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Abstract
In this paper, we shall establish the Mackey formulas in the following two setups:
(i) on the tensor induction and restriction functors on the modules over cyclotomic Hecke
algebras (Ariki-Koike algebras) and their standard subalgebras of parabolic subgroups;
(ii) on the Bezrukavnikov-Etingof induction and restriction functors [3] among categories
O [11] of rational Cherednik algebras for the complex reflection group of type G(r, 1, n)
and their parabolic subgroups.

0. Introduction

The Mackey formula [17], [7, p.273] plays a very important role in representation
theory :

0.0.1) Res; o IndG(M) = @ Ind” o Res;npmw-1(w @ M)

wel\G/H
for a finite group G, its subgroups H, L and H-module M. In modular representation theory
of finite groups, Green’s vertex theory is based on this formula [loc.cit].

In finite reductive groups, Dipper and Fleischmann [9, (1.14) Theorem] established the
Mackey formula on the Harish-Chandra induction and restriction for Levi subgroups, and
used it as an important base for their modular Harish-Chandra theory. And, also in finite
reductive groups, the Mackey formula on the Deligne-Lusztig induction and restriction has
a very important implication for the Lusztig conjecture on the characters on these groups
which is developed by C. Bonnafé (see [4]). This is an extension of Mackey formula on the
Harish-Chandra induction and restriction, although it is at the level of characters. So, the
Mackey formula is subject to a subgroup lattice A and a family of two kinds of functors Indﬁ
and Resﬁ labeled by the pairs (A, B) with A C B in this lattice A.

In this paper we shall report yet another Mackey formula for the case where A is a set of
parabolic subgroups of a complex reflection group. More precisely, we shall tackle proving
the following conjecture:

Conjecture 0.1 (The Mackey formula for Q). For any finite complex reflection group W,
and its parabolic subgroups W, and W), the Mackey formula with respect to the

2020 Mathematics Subject Classification. Primary 20C08; Secondary 20F36, 20G05.
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Bezrukavnikov-Etingof induction and restriction holds. More precisely, at the level of repre-
sentation categories, we have the following isomorphism of functors :

OpaW O AW O Wa Op . Wp
0] = o —) O
Resy, o“Indy, @ Indy! . ou(=)o “Res So

ue Wb

where “W? is a complete set of double coset representatives of W,\W/W,,.

Here, OResw, (resp. OInd% ) is the Bezrukavnikov-Etingof restriction (resp. induction)
functor [3] and u(-) is the functor naturally induced by a conjugation (automorphism) by
uew.

We write W, for the complex reflection group of type G(r, 1,n) in Shephard-Todd no-
tation. In this paper, we shall study the Mackey formula for the cyclotomic Hecke algebra
Iy = (To,T1,...,Ty_1) of type G(r, 1,n), also known as the Ariki-Koike algebra (see 3.1
for the precise definition) * and the categories © of cyclotomic rational Cherednik algebras
associated with W, (in so-called ¢+ = 1 case) and establish the Mackey formulas in the
following two set ups:

(1) A is the set of standard parabolic subgroups of W,, . and Indﬁ is the tensor induction
functor and Resﬁ is the restriction functor between Hecke algebras associated with
A and Bin A.

(i1) A is the set of parabolic subgroups of W, ,. The induction and restriction are the
Bezrukavnikov-Etingof induction ©Ind and restriction “Res [3] respectively among
categories O of cyclotomic rational Cherednik algebras for the complex reflection
group W, , and their parabolic subgroups.

The precise statement of (i) is Theorem 3.12. The precise statement of (ii) is Theorem
4.10, which supports Conjecture 0.1. The part (i) is given in a characteristic-free manner,
even holds over Z|[q, q‘l, 0Oi,...,0,], where ¢, Oy, ..., O, are indeterminate over Z. On the
contrary, the part (ii) heavily depends on the coeflicient field C, due to the use of KZ-functor,
Riemann-Hilbert correspondence. In particular, the Mackey formulas for © do not imply the
Mackey formulas for the Ariki-Koike algebras over the field with a positive characteristic.
Rather, we use (i) to prove (ii). So, the statement of (i) is stronger than the statement of
(i1) in this sense. Also, nowadays, the representation theory of Ariki-Koike algebras is an
independent research area (e.g. [1]). So, if one is only interested in Ariki-Koike algebras,
one may only read the proof for the statement of (i), which has not been known since the birth
of Ariki-Koike algebras. It is well known that Ariki-Koike algebras is very strongly related
to affine Hecke algebras of type GL as cyclotomic quotients. Indeed, any finite dimensional
indecomposable module over a fixed affine Hecke algebra of type GL is a module for some
Ariki-Koike algebra. So, via affine Hecke algebras, our result also goes to the representation
theory of p-adic groups. So, we have an application to classical subjects. Next, we make
remarks on the subgroup lattice A: Let W be a complex reflection group, and let [) be the
reflection C-representation of W. By a parabolic subgroup of W, we mean a stabilizer, in
W, of some point in h. We mean by a standard parabolic subgroup of W a special parabolic
subgroup (/) of W for some subset / of the set of simple reflections.

Very briefly we remark some known results related to the above (i) and (ii): In [15,
2.29], the Mackey formula on the 1-parameter Iwahori-Hecke algebras can be found. In

“The Ariki-Koike algebra is in an imprimitive class of the cyclotomic Hecke algebras.
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[23], the Mackey formula on the cyclotomic Hecke algebras for the maximal co-rank 1
cases are treated, namely, it is with respect to two identical subgroups W, = W,_;, and
Wy = W,y of W, .. Since in our set up we can take any two standard parabolic subgroups,
the part (i) is a strong generalization of her result. In [21, Lemma 2.5], at the level of the
Grothendieck group the part (ii) is considered. However, this is a consequence of Mackey’s
original formula (0.0.1). Indeed, the KZ functor commutes with inductions and restriction
in @ and cyclotomic Hecke algebras. So, at the level of Grothendieck groups, the branching
rule for (co)standard modules in @ in terms of (co)standard modules is identical with the
rule for Specht modules over (tensor products of) Ariki-Koike algebras in terms of Specht
modules. And, moreover, at the level of Grothendieck groups, the rule on Ariki-Koike
algebras depends only on the choices of parabolic subgroups. Therefore, one may take
group algebras of complex reflection groups to detect the rule in question. ™ In [16, Theorem
2.7.2], they established Mackey formula for the categories © of rational Cherednik algebras
of Coxeter groups.

In the case where W is a finite Coxeter group, to obtain the Mackey formula for cor-
responding Hecke algebras, we discuss by using reduced expressions of group elements,
the distinguished minimal coset representatives and their properties. However, in the case
where W is a complex reflection group which is not a Coxeter group, we do not have enough
properties for reduced expressions of group elements, and we do not know a good choice of
coset representatives. These lacks of theory for complex reflection groups cause difficulty to
obtain the Mackey formula for cyclotomic Hecke algebras. In this paper, we give a solution
of this problem for complex reflection groups of type G(r, 1, n).

Regarding applications, as in first paragraph, the role of the Mackey formula in rational
Cherednik algebras similar to the one in [9, 10] is expected. And, as the Bezrukavnikov-
Etingof induction functor sends projective resolutions in O to projective resolutions, an ob-
vious application is for a study of cohomology groups Exté‘)(W)( OIndwa(M ), OInd% (N)) via
Eckmann-Shapiro lemma

(0.1.1)  Extyyyy,(°Indy, (M), ®Indy, (N))
= (P Extiyy,, (M, ®Ind)* - ou(-)o “Res; N).

W.NuWyu u 'W,unw,
uewb
Here, O(W’) is the category O for a complex reflection group W’ defined in [11]. Especially,
it is useful to study the endomorphism ring of an induced module. Wheni =0, W, = W,, #
W at (0.1.1), finding a basis of the right hand side of (0.1.1) is easier than that of the left hand
side of (0.1.1). For a parabolic subgroup W; of W with X being finite dimensional simple
in O(W,), the endomorphism ring End@(W)(OInd%(X)) is studied in [16]. They call it a
generalized Hecke algebra (see [16, Theorem 3.2.4, Definition 3.2.5]). Their strategy is very
traditional like [12, 13], Harish-Chandra philosophy, inducing cuspidals and decompose
them by the endomorphism rings, but tactics is new, such as geometrical properties of the
categories O. In the case where W is a Coxeter group, they obtained an explicit description
of the generalized Hecke algebra. In their argument, Mackey formula has an important
role to detect the explicit rank of endomorphism ring of an induced cuspidal module: For

fAnother way to detect the rule is to deform the Cherednik algebra in question to another algebra so that its
O is semisimple.
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i=0,a=>b,X=M = N, on the right hand side of (0.1.1) one may only need to take the sum
over u € PW? n Ny/(W,) since the restriction of X to @ on any proper parabolic subgroup
of W, is zero. We may follow their arguments to calculate the rank of a generalized Hecke
algebra for a complex reflection group W,, ;.

This paper is organized as follows.

In §1, we review some known facts on symmetric groups, and also give a technical result
(Lemma 1.3) which shall be used in §2.

In §2, we shall determine a complete set of representatives of double cosets Wi\W,, ./ W,
over two standard parabolic subgroups Wi, W, of W, .. Throughout this paper, we use a
expression of elements of W, . being along the semidirect product W,,, = S, < (Z/rZ)". This
expression will be used in §3 to construct a basis of the cyclotomic Hecke algebra associated
with W, ,, so called Ariki-Koike basis. This basis is not standard. (By a standard basis, we
mean a basis which are labeled by a group W and does not depend on the choice of reduced
expressions in terms of a specific set of generator of W.) Our coset representatives are
compatible with this expression, and they have a good behavior in the arguments for Hecke
algebras. One of important properties of our coset representatives appears in Proposition
2.13. In this proposition, for each our representative u of Wi\W,,./W,, we prove that the
subgroup W, N uW,u~" is a standard parabolic subgroup of W,,,. An advantage for taking
a not only parabolic but also standard one is that we can find the associated subalgebra in
the cyclotomic Hecke algebra. As another important property of our coset representatives,
we may construct a slightly new basis {T,} of the Ariki-Koike algebra by multiplying the
Ariki-Koike basis {T},}. This basis, a priori, depends on two standard parabolic subgroups
W, and W,. We remark that our coset representatives are not the distinguished minimal
coset representatives in the case where r = 2 (i.e. W,,, is Weyl group of type B,). Thus, our
representatives are not a generalization of the distinguished minimal coset representatives
for finite Coxeter groups.

In §3, we shall establish the Mackey formula for Ariki-Koike algebras (cyclotomic Hecke
algebras of type G(r, 1, n)) in Theorem 3.12.

In §4, we discuss the Mackey formula for the categories O of rational Cherednik algebras
associated with parabolic subgroups of W, ,. By using lifting argument which has been
employed in [16, Theorem 2.7.2] for Coxeter group case, one can lift the Mackey formula
for the Hecke algebras to the Mackey formula for the categories . The Mackey formula for
the categories  is given in Proposition 4.8 and Theorem 4.10. We remark that although we
lack standard basis in the Ariki-Koike algebra, we may make the desired lifting thanks to a
good property of our coset representatives.

In Appendix B, we compare known results on the coset representatives in [20] with the
ones in §2 for some special cases (i.e. the case where u = (1"%) and v = (1)) as a sort of
independent interest. We remark that the coset representatives in [20] follows from notion
of root systems of type G(r, 1, n). However, in [20], they give the coset representatives only
for special cases where u = (1"!y and v = (1"™™), and we do not know whether we can
obtain the coset representatives by using root systems in general. We also remark that our
coset representatives are not generalization of ones in [20] (see Remark B.9). For the reader
being only interested in the Mackey formula, he or she can skip this appendix.
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1. The symmetric groups

In this section, we review some known results on symmetric groups which follow from the
general theory of Coxeter groups (see e.g. [14], [8, Chapter 4]) except (1.2.1) and Lemma
1.3.

1.1. Let G, be the symmetric group on n letters. We consider the natural left action of S, on
{1,2,...,n}. So, when x € G, sends i to j, we denote it by x(i) = j. Fori =1,2,...,n—1,
let s; = (i,i + 1) be the adjacent transposition. Then S = {sy, 52, ..., s,—1} is a set of simple
reflections of S,,. For x € S, we denote the length of x by £(x). We denote the Bruhat order
on G, by >.

For integers k; < k, € Z, we denote the interval {k;,k; + 1,...,k;} in Z by [ky, k;]. For
1 < ki < ky < n, we denote by Sy, «,; the subgroup of S, generated by {s¢,, Sk, +15- - - » Sk,—11>
namely S, x,1 1s the subgroup permuting the set {kj, k) + 1,. .., ka}.

A composition of n is a sequence of non-negative integers 4 = (uy, >, ...) such that
>.i i = n, and we denote it by u £ n. We also denote |u| = ), ;.

For p = (u1,p2,. .., 1) E n, let S, be the standard parabolic subgroup of &, associated
with u, namely &, is the subgroup of &, generated by the reflections

k
Sy ;:S\{sj|j:Z,u,~forsomek2 1}

i=1

We have G, = S, X --- X &,,. For u k n, put

S ={xe S, | txs)>t(x)forall s € S},
S ={xe S, | t(sx)> t(x)forall s € S},

then & (resp. #©) is the set of distinguished coset representatives of the coset &,/ S, (resp.
S,\S,). In particular, we have

(1.1.1) t(xy) = €(x) + t(y) for x € S,y € S,
t(xy) = t(x) + l(y) fory € "G, x € G,

For p,v E n, put *&” = #S N &, then #&” is a complete set of representatives of the double
cosets ©,\S,/G,.

For x € @, let 7(x) k n be the composition determined by the equation S,y = S, N
xS,x7!'. Then it is known that SN xS, x7 s generated by S,y. In particular, we have
SN xS,x7! = Sy. By the general theory of Coxeter groups, we see that w € S, is
uniquely written as w = yxz (x € *&", y € (S,)™, z € S,), and we have

(1.1.2) Uyxz) = Ey) + LX)+ €(z) (x€ HC, ye ()™, z€ 3,).

1.2. The distinguished coset representatives S+ (resp. #&) is described by a standard com-
binatorics as follows. For u E n, the diagram of yu is the set [u] = {(i, j) € Zio li>1,1<j<
;). Here, we take the English fashion for treating the element of [u], for example, we say
that there are y; boxes in the i-th row of [u], we also say that (i, 1) is the left most box of the
i-th row if (i, 1) € [u], etc. For u E n, a u-tableau is a bijection t : [u] — {1,2,...,n}. The
symmetric group S, acts on the set of u-tableaux from left by permuting the entries inside a
given tableau, namely, for x € S, and u-tableau t,
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(-0, J) = xtG ) (G )) € [ul).

We say that a u-tableau t is row-standard if t(Z, j) < t(i, j + 1) for all (i, j) € [u] such that
(i, j + 1) € [u], namely if the entries in t increase from left to right in each row.
For u E n, let t* be the p-tableau such that the bijection [u] — {1,...,n}is given by

i-1

VG = D e+ (G )€ ).

k=1
Then, we have
(1.2.1) St ={xe S, | x-t"isrow-standard},
FS ={xe S, |x " t*isrow-standard)

(see [18, Proposition 3.3]).
For a convenience in later arguments, for 0 < / < nand u £ n —1I, we put (l,n) =
(I, 11, 1o, . .. ) E n. Then, we have the following lemma:

Lemma 1.3. For x € (Wg0my) forsome O <Il,m<n uen-1vEn—m, put
c=min{i >0|x(i+1)#i+1ori=n}and k = min{c, [, m}.
Then we have x € Spi1 ) and [1,1] N {x(1), x(2), ..., x(m)} = [1,k].

Proof. If ¢ > min{/, m}, it is clear. Suppose ¢ < min{/, m} (note that k = c in this case), we
have

(1.3.1) x(c)=c<c+l<x(c+]1)<x(c+2)<--- < x(m)

and there exists b > m such that x(b) = ¢ + 1 since x - t") is row-standard by (1.2.1).

If x(c + 1) > [, then x € G414y and [1,1] N {x(1), ..., x(m)} = [1,c] by (1.3.1).

If x(c+1) <[, wehavec+ 1 < x(c + 1) < [. Then we deduce that both ¢ + 1 and x(c + 1)
appear in the first row of t**). On the other hand, we have

e+ D=b>m>c+1=x"(x(c+1).

This contradicts that x~! - t*# is row-standard. Thus this case does not occur. ]

2. The complex reflection group of type G(r, 1, n)

In this section, we study the complex reflection group W, , of type G(r, 1, n). For standard
parabolic subgroups W) and W(,,,, of W, ., we shall find a complete set of representatives
of the cosets W, ./ W, and the double cosets W ,,)\W,, ./ Wn,,). These representatives will
be used in the next section to obtain the Mackey formula for cyclotomic Hecke algebras.

2.1. The complex reflection group of type G(r, 1, n) is the semidirect product W, , = S,

(Z/rZ)", where S, acts on (Z/rZ)" via the permutation of factors. The group W, , has a

presentation such that W, ,. is generated by s, s, .. ., s,-1 subject to the defining relations
so=1st=1(1<i<n-1),

50515081 = 51505150, SiSix18i = Six188ip1(1 ST <n—=2), sis; = 58 (|i = j| > 1).
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The relations in the second row are called the braid relations. Put
ti = Si—18i=2...818081 - .. Si-28i-1

fori=1,2,...,n Then S = {s1, 52,..., s,—1} generates S,,, and ¢; generates Z/rZ, the i-th
factor of (Z/rZ)". Then we have

W = {xt]'15> ...ty | x € G, ar,az,...,a, € [0,r = 1]}.
From the definitions, we have the following relations
(2.1.1) lit; = tjt; (1<i,j<n),

Xt,'.x_l = 1x3) (xe 3G, 1 <i<n).

22 . ForO</<nandukn-I let Wy, be the subgroup of W, , generated by

k
Xy = (50,51, $p1} \ (s 1 j =1+ ) pii for some k > 0},
i=0

where we put uog = 0. It is well-known that any parabolic subgroup of W, is conjugate to
Wayy forsome O </ <nandukn-1L
Set

Suw =Xap NS, Sy =1{s1,..., 51} SL”=S(1,,1)\S(1),

where we put S ;) = 0 if / < 1. We easily see that
e the subgroup generated by {s, 51, ..., 51} is W;,, where we put W;, = 1 if [ = 0,
e the subgroup generated by S, (resp. S(;) is the parabolic subgroup S, (resp.
S@) of S, € W, associated with (/, i) (resp. (1)),
o the subgroup generated by § E] is the parabolic subgroup Sﬂ] of Sy, associated
with u.

Note that Gl[f] is contained in the centralizer of W;,, we have

Wi = Wi x G = (&< (2/r2)) x &,

and
Wi = (xt]'6? ... 1" | x € Sy, ar,az, ..., a1 € [0, — 1]}
Set
W = (ES A sl [ S a, a0, ... a, €[0,r = 17},
COW = (g2 x € O, ap,ana,.. . a, €[0,r = 1]}

Lemma 2.3. The set W (resp. "W ) is a complete set of representatives of the coset
Wor /Wiy (resp. Wi \Wy ).

Proof. We prove only the claim for W since the claim for “*)W is proven in a similar
way.
Forw = xt{'t> ...t;" € Wy, (x € Gy, ay,...,a, € [0,r — 1]), we can write

x=x1% (v €M, xeG ) and 2 =yiyy (y1 € Sy, ya € @,[f])-
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Note that y; € Sy and yp € Syy41 ), the relations (2.1.1) imply that

_ ap ap ay
w=xt{'ty> ... 1,

ay a n
= Xyttt

= 21ty ) Ly )Wy - Lyin)12
= X1ty L) Gy -y a)192
=010 - )Ny )
=01 - )X ),

and we see that x; (!

D 6 ) € W and x, (1] ... 1") € W(,). Thus, we have

2.3.1) Wor= | ) uWap.

ue W

On the other hand, note that [W,,| = [S,|r", Wyl = 1Sqlr and W] =[S0 and
thus

(2.3.2) [War : Wagol = (Wl [IWagol = (18l/1Sauhr™ = 1801 = (W),
Then, (2.3.1) and (2.3.2) imply the desired result for W, o

REmMARK 2.4. In the case where r = 2, the group W, is the Weyl group of type B,,. In this
case, W (resp. ““YW) is not the set of distinguished coset representatives in general. For
example, take / = 0 and u k n such that u; > 2. Then W, is generated by S .. In this case,
s1 €Sy, andn € W However, we have £(t;) = £(s150s1) = 3 and €(ty51) = £(s150) = 2.
Thus, 1, is not a distinguished coset representative.

2.5.For x € W™ (0 <, m < n, HER—LvER—m),put

IX)=[m+Laln{x "0+ 1), x ' +2),...,.x ().

For xtom i ... ty" € W) (x € ), we have Xty = ti’(”,;ﬂr]) . tz’(’n)x by (2.1.1).
Thus we deduce that xt% .. 1" € W A W if and only if x € & and x(k) €

[[+ 1,n] for k € [m + 1, n] whenever a; # 0. This implies that

Cow awe? = (x [ | 41 xe &™), ¢ e[0,r-1]).
iel(x)

For x € (W& recall that T(x) is the composition such that
(2.5.1) S =S 1y N XS X,

and we have Gr(x) = 6(1’#) N x65(m,,,)x‘1.
Forz = xyx~' € Crv (2 € S,y € Sny)), we see that y(i) € [m+ 1,n]ifi € [m+ 1,n]
since y € S,,.,). We also obtain

yH) e x'A+ D), x m)yifie(x A+ 1),...,x ' (n)

since yx~'(I + j) = x'z(I+ j)and z € S(1u)- These imply that
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(25.2) y(@) € I(x)if i € I(x)
for z = xyx~! € G,(). For x € (WS put
W AW ) = (x [ | 4 1ai e [0,r = 11).
i€l (x)

Then, we have

EOW A wims = U W N W(m’“)(x).

xe L0 S0

Thanks to (2.5.2), we can define an action of Sy on W N W) (x) by

(2.5.3) ot [ ey =x] ],

iel(x) iel(x)

for z = xyx™! € S,(,). We remark that, for z = xyx™!' € S,,), we have

ai\ _ a; a; -1
(2.5.4) 70 (x ]_[ iy =x | | =ax ]_[ oy~
iel(x) iel(x) iel(x)

where z € S, and y € Sy). Thus, for z € Sy and u € W N W(x), the elements u
and z © u belong to the same (W(; ), W,,))-double coset.

For u € MWW N W™ (x), let Ow) = {zQu |z € Sr(x)} be the Sy(y)-orbit under the action
(2.5.3).

For u = x [ier) tl.“" e OW N WwWrmH set a(u) = (ay,az,...,a,) € [0,r — 1]", where we
puta; = 0if i ¢ I(x). Let > be the lexicographic order on Z". We define a partial order > on
LW A wWomv) by

(2.5.5) u>u o x=x"anda(u) > a(u’)
for u=2Xx I_L'e](x) t?i, M, = .xl I_L'e](xr) t;li S (l’#)W N W(m’v).
Now we introduce a set “WW) turning out to be a complete set of double coset rep-

resentatives in Proposition 2.8. It plays a key role to establish the Mackey formula for the
Hecke algebra associated with W, ., and it is a main new ingredient in this paper.

DEeriniTION 2.6. We define
G mn =y e GOW N W) |y is minimal in O(u)).
From the definition, any element of "W N W is obtained from “ W) by the action
of Sy forx € b gmy)
Lemma 2.7. If v = (1"™™), we have W) = Gow n wim),
Proof. For any z = xyx~l e Srn (x € GGy we have
ai\ _ a; di
co | [ar=x] g =x]]4
i€l(x) iel(x) iel(x)

since y € S, and I(x) C [m + 1, n] together with v = (1"7™). This implies that O(u) = {u}
for any u € “WW N W and we have the lemma. o
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Proposition 2.8. The set W) is a complete set of representatives of the double cosets
W(l,y)\Wn,r/W(m,v)-

Proof. Forw = xt{'t5” ...t € W, , where x € S, and ay, ..., a, € [0,r — 1], we can write
X = X1X2X3 (x1 € 6(1,/1), Xy € (l,p)e(m,v)’ X3 € 6(,,1,1,)).

The relations (2.1.1) imply that

f Am+1 Am+2

al a2 arl'l
xa(m+ Dl (m+2) * - 'x(n))x3t Ly .1

w = X X0x317 17 . 1 = X xa( am

n

where we have {x3(m + 1), x3(m + 2),...,x3(n)} = [m + 1, n] since x3 € S,,,). Put I(x,)" =
[m+ 1,n]\ I(x). Then, we obtain

j— A+ A+ An ap a Am
(2.8.1) w = X0y - L)X
— X[XQ( l_[ x%(l))( l_l xz(l))x3talta2 tam
x3(D)El(x2)" x3(D)€l(x2)
= (x l_[ ) ]_[ @ D),
x3()el(x2) x3(D)€l(x2)
and
(2.8.2) {x2x3(0) | x3() € I(xp)", m+1<i<n}c[l,]]

from the definition of I(x,)¢.
Take z = xoyx;' € Gy, such that zO (x; [ tf; () is minimal in O(x; [] t; () then (2.8.1)
and (2.5.4) imply

(2.8.3) w=m [ @ [ e
x3 (D)€l (x2)" x3(D)el(x2)
i -1 i m

= || dpcom || @owmears

x3 (D)€l (x2)" x3(D)el(x2)

-1 i m
=(x1z l_l mx}(l))(z O (x l_[ t;(i)))(yxgtf‘tgz oty

x3(D)el(x2)° x3 (D)€l (x2)

where we have {zxox3(i) | x3(i) € I(x2)°} C [1,1] by (2.8.2) and z € S(). From the above
argument, we conclude that

(2.8.4) ot [ e we,
x3(0)el(x2)
[ ] 0 € Wag and (xat 152 1) € Wiy,
x3(1)el(x2)"
The equations (2.8.3) and (2.8.4) imply that
(2.8.5) War= ) WapuWn.

ue tw) Wimy)

Finally, we prove that distinct elements of "W belong to distinct (W), Win,))-
double cosets.

For u = x[ligw " € Eowmy) and w' = x’ [Ticrr) tia" e Wiy - suppose that u
and u’ belong to the same (W(; ), Win,,))-double coset, namely ' = w;uw, for some w; =
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1, tl € Wy (2 € Sy and wy = y [T, 17 € Wiy (¥ € Sinyy). Then we see that

!
x l_[ z?l" = (Zl—ltibi)(x 1_[ ;“r)(yl_[z N = zxyl—[zy i) 1_[ t—l(l) ﬁtlz
=1

iel(x") i=1 iel(x) iel(x)

This implies that

(2.8.6) X’ = zxy and ]_[ £ = ]_[ . ]_[ e ﬁzjf.
=1

i€l(x’) i€l(x)

Note that z € Sy and y € S(y,), and thus x and x" belong to the same (S ), Sin,))-
double coset. Then we have x = x’ since x, x’ € WS We also have [1,m] N I(x) =
and y~'x71(i) = x7'z(i) € [m+ 1,n] \ I(x) fori € [1,{] by z € S, and the definition of /(x).
Thus (2.8.6) implies that

/ — i — C!_
x'=x=zxy, l—[ti l_[tfl(l)and' l‘,l '(;)l_[t 1,

i€l(x) i€l(x)
and we deduce
’_ a; _ aj _ aiy _
u —xl_ltl. —xl_l ty,l(i)—z(D(xl—[ ') =z0u
iel(x) iel(x) iel(x)

since z = xy~'x7! € Sy = Sy N xSy x~!. Thus we obtain #’ € O(u). On the other
hand, both of u and «’ are minimal in O(u) since u,u’ € “WW and we conclude that
u = u’ since a minimal element in O(x) is unique by the definition. O

Lemma 2.9. Foru = x [, 1" € Eowmn (g, = 0 ifi ¢ 1(x)) and y € Sy, we have
the following.
() uyu" = xyx' 1L, tjz’;.’;_ai
(i1) utju_l =ty forj=12,...,n
(i) ayg =a; =0ifi€[l,m].
iv) a;=0ifx() <L
(V) ayiy = 01if x(i) <l and xyx! e S p)-

Proof. (i). Note that u~' = [T0, 7“x™" = x” ' [, £, and we obtain

X(l)’

n n n
1 | | i -1 | | -1 | | | | i -1 | | Ay(i)—ai
= (.X t? )!/(x tx(l)) = Xyx ( t —I(l))( tx(l)) = Xyx txé;')) .
i=1 i=1 i=1

(ii). For j =1,2,...,n, we have

n n
-1 i —a; —1\ _ -1 _
st =G 70 =5 = 1y
i=1 i=1

(iii). Note that y € S,,,) and [1,m] N I(x) = 0, and thus a,;) = a; = 0if i € [1,m].

(iv). If a; # 0, we have i € I(x). Thus, we can write i = x~'(/ + j) for some j > 1. This
implies that x(i) > [ if a; # 0.

v). If ay # 0, we can write y(i) = x (I + j) for some j > 1. This implies that
x(0) = xy~'x7 ' + j). Since xy~'x7! = (yxH7 € S, we conclude that x(i) > [ if
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Ay # 0. O

2.10. For u = x [Ty 1" € HOW™), set

c(u) =minf{c >0 | x(c+ 1) # ¢+ 1 or ¢ = n} and k(u) = min{c(u), [, m},
Define the set of elements
(2.10.1) F(u) = (S N{xsix ™" € xS x| a;=aj}) Uit ta, ... i),

where we put a; = 0if i ¢ I(x).
By the definition of I(x), we have 1,2,. .., k(u) ¢ I(x) since k() < m, and thus

(2102) ay =day = - =0aiu) = 0.
We also see that
(2.10.3) 5= x5;X" €81 N XS ux~! for j=1,2,... k(u) -1

since k(u) < [,m and x € Sy+1,,) by Lemma 1.3.
On the other hand, we have

x(k(u) + 1) if j = k(u),
x8x 7 (k(u)) = L k(u) — 1 if j=k(u)—1,
k(u) otherwise
for j=1,2,...,nsince x € Syy+1,, by Lemma 1.3. This implies that
(2.10.4) J = k(u) and x(k(u) + 1) = k(u) + 1 if sy(,) = xij‘l.
By (2.10.2), (2.10.3) and (2.10.4), we obtain that
(2.10.5) {s1,52,. .., Skw-1} C I'(w) and sy & T'(u),
where we note that s, & S ,,), $1 € S and x(c(u) + 1) # c(u) + 1.
We define a composition m(u) of n — k(u) by
(2.10.6) S(k(u),zr(u)) =I(u)yns§s.
We remark that

-1
(2107) 6(k(u),7r(u)) C Gr(x) = 6([#) N X@(m’v)x

since Sy is generated by S 1) N xS uyx~! (see (2.5.1)).

Thanks to (2.10.5), the subgroup of W, , generated by I'(u) coincides with the standard
parabolic subgroup Wz = (Siw) < (Z/rZ)") X Sy(,). We remark that Wik xq) is also
a parabolic subgroup of W,.

2.11. For u = x [T, £{" € tWW) it is clear that u™ Wk xqu is generated by u™'I'(u)u
as a subgroup of W, . For s; = xs;x™! € [(u) N S, we have

n n
a . —1;,—a,.-1 P a —1g—a. 1
-1 | x~ @) Yx sj/(z) _ X0 §jx (i) _ _ -1
(2.11.1) uospu=x sj/xl |tx,1(i) =si| |t =s5; =X Ssjpx,
i=1 i=1
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where we note that a; = ay,;) forall i = 1,2,...,nby sy = xij" € I'(u). On the other
hand, we see that

(2.11.2) u'tiu = t; fori € [1, k(u)]

by Lemma 2.9 (ii) and the definition of k(u). As a consequence, we have

(2.11.3) w T u = (x7'S 10X N {s; € Seuwy | @j = aju1) Ults, by . oy tr -
Moreover, we deduce that

(2.11.4) J = k(u) and x~"(k(u) + 1) = k(u) + 1 if sp = x5 x.

in a similar way to (2.10.4). By (2.10.2), (2.10.3) and (2.11.4), we obtain that
(2.11.5) {81,820+ -+ Skwy-1) € u ' T(wu and sy, & u™' T(u)u,

where we note that s,, & S .y), S1 € S ¢y and x Ne(u) + 1) # c(u) + 1.
We define a composition (1) of n—k(u) by S k(). = u 'I'(w)unS . Then we conclude
that

(2.11.6) S krtay = XS G )X
and
(2.11.7) U Wkt = Wi st = (Ska < @12 ) X S,

by (2.11.3) and (2.11.5). In particular, u‘lW(kw),,,(u))u is a standard parabolic subgroup of
Wn,). Recall the definition of X, the set of generators of W, from 2.2.

Proposition 2.12. For u = x[[ex) 1 € EOWmD) ywe have Wiy rauy) = uW(k(u),,ru(u))u‘l
and Xy rw) = uX(k(u)’,ru(u))u‘l. In particular, for s; € Xwnw) there exists sy €
_ -1
Xik(uyrtuy) SUCh that sj = usyu .
Moreover, the identity
Sj(SiI Siy « -« S, l—[ l;li) = (S,'l Siy « - S 1_[ l?i)Slp(j)fO}" sj € X(k(u),n(u))
iel(X) iel(X)

follows only from the braid relations associated with W, ,, where x = s;,s;, . .. 8;, is a reduced
expression of x € G,,.

Proof. For u = x[lisx tl‘."' e WWmy - we have already seen that Wk xwy) =
uWogoriap” and X)) = UXgumayt - Thus, for s; € Xuuwruwy, there exists
Su() € Xikuyaty Such that s; = usw)u‘l. Let x = s;,5;,...s; be a reduced expression
of x € G,.

It is easy to check that the relations
(2.12.1) sisj=spsif|i— gl > 1,

l‘ﬂ‘j = l‘jl‘,‘(l < l,] < l/l)a
Silj =1;S; lf]?& i+ 1

Silitiv1 = litiv1Si

follow only from the braid relations associated with W, , by direct calculation.
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Note that x € Syy+1,,) by Lemma 1.3 and s¢ = ;. So, we have
S0(Si, iy« - - Siy ]_[ ) = (83, i, - .. 8, l_l 1)s0
iel(x) iel(x)

if k(1) # 0 and this identity follows only from the braid relations.

For S S X(k(u),n(u)) \ {S()}, we have Sj = XS,/,(j))Cil and Ay(j) = Ay(j)+1 by (2111) More-
over, we have f(Sj)C) =Lx)+1 = f(XS,J,(j)) since sj € 6(1#), Sy(j) € G(m,v) (see (2.10.1)
and (2.11.3)), and x € W@ = WG A S™Y Thus, the identity s;(s;,si, ... ;) =
(8i,8i, - - - 8i))sy(j) follows only from the braid relations associated with G, by the general
theory of Coxeter groups. So, we conclude that the identity s;(s; s, ... i [Licion ) =
(83, Siy - - - 8i [iesx) 1) sy(j) follows only from the braid relations (by noting that ay, =
ay(j+1)- o

Proposition 2.13. For u = x [Tyt € "W, the subgroup Wy 0 uWn,u™" of
W,..r is generated by I'(u). In particular, we have

W 0 uWimntt™" = Wz = (Sray < (Z/rZ)F) X Sy,

Proof. Put a; = 0 for j ¢ I(x). For w = y 1™, £ € Wiy (4 € Sm,), We have

m n m
-1 -1 —1\b; _ -1 Ay(i) =i bi
uwu~ = uyu | |(utl-u VWi = xyx (| | txZ;)) )(l | tiy)
i=1 i=1 i=1

by Lemma 2.9 (i) and (ii). Note that

(2.13.1) ayi) = a; = Oforie [1,m]

by Lemma 2.9 (iii), and thus we have
m n

(2.13.2) ww™ =y ([ [ o] ™.
i=1 i=m+1

Suppose that uwu~! € Wi = (S (Z]rZ)") x GHJ. Then we deduce
(2.13.3) xyx e Sy ayp = aiif x()) > 1, by = 0if x(i) > |
by (2.13.2). Since xyx~! € S, we have

(2.13.4) ayipy =a; =0if x(7) </

by Lemma 2.9 (iv) and (v). Moreover, we see that

(2.13.5) [, n{x(1),...,x(m)} = [1, k(u)]

by Lemma 1.3, where x(i) = i for i € [1,k(u)]. As a consequence of (2.13.1), (2.13.2),
(2.13.3), (2.13.4) and (2.13.5), we conclude that
(2.13.6) xyx'e Sy ayiy =ai(1 <i<n)and b; = 0(j > k(u))

if uwu' € Wy, On the other hand, it is clear that uwu™" € W, if (2.13.6) holds for
w =yl tf" € Wiy (y € Sgnyy). Thus, we may deduce that W, N uW(m’V)u‘l is
generated by
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T(u) :=(Squ N {xyx™" | y € Sy such that a,) = a; (1 <i < n)})
U {t]’ 12, R tk(u)}

For z = xyx™! € Sy = Sy N xSuayx ™", lety = si,5, . .. s;, be a reduced expression.
Then, xsi,.x‘l € Gy (j = 1,2,...,p) since Sy is generated by S,y N XS uyx 1. We
claim that

(2.13.7) ai; = aj;,, 1<j<p ifa,,(,-) =a;(1 <i<n).

Then (2.13.7) implies that I"(u) D I'(u), and we easily see that W, muW(m,V)u‘l is generated
by I'(u).
We shall prove the claim (2.13.7). We have

(2.13.8) li,ias oy it) = U{i,i+ 1.,y -1} U U{y(i),y(i)+ L...,i—1).

i<y(i) i>y(i)
Suppose that i < y(i) and a,;) = a;. By (2.13.8), we see that xij‘l € Sy (I £ j < yi)),
and we obtain

1 aj— Ajp1 dj ajy n
(xs;x") O u = x(t" ...tjf_l‘)(tj’ ‘tj’ﬂ)(tjiz2 L 1) € O(u).

If there exists j (i < j < y(i)) such that @; < a;;1 < --- < ajand a; > aj,;, we have
a(u) > a((xs jx‘l)G)u). This is a contradiction since u# is minimal in O(u). Thus, we conclude
that ; < a;1 < --- < Qy(i)s and a; = ajx1 = -+ = Ay by ayi) = a;. Similarly, we have
ayiy = ayi+1 = -+ = a; if i > y(i) and a,) = a;. Then we obtain the desired result (2.13.7).

O

2.14. For u € "WW™mY the group Wiy = Wi N uWemyni™! is a standard parabolic
subgroup of W) by Proposition 2.13. Put

k(u), _ Ak(u)+1 Ah(u)+ k(u),
(W) 70 = Xt eyen - 1 | X € ()™ ™ ayyats - .. ap € [0,r = 11},

where (S,,))X7@) s the set of distinguished coset representatives of the cosets
S/ Skwyrtuy- Then (W) KW i a complete set of representatives of Wi/ Wikw) xt)
which is proven in a similar way to the proof of Lemma 2.3. We have the following corollary.

Corollary 2.15. For each u € "WV the multiplication map (in W)
(Wi1,0) 7T s ity X Wiy = Wi gtWonyys (W1, 1, w2) + wyiuwy
is a bijection.

Proof. By definitions, it is clear that the map is surjective. On the other hand, if w;uw, =
wuw, for wy, w| € (W) %) and w,, w), € Wi,), we have

1

-1 1 -1
wy w’l = uwzw’z u - € W(l,y) N MW(m,,,)M = W(k(u),n(u))-

This implies that w; = w} since wy,w] € (W(l,ﬂ))(k(“)’”(“)). Thus we also have w, = w), and
therefore the map is injective. m|
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3. The Mackey formula for cyclotomic Hecke algebras

In this section, we construct various R-free basis of the cyclotomic Hecke algebra /7, ,
associated with W, , which are compatible with the decomposition of W, , to the cosets
W,..-/ W, and the double cosets W ) \W,, ./ W(y.,. Then we establish the Mackey formula
for cyclotomic Hecke algebras.

3.1. Let R be a unital commutative ring, and take parameters ¢, Q1, Q», ..., O, € R such that
q is invertible in R. The cyclotomic Hecke algebra (Ariki-Koike algebra) .77, , = 2 (W,,)
associated with W, , is the associative algebra with 1 over R generated by Ty, 77, ..., T,
with the following defining relations:

G.1LD)  (To-0)To—Q2)...(To-0) =0, (Ti+DTi-¢=0 (A=<i<n-1),
ToT'ToT, = T'ToT Ty, TTinT; =TinTiTiyy (1=<i<n-2),
TiTj = TjTi (ll - _]| > 1)

The subalgebra of .77, , generated by 7, T>, ..., T,—; is isomorphic to the Iwahori-Hecke
algebra J#(S,) associated with S,,. For x € S, put T, = T;, T, ... T;, for a reduced expres-
sion x = s;,8;, ... s, and {T | x € S,} is an R-free basis of J7(S,).

Set L = ¢"™'T;_y ... T\ToTy ... Tiey fori = 1,2,...,n. Forw = xt{' ...1;" € W, where
xe€ G,anday,...,a, € [0,r = 1], put T, = T,.LT'L ... Ly". Then we have that (T, | w €
W,,.r} is an R-free basis of .77, , by [2, Theorem 3.10].

For a parabolic subgroup W,y of W,, ., we define the subalgebra J77; ) of .7, , generated
by Ty (in the case where [ > 1) and T, for x € S(,. It is isomorphic to the cyclotomic
Hecke algebra .7 (W,,)) associated with W ). It is easy to see that {T,, | w € W} is an
R-free basis of ;).

The following properties are well known, and one can check them by direct calculation
using the defining relations.

Lemma 3.2. We have the following.
(i) Lj and Lj commute with each other for any 1 < i, j < n.
(i1) T; and Lj commute with each other if j # i,i+ 1.

(ii1) T; commutes with both L;L;,1 and L; + L;,;.

(iv) L2 T; = T:L? + (g — 1) 3oy LLb=¢

i+1 b:1 z‘ i+].'
W) LT =TiLy,, - (q = 1) B LY

Lemma 3.2 implies the following lemma:

Lemma 3.3. Fork >0, x € Sy -1y and ags1, . .., a, € [0,r — 1], we have
TX(LZ’j:l‘ LZTZZ R 5
— A+ 1 Aj+2 dp (Brs1smees bn) bis1 g bira by
= (L% L2 LY T+ Z Z plbetebi (P iy

Y<X (bgg1seensb) €l 0= 117

for some r;b‘ """ b ¢ R,

Proof. We shall prove the lemma by the induction on £(x). If £(x) = 0, it is clear. Suppose
that £(x) > 0. Let x = s;,5;,...s; be a reduced expression, and put x = xs;. Note that
T,=T,T;

,» and we have
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(Lakﬂ L“k+2 LZ” )

k+17k+2 °
Afe+1 Af+2 an 1 — .
Ty (Ls;,(k+1)Ls[[(k+2)‘ 5i (n))T‘ if @i, = a1,
Al 1 Ajet2
T (Lsil(k+l)Ls,-l(k+2)‘ 5i (n))T”

a’l 1 a’l i~

a1 -1 s ig+2 a
+(q - 1) Zc‘:ai/ Tx/ (Lk+l e ll 1 )(Lll i+1 )(Ll[+2 Ln )
- lf ail < ai1+] ’

Afet 1 Aj42 an
To(Lg (k+1)Lv (k+2) : s-(n))Til
a’l i1 a’l 1 a,l+a,[+1 dip+2 an
_(q - 1) ZC a1]+] Lk+1 : l] 1)(Ll/ i+1 )(Ll]+2 Ln )

if a;, > Aj+1

by direct calculation using Lemma 3.2. Applying the assumption of the induction to

et Afe2
Tx'(Lsi,(k +1)Lsi1(k vy L (n)) we have the lemma. ]

Proposition 3.4. For W, ,), a parabolic subgroup of W, ,, the elements
(T, Ty | w; € W1y € W)

is an R-free basis of J,,. Moreover J%,, is a free right 7, -module with an J{;,-free
basis {T,, | w € W0},

Proof. For w = xt{'...1," € W, with x € S, we can write x = x;x, where x; € G,
X2 € Gy, and xo = yiy» where y; € S, yo € S} Note that £(x) = €(x;) + {(x>) and
{(x) = {(y1) + {(y2). Then, we have

T, =T.L" ... Lo
= Txl szLllll .o LZ"
=T,T,T,L" ... L%

= Ty Ty (L 1O LT, (LY L2 . LY,

where we use Lemma 3.2 (i) and (ii) in the last equation. Note that y, € Gl[f], and we obtain

A+l 7 dis2 Ay
Ty2 (Ll+l Ll+2 Ln )

S N an (Bis1seesbi) T b by
- Lyz(l+1)Ly2(l+2) te Lyz(n)Tyz + Z Z r, Ll+l Ce Ln TZ
U2 (bpyy e, by)El 05— 11"

by using Lemma 3.3 repeatedly. Thus, we have

B4y Ty=To L, (Lo LTy, Ty (L LS LY
D eI L T, (LY LS L)
Y2 (byy1 b )ElOr— 11"
= TuLinbyin - L) Tl Ly L)
DT e (T, L LS LY,

Z<Y2 by onsby)E0,r— 117

where we note that y1z < x; = y1y».
a

We define a preorder > on W,y by w = xt{" ...6/' > w' = x’t‘;‘ ...t?l if x > x’. Then we

have
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To=ToTw+ D, ruwTuTy
w’l EW(I’W,W’ZEW(,M
w’2<u:2
. _ a+1 aj+2 ap aj
by the equations (3.4.1), where w; = X1 e yie2) - ty " and wy = xof|'...1;".

This implies that {7}, T, | w; € W w, € W} is an R-free basis of ji’i,,r, and hence
Hnr = D ey TwH ) as right H;,)-modules. ]

3.5. Recall that Wiz = Wi NuWonyu ™" foru = x [Ty 1 € “W, and we have

ak(u)

Wikaray =125 - 1o 1 2 € Sy a1, -- - kg € (0,7 = 11}
Then, the subalgebra 7k xw) has an R-free basis

(3.5.1) (TLYLY - Ly | 2 € Sruyntus @1 - - @ray € [0,7 = 111,

Proposition 3.6. For each u = x [];cy 1 € LW ywe have the following:
W) LiT,=T,L;fori=1,2,..., k(u).
(1) T:Ty = TuTs12x for 2 € Sy aiwy)-
In particular, T, .y has an (Fkwy x> #m.y))-bimodule structure by multiplications in
Jn.r. More precisely, for T,Y € T, 7., we have

L(T,Y) =T (LY) (1<i<k(u), T(T,Y)=T (Tw1,Y) (z€ Swunrwu)-

Proof. Recall the definition of the element 7', € 7, , for w € W, . Then, this proposition
follows from Proposition 2.12 together with (2.11.1) and (2.11.2). ]

3.7. Foru = x[ligwt! € W, recall that Wy rwy = Wi N uWenyu™" and
Wiy = u! Wik@yrwytt (see (2.11.7)) are parabolic subgroups of W, .. Then, the subal-
gebra . n(wy) (1€SP- Hkuy t(uy)) has an R-free basis

(LY .. Ly | 2 € Struyntus @1 - - iy € [0,2 = 11}

(resp. {T, L .. Zf‘)) [y € Sty A1s- - - Ak € [0,2 = 11}),
where we note that S ;) 2 = X~ 'Sy ruyx by (2.11.6).

Corollary 3.8. Foru = x [l 1 € W e have the following:
() TudCyyrtuy) has an (Huuyawy)> Ay xtuy))-bimodule structure by multiplications
in J,,.
(ii) We have the isomorphism of (Fw)x(uy)> H(my))-bimodules

Tujﬁm v) = Tu% k)t ) ©HA i by %?m,v)-

Proof. (i) follows from Proposition 3.6 (note that S, r#)) = x ' S(tuyxtuy X)- Note that
ue HOWmD ¢ W) and S, ra 1s @ subalgebra of ). Then, by Proposition 3.4,
we see that Ty A xtwy = Hkwyatuy) S Tt F ) 24 -modules, and we obtain (ii). O

3.9. By Corollary 2.15, any element w € W, , is uniquely written as
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(3.9.1) w=wiuwy, (e W wi e (W), wy € W)
By using this decomposition, we define fw € J¢,, by fw =T, T,Ty,.

Proposition 3.10. We have the following.
(1) f%i,r = Z c%il,p)Tw%‘im,v)-

ue W) Womy)

(i) (T, |we W,./} is an R-free basis of 74, ,.
Proof. We prove (i). First we prove that

(3.10.1) T,e > HawTuHimy foranyv=x [ | & e ®wnwo
ue Lo W my) i€l(x)
by induction on the order > on “WW N W),

If v is minimal in “W N W) _it is also minimal in O(v). Then we have v € GHOWY),
and (3.10.1) is clear.

Suppose that v is not minimal in “W N WY If v is minimal in O(v), we have v €
Ewwmy “and (3.10.1) is clear. We also suppose that v is not minimal in O(v). Then, there
exists Sp = Xij_l € ST(x) = S(l,,u) N XS(m,V)X_l such that aj > ajy and j,j+ 1 € I(x)
by definitions (see (2.5.2), (2.5.3) and (2.5.5)). Since x € S, we have {(sjx) =
{(sj) + €(x) and {(xs;) = €(x) + {(s;), and thus T; T, = Ty,x = Ty; = T,T;. Puta; = 0 if
i ¢ I(x). Then we obtain
(3.10.2) TpT, = Ty(T LY L% .. L)

= T, T{(L"LE ... L&)
= To(LY' .. LD LG WS - LT

ajfl

—(g=1) D TULy LWL TN L,

C=aj
where we use Lemma 3.2 in the last equation (note a; > aj.1). Since

XD DA ) <,

/+1 Jj+2
a ajtaj.1—c a
x(t DTS ) <v (ap <c<ap- 1),

the assumption of the induction implies

TW(Ly . LD LY (LS L L) € Z Ao TuHlopm),

j+2
ue L Womy)
a a 1 crdajtaj—c () a,
To(L§' . L DLELS L L L) € Z Ao TuHlom).
ue L Womy)

Combining them with (3.10.2), we conclude that
Tv € Z e%’il,/A)Tw%im,v)’
ue L wimy)

where we note that Tj‘,1 € H and T € ). Thus we proved (3.10.1).
In order to prove (i), it is enough to show that
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(3.10.3) Tpe Y. HiwTuHiny forany w=xt{'t5 .. 10 € Wy,

e L W omy)

We prove (3.10.3) by the induction on £(x).
If £(x) = 0, we have

(3.10.4) T, = LOLE .. L% = {(LEIL?; : L?")(f?ff La?f;a- - -LZ"a) it m
(Lo Lo LOYLLE Ly i< m.
We see that
@2y e WA W] > m,
(2 iy € BOW AW if L < m,

where we note that I(e) = [m+ L,n] N {l+ 1,1+ 2,...,n} for the identity element e € S,,.
Thus we have

(LY'LY ... L") € Ay,
(LTL;Z e L,‘,lnm) S %m,v)v
(Lla_i_+l] L;l:rZZ . LZn) c Z %Lﬂ) Tuc%’im,v) lfl > m,

ue L wimy)
Am+1 7 Am+2 a, .
Lo Lt Ly e Y A TuHliy it L <m
ue G wimy)

by (3.10.1). Then, using the above facts together with (3.10.4), we obtain 7, €
Zug (L) W m.y) %l,y)Tu%m,v)'

Suppose that £(x) > 0. We can uniquely write x = x;xx3 for some x, € SV,
x1 € (S)™ and x3 € Sy,y). It implies €(x) = £(x1) + £(x2) + {(x3) by the general theory
of Coxeter group. Thus we deduce

Ty =Ty T T L LY L% = T Ty Toy (L L2 LY (L LS L L),

m+1"m+2 *

Applying Lemma 3.3, we have

(3.10.5)
Ty = Ty T (L0 (L2 L T (LY LS . L)
+ > > POt IO T T (L Lo LI L L L),
Y3<x3 (byps1,...by)€[0,r—1]
Since T, T,,T,, = T, we obtain
(3.106) > > POt BT T T (L0 L0 Ly L L)

Y3<x3 (bt 1,---by)€[0,r= 1]

€ D, HuwTuny

e L Jyeny)

by the assumption of the induction. Note that {x3(m + 1), x3(m + 2),...,x3(n)} = [m + 1,n]
by x3 € S(y,). By Lemma 3.3, we have

a a a
+1 l +2 l
m m nn)

m+1"m+2 * "

Tx1 sz (Lam+l Lam+2 . L)acZ(n)) = TX] sz (L

x3(m+1)"x3(m+2) * *
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B D a,
=Ty (Ll (L L T,

Xo(m+1) " xo(m+2) °°

D D D Ctl (S V50 S FO)
Y2<x2 (by,....b,)e[0,r—1]"

where we puta = A1) fori =m+1,...,n. By the assumption of the induction, we deduce
b1y biyhb by
> > e T N e Y AT .
Y2<x3 (by,....0,)€[0,r=1]" ue w Wmy)

By Lemma 3.3, we also have

a;n+l a:n+2 al’l —_ a; a;
Txl (sz(m+1)Lx2(m+2) T sz(n))TXZ - Txl( 1_[ Lxg(i))( 1_[ sz(i))TXZ

m+1<i<n m+1<i<n
X<l X (i)>1
a; a
=To( | | Lo TuC [ | LD
1<i< i
m;z(;;ln i€l(x2)
a; (D1 sersibn) b 1 by by
— Ty ﬂ sz(i))(z Z pbreb, (L L2 L)
ml<isn Y2<x3 (by,...,by)€l0,r—1]"
xp(i)<l
€ > HupTuHliny
ue L wimy)

Since Txl(Herls[sn Lai<l-)) € %]’#), TXz(HiEI(xz) L?l) € Zue(l,mw(m,v) ’%l,ﬂ)TM‘%m,V) by (3101),

i<l X2
and Tyz(Lll"Lg2 .. LZ") € Ductwwmn 1w TuHimy) for y» < x, again by the assumption of
the induction. As a consequence, we obtain

Tx. sz (Lam+| Lam+2 . Lan ) c Z jﬁl,y)Tue%?m,v)s

x3(m+1)"x3(m+2) *° x3(n)
ue Lo ywimy)

and this implies that

(B.107) T T (L) L L T (LY LS Ly € Y Ay Tuiny,

x3(m+1)"x3(m+2) **
ue L yimy)

since Ty, (L{'LY ... Ly") € Hny). Thanks to (3.10.5), (3.10.6) and (3.10.7), we obtain
(3.10.3), and hence we proved (i).
We prove (ii). For each u € "W the set of elements

{Tu, Ty | wy € (W)® " 0 € Wity mun)

is an R-free basis of .7} ;) by Proposition 3.4. Note that 7,7, is a left F ) x(.)-module
by Proposition 3.6, then (i) implies that .77, , is spanned by

T, TuTy, | u€ HOW™ wy € (W) ™D wy € Wi} = Ty | w € W}

as an R-module. Then we can define the surjective homomorphism of R-modules ¢ : 7, , —
I, such that ¢(T,) = T, w € W,,), and ¢ is an isomorphism by [19, Theorem 2.4].
Therefore, {T,, | w € W,,} is an R-free basis of .77, ,. m|

3.11. For a parabolic subgroup Wy of W, (resp. Wy riwy) OFf Winy)), we define the
restriction functor
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e%ﬂ Wn,r .
ResWM : H, -mod — ) -mod

Wan

w

(resp. #Res
(k)7 )

L Himy) -mOd = H ri(uy) -mod)

by the restriction of the action. We also define the induction functor
7 . ‘A/ILI'
< IndW(i.,,) = I ®;,, — A -mod — I, -mod,

where we regard 77, , as an (J, ,, 7¢(,;))-bimodule by multiplications.
For u € W we consider the induction functor

5 qu.m

Wy = P4 Oy ainy = + Pkt -mod — ;) -mod,

where we note that S xw) 1s a subalgebra of 777 ;). We also introduce the functor 7,(-) :
Aty “MOd = Hk(u) x(uy) -mod by

Tu(=) = TuHyriuy @ = Aty MOd = g ) -mod.

jé?k(u),nu(u))

We see that any functor defined in the above is exact by Proposition 3.4. Then now we
obtain the first main theorem of this paper.

Theorem 3.12 (The Mackey formula for cyclotomic Hecke algebras). For 0 < [,m < n,
uEn—Ilandv e n—m, we have the following:

(i) There exists an isomorphism of (S ), m.))-bimodules

%’vr - @ (%Lﬂ) ®=yf(k(u),n(u)) Tu %mﬂ/))

ue L Womy)

given by Tw =T, 7.1, - T, ®T,T,, where u € LWy, e (W(Z,ﬂ))(k(”)’”(”))
and wy € Wp.y).
ii) For a left 7€, ,,-module M, we have a natural isomorphism of left 7, ,,-modules
(i) Fe left Hp.)-module M. h [ ph left 77, y-modul

%l,r ®j{(m.v} M = @ (%Iaﬂ) ®jﬁk(u)7n(u)) Tu%myv)) ®<9{fm.v) M'
ue L Wyimy)

(iii) We have an isomorphism of functors

7 Wnr 7 Wnr 7 W, 7 Wmv
M Res"™ oM nd! = @ HndY ™ oT,(=) o #Res! ™ .
Wiy Wy Wikt Wt

ue L wimy)
Proof. We prove (i). Since {Tw | w e W,,}is an R-free basis of .77, , by Proposition 3.10
(ii), we can define a homomorphism of R-modules
q) : %,r - @ (%l,}l) ®jf(k(u),7r(u)) TM%WI,V))?
ue (L) W(m.v)
by Ty = T, TuTu, = T, ® TyTy, (u € HOW™) € (W) @7 1wy € Wy,,). In
order to define the inverse map of @, for u € WY et

‘P; : t%’il”u) X Tuf%‘im,v) - %,,r,

be the multiplication map in J%,,. Since T, (tesp. ) is a left (resp. right)
Hkw).x(wy-module by multiplications in .77, , (see Proposition 3.6), it is clear that ¥/, is a
H k) nuy-balanced map. Thus we have the homomorphism of R-modules
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W ‘%Lﬂ) ® Ak riy TM‘%’",V) - ‘%’;hr’ X®Y - XY.

Then it is clear that ¥ = @ue twwmy Yu 18 the inverse map of @, and we see that @ is
isomorphism. Obviously, ¥ is an isomorphism of (7, ), -#{n,,))-bimodules since actions in
both sides are given by multiplications. Thus @ is also an isomorphism of (I ), #{m.»))-
bimodules. (ii) follows from (i), and (iii) follows from (i) together with Corollary 3.8. ]

4. The Mackey formula for the categories O of rational Cherednik algebras of type
G(r,1,n)

In this section, we discuss the Mackey formula for the categories @ of the rational Chered-
nik algebras associated with the complex reflection group W, .

4.1. Let W be a finite complex reflection group and let f) be the C-vector space on which W
acts by reflections. Let Ay be the set of reflection hyperplanes, and let b;f}g =D\ Upeu, H
be its complement. We denote by Sy the set of reflections in W. For s € Sy, write A, for
the non-trivial eigenvalue of s in h*. For s € Sy, let @, € h* be a generator of Im(sly- — 1)
and let @ be the generator of Im(s|, — 1) such that (o, @) = 2 where ( , ) is the standard
pairing between b and h*. Let D(b;‘}”) be the C-algebra of algebraic differential operators on
the smooth affine manifold b:;g. The action of the group W on ) induces an action of W on

the C-algebra D(b,,”). We denote the smash product of the algebra D(b;;’) and the group

w
W by D(b;{jg) > W. The rational Cherednik algebra H(W) = H(W, }) associated with W is a
subalgebra of D(b;f,g) > W which is generated by elements of C[b], elements of W and the

Dunkl operators D, for & € b:

2C.Y aé( ) re
D§:6§+Zl_/1 af(s—l)ep(bngw
SESW S S

where {c;}es, 1s the parameter of the algebra H(W).

4.2. The category O(W) is a full subcategory of the category of finitely generated H(W)-

modules on which object the Dunkl operators acts locally nilpotently. For a module M €

O(W), we consider the localization M“" = Ogﬁg ®cryy M where Og", is the sheaf of holo-
w w

morphic functions on by,/. Since we have C[b},’] ®cpyy H(W) = D(by,”) = W, the algebra
D(b;f,"’) >~ W acts on M*". Considering the W-equivariant local system of horizontal sections
together with the monodromy action of the fundamental group 711(1‘);‘6,9 /W, po) for a certain
fixed point py € I);;g /W, we obtain the finite-dimensional vector space KZy (M). By [11],
the monodromy action factors through a Hecke algebra .7#(W) associated with W with a

parameter g determined by the formula in [11, Section 5.2], and we have the functor

KZy : OW) - (W)-mod, M — KZy(M).

4.3. For a parabolic subgroup W’ of W, Bezrukavnikov and Etingof introduced the functors
of parabolic restriction OResVV[Z, and induction OIndw for modules of the category O in [3].
They are exact functors OResw, cOW) — OW), @Indw, : O(W) — O(W) between
the categories O for the rational Cherednik algebras H(W) and H(W’).
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4.4. For a parabolic subgroup W’ of W and an element x € W, we have a C-algebra isomor-
phism Hif[ﬁ) : HxW’'x™')y — H(W’) given by f +— x~' fx for f € HxW’'x™"). We define a
functor

(x)

®§;) COW) - OGW XY, M- Mo,

(x) . . . .
where M% = M as vector spaces and the action is twisted by H(Mf) We sometimes denote

the functor ®(vij) by u(—) and also denote Mo by uM when we need not notify the subgroup
w’.

4.5. Consider the parabolic subgroups W, and W, ,, of W, .. For a double coset repre-
sentative u = x [[jey 1 € W, we have W) N uWinyu ™' = Wikwwy) by Proposi-
tion 2.13, and u™' Wy nuytt = Wik ) BY (2.11.7). Recall that we denote by Xk w) () C
{50, 515> Sn-1} (resp. X .4wy) the set of standard generators of the parabolic subgroup
Wk ) (€8P Wity atwy))-

4.6. Let h = C" be the reflection representation of the complex reflection group W, ,. The
group W, , is naturally identified with a finite quotient group of the fundamental group B,,, =
ﬂ](b:;fr/ W, Do) of b;;fr W,.» with a fixed base point p, € I);f,fy/ W, Similarly, the Hecke
algebra .77, , is the finite-dimensional quotient algebra of the group algebra CB,,,. For u €
EOWY) and s; € Xw x> We see that the identity s;u = usy(;) in Proposition 2.12 also
holds in B, , since the identity follows only from the braid relations, and so does in .77, ,.
The following lemma follows from the definition of KZ functors and the identity in B,,,.
Since this lemma is key to prove the Mackey formula for the category © by the lifting
argument and it may not so clear for non-experts, we will give the proof of the lemma later
in Appendix A.

Lemma 4.7. For a double coset representative u € "W and a module M €
OW k) 2t wy))» We have the following isomorphism of functors :

KZw iy my © (=) = Ty(=) © KZW(

Kby

By the above lemma, we obtain the Mackey formula for the categories O as a corollary
of Theorem 3.12.

Proposition 4.8. We have the following isomorphism of functors :

Wau W,
w2 ou(=)o OResW"”'”) .
(k(u), (1)) k()b )

O W O Wor o o
Rf:sww> ) IndW(W) = EB Ind
w0 Womy)
Proof. The proof is the same with the proof of [16, Theorem 2.7.2]. By [22, Theorem
2.1] and Lemma 4.7, the KZ functors commute with the parabolic restriction functors and
the twisting functors. Thus, we have the isomorphism of functors

O W O W ~ @ O W(L#) O W(’"J’)
K7 o e ~ K7 o ou(—)o
Wi RGSWW IndW(mv) Wi IndW(k(m,n(u)) u(-) ResW(k(u)Jru(u))
ueb) Womy) '

by Theorem 3.12. By [22, Lemma 2.4], this isomorphism implies the isomorphism of the
proposition. m|
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4.9. In order to obtain the Mackey formula for Hecke algebras, we should take standard
parabolic subgroups since we use explicit calculations using Ariki-Koike basis of .77, .. We
also should take standard parabolic subgroups for its lifting to categories © in Proposition 4.8
since we need suitable corresponding identity in B, . to one in Proposition 2.12. However,
once we obtain the formula for standard parabolic subgroups in categories (9, we can extend
it to the formula for any parabolic subgroups as follows. Note that any parabolic subgroup

of W,,, coincides with xW(;,,x~" for some / > 0, u £ n— [ and x € W,,. By applying
() )

o ®W(l.m’.®yW(m,v)y_ .. . .

equivariance of the parabolic induction and restriction, we finally obtain the second main

theorem of this paper, which supports Conjecture 0.1 :

the twisting functors _, to the isomorphism of Proposition 4.8 and using the

Theorem 4.10 (The Mackey formula for © over cyclotomic rational Cherednik algebras).
Let W,, W, be parabolic subgroups of W,,, and “W” be a complete set of double coset
representatives of W,\W, ./ W,. Then we have the following isomorphism of functors :

[¢] W 0O W o o W, o Wi
o) = (o) —) O
Resy, o ~Indy, Indy’ . ou(=)o “Res Sy, -
uerWb

Appendix A Proof of Lemma 4.7

In this appendix, we discuss the proof of Lemma 4.7. Though the argument is straight-
forward from definitions, we give a proof here for readers who are not so familiar with the
KZ functor. In order to give the proof, we need to review the definition of the monodromy
action of the Hecke algebra on the KZ functor, so most part of this appendix is devoted to
review of the results of [6] and [11].

A.1. First, we review the definition of the action of the Hecke algebra on the KZ functor.
For a module M € O(W), we consider the localization M = ngig ®cpy M where Ofy, is the
w

sheaf of holomorphic functions on by,’. Since we have C[by,”|®cy) H(W) = D(by,”) o W, the
algebra D(by,7)>=W acts on M*". Namely, M is a vector bundle on by, with a W-equivariant
flat connection. Let (M")¥ be the W-equivariant local system of horizontal sections of M®".
For any point p € b;f,"’, the stalk (M“”)IV7 at the point p is a finite-dimensional vector space
over C. Fix a point py € b;;g, and then we set KZy (M) = (M“”)[V,O as a vector space. Let
Po € by, /W be the image of po under the projection by’ — by, /W, and let 7, (b, /W, po)
be the fundamental group of the space b;;g/ W with the base point py. The vector space
KZy (M) is naturally equipped with the action of the fundamental group 7, (by,’ /W, po) via
monodromy as follows.

Let [0,1] c R be the closed interval between O and 1 (not an interval in Z). For a
pathy : [0,1] — b;;g and a germ v € (M’”‘)X(O) at y(0), we have its analytic continuation
v e(M “”)5(1) aty(1) through the path y. Then, we define an operator of analytic continuation

Suy) s (M) g — (M)}, v v

Following [6, §2.B.], recall how we obtain a homomorphism of 7;(h},’ /W, po) to W: Note
that, for a loop o € m(by,”/W, po) and a point p € Wpo, we have a unique path 7 :
[0,1] — by,” such that 70:(0) = p and its image in by,”/W coincides with . The path 7"
in by’ is called a lift of the element o € m;(hy,”/W, po). As [6], we describe elements of

ﬂl(b;;g /W, po) by their lifts (see [6, Appendix A]). For the above loop o, wesetc =w € W
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where w is an element with 7o (1) = w(p).

For loops o, o € m1(by,” /W, po), we denote the composition of loops o~ and o” by o - o;
ie.
o(2f) 0<tr<1/2)

(" -o)) = {a-’(2t— 1) (1/2<t<1)

Similarly, for paths vy, ¥’ in I);f,g with y(0) = p, y(1) = ¥'(0) = p” and y’'(1) = p”, define the
composite path y" - y by
v(21) 0<t<1/2)

0= {y’(2t— ) (1/2<r<1)

It is a path from p to p”’. For a path y in b;f,g and an element g € W, let g(y) be a path given

by (g(y)(@®) = g(y(1)).

For loops o, o € m;(by,” /W, po), the path T("¢c”) is a lift of o with initial point o(py),
and thus the composite path o("°c”) - P00 is a lift of the composite loop o~ - o~. Then, we
have

(@(a’) - °a)(1) = (@ (po)),
and hence 0’ - o = o € W. That is, we have a homomorphism of groups ([6, (2.10)])
() 11y /W, o)™ — W.
Now we consider an action of the fundamental group given by monodromy
Ty : mi(by! W, po)P — GL(M™)y), o - Su(a) 7.

By [6, Theorem 4.12] and [11, Theorem 5.13], the linearly extended homomorphism TM
factors through an algebra homomorphism 7, : JZ(W) — Endc((M“”)[V,O). Then we
obtain the functor

KZyw : O(W) = #(W)-mod, M > KZy(M).

A.2. Let W c W be a parabolic subgroup and let x € W be an element. Recall the functor
®(V)&) : HxW'x™') — H(W’) introduced in 4.4. For a module M € (W’) and a point
p € by,7, the functor G)(‘f,) induces an isomorphism @(v"? : (M“”)Z — (G)(vf,?M“”)Z ~ (M‘"’)Z(p)
of vector spaces, and we have the following commutative diagram:

Su®)

n\V \%
M50 (M50
| |5
an an\V
(M) (M )X()’)(l)

\Y%
-
xO) g O(vf)' o)

for a path y in by, Here x(y) is the path given by x(y)(r) = x(y(1)).

A.3. Now we consider the case of the complex reflection group W, .. Consider the parabolic
subgroups W, and W, of W,,,. For a double coset representative u = x [T 1" €
(L) W(m,v)’ we have W([,'u) N uW(m,v)u’l = W(k(u)’ﬂ(u)) by Proposition 2.13, and u! W(k(u),ﬁ(u))u =



THE MACKEY FORMULAS 129

Wi by by (2.11.7).  Recall that we denote by Xwwyzw) < {S0,S15--.,Sn-1} (resp.

Xkwyrtwy) the set of standard generators of the parabolic subgroup W) rw) (resp.
oo

Wik ). We sometimes denote the functor ®§,'“,) . by u(-) and also denote M "wafuw)
’ (k). )

by uM when we need not notify the subgroup W) (-

A4 LetB,, = nl(b:;fr /W,.., Po) be the fundamental group of the space b;;fr /W, Itis the
braid group associated with W,,.. For j = 0, 1, ..., n — 1, we fix a generator o; € B, , of
the braid group given in [6, §2B] such that o; = s;. Then the image of oy, ..., 0,— in
oy = HWy,)are Ty, ..., Ty_y € I, ,, the generators of the Hecke algebra .77, , which
we introduced in 3.1. Fori =1, ..., n, wesety; = 0j_10_2...010007 ...0i_{, an element
in B, ,. Then, its image in /7, , is ¢"~'L; and we have y; = t;. Note that these elements y,

.., ¥n» mutually commute since the commutativity of #;, ..., t, € W, is obtained only by
using the braid relations. For the double coset representative u = x [ ;s 7" € (P W),
we consider an element w = ([Tiesc) V)0 - .03, € Bn, Where x = s;, ... s; is a reduced
expression of x € &,. Then, we have w = u. By Proposition 2.12, for s5; € X(xw)xw)), there
exists Sy(j) € Xkt Such that s;(si, si, ... i, [Tieroo £ = (8iySiy - - iy [ierco 1) Sy(j)» and
this identity can be lifted to the identity

(A4.1) WO = Oyjw

in the braid group B,

By the embedding of [6, §2D], we identify the braid group Bxw) T€SP- By rtwy)
associated with the parabolic subgroup W)y (resp. Wik atwy) With the subgroup of
B, generated by the standard generators {07 | s; € Xz} (t€sp. {07 5; € Xty })-
See also [22, Section 2.2] for the embedding of parabolic subgroups.

Now we prove Lemma 4.7.

Lemma A.5 (Lemma 4.7). For a double coset representative u € DWW and a module
M € OW gy t(wy))> we have the following isomorphism of functors :

KZW(k(Lt).ﬂ(u)) ou(—) =Ty(—)o KZW(

Kty

Proof. Note that an () (y-module T, N for an ) r#(,-module N is isomorphic
to N as a vector space by the map N — T,N, v — T,v and the action of T, € Jku) )
corresponding to z € W xwy on TN is given by T.T,v = T,(T,-1,,v) forv € N. For a
module M € O(W ) xt(u)))> We define a map

K(u) . (TM(_) o KZW( )(M) — (KZW(/c(It),n(u)) °© ®(u) )(M)’

() ) Wik st
T,ooe 0 oSy (@) )W)
(k)b )
forv e KZW<A< A ))(M) = (M”")ZO. Here we remark that we have @ = u and u~ ' ("@) ") is a
(u),mr(u

path from pg to u~!(pg). Obviously ¥ is an isomorphism of C-vector spaces. We see that
the map x* commutes with the action of the Hecke algebra 7, - by direct computation
as follows: For v € KZWW“MW(M) = (M“”)IV,0 and T; € )y corresponding to the
generator ; € X(k(w),x(u)), We have
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KO(TAT ) = KT (T i)

— oW
= @W

(k). e (u)) ° SM(M_I((pOa)_I))(S M((po&w(i))_l)st//(i)u)

= (D) " Ty) s 0O (.

Here we can deduce that the path (@)™ u((0T ;) ™") = W(PTyw)-P@)™! = (Poyg™w)™
is lifted from the element (o) - @)™' € B,,, being equal to (w - o)™ € B,, by (A.4.1).
Thus, by the uniqueness of lifting from the fixed initial base point (usy;))(po) = (s;u)(po),
we have

Sum(Paiiw)™) = S (PG T)™) = ST - sil(P@)™)).
Therefore, we have

KNT(T,0) = S m((P@)™" M((poalf(i))_l))si © @(VI‘J’?«) 4 ))(v)

= Sun((T) - s(D) s 0O (@)

= Sun(@T) IS un(D)H o O (@) = Tp- k().

That is, the map K" isa homomorphism of 7{y) »)-modules. It is clear from the definition
that k™ is functorial, and hence we have the desired isomorphism of functors. O

Appendix B A root system for G(r, 1, n)

In this appendix, we explain some connection with a root system for the complex reflec-
tion group of type G(r, 1, n) introduced in [5]. We use notation and results given in [20].

B.1. Let V be a complex vector space with a basis {€, &, ..., €,}. Let { = exp(2nV—1/r) be
the primitive r-th root of unity. Then W, , acts on V by

(') -6 =" (x€G,0<al,...,a,<r-1,1<i<n).

Fori=1,...,n—1,avector €] —¢; is orthogonal to the reflection hyperplane corresponding
the reflection s;, and a vector ¢ is orthogonal to the reflection hyperplane corresponding the
reflection s¢. Put

A=l{e—e|l1<i<n-1}U{e)}
and put D= W.r - A. Then we have

O={l"¢—-e|1<izj<n0<ab<r-1)U{{¢|1<i<n 0<a<r-1}

B.2. In this appendix, we identify elements a € Z/rZ with integers 0 < a < r — 1. We
consider a set X = {eE“) |1 <i<n,acZ/rZ}, where eE“) is just a symbol indexed by i and
a. One can define an action of W, , on X by

(xtf1 ...tf,”)-e[(.a) :e;lef;“i) x€G,,0<ay,...,a,<r—-1,1<i<n, a€Z/r7).

We also define another action of W, on X by

@ _ pla=a) (v e, 0<ay,...,ay<r—1,1<i<n,acZ/r7).

aj Adn
(xty)'...n) ke = )
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b

We express an element (e?“), eﬁb)) e XxXas ega) —e; ) in the case where i # j. Then we

define a root system @ for W, , by

O={e” eV |1<i#j<n abeZ/rZ}ule” |1 <i<n, acZrL).

l

We define subsets @p, Q and A of © by
Oy ={ef” —e e @ |i>ja=0ufe” =€ i< j b+ 0 ute” |1 <i<n),
Q={e” -V |1<j<i<n beZ/rZ}ule” |1 <i<n),

A=) e |1 <i<n-11ufel”)
Let ¢ : ® — V be a map such that go(ega) - e;h)) =% — {bej and tp(ega)) = (“¢, then we
see that ¢(®) = @ and o) = A.

RemARk B.3. (i). In the case where r = 2 (in this case, W, coincides with the Weyl
group of type B,), we see that @ (resp. A) coincides with a root system (resp. a set of simple
roots) for the Weyl group of type B,,. Moreover, ¢(2) coincides with the set of positive roots
with respect to A of the Weyl group of type B,.

(i1). In general case, € is not a positive root in the sense of [5], but Q plays the role of
positive roots. Moreover, in this appendix, we follow notion in [20], and the definitions of
@ and Q are different from them in [5]. See [20, Remark 1.4] for these differences.

B.4. For0 </ < nandpu k n- I, we obtain the root system @, and subsets Q,, Ag,) C
@, for the parabolic subgroup W(;,, of W, , by

1

Dy =le =P [ 1<i#j<l abeZ/rZ}Ule” |1 <i<l acZ/rZ)

)
0 0 . .
O Jtel® = e 114y + 1< i j <1+ 1uly),
p=1
Quuy=1te” =P 1< j<i<lLbeZ/rZ}u{e”|1<i<])
)

0 0 . .
U (el = e 11+ ulpr + 1< j<i < T+ |ul,),
p=1

i+1
)
0 0 .
U el = e 11+ lulpor + 1< i < Ll = 1),
p=1

Agy =1 e |1 <i<I-130{e” |1£0)

Oy if1£0
e i ” We also

where we put |ul, = X7_, px with |ulo = 0, and {e(lo) |1 #0} = {0 -0
if [ =0.

define

Quu =te” - |1 <j<i<lbeZ/rZ}ule” |1 <i<l)

1
)

U U{ej.(” — P |1+ lulpoy +1 < j<i <1+ |uly, b e Z/rZ).
p=1
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Then we have Q) C ﬁ(l,u)’ and we also have Q) = ﬁ(l,y) if and only if u = (1"7).

B.5. For w € W,,, let {(w) be the smallest number k such that w is expressed as a product
w =S ... 8 (Si; € {50,515+ -5 Su-1})-

For0 </ <nanduk n-1, we define a subsets R ), R?lu)’ R?l#) and RZ‘IO#) of W, , by
R = {we W wQqu) C Dol Ry =fweWlw *Qq C ),
R{, = tw e W | w(Qquy) € o}, RiYy =twe W |w™ *Qqyu C D).

. ~ 0 0 . .
Since Q) C Q> We have R C Ry (resp. Ry, © Ry ). The following proposition

is proven in [20, Lemma 1.27, Proposition 1.28, Corollary 1.29].

Proposition B.6. For 0 <[ <nand u E n— [, we have the following:
(1) (a) Forw e W,,, we have w(£),)) C @q if and only if w(Aq)) C Do.
(b) Forw e W,,, we have w! x Q) C Do if and only ifw! % A € Do.
(i) (a) Forwe R% anduw' € W, we have E(ww’) = {(w) + {(w’).

(L)

(b) Forw € R;"l#) and w’ € W), we have {(w'w) = (') + {(w).

(iii) (a) For w € W,,, if {(w) is minimal among all elements in wW(; ), we have w €
Rty
(b) For w € W,,, if {(w) is minimal among all elements in Wy, w, we have w €
R(Lu)'
(iv) (a) In the case where Rq, = R
sentatives for W, .| W .

* _ #( *
(b) In the case where R(Z’H) = R(l#), the set R(l,u)

sentatives for W ,)\W,,,.

?l#), the set R is a complete set of coset repre-

is a complete set of coset repre-

B.7. Assume that [ # 0 and g = (1""). In this case, we have W, = Wi, Qi = Qup»

_ 10 _ O _ 0 - © o s an o v
R = Ri,,and Aqyy = {e;;y —¢; | 1 <i<I=1}Ufe '} For xt/l 1[5 .1y € W and
eg?r)] - ef.o) (I1<i<l-1),wehave
A1 s an (0) Oy _ O 0)
(X505 - ) (e =€) = €y ~ €

and x(i + 1) > x(i) since x € S and s; € S ;). We also have

Al+1 44142 any (0) — (0)
(05 - n) e = e

Thus we see that (x)"' 175 ... 1,")(Aq) C @p for any xt/')15 ... 1" € W Then, by

Proposition B.6 (i), we have that W c R(,. On the other hand, W (resp. R, ) is
a complete set of representatives for W/ W; ) by Lemma 2.3 (resp. Proposition B.6 (iv)).
Thus we have W' = R, if u = (1"™). Similarly, we have W = R, if u = (1"7).
Moreover we have “O W) =0 WAW Y if y = (1"7) by Lemma 2.7. As a consequence,
we have the following corollary.

Corollary B.8. Assume that i = (1"™") and v = (1"™™). Then we have "W = R;"l’ﬂ) and

W) = Ry, Moreover, R |\ Ry = HOWAW™) is a complete set of representatives
for W(l,p)\Wn,r/W(m,v)-
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O _

ReMARK B.9. (i). In the case where i # (177), there exists i > / such that e eEO) € A -

© —el” € Ay, such that i > and xt ... £7" € W), we have

For €

a1 ap () )y _ J(air1) (a;)
(00 (e =€) = el — ey

and x(i + 1) > x(i) since x € " and s; € S ). Moreover, ei‘zgjr'l)) - e;‘zl; ¢ @ if a; # 0.

Thus, we see that W ¢ R if u # (1"71). Similarly, we have ®WW ¢ RZ‘Z#) if u # (1",
(ii). In general case, we do not know if we can characterize the set W"* (or another

complete set of representatives for W/W;,)) by using the root system @.
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