make a tubing F so to erase t j and t′j from j = 1 to j = p in this order as illustrated in
Figure 6, and now  is in standard position. �

Proof of Theorem 1.1. Let F be a Seifert surface for k such that F ∩  = ∅ and let
 = F ∪ ( ∪ ). Here we may assume that  is in standard position from Proposition 2.1.
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Fig.4

Fig.5

Fig.6

Thus the set of singularities of  is ∪iαi ∪ m. Erase ∪iαi and m to have a Seifert surface
FK for K by orientation preserving cut and deformation as illustrated in the second left of
Figure 7 and Figure 8, respectively (see Figure 10 for example of FK).

Take a basis x1, . . ., xm, y1, . . ., y|l|, z1, . . ., zm, w1, . . ., w|l|, u1, · · · , ug of H1(FK ;Z) as
illustrated in Figure 7 and Figure 8 (see Figure 10 for example), where u1, · · · , ug is a basis
of H1(F;Z). Then we have the following Seifert matrix M with respect to the basis.
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Fig.7

Fig.8

M=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O(m+|l|)×(m+|l|) P(m+|l|)×(m+|l|) O(m+|l|)× g

Q(m+|l|)×(m+|l|) ∗ ∗

O g×(m+|l|) ∗ M′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O(m+|l|)×(m+|l|)
P1

m×m P2
m×|l|

P3
|l|×m P4

|l|×|l|

O(m+|l|)× g

Q1
m×m Q2

m×|l|

Q3
|l|×m Q4

|l|×|l|

∗ ∗

O g×(m+|l|) ∗ M′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where M′ is a Seifert matrix for k, Os×t is the s × t zero matrix,

P1
m×m = (p1

i j) is an m × m matrix with p1
i j = lk(xi, z+j ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−(εi + 1)/2 if i = j
εi if i = 1 and j = m,

or 2 ≤ i ≤ m and j = i − 1
0 otherwise,

P2
m×|l| = (p2

i j) is an m × |l| matrix with p2
i j = lk(xi, w

+
j ) =

{
ε1 if i = 1 and j = |l|
0 otherwise,
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P3
|l|×m = (p3

i j) is an |l| × m matrix with p3
i j = lk(yi, z+j ) =

{
ε if j = m
0 otherwise,

P4
|l|×|l| = (p4

i j) is an |l| × |l| matrix with p4
i j = lk(yi, w

+
j ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ε + 1)/2 if i = j
(ε − 1)/2 if 2 ≤ i ≤ |l| and j = i − 1

0 otherwise,

if l � 0, and Pm×m = P1
m×m if l = 0,

Q1
m×m = (q1

i j) is an m×m matrix with q1
i j = lk(zi, x+j ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−(εi − 1)/2 if i = j
εi if i = m and j = 1,

or 1 ≤ i ≤ m − 1 and j = i + 1
0 otherwise,

Q2
m×|l| = (q2

i j) is an m × |l| matrix with q2
i j = lk(zi, y

+
j ) =

{
ε if i = m
0 otherwise,

Q3
|l|×m = (q3

i j) is an |l| × m matrix with q3
i j = lk(wi, x+j ) =

{
ε1 if i = |l| and j = 1
0 otherwise, and

Q4
|l|×|l| = (q4

i j) is an |l|×|l|matrix with q4
i j = lk(wi, y

+
j ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ε − 1)/2 if i = j
(ε + 1)/2 if 1 ≤ i ≤ |l| − 1 and j = i + 1

0 otherwise,

if l � 0, and Qm×m = Q1
m×m if l = 0, and ε =

{
1 if l is positive
−1 if l is negative , εi =

{
1 if Bi is positive
−1 if Bi is negative

(i = 1, . . . ,m). Letting a =
ε + 1

2
, b =

ε − 1
2

, ai =
εi + 1

2
, and bi =

εi − 1
2

, we have the following.

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z+1 z+2 · · · z+m−1 zm w
+
1 w

+
2 · · · w+|l|−1 w

+
|l|

x1 −a1 ε1 ε1
x2 ε2 −a2
...

. . .
. . .

xm−1
. . . −am−1

xm εm −am

y1 ε a
y2 ε b a
... ε

. . .
. . .

y|l|−1 ε
. . . a

y|l| ε b a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x+1 x+2 · · · x+m−1 xm y
+
1 y

+
2 · · · y+|l|−1 y

+
|l|

z1 −b1 ε2

z2 −b2
. . .

...
. . .

. . .

zm−1 −bm−1 εm

zm ε1 −bm ε ε ε ε ε
w1 b a
w2 b a
...

. . .
. . .

w|l|−1 b a
w|l| ε1 b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Then the Alexander polynomial ΔK(t) of K is the product of the Alexander polynomial
Δk(t) of k, |P − t QT |, and |Q − t PT |.
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Claim 2.2. We have the following, where c = a− tb, d = b− ta, e = ε(1− t), ci = ai − tbi,
di = bi − tai, and ei = εi(1 − t).

|Q−tPT | = d |l|
m∏

i=1

(−di)+ (−1)|l|+m+1c |l|
m∏

i=1

ei , |P−t QT | = c |l|
m∏

i=1

(−ci)+ (−1)|l|+m+1d |l|
m∏

i=1

ei.

Proof. First we calculate | P−tQT | noticing that e = c + d. If l = 0, then we have that

|P−t QT | =

−c1 e1
e2 −c2
. . .
. . .
. . . −cm−1

em −cm

= c 0
m∏

i=1

(−ci) + (−1)0+m+1d 0
m∏

i=1

ei.

If |l| = 1, then we have that

|P− tQT | =

−c1 e1 e1
e2 −c2
. . .
. . .
. . . −cm−1

em −cm

e c

=

−c1 0 e1
e2 −c2
. . .
. . .
. . . −cm−1

em −cm

d c

= c 1
m∏

i=1

(−ci) + (−1)1+m+1d 1
m∏

i=1

ei.

If |l| > 1, then we have that

|P− tQT | =

−c1 e1 e1
e2 −c2
. . .
. . .
. . . −cm−1

em −cm

e c
e d c
e

. . .
. . .

e
. . . c

e d c

=

−c1 0 e1
e2 −c2
. . .
. . .
. . . −cm−1

em −cm

d c
0 d c
0

. . .
. . .

0
. . . c

0 d c

= c |l|
m∏

i=1

(−ci) + (−1)|l|+m+1d |l|
m∏

i=1

ei.



50 K. Kishimoto, T. Shibuya, T. Tsukamoto and T. Ishikawa

Next we calculate |Q−tPT | noticing that e = c + d. If l = 0, then we have that

|Q − t PT | =

−d1 e2

−d2
. . .
. . .
. . .

−dm−1 em
e1 −dm

= d 0
m∏

i=1

(−di) + (−1)0+m+1c 0
m∏

i=1

ei.

If |l| = 1, then we have that

|Q− tPT | =

−d1 e2

−d2
. . .
. . .
. . .

−dm−1 em
e1 −dm e
e1 d

=

−d1 e2

−d2
. . .
. . .
. . .

−dm−1 em
0 −dm c
e1 d

= d 1
m∏

i=1

(−di) + (−1)1+m+1c 1
m∏

i=1

ei.

If |l| > 1, then we have that

|Q− tPT | =

−d1 e2

−d2
. . .
. . .

. . .
−dm−1 em

e1 −dm e e · · · e e
d c

d
. . .
. . .

. . .
d c

e1 d

=

−d1 e2

−d2
. . .
. . .

. . .
−dm−1 em

0 −dm c 0 · · · 0 0
d c

d
. . .
. . .

. . .
d c

e1 d

= d |l|
m∏

i=1

(−di) + (−1)|l|+m+1c |l|
m∏

i=1

ei. �

Now we calculate the Alexander polynomial ΔK(t) of K diving the case into two depend-
ing on the value of l; l ≥ 0 or l < 0. Here note the following.

ε a b c d e

1 1 0 1 −t 1 − t

−1 0 −1 t −1 −(1 − t)

εi ai bi ci di ei

1 1 0 1 −t 1 − t

−1 0 −1 t −1 −(1 − t)
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Case. l ≥ 0 : From the above table, we have the following;

|P − t QT | = c |l|
m∏

i=1

(−ci) + (−1)|l|+m+1d |l|
m∏

i=1

ei

= 1 l (−1)p(−t)m−p + (−1)l+m+1(−t) l(−1)m−p(1 − t)m

= (−1)1−p {t l(1 − t)m − (−t)m−p}

|Q − t PT | = d |l|
m∏

i=1

(−di) + (−1)|l|+m+1c |l|
m∏

i=1

ei

= (−t) l t p 1m−p + (−1)l+m+11 l (−1)m−p(1 − t)m = (−1)l+1−p {(1 − t)m − t l(−t)p}
Case. l < 0 : From the above table, we have the following;

|P − t QT | = c |l|
m∏

i=1

(−ci) + (−1)|l|+m+1d |l|
m∏

i=1

ei

= t−l (−1)p(−t)m−p + (−1)−l+m+1(−1)−l(−1)m−p(1 − t)m

= (−1)1−p {(1 − t)m − t−l(−t)m−p}

|Q − t PT | = d |l|
m∏

i=1

(−di) + (−1)|l|+m+1c |l|
m∏

i=1

ei

= (−1)−l t p 1m−p + (−1)−l+m+1t−l (−1)m−p(1 − t)m = (−1)−l+1−p {t−l(1 − t)m − (−t)p}

In both cases, we obtain that ΔK(t) � Δk(t) {(1 − t)m − t l(−t)p} {(1 − t)m − t−l(−t)m−p}, and
thus we complete the proof. �

Fig.9

Proof of Theorem 1.5. For each i (1 ≤ i ≤ N), we can construct a simple-ribbon knot ki

with Δki(t) = ϕ(t ; mi, pi, li)ϕ(t−1 ; mi, pi, li) by following the proof of Theorem 1.1 (see also
Figure 9). Let K∗ be the connected sum of k1, k2, . . ., kN . Then K∗ is a simple-ribbon knot
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Fig.10

such that ΔK∗(t) = Δ(t). Let  ∪  be the set of disks and bands which gives the SR-fusion
on the trivial knot  = ∂D0 producing K∗. Take a 3-ball H which is a small neighborhood
of a point of  −  and a trivial knot ρ in H which intersects D0 twice so that lk(ρ,) = 2.
Let V∗ be the closure of S 3 − N(ρ; S 3). Since ρ is the trivial knot, V∗ is an unknotted torus
which contains K∗ with wV∗(K∗) = 2, where wV∗(K∗) is the absolute value of the algebraic
intersection number of K∗ with a meridian disk of V∗.

Let V be a tubular neighborhood of the Kinoshita-Terasaka knot κ and f a faithful home-
omorphism of V∗ onto V , i.e. f maps the preferred longitude of ∂V∗ onto the preferred
longitude of ∂V . Since Δκ(t) = 1, we obtain that ΔK(t) = ΔK∗(t)Δκ(t2) = ΔK∗(t) = Δ(t)
for K = f (K∗) by Proposition 8.23 of [1]. Since f is faithful and both of K∗ and κ
are ribbon knots, K is also a ribbon knot by Lemma 3 of [8]1. On the other hand, as
wV(K) = wV∗(K∗) = 2 and κ is a non-trivial knot, K is not a simple ribbon knot by Corollary
1.8 of [5]. �

3. Proof of Theorem 1.6

3. Proof of Theorem 1.6
Note that if K is a knot of m, then det(K) = |ΔK(−1)| = (2 m − 1)a(2 m + 1)b for some

non-negative integers a and b by Corollary 1.2. Moreover if K is also a knot of n, then
det(K) = (2 n−1)c(2 n+1)d for some non-negative integers c and d, and thus the set of prime
factors of (2 m − 1)a′(2 m + 1)b′ and (2 n − 1)c′(2 n + 1)d′ coinside, where i′ = min(i, 1) for a,
b, c, and d.

Let P(x) be the set of prime factors of an integer x > 1, and (y, z) the greatest common
divisor of positive integers y and z. Note that if P(y) = P(z) and (y, z) = w, then we have that
P(y) = P(z) = P(w). Here we prepare several lemmas, the first one of which is the theorem
by P. Mihăilescu (the Catalan conjecture).

1Lemma 3 shows that K is ribbon cobordant to K∗ if κ is a ribbon knot, although it states that K is cobordant
to K∗.
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Lemma 3.1 ([6, Theorem 5]). The following equation has no other integer solutions but
32 − 23 = 1.

(3.1) xu − yv = 1 (x > 0, y > 0, u > 1, v > 1)

Lemma 3.2 ([2, Theorem 1]). Let A, m, and n be integers such that A > 1 and m > n ≥ 1.
Then P(Am − 1) = P(An − 1) if and only if m = 2, n = 1, and A = 2l − 1 for an integer l > 0.

Lemma 3.3. Let A be an integer such that A > 1. Then the followings hold.

(1) P(Ap + 1) = P(A + 1) for an odd integer p (> 1) if and only if p = 3 and A = 2.
(2) P(Aq − 1) = P(A + 1) for an even integer q (> 0) if and only if q = 2 and A = 2l + 1

for an integer l ≥ 0.

Proof. Since the if parts are easy to be checked, we only show the only if parts.

(1) First the following equation holds, since p is odd.

(3.2) B =
Ap + 1
A + 1

= Ap−1 − Ap−2 + · · · − A + 1 =
p−2∑
i=0

(
p
i

)
(A + 1)p−i−1(−1)i + p

If p is prime, then we have that (B, A + 1) = (A + 1, p) = p from equation (3.2), and thus
that P(B) = {p}, since P(B) ⊂ P(Ap + 1) = P(A + 1). Moreover, we have that B ≡ p (mod
p2) also from equation (3.2), since A + 1 ≡ 0 (mod p),

(
p

p−2

)
≡ 0 (mod p). Hence we obtain

that B = p. If p > 3, then we also have that

(3.3) B = Ap−1−Ap−2+· · ·−A+1 = A(A−1)(Ap−3+Ap−5+· · ·+1)+1 > A(A−1)
p − 1

2
+1 ≥ p,

since A ≥ 2. However then it contradicts that B = p. Therefore we have that p = 3. Then
we have that A2 − A + 1 = B = p = 3 from equation (3.2), and thus that A = 2, since A > 1,
which completes the proof.

If p is not prime, then let p′ be a prime factor of p, and let p = p′r and B = Ar. Since r
and p′ are odd, we have that A + 1 divides Ar + 1 = B + 1 and that B + 1 divides Bp′ + 1.
Hence we have that P(A + 1) ⊂ P(B + 1) ⊂ P(Bp′ + 1) = P(Ap + 1), since Bp′ = Ap. Hence
we have that P(Bp′ + 1) = P(B + 1), since P(Ap + 1) = P(A + 1). Thus from the previous
case, we have that p′ = 3 and B = Ar = 2, and thus A = 2 and r = 1. However then, we
have that p = p′r = 3, which contradicts that p is not prime.

(2) Since q is even, we have that q ≥ 2. Hence we have that P(A−1) ⊂ P(Aq−1) = P(A+1),
and thus that P(A2−1) = P((A−1)(A+1)) = P(A+1) = P(Aq−1). Thus we have that q = 2
from Lemma 3.2. If A � 2 = 20+1, then we have that A−1 > 1 and thus that A+1 and A−1
are not coprime, since P(A−1) ⊂ P(A+1). Hence we have that (A+1, A−1) = (A−1, 2) = 2,
since A + 1 = (A − 1) + 2. Therefore we obtain that A − 1 = 2l for l > 0, which completes
the proof. �

Using Lemma 3.1 and Lemma 3.3, we show the following.

Proposition 3.4. Let A, m, and n be integers such that A > 1 and m, n ≥ 1. Then we have
the following.

(1) P(Am + 1) = P(An + 1) (m > n) if and only if m = 3, n = 1, and A = 2;
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(2) P(Am + 1) = P(An − 1) if and only if one of the following holds.
(i) m = 1, n = 1, and A = 3 ;

(ii) m = 3, n = 2, and A = 2 ;
(iii) m = 2, n = 4, and A = 3 ; and
(iv) m = 1, n = 2, and A = 2l + 1 for an integer l ≥ 0.

Proof. First we have the following for indeterminate X and positive integers s, t, and q
and a non-negative integer r such that s = qt + r.

(3.4) Xs ± 1 = (Xt + 1)(Xs−t − Xs−2t + · · · − (−1)qXs−qt) + (−1)qXr ± 1

(3.5) Xs + 1 = (Xt − 1)(Xs−t + Xs−2t + · · · + Xs−qt) + Xr + 1

Let g = (m, n). Then we have the following.

Claim 3.5. (Am + 1, An + 1), (Am + 1, An − 1) = 1, 2 or Ag + 1.

Proof. For positive integers c0 and c1, let (c0, c1) = (c1, c2) = · · · = (cN−1, cN) = cN be
the sequence obtained by the Euclidian algorithm. Then letting ci = qi+1ci+1 + qi+2, we also
have the following from equations (3.4) and (3.5).

(3.6) AcN−1 ± 1 = (AcN + 1)(AcN−1−cN − AcN−1−2cN + · · · − (−1)qAcN−1−qN cN ) + (−1)qN A0 ± 1

(3.7) AcN−1 + 1 = (AcN − 1)(AcN−1−cN + AcN−1−2cN + · · · + AcN−1−qN cN ) + A0 + 1

Hence by letting (c0, c1) = (m, n) or (n,m), we have that (Am + 1, An + 1), (Am + 1, An − 1) is
either Ag + 1 or (Ag ± 1, 2), which induces the conclusion. �
Since the if parts are easy to be checked, we only show the only if parts.

(1) Since P(Am + 1) = P(An + 1), we have that Am + 1 and An + 1 are not coprime, and
thus that (Am + 1, An + 1) = 2 or Ag + 1 from Claim 3.5. In the former case, we have that
P(Am + 1) = P(An + 1) = P(2) = {2}. Thus, Am + 1 = 2k and An + 1 = 2 for k > 1, since
m > n. However then, we have that A = 1, which contradicts that A > 1. In the latter case,
we have that P(Am + 1) = P(An + 1) = P(Ag + 1) and that m = gM with an odd integer M
from equation (3.4). If M = 1, then m = g, which contradicts that m > n. Thus M is odd and
M > 1. Then we have that M = 3 and Ag = 2 by Lemma 3.3 (1), and thus that A = 2, g = 1,
m = gM = 3. Hence we have that n = g = 1, since m > n, which completes the proof.

(2) Since P(Am + 1) = P(An − 1), we have that Am + 1 and An − 1 are not coprime, and
thus that (Am + 1, An − 1) = 2 or Ag + 1 from Claim 3.5. In the former case, we have that
P(Am + 1) = P(An − 1) = P(2) = {2}, and thus that Am + 1 = 2 or An − 1 = 2. If Am + 1 = 2,
then Am = 1, which contradicts that A > 1. If Am + 1 = 2k (k > 1) and An − 1 = 2, then we
have that A = 3 and n = 1, and thus that Am + 1 = 3m + 1 = 2k (k > 1). Then by Lemma 3.1,
we have that m = 1, and thus obtain condition (i).

In the latter case, we have that P(Am + 1) = P(An − 1) = P(Ag + 1) and that m = gM with
an odd integer M from equation (3.4). Consider the case where M > 1. Then we have that
M = 3 and Ag = 2 by Lemma 3.3 (1), and thus that A = 2, g = 1, m = gM = 3. Since
Am + 1 = 23 + 1 = 9, and thus P(2n − 1) = P(9) = {3} and (Am + 1, An − 1) = (9, 2n − 1) = 3,
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Table 1. Ribbon knots with up to 10 crossings, where F(t ; m, p, l) =
ϕ(t ; m, p, l)ϕ(t−1 ; m, p, l)

K simple-ribbon δ2(K) det(K) Δ′K(t)

61 © 0 9 F(t; 2, 0, 0) = 2−5t + 2t2

88 © 5 25 F(t; 2, 1,−1) = 2−6t + 9t2−6t3 + 2t4

89 © 7 25 F(t; 2, 2, 1) = 1−3t + 5t2−7t3 + 5t4−3t5 + t6

820 © 9 9 F(t; 2, 1, 0) = 1−2t + 3t2−2t3 + t4

927 © 5 49 F(t; 3, 1, 0) = 1−5t + 11t2−15t3 + 11t4−5t5 + t6

941 © 7 49 F(t; 3, 0, 0) = 3−12t + 19t2−12t3 + 3t4

946 © 0 9 F(t; 2, 0, 0) = 2−5t + 2t2

103 × 1 25 6−13t + 6t2

1022 × 11 49 2−6t + 10t2−13t3 + 10t4−6t5 + 2t6

1035 × 1 49 2−12t + 21t2−12t3 + 2t4

1042 © 9 81 F(t; 3, 2, 0) = 1−7t + 19t2−27t3 + 19t4−7t5 + t6

1048 × 91 49 1−3t + 6t2−9t3 + 11t4−9t5 + 6t6−3t7 + t8

1075 © 9 81 F(t; 3, 3, 0) = 1−7t + 19t2−27t3 + 19t4−7t5 + t6

1087 © 0 81 F(t; 3, 2,−1) = 2−9t + 18t2−23t3 + 18t4−9t5 + 2t6

1099 © 81 81 F(t; 1, 1, 1)F(t; 2, 2, 0) = 1−4t + 10t2−16t3 + 19t4−16t5 + 10t6−4t7 + t8

10123 × 1 121 1−6t + 15t2−24t3 + 29t4−24t5 + 15t6−6t7 + t8

10129 © 5 25 F(t; 2, 1, 1) = 2−6t + 9t2−6t3 + 2t4

10137 © 1 25 F(t; 2, 0, 1) = 1−6t + 11t2−6t3 + t4

10140 © 9 9 F(t; 2, 1, 0) = 1−2t + 3t2−2t3 + t4

10153 © 35 1 F(t; 1, 1, 2) = 1−t−t2 + 3t3−t4−t5 + t6

10155 © 7 25 F(t; 2, 2, 1) = 1−3t + 5t2−7t3 + 5t4−3t5 + t6

31 � 3∗1 © 9 9 F(t; 1, 1, 1) = 1−2t + 3t2−2t3 + t4

41 � 41 © 1 25 F(t; 2, 0, 1) = 1−6t + 11t2−6t3 + t4

51 � 5∗1 × 121 25 1−2t + 3t2−4t3 + 5t4−4t5 + 3t6−2t7 + t8

52 � 5∗2 × 1 49 4−12t + 17t2−12t3 + 4t4

we have that 2n − 1 = 3 and thus that n = 2. Therefore we obtain condition (ii).

Next consider the case where M = 1, i.e., m = g. Hence let n = mq (q ≥ 1) and D = Am.
Thus we have that P(D + 1) = P(Dq − 1) and that (D + 1,Dq − 1) = D + 1. Therefore q is
even, since otherwise D+ 1 does not divide Dq − 1. Then we have that q = 2 and D = 2l + 1
for l ≥ 0 by Lemma 3.3 (2). If m > 1 and l > 1, then the equation Am = 2l +1 has the unique
solution (A,m, l) = (3, 2, 3) by Lemma 3.1, and thus we obtain condition (iii). If m = 1, then
we have that n = mq = 2 and A = 2l + 1 for l ≥ 0, i.e., condition condition (iv). If l = 0
(resp. 1), then we have that A = 2 (resp. A = 3) and m = 1, and thus that condition (iv). �

Now using Proposition 3.4 and Lemma 3.2 we obtain the following.
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Lemma 3.6. Let p, q, r, s, M, N be positive integers with M � N. Then we have the
following.

(1) (2M − 1)p � (2N − 1)r.

(2) If (2M + 1)q = (2N + 1)s (M > N), then M = 3, N = 1, and s = 2q.

(3) If (2M + 1)q = (2N − 1)r, then M = 3, N = 2, r = 2q or M = 1, N = 2, q = r.

(4) (2M − 1)p(2M + 1)q � (2N − 1)r(2N + 1)s

(5) If (2M − 1)p(2M + 1)q = (2N − 1)r, then 2M = N, p = q = r.

(6) If (2M − 1)p(2M + 1)q = (2N + 1)r, then M = 1, N = 3, q = 2r.

Proof. Note that if positive integers X, Y and non-negative integers p, q satisfies the
equation Xp = Yq, then P(X) = P(Y). The first three statements are obtained by Lemma 3.2,
Proposition 3.4 (1), and Proposition 3.4 (2), respectively. For the last three statements, note
that P((2M − 1)p(2M + 1)q) = P(22M − 1). Therefore (4) and (5) are obtained by Lemma 3.2,
and (6) is obtained by Proposition 3.4 (2). �

Proof of Theorem 1.6. Let K be a knot of m ∩ n. Then we have that det(K) =
(2 m − 1)a(2 m + 1)b = (2 n − 1)c(2 n + 1)d for some non-negative integers a, b, c, and d by
Corollary 1.2. Thus we obtain the conclusion by Lemma 3.6. �
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