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Abstract
In this paper we are concerned with weighted boundary limits of monotone Sobolev functions

in Orlicz spaces on bounded (η, ψ)-John domains in a metric space. We also deal with Lindelöf
type theorems for monotone Sobolev functions on uniform domains in a metric space.

1. Introduction

1. Introduction
A continuous function u on an open set Ω in Rn is called monotone in the sense of

Lebesgue (see [11]) if the equalities

max
G

u = max
∂G

u and min
G

u = min
∂G

u

hold whenever G is a domain with compact closure G ⊂ Ω. A function u ∈ W1,p
loc (Ω) is

-harmonic if it is a weak solution of equation

div((x,∇u)) = 0,

where (x, ξ) · ξ ≈ |ξ|p for some fixed p ∈ (1,∞), ξ ∈ Rn (see [9]). Harmonic functions are
monotone, -harmonic functions and hence coordinate functions of quasiregular mappings
are monotone (see [9] and [28]), and thus the class of monotone functions is considerably
wide. If u is a monotone Sobolev function on Ω and p > n − 1, then

(1.1) |u(x) − u(y)| ≤ C(n, p)r1−n/p
(∫

2B
|∇u(z)|p dz

)1/p

whenever y ∈ B = B(x, r) with 2B ⊂ Ω, where C(n, p) is a positive constant depending only
on n and p (see [9], [22, Chap. 8] and [31, Section 16]). In [6], [13], [14], [15] and [21],
boundary behavior of monotone Sobolev functions were studied using the inequality like
(1.1). For harmonic functions and polyharmonic functions, see [17, 18, 19, 20, 26, 27]. We
refer to [10] for -harmonic functions and [30] for quasiregular mappings.

We consider a positive nondecreasing function ϕ on the interval [0,∞) such that ϕ is of
log-type, that is, there exists a positive constant C satisfying

(1.2) ϕ(r2) ≤ Cϕ(r) for all r ≥ 0.
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Set Φp(r) = rpϕ(r) for p > 1. For properties for functions of log-type, see e.g., [24].
Mizuta [19] studied weighted boundary limits of harmonic functions when D is a bounded

Lipschitz domain in Rn and a weight is a nonnegative monotone function on the interval
(0,∞) satisfying the doubling condition, as an extension of [18]. In fact, he proved the
following:

Theorem A ([19, Theorem 1]). Let ω be a nonnegative monotone function on the interval
(0,∞) satisfying the doubling condition, that is, there exists a positive constant C such that

(1.3) C−1ω(r) ≤ ω(2r) ≤ Cω(r) for all r > 0.

Set

κ̃(r) =
(∫ 1

r
t(1−n)/(p−1)ω(t)−1/(p−1)(ϕ(t−1))−1/(p−1)dt

)1−1/p

.

Suppose u is a harmonic function in a bounded Lipschitz domain D in Rn and satisfies∫
D
Φp(|∇u(z)|)ω(δD(z))dz < ∞,

where δD(z) = dist(z,Dc).
(1) If κ̃(0) = ∞, then

lim
x→∂D

κ̃(δD(x))−1u(x) = 0.

(2) If κ̃(0) < ∞, then u has a finite limit at each boundary point of D.

For the existence of boundary limits of harmonic functions in the case when Φp(r) = rp

and ω(r) = rα, see Carleson [2], Mizuta [17] and Wallin [32], etc.
Let X be a metric space with a metric d and μ be a Borel measure on X which is positive

and finite on balls. We denote by B(x, r) the open ball centered at x ∈ X with radius r > 0
and set λB = B(x, λr) for each ball B = B(x, r) and λ > 0. Let μ be a Borel measure on X
satisfying the doubling condition:

(1.4) μ(2B) ≤ Cμμ(B)

for every ball B ⊂ X. We further assume that

(1.5)
μ(B(x′, r′))
μ(B(x, r))

≥ C
(
r′

r

)Q

for all x, x′ ∈ D with x′ ∈ B(x, r) and 0 < r′ ≤ r, where Q > 1. Here note that if μ satisfies
(1.4), then (1.5) with Q = log2 Cμ holds (see e.g. [1, Lemma 3.3] and [8]).

In this paper, we are concerned with boundary limits of functions u on a domain D ⊂ X
for which there exists a nonnegative function g ∈ Lp

loc(D; μ) such that

(1.6) |u(x) − u(x′)| ≤ Cr
(
−
∫
σB
g(z)pdμ(z)

)1/p

for every x, x′ ∈ B with σB ⊂ D, where σ > 1, B = B(y, r) and

(1.7)
∫

D
Φp(g(z))ω(δD(z))dμ(z) < ∞,
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where ω is a nonnegative monotone function on (0,∞) satisfying (1.3). Here we used the
standard notation

−
∫

E
u(z)dμ(z) =

1
μ(E)

∫
E

u(z)dμ(z)

for a measurable set E with 0 < μ(E) < ∞. Note that (1.6) is a stronger property than
p-Poincaré inequality. Also, if the pair of u and g satisfies a p-Poincaré inequality in D with
p > Q − 1 and u satisfies

sup
x,x′∈B

|u(x) − u(x′)| ≤ sup
x,x′∈∂B

|u(x) − u(x′)|

for each ball B with σB ⊂ D, then the pair of u and g satisfies (1.6) (see [8, Section 7]). We
refer to [1] and [8, Section 11] for Poincaré inequalities of Carnot group with the Carnot-
Carathéodory metric and [3] and [12] for recent studies about Orlicz spaces in a general
metric setting.

When Φp(r) = rp and ω(r) = rα, the boundary limits of monotone Sobolev functions
on bounded John domains in a metric space were studied in [6]. Recently, this result has
been extended by the authors [7] to the Orlicz case, that is, Φp(r) = rpϕ(r) and ω(r) = rα.
For harmonic functions, polyharmonic functions and monotone functions on the upper half
space Rn

+, see [18, 20].
Our first aim in this paper is to find a positive function k(r) such that k(δD(x))u(x) tends

to zero as x tends to the boundary ∂D when u is a function on an (η, ψ)-John domain D
satisfying (1.6) and (1.7) (Theorem 2.1), as an extension of Theorem A (see also [6, 7, 18,
20]). See Section 2 for the definition of (η, ψ)-John domain. The key lemma for our results
is Lemma 3.3 below.

On the other hand, using the inequality (1.1), Lindelöf theorems for monotone Sobolev
functions on the half space of Rn were studied in the Lp case when ω(r) = rα ([5]), as
an extension of Mizuta [21, Theorem 2] and Manfredi-Villamor [14, 15]. This result was
extended to a uniform domain in [4].

Our second aim in this paper is to establish Lindelöf theorems when u is a function on a
uniform domain D ⊂ X satisfying (1.6) and

(1.8)
∫

D
g(z)pω(δD(z))dμ(z) < ∞

(Theorem 5.1), as an extension of [4, 5, 14, 21] (see Section 5 for the definition of uniform
domain). We discuss the size of the exceptional set in Theorem 5.1 (Remark 5.2).

Throughout this paper, let C denote various constants independent of the variables in
question.

2. Weighted boundary limits

2. Weighted boundary limits
Let η be a strictly increasing continuous function on [0,∞) such that η(0) = 0,

(2.1) η(2t) ≤ c1η(t) for all t > 0

with a constant c1 ≥ 1,

(2.2) lim sup
t→0

t−1η(t) < ∞
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and

(2.3)
∫ 1

0
t−ε−1η−1(t) dt < ∞

for some small ε. We say that a domain D in X is John with respect to η (simply η-John)
if there is a point x∗ ∈ D such that each x ∈ D can be joined to x∗ by a rectifiable curve γ
satisfying

(2.4) δD(z) ≥ η(�(γ(x, z))) for all z ∈ γ,
where γ(x, z) and �(γ(x, z)) denote the subarc of γ connecting x and z and the length of γ(x, z),
respectively. We refer x∗ to the John center. If η(t) = cJts with s ≥ 1 and a positive constant
cJ , then an η-John domain is called s-John. Further, we consider a positive nondecreasing
function ψ on (0,∞) such that ψ(0) = limr→0 ψ(r) = 0. We say that a domain D is (η, ψ)-John
if each x ∈ D can be joined to x∗ by a rectifiable curve γ satisfying (2.4) and

(2.5) δD(z) ≥ ψ(δD(x)) for all z ∈ γ.
Here note that every η-John domain is (η, ψ)-John domain if we take ψ(t) = min{η(t/2), t/2}
(see [6, Example 1.5]). See also [16] for some examples of η-John domains.

Consider the function

κ(r1, r2) =
(∫ r2

r1

t(1−Q)/(p−1)−1ω(t)−1/(p−1)(ϕ(t−1))−1/(p−1)η−1(t)dt
)1−1/p

for 0 ≤ r1 < r2 < ∞; set κ(r) = κ(r, 1) for 0 ≤ r < 1.
Our first result is the following theorem, which gives an extension of Theorem A (see

also [6, 7, 18, 20]).

Theorem 2.1. Let D be a bounded (η, ψ)-John domain in X such that ∂D � ∅. Assume
that the pair of u and g satisfies (1.6) and (1.7).

(1) If κ(0) = ∞, then

lim
δD(x)→0

κ(ψ(δD(x)))−1u(x) = 0.

(2) If κ(0) < ∞, then u is bounded on D.

For the best possibility of Theorem 2.1 (1) as to the order of infinity, we refer to [19,
Proposition 4] for harmonic functions.

Remark 2.2. Let D be a bounded s-John domain in X, s ≥ 1, that is, D is η-John with
η(t) = cJts and a positive constant cJ . Then we see that D is an (η, c2η)-John domain with
c2 = min{2−s, (2cJ)−1(diamD)1−s}. For the result from Theorem 2.1 in the case when D is a
bounded s-John domain, see [7, Corollaries 4.1 and 4.2].

Remark 2.3. For s ≥ 1, let

Gs = {x = (x′, xn) ∈ Rn−1 × R : |x′| < 1, 0 < xn < 2, |x′| < xs
n}.

Then we see that Gs is an (η, ψ)-John domain with η(t) = c3ts and ψ(t) = t, where c3 is a
positive constant. In fact, for x = (x′, xn) ∈ Gs and 0 < xn < 1, we define a rectifiable curve
γ joining x and x∗ = (0, . . . , 0, 3/2) by
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γ(t) =
{

((1 − t)x′, xn) if 0 ≤ t ≤ 1,
(0, . . . , 0, txn) if 1 < t ≤ 3/(2xn).

Then γ satisifies (2.4) and (2.5) since δGs(z) is comparable to zs
n − |z′| when z = (z′, zn) ∈ Gs

and 0 < zn < 1.
For the result from Theorem 2.1 in the case when D = Gs, see [7, Corollary 4.3].

3. Lemmas

3. Lemmas
For proofs of Theorems 2.1 and 5.1, we prepare some lemmas. Using (1.2), we have the

following.

Lemma 3.1 (cf. [7, Lemma 2.2] and [23, Theorem 3]). Let u and g be functions on D
satisfying (1.6). Suppose 0 < ε < 1. Then

(3.1) |u(x) − u(y)| ≤ CδD(x)(ϕ(δD(x)−1))−1/p
(
−
∫
σB(x)
Φp(g(z))dμ(z)

)1/p

+CδD(x)1−ε,

whenever x ∈ D and y ∈ B(x), where B(x) = B(x, δD(x)/(2σ)) and C may depend on ε.

Lemma 3.2 ([6, Lemma 2.2]). Let σ > 1 and μ be a Borel measure on X satisfying the
doubling condition (1.4). Suppose x and y can be joined by a rectifiable curve γ in a domain
D satisfying (2.4). Then there exists a finite chain of balls B0, B1,. . . , BN (N may depend on
γ) with the following properties:

(i) Bj = B(z j, δD(z j)/(2σ)) with z j ∈ γ, z0 = x and y ∈ BN;
(ii) Bj ∩ Bj+1 � ∅ for all 0 ≤ j ≤ N − 1;

(iii) For each t > 0, the number of z j such that t/2 < δD(z j) ≤ t is less than c4η
−1(t)/t,

where c4 is a positive constant depending only on σ;
(iv)

∑N
j=0 χσBj ≤ c5, where c5 is a positive constant depending only on σ and Cμ.

Lemma 3.3. Let u and g be functions on D satisfying (1.6). Let B be an open ball with
radius R. Then

|u(x) − u(y)| ≤ Cκ(ψ(δD(x)), dγ)
⎛⎜⎜⎜⎜⎝ RQ

μ(B)

∫
Eγ

Φp(g(w))ω(δD(w)) dμ(w)
⎞⎟⎟⎟⎟⎠

1/p

(3.2)

+C
∫ dγ

0
t−ε−1η−1(t) dt

whenever x and y can be joined by a rectifiable curve γ in D satisfying (2.4), (2.5) and z ∈ B,
δD(z) < R for all z ∈ γ, where Eγ = ∪z∈γσB(z) and dγ = 4 maxz∈γ δD(z).

Proof. Take a finite chain of balls B0, B1, . . . , BN with Bj = B(z j) as in Lemma 3.2. Pick
x j ∈ B(z j−1) ∩ B(z j) for 1 ≤ j ≤ N; set x0 = x and xN+1 = y. By (3.1), (1.3) and (1.5), we
see that

|u(x j) − u(x j+1)|
≤ CδD(z j)ω(δD(z j))−1/p(ϕ(δD(z j)−1))−1/pμ(σBj)−1/p

×
⎛⎜⎜⎜⎜⎝
∫
σBj

Φp(g(w))ω(δD(w))dμ(w)
⎞⎟⎟⎟⎟⎠

1/p

+CδD(z j)1−ε



140 T. Futamura and T. Shimomura

≤ CδD(z j)ω(δD(z j))−1/p(ϕ(δD(z j)−1))−1/p(δD(z j)/R)−Q/pμ(B)−1/p

×
⎛⎜⎜⎜⎜⎝
∫
σBj

Φp(g(w))ω(δD(w))dμ(w)
⎞⎟⎟⎟⎟⎠

1/p

+CδD(z j)1−ε

for 0 ≤ j ≤ N. Then we have by Hölder’s inequality and Lemma 3.2 (iv)

|u(x) − u(y)|
≤ |u(x0) − u(x1)| + |u(x1) − u(x2)| + · · · + |u(xN) − u(xN+1)|

≤ C
(

RQ

μ(B)

)1/p
⎛⎜⎜⎜⎜⎜⎜⎝

N∑
j=0

δD(z j)(p−Q)/(p−1)ω(δD(z j))−1/(p−1)(ϕ(δD(z j)−1))−1/(p−1)

⎞⎟⎟⎟⎟⎟⎟⎠
(p−1)/p

×
⎛⎜⎜⎜⎜⎝
∫

Eγ

Φp(g(w))ω(δD(w)) dμ(w)
⎞⎟⎟⎟⎟⎠

1/p

+C
N∑

j=0

δD(z j)1−ε.

Hence it suffices to show that

(3.3)
N∑

j=0

δD(z j)(p−Q)/(p−1)ω(δD(z j))−1/(p−1)(ϕ(δD(z j)−1))−1/(p−1) ≤ Cκ(ψ(δD(x)), dγ)p/(p−1)

and

(3.4)
N∑

j=0

δD(z j)1−ε ≤ C
∫ dγ

0
t−ε−1η−1(t) dt.

For this purpose, take natural numbers k0 and k1 such that 2−k0+1 < dγ ≤ 2−k0+2 and 2−k1−1 <

ψ(δD(x)) ≤ 2−k1 . Then we see from Lemma 3.2 (iii) that
N∑

j=0

δD(z j)(p−Q)/(p−1)ω(δD(z j))−1/(p−1)(ϕ(δD(z j)−1))−1/(p−1)

=

k1∑
k=k0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

2−k−1<δD(z j)≤2−k

δD(z j)(p−Q)/(p−1)ω(δD(z j))−1/(p−1)(ϕ(δD(z j)−1))−1/(p−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

≤ C
k1∑

k=k0

2−k{(p−Q)/(p−1)−1}ω(2−k)−1/(p−1)(ϕ((2−k)−1))−1/(p−1)η−1(2−k)

≤ C
∫ 2−k0+1

2−k1

t(1−Q)/(p−1)−1ω(t)−1/(p−1)(ϕ(t−1))−1/(p−1)η−1(t) dt

≤ C
∫ dγ

ψ(δD(x))
t(1−Q)/(p−1)−1ω(t)−1/(p−1)(ϕ(t−1))−1/(p−1)η−1(t) dt.

Thus (3.3) is obtained. Further, we see that

N∑
j=0

δD(z j)1−ε =
k1∑

k=k0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

2−k−1<δD(z j)≤2−k

δD(z j)1−ε
⎞⎟⎟⎟⎟⎟⎟⎟⎠

≤ C
k1∑

k=k0

2−k{(1−ε)−1}η−1(2−k)
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≤ C
∫ 2−k0+1

2−k1

t−ε−1η−1(t) dt

≤ C
∫ dγ

0
t−ε−1η−1(t) dt.

Thus (3.4) is obtained and the proof is completed. �

4. Proof of Theorem 2.1

4. Proof of Theorem 2.1
Proof of Theorem 2.1. Fix r > 0 such that r < min{δD(x∗), 1/4}. For x ∈ F(r) = {z ∈ D :

δD(z) < r}, take a curve γ joining x to the John center x∗ and satisfying (2.4) and (2.5). We
can find y ∈ γ such that δD(y) = r and δD(z) ≤ r for all z ∈ γ(x, y). Since Eγ(x,y) ⊂ F(2r) and
dγ(x,y) ≤ 1, using Lemma 3.3 with B = B(x∗, diamD), we have

|u(x) − u(y)| ≤ Cκ(ψ(δD(x)))
(∫

F(2r)
Φp(g(w))ω(δD(w))dμ(w)

)1/p

(4.1)

+C
∫ 1

0
t−ε−1η−1(t) dt.

Further, take a path γ1 in D joining y and x∗ satisfying (2.4) and (2.5). Hence it follows from
Lemma 3.3 with B = B(x∗, diamD) that

|u(y) − u(x∗)| ≤ Cκ(ψ(r), dγ1 )
(∫

D
Φp(g(w))ω(δD(w))dμ(w)

)1/p

+C
∫ dγ1

0
t−ε−1η−1(t) dt,

which implies that sup{|u(y)| : δD(y) = r} is finite for all r > 0. If κ(0) = ∞, then it follows
from (4.1) and (2.3) that

lim sup
δD(x)→0

κ(ψ(δD(x)))−1|u(x)| ≤ C
(∫

F(2r)
Φp(g(w))ω(δD(w))dμ(w)

)1/p

.

By (1.7), the left hand side is equal to zero.
On the other hand, the case κ(0) < ∞ follows readily from Lemma 3.3. Thus our theorem

is proved. �

Remark 4.1. In the case of (2) in Theorem 2.1, that is, κ(0) < ∞, if we impose a strong
condition on D like locally uniformity, then u will be seen to have a finite limit at each
ξ ∈ ∂D. For example, we may consider a condition on D such that for each ξ ∈ ∂D, there
exists a positive constant c6 with the following property: for every r > 0, there exists a point
x∗(r) such that each x ∈ D ∩ B(ξ, r) can be joined to x∗(r) by a path γ in D ∩ B(ξ, c6r)
satisfying (2.4).

In fact, it follows from Lemma 3.3 that

|u(x) − u(y)| ≤ Cκ(0, 4c6r)
(∫

D
Φp(g(w))ω(δD(w))dμ(w)

)1/p

+C
∫ 4c6r

0
t−ε−1η−1(t) dt

for each x, y ∈ D ∩ B(ξ, r). Since κ(0) < ∞, this implies that u has a finite limit at ξ.

By Theorem 2.1 and Remark 4.1, we obtain the following corollary, which extends The-
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orem A. Note here that when D is a bounded Lipschitz domain in X, D is a bounded (η, ψ)-
John domain with η(t) = ct and ψ(t) = c′t.

Corollary 4.2. Let D be a bounded Lipschitz domain in X such that ∂D � ∅. Set

κ(r1, r2) =
(∫ r2

r1

t(1−Q)/(p−1)ω(t)−1/(p−1)(ϕ(t−1))−1/(p−1)dt
)1−1/p

for 0 ≤ r1 < r2 < ∞; set κ(r) = κ(r, 1) for 0 ≤ r < 1. Assume that the pair of u and g satisfies
(1.6) and (1.7).

(1) If κ(0) = ∞, then

lim
δD(x)→0

κ(δD(x))−1u(x) = 0.

(2) If κ(0) < ∞, then u has a finite limit at each boundary point of D.

5. Lindelöf theorem

5. Lindelöf theorem
In this section, we are concerned with Lindelöf theorems when u is a function on a uni-

form domain D satisfying (1.6) and (1.8), as an extension of [4, 5, 14, 21].
Let D in X with ∂D � ∅ be a uniform domain, that is, there exist positive constants A1

and A2 such that each pair of points x, y ∈ D can be joined by a rectifiable curve γ in D for
which

(5.1) �(γ) ≤ A1d(x, y)

and

(5.2) δD(z) ≥ A2 min{�(γ(x, z)), �(γ(y, z))} for all z ∈ γ
(see [29]). For ξ ∈ ∂D and c > 1, set

T (ξ; c) = {x ∈ D : d(x, ξ) < cδD(x)}.
A function u defined on D is said to have a nontangential limit L at ξ ∈ ∂D if

lim
T (ξ;c)�x→ξ

u(x) = L

for every c > 0. For each τ ∈ R, set

κτ(r1, r2) =
(∫ r2

r1

t(p−Q+τ)/(p−1)ω(t)−1/(p−1)t−1dt
)1−1/p

and

κ̂(r1, r2) =
(∫ r2

r1

t(1−Q)/(p−1)−1ω(t)−1/(p−1)η−1(t)dt
)1−1/p

for 0 ≤ r1 < r2 < ∞. Here note that κ̂(r1, r2) = c−1+1/pκ0(r1, r2) when η(t) = ct.

Theorem 5.1. Let u be a function on a uniform domain D with g ≥ 0 satisfying (1.6) and
(1.8). Suppose that there exists a constant τ ∈ (0, 1) such that κτ(0, 1) < ∞. Set

E =
{
ξ ∈ ∂D : lim sup

r→0

rQ−τκτ(0, r)p

μ(B(ξ, r))

∫
B(ξ,r)∩D

g(w)pω(δD(w)) dμ(w) > 0
}
.
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If ξ ∈ ∂D \ E and there exists a rectifiable curve γ in D tending to ξ along which u has a
finite limit L, then u has a nontangential limit L at ξ.

Remark 5.2. Let h(r; x) = rτ−Qκτ(0, r)−pμ(B(x, r)) for x ∈ ∂D and r > 0. If lim inf
r→0

h(r; x0)

= 0 for some x0 ∈ X, then h(E) = 0 where h is the generalized Hausdorff measure with
respect to h, that is, for F ⊂ X and r0 > 0,


(r0)
h (F) = inf

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

j

h(r j; x j); F ⊂
⋃

j

B(x j, r j), 0 < r j ≤ r0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and

h(F) = lim
r0→+0


(r0)
h (F).

For a proof of Theorem 5.1, we need the following lemmas.

Lemma 5.3 (cf. [4, Lemma 1]). Let D be a uniform domain. Then for each ξ ∈ ∂D there
exists a rectifiable curve γξ in D ending at ξ such that

(5.3) δD(z) ≥ A3�(γξ(ξ, z))

for all z ∈ γξ, where A3 is a constant depending only on A1 and A2.

We use the following lemma which is proved as in Lemma 3.3.

Lemma 5.4. Let u and g be functions on D satisfying (1.6). Let B be an open ball with
radius R. Then

(5.4) |u(x) − u(y)| ≤ Cκ̂(ψ(δD(x)), dγ)
⎛⎜⎜⎜⎜⎝ RQ

μ(B)

∫
Eγ

g(w)pω(δD(w)) dμ(w)
⎞⎟⎟⎟⎟⎠

1/p

whenever x and y can be joined by a rectifiable curve γ in D satisfying (2.4), (2.5) and z ∈ B,
δD(z) < R for all z ∈ γ, where Eγ = ∪z∈γσB(z) and dγ = 4 maxz∈γ δD(z).

Lemma 5.5 (cf. [4, Lemma 3]). Let u be a function on a uniform domain D with g ≥ 0
satisfying (1.6) and (1.8). Set

Ẽ =
{
ξ ∈ ∂D : lim sup

r→0

rpω(r)−1

μ(B(ξ, r))

∫
B(ξ,r)∩D

g(w)pω(δD(w)) dμ(w) > 0
}
.

Supposes ξ ∈ ∂D\ Ẽ and there exists a sequence {y j} such that y j ∈ γξ, 2− j−1 ≤ d(ξ, y j) ≤ 2− j

and u(y j) has a finite limit L, where γξ is as in Lemma 5.3. Then u has a nontangential limit
L at ξ.

Remark 5.6. Since rQ−τκτ(0, r)p ≥ rQ−τκτ(r/2, r)p ≥ Crpω(r)−1, we see that Ẽ ⊂ E.
When ω(t) = tα and p > Q + α − 1, we take τ such that max{−p + Q + α, 0} < τ < 1. Then
we have κτ(0, 1) < ∞ and

rQ−τκτ(0, r)p = rQ−τ
(∫ r

0
t(p−Q−α+τ)/(p−1)t−1dt

)p−1

≤ Crp−α.

Hence, we see that Ẽ = E. In view of Theorem 5.1, we obtain [4, Theorem 1].
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Proof of Lemma 5.5. Fix x ∈ T (ξ; c) with 2− j−1 ≤ d(ξ, x) ≤ 2− j. Let γ be a rectifiable
curve in D joining x and y j satisfying (5.1) and (5.2). Take y ∈ γ such that �(γ(x, y)) =
�(γ(y j, y)), and set γ1 = γ(x, y) and γ2 = γ(y j, y). Then γi satisfies (2.4) and (2.5) with
η(t) = A2t and ψ(t) = min{A2, 1}t/2. We note that for z ∈ γ
(5.5) δD(z) ≤ d(ξ, z) ≤ d(ξ, x) + d(x, z) ≤ (A1 + 1)d(ξ, x) + A1d(ξ, y j)

since we have by (5.1)

d(x, z) ≤ �(γ) ≤ A1d(x, y j) ≤ A1(d(ξ, x) + d(ξ, y j)).

Then we have dγi ≤ 4A42− j and Eγi ⊂ B(ξ, 3
2 A42− j) ∩ D, where dγi = 4 maxz∈γi δD(z), Eγi =

∪z∈γiσB(z) as in Lemma 5.4 and A4 = 2A1 + 1. Further, we see that δD(x) ≥ c−1d(ξ, x) ≥
c−12− j−1 and

δD(y j) ≥ A3�(γξ(ξ, y j)) ≥ A3d(ξ, y j) ≥ A32− j−1

by Lemma 5.3. Hence, we obtain by Lemma 5.4

|u(x) − u(y j)|
≤ |u(x) − u(y)| + |u(y j) − u(y)|

≤ Cκ0(ψ(δD(x)), dγ1 )
⎛⎜⎜⎜⎜⎝ 2− jQ

μ(B(ξ, 3
2 A42− j))

∫
Eγ1

g(w)pω(δD(w)) dμ(w)
⎞⎟⎟⎟⎟⎠

1/p

+Cκ0(ψ(δD(y j)), dγ2 )
⎛⎜⎜⎜⎜⎝ 2− jQ

μ(B(ξ, 3
2 A42− j))

∫
Eγ2

g(w)pω(δD(w)) dμ(w)
⎞⎟⎟⎟⎟⎠

1/p

≤ Cκ0(A52− j−1, 4A42− j)
⎛⎜⎜⎜⎜⎝ 2− jQ

μ(B(ξ, 3
2 A42− j))

∫
B(ξ, 3

2 A42− j)∩D
g(w)pω(δD(w)) dμ(w)

⎞⎟⎟⎟⎟⎠
1/p

≤ C2− jω(2− j)−1/p

⎛⎜⎜⎜⎜⎝ 1
μ(B(ξ, 3

2 A42− j))

∫
B(ξ, 3

2 A42− j)∩D
g(w)pω(δD(w)) dμ(w)

⎞⎟⎟⎟⎟⎠
1/p

,

where A5 = ψ(min{c−1, A3}). Since ξ � Ẽ and lim j→∞ u(y j) = L, u has a nontangential limit
L at ξ. �

Proof of Theorem 5.1. For r > 0 sufficiently small, take x1(r) ∈ γ ∩ ∂B(ξ, r) and
x2(r) ∈ γξ ∩ ∂B(ξ, r). Then x1(r) and x2(r) can be connected by a rectifiable curve γ0

in D with (5.1) and (5.2). Take y(r) ∈ γ0 such that �(γ0(x1(r), y(r))) = �(γ0(x2(r), y(r))),
and set γ1 = γ0(x1(r), y(r)) and γ2 = γ0(x2(r), y(r)). Then γ1 and γ2 satisfy (2.4) and
(2.5) with η(t) = A2t and ψ(t) = min{A2, 1}t/2. We see from (5.5) that dγi ≤ 4A4r and
Eγi ⊂ B(ξ, 3

2 A4r) ∩ D for i = 1, 2. By Lemma 5.4 replacing ω(t) with ω(t)t−τ, we have

|u(x1(r)) − u(x2(r))|(5.6)

≤ |u(x1(r)) − u(y(r))| + |u(x2(r)) − u(y(r))|

≤ Cκτ(0, dγ1 )
⎛⎜⎜⎜⎜⎝ rQ

μ(B(ξ, 3
2 A4r))

∫
Eγ1

g(w)pω(δD(w))δD(w)−τ dμ(w)
⎞⎟⎟⎟⎟⎠

1
p

+Cκτ(0, dγ2 )
⎛⎜⎜⎜⎜⎝ rQ

μ(B(ξ, 3
2 A4r))

∫
Eγ2

g(w)pω(δD(w))δD(w)−τ dμ(w)
⎞⎟⎟⎟⎟⎠

1
p

.
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Take z ∈ γi and w ∈ σB(z). Then note that

(5.7) |r − d(ξ, w)| ≤ d(xi(r), w) ≤ d(xi(r), z) + d(z, w) ≤ 2 + A2

A2
δD(w),

since we have d(xi(r), z) ≤ �(γi(xi(r), z)) ≤ A−1
2 δD(z) by (5.2) and δD(z) ≤ 2δD(w). Hence we

have

|u(x1(r)) − u(x2(r))|p

≤ Cκτ(0, 4A4r)prQμ(B(ξ,
3
2

A4r))−1
∫

B(ξ, 3
2 A4r)∩D

g(w)pω(δD(w))|r − d(ξ, w)|−τ dμ(w).

Moreover, since 0 < τ < 1, we see that∫ 2− j

2− j−1
|r − d(ξ, w)|−τdr ≤ C2− j(1−τ).

Hence it follows that

inf
2− j−1≤r≤2− j

|u(x1(r)) − u(x2(r))|p

≤ C
∫ 2− j

2− j−1

(
κτ(0, 4A4r)prQμ(B(ξ,

3
2

A4r))−1

×
∫

B(ξ, 3
2 A4r)∩D

g(w)pω(δD(w))|r − d(ξ, w)|−τdμ(w)
)dr

r

≤ Cκτ(0, 4A42− j)p2− j(Q−1)μ(B(ξ,
3
2

A42− j))−1

×
∫

B(ξ, 3
2 A42− j)∩D

g(w)pω(δD(w))

⎛⎜⎜⎜⎜⎜⎝
∫ 2− j

2− j−1
|r − d(ξ, w)|−τdr

⎞⎟⎟⎟⎟⎟⎠ dμ(w)

≤ C2− j(Q−τ)κτ(0, 4A42− j)pμ(B(ξ,
3
2

A42− j))−1
∫

B(ξ, 3
2 A42− j)∩D

g(w)pω(δD(w))dμ(w).

Since ξ � E, we can find a sequence {r j} such that 2− j−1 ≤ r j ≤ 2− j and

lim
j→∞ |u(x1(r j)) − u(x2(r j))|p = 0.

Since u has a finite limit L at ξ along γ, we have

lim
j→∞ u(x2(r j)) = lim

j→∞ u(x1(r j)) = L.

Thus u has a nontangential limit L at ξ by Lemma 5.5. �
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