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Abstract

In [4], we introduced special types of fusions, so called simple-ribbon fusions on links. A knot
obtained from the trivial knot by a finite sequence of simple-ribbon fusions is called a simple-
ribbon knot. Every ribbon knot with < 9 crossings is a simple-ribbon knot. In this paper, we
give a formula for the Alexander polynomials of simple-ribbon knots. Using the formula, we
determine if a knot with 10 crossings is a simple-ribbon knot. Every simple-ribbon fusion can
be realized by “elementary” simple-ribbon fusions. We call a knot an m-simple-ribbon knot if
the knot is obtained from the trivial knot by a finite sequence of elementary m-simple-ribbon
fusions for a fixed positive integer m. We provide a condition for a simple-ribbon knot to be
both of an m-simple-ribbon knot and an n-simple-ribbon knot for positive integers m and n.

1. Introduction

Knots and links are assumed to be ordered and oriented, and they are considered up to
ambient isotopy in an oriented 3-sphere S3. In [4], we introduced special types of fusions, so
called simple-ribbon fusions. A (m-)ribbon fusion on a link ¢ is an m-fusion ([3, Definition
13.1.1]) on the split union of £ and an m-component trivial link © such that each component
of O is attached to a component of £ by a single band. Note that any knot obtained from the
trivial knot by a finite sequence of ribbon fusions is a ribbon knot ([3, Definition 13.1.9]),
and that any ribbon knot can be obtained from the trivial knot by ribbon fusions. Here we
only define an elementary simple-ribbon fusion. A general simple-ribbon fusion can be
realized by elementary simple-ribbon fusions. Refer [4] for precise definition.

Let {be alinkand O = O, U --- U O,, the m-component trivial link which is split from ¢.
Let D = DyU---UD,, be adisjoint union of non-singular disks with dD; = O; and D;N{ = 0
(i=1,---,m),and let 3= B; U---U B, be a disjoint union of disks for an m-fusion, called
bands, on the split union of £ and O satisfying the following (see Figure 1 for example):

(1) Bin¢=090B;Nn¢ ={asingle arc };
(i) B;N O = 9B; N O; = { asingle arc }; and
(iii)) B; Nnint D = B; Nint D;;; = { a single arc of ribbon type }.
Let L be a link obtained from the split union of £ and © by the m-fusion along B, i.e.,

L=(UOUdB)—int(BN{) —int(B N O). Then we say that L is obtained from ¢ by
an elementary (m-)simple-ribbon fusion or an elementary (m-)SR-fusion (with respect to
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Fig.1. ribbon knots with less than or equal to nine crossings

DU B). If a knot K is obtained from the trivial knot O by a finite sequence of elementary
SR-fusions, then we call K a simple-ribbon knot (or an SR-knot). Since an elementary SR-
fusion is a ribbon fusion, any SR-knot is a ribbon knot. We also call the trivial knot an
SR-knot. As illustrated in Figure 1, all the ribbon knots with < 9 crossings are SR-knots.

Let D; and B, be disks and f : U; (Di U B,») — §3 an immersion such that f(D;) = D; and
f(B;) = B;. We denote the arc of int D; N B;_, by «@; and let B;; and B;; be the subdisks of
B; such that B;; U B;» = B, Bi1 N B2 = @11, and B;; N dD; # 0. Take a point b; on int @;
(i=1,...,m)and an arc 8; on D; U B; so that 8; N (a; U @;41) = 0B; = b; U b;;; and oriented
from b;y; to b; (see Figure 2). Then f = U;5; is an oriented simple loop and we call S an
attendant knot of DU B. Moreover, we denote the pre-images of a; (resp. b;) on D; and B;_,
by &; and & (resp. b; and b;), respectively.

Bm . Z)l .
Bm—1|2 Bml2

Fig.2

D U B is oriented so that induced orientations on boundaries are compatible with the
orientation of £. Then we can see that each band B; intersects with D;;; in two ways, i.e.
when we pass through @, from B;; to B;;, we pass through D, either from the negative
side to the positive side of D;, 1, or from the positive side to the negative side of D;,;. In the
former and latter cases, we say that B; is positive and negative, respectively. Then we have
the following.
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Theorem 1.1. Let K be a knot obtained from a knot k by an elementary m-SR-fusion
with an attendant knot B and with p positive bands. Let | = 1k(B,k) and ¢(t;m,p,l) =
(1 =)™ — t'(—=1)P. Then we have the following.

(1.1) Ak(D) = M) (e 5m, p, D (™" 5 m, p, 1)

RemMark. We can also write Ag(t) as Ag(t) o(t ; m, p, 1) o(t ;m,m—p, =), i.e.
(1.2) A = A1 = D™ =t (=P} = " = 7! (=t)"P)

Corollary 1.2. Let K be a knot obtained from a knot k by a finite sequence of elementary
SR-fusions, i.e., there exists a finite sequence k = Ky, K1, ..., Ky = K of knots such that K;
is obtained from K;_| by an elementary m;-SR-fusion with an attendant knot B; and with p;
positive bands (i = 1,...,N). Let l; = 1k(B:, Ki_1) and @(t ;m;, pi, I}) = (1 — t)" — tli(=£)Pi.
Then we have the following.

N
(1.3) A () = A(D) l_l o(t s mi, pis 1) (e~ s my, pi, 1)
i=1

As mentioned in the beginning, all the ribbon knots with < 9 crossings are SR-knots.
Using Corollary 1.2, we can determine if a ribbon knot with 10 crossings is an SR-knot. To
do this, we use a value derived from the Alexander polynomial. For a knot K, let A}(7) be
the polynomial such that A} () = Ax(#) and A} (0) # 0. Then define 62(K) as 0 if |A%(2)] = 0
and as the largest odd factor of |A%(2)| if |A%(2)| # 0. Note that if K is a simple-ribbon knot,
then 6,(K) is a product of the integers of the form 2°+1 (s = 0, 1,2, ...) from Corollary 1.2.

Lemma 1.3. If K is a simple-ribbon knot such that 6,(K) = 1, then we have the following
for a non-negative integer n.

(1.4) Ne(t) = Lor (1 — 6t + 1182 — 66 + 1*y"

Proof. Since K is a simple-ribbon knot, we have the following from Corollary 1.2, where
N 1), m; (= 1), p; (0< p; <my), and [; are integers (i = 1,2,...,N).

Ag(0) =TT = 0™ = " (=P {1 = 0y = 1 (=)™
= Hf\il{tpfrli + (=)=t — ymy {rimPitl) (=Pl (r — 1))

Let g;(¢) = i+ (=1)"=PitD(t—1)" and h;(t) = "~ Pt (=1)P*1(t—1)". Then we have
that A% (2) = 24 Hfil gi(2)h;(2) for an integer g. Since 6,(K) = 1, each of |g;(2)| and |h;(2)| is
apowerof 2, andthus 27! =271 = 1,2 =24+ 1,0r 1 =2' =1 (i = 1,2,..., N). Thus, each
of p; + [ and m; — (p; + ;) is —1, 0, or 1 for each i, and hence m; = (p; + [;) + (m; — (p; + [;))
is 1 or 2, since m; > 0. Therefore we have that (g;(2), h;(2),m;) = (2° + 1,2 — 1,1),
2'=1,2°+1,1), or 2! = 1,2' — 1, 2). In the first two cases and the last case, we have that
gi(Ohi() = (O + (@ —= D' = (t=1)} = tand g;(Oh;i(t) = {t—(t—=1)*}> = 1 =6t + 117 - 63 + 14,
respectively. Hence we obtain the conclusion. m|

Proposition 1.4. Among the 16 ribbon knots with 10 crossings, 1045, 1075, 10g7, 1099,
10129, 10137, 10140, 10153, and 10155 are simple—ribbon knots and 103, 1022, 1035, 1048: 10123,
51457, and 5, # 5; are not.
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Proof. The former statement is from Figure 3. To show the latter statement, we consider
0, for each knot. Since 0,(102) = 11, 62(1048) = 7%x 13 = 1 x91, and 6,(5; 115*1) =11x11=
1 x 121 from Table 1 and none of 11, 13, 91, and 121 is 2° + 1 for a non-negative integer s,
we know that these 3 knots are not simple-ribbon knots. For the other 4 knots, we have that
62(103) = 62(1035) = 52(10123) = 62(52 #53) = 1, and the following from Table 1. Hence we
know that they are not simple-ribbon knots from Lemma 1.3.

Ay, (1) = 6 = 131 + 61, 1Oﬁ(z) =2— 12042172 - 127 + 21,

Ny = (1=30+32 =38 + 142, Ay g5 (D=4 =120+ 1762 — 127 + 4¢* O
1042 1075 1087 1099

SR G (G A

AN
TP D ¢ (DY

SRGRG A

10129 10137 ooy 10140 10153 10155
AN

Cﬁ’@
B

C\
%
¥e

@ N

Fig.3

Note that the above proof of Proposition 1.4 implies that for any ribbon knot K with < 10
crossings, if Ax(#) can be written as equation (1.3), then K is a simple-ribbon knot. However,
it does not hold in general.

Theorem 1.5. For any polynomial A(t) = Hfil o(t;my, piy ;) go(t‘1 ; My, i, 1), there exists
a ribbon knot whose Alexander polynomial is A(t) and which is not a simple-ribbon knot.

If an SR-knot is obtained from the trivial knot by a finite sequence of elementary m-SR-
fusions for a fixed positive integer m, then we call the SR-knot m-SR-knot. For example, 89
is a 2-SR-knot and 3; § 37 is a 1-SR-knot and also a 2-SR-knot as we can see in Figure 1.
It is natural to ask if there exists a simple-ribbon knot which is an m-SR-knot and also an
n-SR-knot for distinct positive integers m and n other than 3; § 37. We give a partial answer
to this question using equation (1.3). Let m be a positive integer and £C,, the set of non-trivial
m-SR-knots. Then we have the following.

Theorem 1.6. If IC,, N KC,, # 0 for positive integers m and n with m > n, then we have
either that (m,n) = (3, 1), (3, 2), or (2n, n).
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2. Proofs of Theorem 1.1 and Theorem 1.5

Let K be a knot obtained from a knot k£ by an elementary m-SR-fusion with respect to
D uU B with its attendant knot 8. Let F be a Seifert surface for k. Here we may take F so
that FN'D = 0. Let C = F U (D U B). We first transform C into “standard” position and
construct a Seifert surface Fg for K from C in standard position. Then, we calculate Ag()
using Fg.

We may take F so that the intersections with D U BB are only arcs of intF and /3. Then we
divide the set of singularities of int/ N B; into two: one which consists of int# N B; |, denoted
by S;, and the other which consists of intF N B, », denoted by 7;. Thus the set of singularities
of C is U;a; U Uy(S; U T;). We say that C is in standard position it Sy U ---U S,,_1 = 0 and
TiU---UT,, = 0 (see Figure 9 for example). To transform C into standard position, we need
the following three transformations. Here note that each transformation changes neither m,
p, nor the knot type of 5.

Sliding a disk along a band : Deforming D;,; by deformation retraction into a regular
neighborhood of B; and slide D, along B; toward D;. Here B, follows D;,; (see Figure
4 for example). We allow D;,; U B, to pass through F. Then an additional intersection of
B;,, and F is created.

Winding a band along &k : Winding B; along k = JF in a regular neighborhood of B; N k
either from negative side to positive side or from positive side to negative side (see Figure 5
for example). Here an additional intersection of B; and F is created.

Tubing F' : Removing two disks ¢; and 9, from int " and attatch an annulus S 1'% [1,2] so
that ! x {i} = 86, (i = 1,2) and the result is orientable (see Figure 6 for example).

Proposition 2.1. Let K be a knot obtained from a knot k by an elementary m-SR-fusion
with respect to D U B with its attendant knot B. Let F be a Seifert surface for k such that
FND=0andlet C=F U (DU B). Then we may transform C into standard position by
sliding a disk along a band, winding a band along k, and tubing F.

Proof. Firstif S; U---U S,,_; # 0, then take the smallest index i such that S; # () and
slide D;, along B; just next to D; so that S; = () (See Figure 4 for example). Then slide D
along B; inductively just nextto D; sothat S; =0 (j=i+1,...,m—1).

Nextif 77 U---UT,, # 0, then take an arbitrary 7; # 0 and let 7, .. ., t, be its singularities
which are placed close to B; N k on B; in this order. Assume that B; is oriented as from
B; Nk towards B; N D; and let o(¢;) be the signed intersection number of B; and F at ¢;. First
wind B; along k depending on o(¢;) (j = 1,...,p). If o(¢;) = 1 (resp. —1), then wind B;
along k = JF from negative side to positive side (resp. from positive side to negative side)
as illustrated in Figure 5. Here we make these transformations from j = 1 to j = p in this
order, and notice that each transformation creates a new intersection t;. with o-(t}) = —o(t)).
Then make a tubing F so to erase 7; and t;. from j = 1 to j = p in this order as illustrated in
Figure 6, and now C is in standard position. O

Proof of Theorem 1.1. Let F be a Seifert surface for k such that F N D = 0 and let
C = F U (D U B). Here we may assume that C is in standard position from Proposition 2.1.
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Qit1 - } singularities

created by sliding

Fig.4

Fig.6

Thus the set of singularities of C is U;a; U S,,,. Erase U;a; and S, to have a Seifert surface
Fg for K by orientation preserving cut and deformation as illustrated in the second left of
Figure 7 and Figure 8, respectively (see Figure 10 for example of F).

Take a basis X1, ..., Xpy Yis - o os Yills ZUs -+ s Tms Wiy - ooy Wy, Up, =+, Ug OF Hi(Fg;Z) as
illustrated in Figure 7 and Figure 8 (see Figure 10 for example), where uy, - - -, u, is a basis
of H,(F;Z). Then we have the following Seifert matrix M with respect to the basis.
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a positive band

a negative band

W

Fig.8
1 2
Pm><m me|1|
Om+ipxm+11) O@m+iiyx g
3
Omsipxim+ity | Pamsiipyxim+iy | Oum+iipx g Pin | P
= = 1 2
M= O iyxmny * * OQuscm | Do ’
*k k
0 * M’ Q3 Q4
g x(m+|l)) lIxm 1
O gx(m+I1) * M
where M’ is a Seifert matrix for k, Oy, is the s X t zero matrix,
—(g+1))2 ifi=j
1 _ N . . 1 _ A — & ifl=land]=m,
P = () s anm X m matrix with p;; = 1k(x;, 27) = or2<i<mandj=i-1
otherwise,
. . . & ifi=1and j=]|l
Pr2n><|l| = (pfj) is an m X |I| matrix with pizj = Ik(x;, w) = { 01 otherwise J=M



48 K. Kisumvoro, T. SuiBuya, T. TsukaMoTo AND T. ISHIKAWA

£ if j=m

0 otherwise,
(e+1)/2 ifi=j
Plilxm = (pfi) is an || x |/| matrix with p?j =lk(y;,w) =4 (-1D/2 if2<i<|landj=i-1
0 otherwise,

P|31|Xm = (pfj) is an |/| X m matrix with p?j = Ik(yi, 2}) = {

if 1% 0, and Py = PL_ if1=0,
—(&i—-1)J2 ifi=j

P I o oy & ifi=mandj=1,
s = (qij) is an mXm matrix with q9;; = lk(z,,xj) = orl<i<m—landj=i+]1
0 otherwise,
2 _ 2y P A o e ifi=m
mem = (ql.j) is an m X |I| matrix with q;; = 1k(z;, yj) = 0 otherwise,
3= (g3)is an |I| X m matrix with g%, = Ik(w;, x*) = e ifi=landj=1
[xm ij ij P 0 otherwise, and

(e-=1D/)2 ifi=j
QﬁIXIII = (q?j) is an |[| X |I| matrix with q;‘j = lk(w,-,y;.) =L (e+1/2 if1<i<|l|-landj=i+1
0 otherwise,

. . 1 if lis positive 1 if B; is positive
1 — — = !
if £# 0, and Qpn Q’”X’" if/=0,and e { -1 iflis negative + &i { -1 if B;is negative

. . e+1 e—1 g +1 g —1 .
(i=1,...,m). Letting a = , b= Ja; = — ,and b; = =——, we have the following.
2 2 2 2
+ o+ L. ot + ot .. gt +
4 Ly Zm Wy Wy Wy—1 Wy
X1 —aj €] €]
X2 & —ay
Xm—1 T —p-
P :xm Em —Adm ,
Y1 g a
Yo e b a
£
Y1 & -ooa
ym P b a
+ ot L ot + ot Lt +
XX Xno1 Xm Yy Y Yy—1 Yy
4| by &
&) -by
Zm—1 _bm—l Em
0 =m £ -b, € € €& € ¢
w) b a
wy b a
Wy-1 b a
wyy £l b

Then the Alexander polynomial Ag(#) of K is the product of the Alexander polynomial
Ai(t) of k, [P —t QT|, and |Q — t PT|.
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Cram 2.2. We have the following, where c = a—tb,d = b—ta,e = (1 —-1t), ¢; = a; — tb;,
d; = b; —ta;, and ¢; = g;(1 —1).

|0-tP"| = d" | |=dp+ D" e, 1P1Q"I = M| [ep+ (=1 1a" ] e
i=1 i=1 i=1 =1

Proof. First we calculate | P—tQ”| noticing that e = ¢ + d. If [ = 0, then we have that

—C1 (4]
€ —C m m
|P—t Q7| = o =" ]_[(—cl-) + (=1)0mH1go ]_[ e;.
L —Cel i=1 i=1
em —Cm
If || = 1, then we have that
—C1 €| el —C 0 el
€2 ~@ e —C
\P—1Q"| = : = .
c. _Cm—l N m—1
em —Cm €m  —Cm
e | ¢ d | c
m m
—c! l_l(_ci) i (_1)l+m+ld1 l_lei‘
i=1 i=1
If |/| > 1, then we have that
—C1 € €
€ —C
—Cm—1
P~ 10"| = fm_~Cm
e |c
e |d ¢
e
e c
e d c
—C1 0 €l
€ —C
-1 m m
_ €m  —Cm =M n(_ci) + (= ])lm+ gl 1_[ ei.
d|c i=1 i=1
0|d c
0
0 c
0 d c
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Next we calculate | Q—¢P7| noticing that e = ¢ + d. If / = 0, then we have that

—-d; e
_dz'-. m m
|Q _ l,PTl — . . — dO n(—d;) + (_1)0+m+160 l_l e;.
—Adm-1 €m i=1 i=1
€] _dm
If || = 1, then we have that
—d, e —d; e
—dz". —dz.'.
|0~ 1PT| = - = '
—dmnm-1 €m —Um—1 €m
el -d,| e 0 —d,,| c
(4] d (4] d

m

—d! ﬁ(_di) 4 (_1)1+m+1c1 l_[é’i-

i=1 i=1
If |/| > 1, then we have that

—dl e
—-d> "
—dmp-1 €m
|0-tPT|=| @ —dy| e e e e
d c
d
d c
el d
—d1 (%)
—-dy’
—dm—1 €m m m
_10 -dyu| ¢ 0 0 0 =d”'n(—di)+(—1)u'+m+lclllnei- -
d c i=1 i=1
d
d c
€] d

Now we calculate the Alexander polynomial Ag(#) of K diving the case into two depend-
ing on the value of /; / > 0 or / < 0. Here note the following.

glla|l b |c| d e g lla | by |c| d; e
1| —t¢ 1—1¢ 1 110 |1]—¢ 1-1¢
—1]0|-1|¢t|-1]-(1-0 10 |=1]¢z]|-1|=(1-9
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Cask. [ > 0: From the above table, we have the following;

P—1QT| =cl l_l(_c") + (= ])lemeL gl 1—[ e
=1 i=1
= 11(_1)p(_t)m—p + (_1)l+m+1(_t)z(_1)m_p(1 _ t)m
= (—1)1_1’ {tl(l — 1" — (=1)"P)

10— 1P =d" [ J(=di) + (1)1 ] Tes

1

i=1 i=
— (—l)l tP1mr 4 (_1)Z+n1+1 1 l (_l)m—p(l _ t)m — (_1)l+1—p {(1 _ t)m _ tl(—t)p}
Cask. [ < 0: From the above table, we have the following;

P—:QT|=cM l_l(_ci) + (=1)lFem+1 gl 1—[ e
i=1 i=1
=t (=DP(=t)"P + (_1)—l+m+l(_1)_l(_1)m_p(1 — gy
= (_l)l—p {(1=1y" - t_l(—t)m‘l’}
Q—1PT)=d" l_[(_di) + (=Dl l_l e
=1 i=1

= (=1 P 1 (<1 (1P g = (<) = 7 = (<o)

In both cases, we obtain that Ag (1) = Ax(?) {(1 — )" — t!/(=0)P} {(1 — )" — 7! (—=t)""P}, and
thus we complete the proof. |

Fig.9

Proof of Theorem 1.5. For each i (1 <i < N), we can construct a simple-ribbon knot k;
with A (t) = @(t ;m;, pi, 1) o(t™" s my, pi, 1) by following the proof of Theorem 1.1 (see also
Figure 9). Let K* be the connected sum of &y, kp, ..., ky. Then K* is a simple-ribbon knot



52 K. Kisumvoro, T. SuiBuya, T. TsukaMoTo AND T. ISHIKAWA

Fig. 10

such that Ag-(#) = A(f). Let D U B be the set of disks and bands which gives the SR-fusion
on the trivial knot @ = 9Dy producing K*. Take a 3-ball H which is a small neighborhood
of a point of @ — B and a trivial knot p in H which intersects Dy twice so that lk(p, Q) = 2.
Let V* be the closure of S — N(p; S3). Since p is the trivial knot, V* is an unknotted torus
which contains K* with wy-(K*) = 2, where wy-(K™) is the absolute value of the algebraic
intersection number of K™ with a meridian disk of V*.

Let V be a tubular neighborhood of the Kinoshita-Terasaka knot « and f a faithful home-
omorphism of V* onto V, i.e. f maps the preferred longitude of JV* onto the preferred
longitude of dV. Since A.(f) = 1, we obtain that Ag(¢) = Ag-(?) At = Ag- (1) = A
for K = f(K*) by Proposition 8.23 of [1]. Since f is faithful and both of K* and «
are ribbon knots, K is also a ribbon knot by Lemma 3 of [8]'. On the other hand, as
wy(K) = wy-(K*) = 2 and « is a non-trivial knot, K is not a simple ribbon knot by Corollary
1.8 of [5]. O

3. Proof of Theorem 1.6

Note that if K is a knot of K, then det(K) = |Ax(=1)] = 2™ — D*2™ + 1)® for some
non-negative integers a and b by Corollary 1.2. Moreover if K is also a knot of IC,, then
det(K) = 2" = 1)(2" + 1)? for some non-negative integers ¢ and d, and thus the set of prime
factors of (2" — D (2™ + 1)” and (2" — 1)¢ (2" + 1)? coinside, where i/ = min(i, 1) for a,
b, c, and d.

Let P(x) be the set of prime factors of an integer x > 1, and (y, z) the greatest common
divisor of positive integers y and z. Note that if P(y) = P(z) and (y, z) = w, then we have that
P(y) = P(z) = P(w). Here we prepare several lemmas, the first one of which is the theorem
by P. Mihailescu (the Catalan conjecture).

"Lemma 3 shows that K is ribbon cobordant to K* if  is a ribbon knot, although it states that K is cobordant
to K*.
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Lemma 3.1 ([6, Theorem 5]). The following equation has no other integer solutions but
3¥-22=1

3.1) X=—y'=1x>0,y>0,u>1lv>1)
Lemma 3.2 ([2, Theorem 1]). Let A, m, and n be integers such that A > 1 and m > n > 1.
Then P(A™ — 1) = P(A" — 1) ifand only ifm =2, n = 1, and A = 2! — 1 for an integer [ > 0.

Lemma 3.3. Let A be an integer such that A > 1. Then the followings hold.
(1) P(A? +1) = P(A + 1) for an odd integer p (> 1) ifand only if p = 3 and A = 2.
(2) P(A? — 1) = P(A + 1) for an even integer g (> 0) ifand only if g =2 and A = 2! + 1
for an integer [ > 0.
Proof. Since the if parts are easy to be checked, we only show the only if parts.

(1) First the following equation holds, since p is odd.

=

AP +1 1 ) - p —i—1 i
= =APT AP 4 At = JA+ DD +p
A+1 i

(32) B

Il
fen)

If p is prime, then we have that (B,A + 1) = (A + 1, p) = p from equation (3.2), and thus
that P(B) = {p}, since P(B) Cc P(A? + 1) = P(A + 1). Moreover, we have that B = p (mod
p?) also from equation (3.2), since A + 1 = 0 (mod p), (pf 2) = 0 (mod p). Hence we obtain
that B = p. If p > 3, then we also have that

~1
(3.3) B= AP AP 24 ALl = AA=1)(AP34AP S 1t )41 > A(A—l)pTH > p,

since A > 2. However then it contradicts that B = p. Therefore we have that p = 3. Then
we have that A>— A+ 1 =B = p = 3 from equation (3.2), and thus that A = 2, since A > 1,
which completes the proof.

If p is not prime, then let p’ be a prime factor of p, and let p = p’rand B = A”. Since r
and p’ are odd, we have that A + 1 divides A" + 1 = B + 1 and that B + 1 divides BY + 1.
Hence we have that P(A + 1) ¢ P(B+ 1) € P(B” + 1) = P(A? + 1), since B” = AP. Hence
we have that P(B” + 1) = P(B + 1), since P(A” + 1) = P(A + 1). Thus from the previous
case, we have that p’ = 3and B = A" = 2, and thus A = 2 and r = 1. However then, we
have that p = p’r = 3, which contradicts that p is not prime.

(2) Since g is even, we have that ¢ > 2. Hence we have that P(A—1) € P(A7-1) = P(A+1),
and thus that P(A2—1) = P(A—1)(A+1)) = P(A+1) = P(A?—1). Thus we have that g = 2
from Lemma 3.2. If A # 2 = 29+ 1, then we have that A—1 > 1 and thus that A+ 1 and A —1
are not coprime, since P(A—1) ¢ P(A+1). Hence we have that (A+1,A-1) = (A-1,2) = 2,
since A + 1 = (A — 1) + 2. Therefore we obtain that A — 1 = 2! for [ > 0, which completes
the proof. O

Using Lemma 3.1 and Lemma 3.3, we show the following.

Proposition 3.4. Let A, m, and n be integers such that A > 1 and m, n > 1. Then we have
the following.

(1) PA"+1)=PA"+1)(m>n)ifandonlyifm=3,n=1,and A = 2;
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(2) P(A™ 4+ 1) = P(A" = 1) if and only if one of the following holds.
G m=1,n=1and A =3;
)ym=3,n=2andA =2,
(i) m=2,n=4,and A = 3; and
vy m=1,n=2and A=2"+ 1 for an integer [ > 0.

Proof. First we have the following for indeterminate X and positive integers s, ¢, and ¢
and a non-negative integer r such that s = gt + r.

(3.4) X el=X+ DX =X o o (—1IXT) 4+ (—1)X £ 1

(3.5) X +1=X-DXT"+X2 4. 4 X 4 X+ 1
Let g = (m,n). Then we have the following.
Cram 3.5. (A" +1,A"+1),(A"+1,A"-1)=1,20r AY + 1.

Proof. For positive integers ¢y and ¢y, let (co,c1) = (c1,¢2) = -++ = (cn-1.Cn) = Ccy be
the sequence obtained by the Euclidian algorithm. Then letting ¢; = g;11¢i+1 + giv2, We also
have the following from equations (3.4) and (3.5).

(3.6) AY T+ 1 = (AN + 1)(AN1TN — ACN-172en L (—=1)dACH-17aNeNy 4 (—l)qNAO +1

(3.7) AN 41 = (AN — 1)(AN17N 4 AN172N oy ANITINeNy 4 AD 4

Hence by letting (co, c1) = (m, n) or (n,m), we have that (A" + 1,A" + 1), (A" +1,A" - 1) is
either A9 + 1 or (AY + 1, 2), which induces the conclusion. ]
Since the if parts are easy to be checked, we only show the only if parts.

(1) Since P(A™ + 1) = P(A" + 1), we have that A" + 1 and A" + 1 are not coprime, and
thus that (A™ + 1,A" + 1) = 2 or A9 + 1 from Claim 3.5. In the former case, we have that
P(A" +1) = P(A" + 1) = P(2) = {2}. Thus, A” + 1 =2%and A" + 1 = 2 for k > 1, since
m > n. However then, we have that A = 1, which contradicts that A > 1. In the latter case,
we have that P(A"™ + 1) = P(A" + 1) = P(AY + 1) and that m = gM with an odd integer M
from equation (3.4). If M = 1, then m = g, which contradicts that m > n. Thus M is odd and
M > 1. Then we have that M = 3 and A9 = 2 by Lemma 3.3 (1), and thus that A =2, g =1,
m = gM = 3. Hence we have that n = g = 1, since m > n, which completes the proof.

(2) Since P(A™ + 1) = P(A" — 1), we have that A" + 1 and A" — 1 are not coprime, and
thus that (A™ + 1,A" — 1) = 2 or AY + 1 from Claim 3.5. In the former case, we have that
PA"+1)=PA"-1)=PR2)={2},and thus that A" + 1 =20orA" -1 =2.If A" + 1 =2,
then A” = 1, which contradicts that A > 1. IfA” + 1 =25 (k > 1) and A" — | = 2, then we
have that A = 3and n = 1, and thus that A” + 1 = 3" + 1 = 2¥ (k > 1). Then by Lemma 3.1,
we have that m = 1, and thus obtain condition (i).

In the latter case, we have that P(A” + 1) = P(A" — 1) = P(AY + 1) and that m = gM with
an odd integer M from equation (3.4). Consider the case where M > 1. Then we have that
M = 3 and AY = 2 by Lemma 3.3 (1), and thus that A = 2, g = 1, m = gM = 3. Since
A"+1=2%+1=9,and thus P(2" - 1) = P(9) = {3} and (A" + 1,A" — 1) = (9,2" - 1) = 3,



ALEXANDER PoLYNOMIALS OF SIMPLE-Ri1BBON KNOTS

Table 1. Ribbon knots with up to 10 crossings, where F(t;m,p,l) =
ot;m,p, D)™ sm, p,1)

55

‘ K Hsimple—ribbon‘62(K)‘det(K)‘ A (1)
6, O 0 9 F(t;2,0,0) = 2-5¢ + 21
8s O 5 25 F(t;2,1,-1) = 2-6¢ + 9r>-61> + 2t*
89 O 7 25 F(t;2,2,1) = 13t + 5278 + 5*36 +°
820 O 9 9 F(t;2,1,0) = 121 + 32283 + ¢
95, O 5 49 F(t;3,1,0) = 1-5¢ + 112~15£ + 11£*56 +¢°
9, @) 7 | 49 F(t;3,0,0) = 3-127 + 192-12¢ + 3¢
Y6 O 0 9 F(t;2,0,0) = 2-5¢ + 21
105 X 1 25 6-13¢ + 6
105, X 11 49 2-6t + 102-13£ + 10£*-61 + 21°
1035 X 1 49 2-12¢ + 212128 + 2¢*
104, O 9 81 F(t;3,2,0) = 1-7¢t + 19227 + 19¢*76 + °
1045 X 91 49 131 + 6293 + 11497 + 61317 + 1
1055 O 9 | 81 F(;3,3,0) = 1=7t + 192278 + 1947 + °
1047 @) 0 | 81 F(t;3,2, 1) = 2-9¢ + 182237 + 18£*-9¢5 + 2¢°
1009 O 81 | 81 |F(t;1,1,)F(£;2,2,0) = 1-4¢ + 102-16£% + 194-16¢5 + 10£~4¢7 + 18
10123 X 1| 121 1-6¢ + 1522413 + 29¢-247 + 155617 + 13
10129 O 5 25 F(t;2,1,1) = 2-6 + 9°-61> + 2¢*
10437 O 1 25 F(t;2,0,1) = 1-6¢ + 1176 + ¢
10140 O 9 9 F(t;2,1,0) = 1-2t + 322 + *
1053 @) 35 1 F(t;1,1,2) = 1-+£> + 35+ + 1©
10;s5 O 7 25 F(t;2,2,1) = 13t + 5276 + 5430 + 1°
3183 O 9 9 F(t;1,1,1) = 12t + 3228 + ¢
4,44, O 1| 25 F(t;2,0,1) = 1-6t + 11£2-6¢% + t*
51 45; X 121 | 25 121 + 3241 + 56448 + 31217 + 18
5, 45; X 1 49 4-12t + 170128 + 4¢*

we have that 2" — 1 = 3 and thus that n = 2. Therefore we obtain condition (ii).

Next consider the case where M = 1, i.e., m = g. Hence let n = mq (¢ > 1) and D = A™.
Thus we have that P(D + 1) = P(D? — 1) and that (D + 1,D? — 1) = D + 1. Therefore ¢ is
even, since otherwise D + 1 does not divide D? — 1. Then we have thatg = 2 and D = 2/ + 1
for/ > 0 by Lemma 3.3 (2). If m > 1 and [ > 1, then the equation A” = 2! + 1 has the unique
solution (A, m, ) = (3,2,3) by Lemma 3.1, and thus we obtain condition (iii). If m = 1, then
we have that n = mg = 2 and A = 2l + 1 forl > 0, i.e., condition condition (iv). If / = 0
(resp. 1), then we have that A = 2 (resp. A = 3) and m = 1, and thus that condition (iv).

Now using Proposition 3.4 and Lemma 3.2 we obtain the following.

O
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Lemma 3.6. Let p, g, r, s, M, N be positive integers with M # N. Then we have the
following.

() @M —1)p £ 2V -1).

Q) IFM + 1)1 =2V + 1) (M > N), then M =3, N = 1, and s = 2q.

Q) IFM+ 1)1 =N - 1), then M =3, N=2,r=2gorM=1,N=2,qg=r.
@ Y - 1)PM + 1)7 £ 2N - 12N +1)°

G) IFM —1)yyM + )4 =2V - 1), then2M =N, p=q =r.

©) IfFM —1)yyM + )4 =2V + 1), then M = 1, N = 3, g = 2r.

Proof. Note that if positive integers X, Y and non-negative integers p, ¢ satisfies the
equation X? = Y4, then P(X) = P(Y). The first three statements are obtained by Lemma 3.2,
Proposition 3.4 (1), and Proposition 3.4 (2), respectively. For the last three statements, note
that P(2M — 1)?(2M + 1)) = P(2°M — 1). Therefore (4) and (5) are obtained by Lemma 3.2,
and (6) is obtained by Proposition 3.4 (2). m]

Proof of Theorem 1.6. Let K be a knot of KC,, N K,,. Then we have that det(K) =
Q™= 1™+ 1) = 2" = D" + 1) for some non-negative integers a, b, ¢, and d by
Corollary 1.2. Thus we obtain the conclusion by Lemma 3.6. m|
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