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Abstract

Tne elementary excitations in the ordered solid hydrogen
are studied. It is shown that there‘éxistsia strong cubic
anharmonicity for rotons (J=3 excitations) and librons (J=1
excitations), which makes one excitation split into two
excitations. It is also the case for J=2 rotons due to a
parahydrogen (or a orthodeuterium) as the impurity. The
relevant Green’s fun¢tions are determined self~consistently
in good agreement with the experiment by Hardy, Silvera and
McTague. Moreover we calculate the polarization effect on

the excitation energies with better agreement with experiments.
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Part I

Introductory Part



§1. Basic properties of solid hydrogen

Hydrogen and deuterium molecules are classified by the
parity of the nuclear splin states. Molecules with nuclear
spin states of even parity are called "ortho-" molecules and
those with nuclear spin states of‘odd barity are called "para-"
molecules. ' In hydrogen, even J(odd J), I=0 (I=1) states afe
called parahydrogen (orthohydrogen), where J denotes the
rotational quantum number and I the total nuclear spin quantum
number. This is based on the fact that total nuclear wave
function must be antisymmetric under the interchange of nuclel
according to the statistics of protons. Deuterium in even
(odd) J and I=0, 2 (1) is called orthodeuteriﬁm (paradeuterium).

The transition J (odd) » J (even) is nearly forbidden

because that requires a simultaneous change of nuclear spin

states. For instance the spontaneous conversion rate of J=1-0
in solid state is about 1.9% per hour for H2 and 0.056% per hour
for D2.l)

Now the rotational kinetic energy is given by

EJ = BJ(J+1) , ) (1.1)
where

B = K2/2T (1.2)
with I the moment of inertia of molecule. The rotational

constant B is equal to 85.4 K for H, and to 43.0 K for D

2 2°
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The most dominant - anisotropic intermolecular force is the

electric quadrupole-quadrupole (EQQ) interaction.z) This

interaction between twoc molecules with distance R 5 1s written as

1
W(1.2) = 3 e®Q® 161 —— (2 2 by
> B ﬂ'R 5 15 "280m " ‘my m, -M
12 12
with eQ the electric quadrupole moment of the molecule. Here

Y2m<@:®) denotes the spherical harmonic function with (0,9)
the polar angles of the direction of line connecting the

centers of two molecules. Here wy and Wy denote the polar

anglies of the direction of two molecules 1 and 2 respectively.
Ang ( ) is a Wigner’s 3-j symbol. The coupling

ml m2 m3

parameter T in solid state is defined by

I = 6e2Q°/25a° , (1.1)
where a denotes the nearest neighbor distance. The estimate
of T is of the order of 1K, belng much less than B. Thus

each molecule may be regarded essentially as free rotor . At
low temperatures each molecule occuples exclusively the lowest
rotational state consistent with each nuclear spln state.

Since the Debye temperature is about 100K for H, and D

2
phonons are assumed not to have any important role at low

2’
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temperatures. However a large zero-point vibration makes T

3)

renormalize. The anisotropic parts of valence and dispersion
forces are very small. Therefore we shall leave out these

forces in this study.
§2. Ground-state configuration

The melting point for H2 and D2 is about 20K. By X-ray
b)

diffraction and neutron—scattering,s) it was found that the

solid H2 and D2 at high concentrations of J=1 molecules cause
phase change from a hcp lattice to a fceec lattice with
lowering temperature.

In the ordered state, fcc lattice consists of four sc

sublattices.6’7’8)

The ordered state may be characterized

by the following: If the quantized axis for each sublattice

is chosen to be parallel to one of four body—diagonals, each
molecules is frozen in the state with JZ=O, as far as the first

approximation is concerned.
§3. Elementary excitations

The elementary excitations in the ordered solid hydrogen
have two interesting aspects. First the microscopic forces
which govern their behavior are fully known. The EQQ inter-

actions can be studied from the first principle, apart from
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a small effect on I due to rotation-phonon coupling and

3)

dielectric shielding. Secondly there exists a strong cubic
anharmonicity, which makes one excitation splits two excitations.
In this sense the excitations in solid hydrogen resemble more
closely to phonons than to magnons.

The anharmonic effect on librons (J=1 excitations) was

9)

manifested in the Raman scattering experiments. The Raman

spectra, which correspond to k=0 1ibron,>have four peaks,
while the harmonic theory of librons gives only three peaks.
Elliottlo) and Nakamura and Miyagill) suggested that the extra
line is due to two-libron excitations. However they were not‘
able to give a reasonable mechanism.

2)

Harris and his collaboratorsl have proposed a re-—

levant mechanism which contains a strong cubic anharmonic

9)

processes in good agreement with experiments. A strong
anharmonic effect also exists in J=3 rotons. It is also the
case for J=2 rotons in the presence of a parahydrogen (or a
orthodeuterium) as the impurity.

It 1is the object to present the systematic study of the
anharmonic effects on the elemeptary excitations in the
ordered solid hydrogen. The treatment in this study is more

12)

general than the previous theory even for libron itself.
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Part IT

Anharmonic Effect on Rotons in the Ordered Solid Hydrogen

In the ordered state éf solid ortho—H2 and para—D2 the
rotons (J=3 excitations) are studied in full details. It 1is
shown that the rotons are strongly perturbed by the 1librons
(J=1 excitations) through the anharmonic term splitting one
roton into a pair of roton and libron. The relevant self=
energy part is evaluated self-consistently with the results
in satisfactory agreement with the Raman scattering data by
Hardy, Silvera and McTague. The previous theory of libron
by Coll and Harris is also reexamined, according to the

present method.
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§1. Introduction

A strong anharmonic effect has been recognized to eXiSt on
the librational excitation (libronl)) in the ordéred solid hydro—

2)  1p the

gen, owingix>the Raman experiments’by Hardy et al.
long wavelength limit the harmonic_approximatién givés the
libron modes pf ohe_Eg,and two Tg with Eé as the.lowest energy
mode. The above result has been confirmed only by utilizing
the angular dependence of the Raman scatteriﬁg intensity on the

single crysta which is sensitive to the mode symmetry.

5)

However Harris and his collaborators have shown that the

libron energies are modified considerably by taking account of
the anharmonic effect, in agreement with experiments.z)
Moreover the two-libron Raman spectrum comes out with due

6)

account of the same effect. It is mentioned here that the

earlier prediction of the two-libron spectrum based on the
zero-point effect of librations gives a fairly small figure.u)
The relevant anharmonic term is cubic in boson operators.
Thus the 1ibronvhas a closer resemblance to phonon than to
magnon. The cubic anharmonic term would be crucial in figuf—
ing the libron spectrum when a two-libron excifation band is
in the vicinity of the top of the one-libron pénd. This is
just what happéns in the mentioned problem, resulting in a

dramatic energy lowering of the upper Tg—mode.

Now the harmonic theory has proved much more miserable for



11-3

rotons (J=3 eicitations) than for librons, comparing ité results
7,8) with the Raman scatteringvmeasurements.2’?) (J denotes the
rotational quantum number). This is shown in Fig.l, where the
roton energy is plotted as a fuhction of the érystaliine field
pafameter G; Iﬁ the figure T is thevcoupling,coﬁstant of the'_

‘electric quadrupole-quadrupole (EQQ) interaction given by

5

T = 6e2Q2/25a (1.1)

with eQ the electric quadrupole moment and a the distance to
nearest neighbors. By any adjustment of G the predicted spectra
with sizable intensity, which are indicated by thick lines,
cannot agree with the eXperimental ones. Moreover the observed
higher Spectrum is considerably broadened in contradistinction
with the libron spectra. |

The crystalline field effect is thought small in accordancé
with Kranendonk's roton (J=2 excitétion in the pure pafa=

10)  With neglect of the crystalline field the

hydrogen).
theoretical roton energy should be depressed considerably in
comparison with the experiments. The depression comes from
the anharmonic terms, making one roton split a pair of roton
and libron. Thus a roton must drag librons through the
crystal. This means that the molecular field'subjected to é
roton becomes less effective than the harmonic theory'predicts.

We note here that’?he energy depression is more considerable

for the higher spectrum; a similar nature as seen in librons.
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Now, in the ordered crystal'(fccll)) we have four
sublattices of J=1 molecules, directing réspectiﬁely along one
of four body-diagonals; the lowest energy configdratioh of the

12,13) Thus 8 libron- and 28 roton-bands come

EQQ.interaction.
out; These make our énharmonic préblem much'complicated.

Basing our treatment on Dyson's équafion.we shall také a simpli-
fied procedure to get the freqﬁency—dependént average se{fuenergy,.
where the matrix element for the anharmonic part of the Hamiotonian
is replaced by its average. The resulting self-consistent |
equation can bé solved with the help of the density of states

in the harmonic approximation. The average self-energy thus
obtained is in turn used to get thevgfﬂ solution. In the scheme
described above we shall treat both libron and roton in agreement
with experiments.

We note here_that a simple perturbational treatment of
anharmpnic terms using the density of states in the harmonic
approximation brings us a poor improvement; an indication of
strong anharmonic effect. We also note that the present method
is different from the'brevious one.5) The latter method is
based on a frequency-debendent second-order effective Hamiltonian:
due to the anharmonic term,-where the libron energy included in
the energy denominator 1is approximated by its avérage,over
fenormalizedigfo modes,' resulting in a.self-consistent equation.

It is mentioned here that the above method has no relevance to

the roton case because of overlapping-betwéen one-roton and
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roton—librén»cbmbination.bands.

The basic Hamiltonian is described in §2 and our formalism
in §3. . In §4 the avefage sélf-energy_shift due to anharménic
terms is obtained from a self—cénsistent equafion., .Thevﬁfo
modes are sfudied for both_librén and réton in 55 and the Ramén
intensity in §6 where comparison of - our theoreéicél fesults with

experimental ones w;ll be given.

§2. Basic Hamiltonian

In the ordered pure J=1 hydrogens the four sublattices will
be 1abeléd by a=A,B,C, and D as shown in Fig.2. The gquantized
axis for each sublattice is chosen to be parallel‘to one of four
body-diagonals, along which the classical molecule orients. In
the local coordinates system as described above we write down

the EQQ interaction as

= L -k zZ (J)f .(j,* 2 2.
H RIS w3 u\,(J, )z (L) , (2.1)
following the notation in Ref. 4. In the above

expression, zu(j) represents the p-th quadrupole component at

site j, corresponding to %u(j) in Ref. U, as defined by

%3 hw 1/2 _hw 1/2 X
( ) ( ) [( )Y22(Q)'+( )Y2 2(9)] 2-—(?;) Yzo(ﬂ) s
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(zi) = (312 [C3)¥p1 () + ()Y, (@)] (2.2)
in terms of the spherical harmonic function YszQ) with @ the
orientationel angle of the moleculé;v fuv(j,Z} is a function
Of\sz with distance dependence RquS’ including a factor (eQ)2
with eQ the electric_quadrupole moment of the molecule. The
expression for fuv(j,z) has been given in the other place with
the different notation Fuz(j,l).lu) |
The roton is a collective excitation in the manifold of
|JM> with J=3, while the libron is in the manifold of |1M>.

Confining M to be non-negative integer we shall represent the

relevant states as follows.

|am*> 1 1 M 1

s} T EDED @ DI @) L o
h > ? .

| 30> = ¥;,(Q) | - (2.3)

In the approximate ground-state each molecule is in [10> =
|O>, where the only non-vanishing quadrupole component is Z5
with expectation value <O|zé|0> = 2/5. In order to take

account of the excited configurations collectively we shall

15)

use the following bosonic representation:

} n F
Z b3 {<mlzu|n>[am (f—an)éno-Pam

a ]J+h.c.}
o n- ,
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+ T {<mlz|m> - <0]z |05} a f

z amf+<0[?u[0> (2.4)
where |n> stands for |JM>. (The inclusion of,ao; wh;éh-muét

have no sense, is_due to a formal simplicity.) The annililaﬁion’
opefator an and its hermitean ¢ohjugate anf are assumed to

satisfy the bosonic commutation felation
la, a'1=38_ - | SRR (2.5)

1/2

And £f=(1-Z_ a a ) is a factor which separates our functional

mm m
space from the unphysical subspace with the number of occupied
excited-states more than one.

Substituting Eq.(2.4) into Eq.(2.1), we have

H=Hy+ H, + Hy + «-° ‘(2.6)

where HO is merely the ground-state energy in the approximate
ground state as mentioned before, H2 the quadratic part in
bosonic operators and H3 the cubic one. We introduce the

Fourier transforms

(4)1/2 exp(- ik-R.

om = J[a] J[a])a

jlolm ?

aB (L.
fuv (&) = 2 f,,(3lel, al8Dexplik <5j[a] Ryrg’t 221

where j[a] designates a lattice site belonging to the

sublattice o and N is the number of mdlecules.
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Using Eq.(2.7) we ob,tain’

H, = [z Z{<m|z2]m>—-<0|z2|0>}<0[22[0>f (o)a +(k)a am‘k)
k af m
+22'— I I I ‘<ml;z |o><n]z ‘|0~> f °‘B(—»k")'
af pv mn u v v oW
E | +
. {aam(mlg)}aam(—k)}{a ( k)+a o (k)}
+ I I <m|z,|n><0]z,]0> f (0){a (k)a (k) +h.c.}] ,
QB m>n wAr oIl we
(2.8)
Hy = (sm2z 3 1 s <m|z,|0>{ 1 (<m‘[z In> - <oz, lo>5 )

kq af m uv m >n

-0 T ~ T :
v (-5){aam(}£) +aam("ﬁ)}{asm'(&)asncﬁ'*%) +h.c.} . (2.9)
In writing down the above expression we use

3

2 s (2.10)

which stands for the extremum condition satisfied by the
classical ground-state configuration as noted in Ref. 4.
The relevant matrix components are eXpressed in terms of
the 3j-symbol as follows.'.
Z S c,(2) - :
S l P AS C e + S -~ ;S -— -
<JIM I(Z5)|J M >“(-ic_(2))’ <M |z, [T°M7T > =72 c+(q) >

zZ. ic, (1)
<JMS](Zi)|J’M’S >= (¢’ Yoy - (2.11)
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In the above expression M, erzo and we put

Cc,(w) ' «_ - c(oon
+ __1___. [(2J+1)(2J’+1)]l/2(g g 5)81(0' “0')7"/ll
c_(w) 2/2 '

%

(M DM LG DO G e DT

+ T OEM TG DG e DI 2422)

where o =+1,-1 for s =+,- respectively. Expression (2.11) with
Eq.(2.12) works when M=0 and/or M"=0 if one puts ¢=0 and/or
0°=0 for relevant case.

We finally note that in our Hamiltonian (2.6) the terms of
order I'/B are neglected owing to a large rotational constant B.

The inclusion of the mentioned terms gives rise to Hl,_standing

for the single-moléecule transition between J=1 and J=3.
§3. Formalism

Let us introduce the thermal Green's functions

Gm,(&,f) —<TT[am(§,T)amf(£,0)]> )

”~

Gmm’(§PT)

]

- <r[af (0l (,01> B3

16)

following the current convention. Here we designate (m,a)

simply by m. And ang,T)==exp(TH)amg&)exp(—TH) with T the
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imaginary time. The Fourier transform of Gmm,(k,r):

6 L) = [FetenT (k 1)dt o (3.2)
mm” .’ n 0 0 Smm NS ' ~ :
is denoted simply by Gmm’(p) with p the four dimensional

momehtum.(&,m), where w_=2mn/g and18"1=5kBT.

Let us start with the following Dyson's équatiqnl6)‘
6(p) = 6%(p) +a%(p)5 , (0)G(D) +&2(P)E, (P)G(R) ,  (3.3)
6(p) = 6°%(-p)E,; (-p)G(p) +a°(-p)Z, (p)G(D) (3.4)

in the matrix form, where the free-propagator matrix G==(G0mm,)
is chosen appropriately as described later. The self—eﬁergy ma.-—
trices le, N 220 are defined in accord with Ref.16. As

a formal solution of Egs.(3.3) and (3.4) we obtain

G(p) =

(062 ()17 =255 (p) = 2,0 ()00 (-p) T = 2, (-p) 3 M, (22 17T
' (3.5)

The excitation energies are given by the root of the eugation
Re det |§71] =0, o . (3.6)

where a retarded Green's function 8(k,€) is obtained from G(k,w)
by replacing w by -i(e+is) with é=07.

(a) Libron. Consider Eq.(2.8) in the J=1 manifold. The

first term in H2 is taken to be the unperturbed Hamiltonian
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and hence
6%, (w) =v(im—w0)~.'1.4l . | (3.7)
with I the unit mgtrix, where
w, = -(6/25)f, , £, = I T

% ¢o) . (3.8)

The second term in H2 gives us le, 202 and 220 in the same

8 x8 matrix ZL(2), whose non-vanishing components are given by

(2) - . Ty
@ Dam, g = Emlz,10><0lz, [n>1, 200 - (3.9)
Let SL(g) be the unitary transformation which diagonalizes ZL(Z):
Li-1g (2) L, - ’
[(8™)T B 7870 52 = 0,(K)8,,- . (3.10)

Here ciQE) corresponds to (3/25)A1Q£) in Ref.4. Then, in the

harmonic approximation we have

1
' 2 .
—ci(§)+oi (&)[1m+w

[6"(p) 144~ = §,5- (3.11)

_— -1
Lu-wg +a, (k)]

0
whence the excitation energy mng) is obtained as

0, (k) = [w02 + 2moci(3§,)]1/2 ) (3.12)

(b) Roton. Confine ourselves to the J=3 manifbld; Then

the third term in Eq.(3.3) is very small, because the kinetic
energy of roton is much greater than the EQQ interaction.

Neglecting 220, we have simply
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"(p) = (et oz 17t (3.13)

is taken to be.

in place of Eq.(3.7),;wahere-G0R

6% (w) = (iw_—szo)‘ll . @, = 10B . | (3.14)

Let 211(2) be the self-energy part in thelharmonic

approximation whose (aM,a’M’)fcomponent is then written down as

(2), - | .
(le ) M, ,M,-—{<3Mlz2|3M> <10]22]10>}<10122110>f26 '6MM'
+ X <3M 10><10 S|3M7>fF i‘k 3.1
3 IZIJI Izu |3 o (k) | ( 5)

pp”
with the help of Eq.(2.8). Let Sﬂ(g) be the unitary transform-

ation which diagonalizes Zliz):

R.-1. (2).R _
[(87) "B 07787 )54 = 95(KI855- - (3.16)

Here Qi(g) stands for the roton energy shift in the harmonic

approximation.

(¢) Self-energy part due to the cubic terms is denoted by

21§3). We shall take account of the diagrams illustrated in

Fig.3 and hence negléct the interaction between two excitations
in the intermediate states. Then the matrix components of 2153)

for roton are written down as

(3)

(2,177 (k) gy, o -

= g1z % % v

-~ -~ k
qw o M;;a;;/M”) Ym‘Y’m, QM, [a M ,Ym] (‘»'_’g')
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R i
b Ga” (q;m )

M e {K-q,0-w" )G -
( q’ ) Ym3Y m 1%

M™,o

[aJA‘M'Aﬁ’Y’ma] o M»( k -q) o . . (3.17)

with the help of Eq.(2.9), where m designates-(lii) and the

non-vanishing components of V-are given by'

q) = (-1%)1/2 L {<3M]z |3M >—<1o[z 11028,

vaM,[aM',a’m]Q%’h, up”
oa’ '
. <10|zp,|1m>fuu,gg) R (3.18a)
4.1/2
VaM,[an’,am]QE’g)==(ﬁ) / uﬁ <3MlZ llm><10[z ~{3M7>f a?(k_q)
(3.18b)
if o #a, and
VaM,[aM’,am]Qg’%)
= (3 hy1/2 5 J[{<3U|z | 31> - <10] 2, |10>6 . }r %2 (q)
_ TR T RN
up”
+ <3M]zu|1m><10‘zu,|3M’>f’uz9,(&—\g)] . (3.18¢c)

(3)

For libron the matrix components for Z , making one libron

split into two librons, are given by Eq.(3.17) with replacément
of M, **+, M™ by n, *-+, n™ and of'Ggﬁ.(gig,m—m') by G-%-(ﬁfﬁﬁ‘
w-w”). With the same replacemént, Eg.(3.18a) remains unalteréd
while <lnlzu|1m> in Eq.(3.18b) is to be replaced byk<1n[zullm>

- <10‘zu|10>5nm. The same modification occurs for the last term
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in Eq.(3.180); These are also evident in Eq.(2.8).

(3),

§4. Self-consistent solution for <le

Only the dlagonal component of Zl§3)

2 (2)
11 M it

denote a component of the transformation matrix SRQE) defined

L
oam,i

will be considered'in

the representatlon diagonalizing s Where by s (k) we

by Eq.(3.16) and by s that for S"(k) defined by Eq.(3-10).
In rewriting the diagonal component of Eq.(3.17): [Z (3)]
— R

= Zi in the considered representation, we confine ourselves %o

the terms with [o™M™,y"'m”"] = [a™ M™ ,ym]. Then

1, Mw) = 87t E 3 L sgy s Sy 1K)

qu” oMa’M” a™M™*ym Son, Lol

-

’ VGM: La™M™,ym] (x>q) Via*M™ ,ym] sa’M” (-k,-q)

R - L -
* G ooy (k-q,0-0 )GYm(ggw ) . (4.1)

Here the diagonal components of GR and GLrin the (aM)- or

(om)- representation:

R 2
lsonM,i(v%cv')l

TR
0~%3 (B)-2; (k,w)

G n(k,0) = (4.2)

z
i in-Q

H

L
Gam(g’w)
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L 2
= I i lsam:i(‘}‘s)l ;
D L 2 - . T =1
i 1w—wo—ci(§)—2i Qg,w)fci QE)[1w+wO}oi(£)+Zi ‘T&,—m)]

. } (4.3)
are evident in Egs.(3.13) and (3.11) with the help of Egs.(3.16)

and (3.10) fespectiveiy. The expression for ZiLgk,m) is written

down similarly as

£,V 0) =-871s 5 » s

-V :Yn](‘}‘{‘,g") v

A~

om,[a”m™ [o”m™,yn],a"m” " s

L oyn L, '
(a) Average self-energy for libron. Let us first look

into the libron case. 1In Eq.(4.4) we replace ZiL(k,w) by its
average over (531), ZL(w). Namely we sum both sides of Eq.(4.4)

over (k,i), being devided by 8+(N/4) =2N. With the help of the

unitary property of SL we have

L "'1 L -~ L
w’ mn m,[m“n] Tm n

w?) . (4.5)
_ 5 .

Here we replace IVam,Ea’m’,yn]QE%%)l by its average over (k,q)

and put ‘

“m,[m*n] = (n/4) £ <|v

)
v - (k,q)|“> . -
oy omle’m :Yn]‘”'“'_ E (4.6)

In Eq.(4.5) the Green's function averaged over}i:GmF(w) =

<Gaﬁ(k,w)> must be independent of m=:1i. Hence Eq.(4.5) becomes
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1

) = -8 1 M(u-wndele?) | 7 (4.7)

W

where we drop the suffix in GmP_and put similarly

(4.8).

w = R wm, [m"n] *
Now Eg.(4.7) is combined with .the average of Eq.(}4.3) with

replacement of ZiL(lc’,in) by EL(‘m). ‘The combined result providés

us a self—conéi;ﬂ,tent; equation in ZL(m). Let us introduce the

density of states D(o) by

D(o) = gy L 8(o=0;(k) (4.9)
1

which is normalized to unity such that fD(c)dc =1. Then Eq.
(4.3) with replacement of ZiL(.{c_,m) by ZL(m) reduces to

1. D(o)do |
. iw-wo-c-zL(w)+02[im+wo+c+zL(-w)]‘1

In Eq.(4.7) the sum over w” =2wn"/B (n”: integer) is replaced

by a contour integral encircling the imaginary axis

L W dz L . L, .,

I (w) = 5l I Bz G (w+iz)G (-iz) (4.11)
v e " -1

We evaluate the integral by replacing the above contour by the

two closed contours, where thé one encircles the real-‘axis and

the other the straight line obtained by sifting the real axis

by iw. Thus, noting w=2wn/B, we have
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[+ o] .
ZL(M) = - % I de éOth%f-GL(m+ie)ihn§L(e) . (4.12)
o €0 ) »
The self-consistent equation (4.12) can be solved by an

iteration method. For instance, the first approximation to

ZL(w) is given by

sl(w) = —~JL—§-IDL(m’ de” IDL(m“)%f;f
(hwy) |

- 2, .- 2 - 2, 2
(0 4wy ) " (0™ wg) _ (07-wy) " (0 =wy)

x [coth Bg {
iv-w'-w” iotw tw™
- 2, . 2
P > (e ,) " (w™™w
+ (coth Bg - coth Bg ) 0 R T (4.13)

iw-w’+w

whence the retarded function %L(E) EZLK—i€+5) immediately

follows. In the above expression DL(w’) =(m'/m0)D(c’) denotes

the density of states for the free libron? as was given previous-—
1y,17) The self-consistent solution for %L(s) at zero temperature
is computed by the uée of w==84.8f2, an estimate confined to the
nearest-neighbor sum, and is shown in Fig.4. In the same figure
is shown also %L(e) in the molecular field approximation, where
Eq.(4.10) ié replaced by GL(w)==[iw—wo~ZL(w)]—l.

(b) Average self-energy for roton can be evaluated similarly

as in (a). In the harmonic approximation, |3M>==|33i> is not



I11-18

propagating through crystal with excitation energy independent

of E} Accordingly we shail introduce two kinds of average

self-energies: ZOR and ZM*R, where ZM*R denotes the selféenergy
+ ’ .
for the isolated band (M*¥ =37) and ZOR the average self-energy

over the other roton-bands.

In the same approximation as in (a) we obtain

ZOR(w) = —B_lEL z WM M (m—w )G (W)
w- M
Zyn(w) = -B—lji L WGy (-0 )G (@) (4.14)

from Eq.(4.1), where GMR(w) is the average of Eq.(4.2) over k:

GMR(w)==<G M(k w)>, being independent of two states belonging

to M#0. In Eq.(4.14) we put

=1 I W ] (4.15)

W - 9 W

MM~ = 3 W

Estimates of Wi~ are given in Table I.

Let us introduce the effective density of states by
D, (®) = (u/N)zls LW 1Pse 0-) (4.16)

with the aid of Eq.(3.16). Then GMR(w) may be given by

D, (R)dQ
Gy (w) = I % ——,  (MAME)
.?N—QO*Q—XO (w)
Gmﬁ(m) = [1w-9, QM*—zmﬁ(w)]"l s | v (3.17)
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where QM* denotes (aM*,aM*)-component of 2152) given b& Eq.
(3.15). The effective dénsity of states DMR(Q) in the harmonic
approximation is compufed with the result plottéd in Fig.5.

In evaluating %OR(E) EZOR(—iE+6) and %M*R(E) at'zero
femperature we use | '

¥ RE) = - %ﬁ Wy I:de 4 N (E-e) Imarf(a) , (4.18)
and a similar expression for_%ﬁ*R(E), which are derived from
Eq.(4.14) withvneglect of a very small contribution of zmIEL(e)
in the negaﬁive region of €. We solvé'numerically a set of |
equations (4.17) and (4.18), where EL(é) is obtained from Eq.
(M.lQ) with the help of the computed result for %L(e). _The

average self-energies thus obtained are plotted in Fig.6.
§5. Excitation in the k=0 limit

(a) For roton let us consider EQg,E) in the limit k=0, which
is responsible for the Raman spectrum. We shall first consider
the harmonic term in (&R)—l. Following Ref.l4 we introduce an

orthogonal matrix O==(oA a) by
1o

of A B C D

172 1/2 1/2 172
172 12 -1/2  -172
/2 <172 12 -1/2 - (5.1)

> > > D> D

i
0
1
2 .
5 |72 -2 172 1/2
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Define also O by a direct product 08I with I the 7 X% 7 unit

matrix. Then, with the use 6f'21§2) given by Eq.(3.16)

(2) _ o1 (2)y | ; _ ,
z =0 zll 0 _ ’ (5.2)

proves to be decomposed into fourteen matrices: nine 1x1, two
2x2 and three 5x5 métrices. Here eight 1><i matripés stand
merely for the isoiated modes with”the same energy QM*==25.92-.
Since the degeneracy is partialy accidentalawenéhallAbelow tfeat
them according to the transformation property.

Of the sub-matrices the inequivalent ones are given numer-—

ically in Table II. One equivalent 2 x2 matrix proves to be

-1.(2)
S,75 778,

|A2,3l—> in order, where

referring to the transformed states |A2,32_> and

=t 9

S
2 o 1

. (5.3)

Two equivalent 7 x7 matrices prove to be 35123(2)53 and

S.T (2)3 -1 with S, given by

373 3 3
F X Y 0 0 0 0 0-
Y X 0 0 0 0 0
0 0 X-Y 0 0 0 | |
5, = 0 0 Yy X 00 0| , X=209a20 (5
0 000 X Y 0
0 0 0 0-Y X 0
.0 0 0 0 0 0 1J




where the transformed matricgs refer to the basis 1A3,33+>,
[Al,33">,[ 3,32 >, [Al,32_’>, |AA3,31+>, [_Al,31'f>, [A3,30> for the
former and [A,33%>, 18,337, 18,,327>, [45,327>, [4,,317>,
lA3,3l">', A[‘Al,30>_~for the latter, both in order. Since .the
equivalent 'matrices'vbrin'g us.'the same eigenvalues, we have two
doublets and seven triplets wvith rgspective sy’mmetries pf Eg and
Tg‘v Thus the k=0 rotons are @ecorﬁposed as 3Ag+2Eg + 7Tg accord-
ing to the syinmetry'.

Let us next consider I (3)(k w), which is given by Eq. (3.17).

Py

Define the Fourier coefficient YoM, o M'(.B-) by

(N/4) az’:'ym vaM, [a™M™,ym] ( O’BJV[a"M”,Ym] ,oc'l\’[’(o’"ﬂ.)

M~ -
,M,(p)e— ae (5.5)
with 0 a sc lattice vector. Then %l§3)(E) = Zl§_3)(0,-—iE+6).may be

written down as

yL
e Lo, 0o (EaEg J &2 (g Eme) Tn ¥ (g, -,e)de
(5.6)

with the help of Eq.(4.18) with modification, where we neglect

noh—-diagonal components of the Green's function. In the above

expression, _'é'MR(“J;'.z,E) with sc lattice vector r

Rt} is the Fourier

transform of '(\}'MR(k, E):
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EMRgfz’E) = (H/N)i_éaﬁgg’E)eiﬁﬂZz (5,{)

and EL(rl,s) the similar one. We shall retain only the term
withy£2=agg,==0 on the right-hand side of Eq-(S.G). "Then the
diagonal sum of the resultant'equations, excluding MFM*,ieads
M- _

» oM, am(0) = Wiy~ -

In the IAiM>—scheme, Eq.(5.6) with ry =r,-=0 turns out to be

to Eq.(4.18). Note that w

£$3(g) = 07 ¥, 3 m)0 . O (5-8)

The expression for [2(3)(E)]A M.A .y~ 1s glven by Eq.(5.6) if
iTy”

one substitutes

M;; ‘ ) M”
W A{r,)= % o o W aea{r.), T,=0 (5.9)
AiM’Ai’M vl 0’ Aia Ai,a aM,a"M” "l -l

M -»(0). In the decomposed form of a matrix W(M™ ) =
aM,o0™M

(wp ﬁ A .- (0)) we have three inequivalent matrices W,, W, and
ity '

for w

12 72
w3. Here W prove to have similar forms to 2§2) and

1 3
Z§2) respectively, while Wé‘ is a 4 x4 matrix and given in Table

and W

IITI. Two equivaient matrices to W5 are S3W3S§1 and 851W3S3.

Thus [@R(E)]—1 proves to be decomposed into

% Rooyq~1
[G, " (E)T " =(E-Q4)I, -,

_ . o (2). + (3). L
—(E-—QO)IX—-ZX -Zl (E), l~2i | (S.IO)J

and the equivalent ones, where IA is a unit matrix, I

(2) ana s3%x{?)

box~diagonal matrix composed of 22 5 Ly 32, and



I1-23

W, (M) I ¥ (B-c) ImeT(e)de , Af2  (5.11)

X (3)(E)==— l
A o o

z
M
(3)- % R -1
and Z (E) w1th the correspondlng expre551on. Here L 2N (E)]
for A=2 has a similar form to W2 shown in Table III. A matrlx
of that form may be brouvht to a semldlagonal form,by applylng '

2 unitary transformation of the form v

r Yy 6 0 O
) -5 ¥ 0 0 -
82 = ' ) (5-12)
0.0 vy -8
. 0 0 ¢ Y J

whence two dodblets of Eg—symmetry prove to be included in
[8,%()17 . (See also Appendix A).

(b) For libron it is also worth while to examinevtheigfo
solutions, because accuracy of our roton solution largely

depends upon that of libron one.

(2)
B11

in accord with the de51gnatlons in (a),

In the decomposition of

matrices Z§2) and Zgz)
being given numerically in Table II, Two equivalent-matrices
to Zgg) prove to be S zgzlsfl and s”lzéz)s, referring re—

spectively ma|A3,11+>,lAi,11f> and [a;,117>, |45,117>, both in

s Wwe have two 1nequ1valent

order. Here S = (§-“§)>with X, Y given by Eq.(5.4).

The matrix W includes two inequivalent submatrices W2 and

(2) and 2(2)

2 3 are complete,

W whose respectlve 51mllar1t1es to ¥
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as shown numerically in Table III. Two equivalent matrices to
1 -1

1.S" S S.
W3 are SE3 -7 and W3

Thus [aL(e)]—l proves to be decomposed into

EEXL(S)]’l = (s“wo)lx"zx(z)f‘zx(3)(€)

b1, @ (eru, )IA‘*ZA(Z)'*21(3)<4€5J'121(2)’ A=2.3
‘ (5.13)
and the equivalent ones, where
£,3%e) a -1, I ¥Wie-e) Im& (e”)de” . (5.14)
0 _ ,
In writing down Eq.(5.13) we use Eq.(3.5). Our Green's function

is different from the previous oneS) only in the content of

(3)
Zy (e).
§6. Raman intensities and comparison with experiments

By using the expressions given in Ref.l, the differential

cross section of Raman scattering may be written as

ol

H3 g {n(I)XE} (VgL . I -(e-e®) ,  (6.1)

I(w:vll) = 3 (3
vv”

2n¢c

where E denotes the electric field vector for the incident light

with frequency wo, (n(l) (2)) the unit polarizatlon vectors for

(1) xn(z) and

the scattered 1light w1th propagation direction n=n
. Wivaa,
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(1) "

with frequency w, and [n
wY

XE]v'fhe v-th component of the

vy : .

second-rank irreducible tensors constructed by n(l) and E, being
. ' _ o

in accord with Eq.(2.2). In the above expression we put

M- (w) = (ZTF)—]'I:<'Pv(t)Pv,_(0)>e_i“.’tdt . (6.2)

Here Pv stands for the v-th compongnt of the orientation=
dependent polarizability tensor of the system and is given.by

Py, = izp cvu(Ai)Xu(Ai) | (6.3)

Xu(Ai) = 2AYX io

(6.14)

Aiazpa

with (OA.G) given by Eq.(5.l). In the above expressions, AX

denotes:zhe difference of parallel and perpendicular polariz-

abilities.of a molecule, referring to the molecular axis, Zua

the sum of Eq.(2.4) over all sites belonging to a sublattice a;

and the coefficients cvu(Ai) can be thained from Eq.(5.4) of Ref.h.
By retaining only the terms linear in boson operators,

Eq.(6.4) may be written as

1
X, (A;) v VN AX X <n|z_|0> a + h.c. (6.5)
L n#0 s A;n >
+ _ + _ :
8an = I 0 a 2anE0) | (6.6)

. . »
where n designates a (JM )-state. Substituting Eq.(6.5) into

Eq.(6.3), we get the relevant expression for P, to roton excit—

ation as follows:
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P, = (v2I/105)/N ax(m +m.") . | (6.7)

Here we note only the following ones

11'2'= /1_5- _aAO’32+ - Lh/.a)' aA0’3l_+ >
. 'n's = 2/5 aA2,32+ + uaA2,3l+ +. 3f§ aA2,30 -’ (6.8)

being in accord with Table Iie Of the omitted components, ﬂl

is obtained from a column vector made of the coefficients in
LPP (v15,-4¥3), by the transformation (5.3) and (ﬂ3,ﬂ4)

similarly from that in w_. by the transformation (5.4), where

5
the transformed vectors stand respectively for the coefficients
of the annihilation operators in accord with the new basic

states described before (§5).

Owing to the symmetry mentioned above, one has
va,(w) = ntg(w)5vv’ > VvV and/or v° = 3,4,5 . (6.9)

(w)

In the same approximation as 220 was neglected (§3 (b)), ntg

is written as

Im[G

1 2, Bw -1 1
Mg (0) &~ 555 N(ax) % (P17

1 (0) =Gy (-] , (6.10)

tg

where Gtg(w) is the Fourier transform of a retarded Green's

function

Cyg(t) = —10(t)<[m(£),mL(0)]> (6.11)
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with 6(t) the step function. Thus the right-hand side'of Eq.

(6.10) is evaluated by utilizing a'3R(E)_ given in Eq.(5.10):
G, () = 2008 ()] s + 8T8 Ry MR
tg 3 17 a2, Ay2F 3 M 2t,a,1F

With Htg(wj thus evaluated the Tg—part of I(w,n) is given by’
: e

. L . v
2w . 0 .
=<9 _ g I - 6.12
T (0an) — b (w-u") ‘ - (6.12)
| » 5
F_(n) = 1/3-2 & [n‘Y)xg} 1 . | (6.13)
g wr 1=l \):3 dd : w .

For the Eg—part of i(w ,9) we have some complicacy due to
the transformation (5.12) which is necessary for decomposing
the Greenian matrix '52R(E) given in Eq.(5.10). However it will
be shown in Appendix A that in the considered part there should’

exist a similar factor to Eq.(6.13). Therefore one must have

u .
. bow 0
eg(w,g) = 9'nc3 Feg(_‘g)ﬁeg(m-w ), - (6.14)
, 2 2 (1) 2
F (n) = 1/2- & E [{n XE}V]‘ . (6.15)
g w 1=1 v=1 & ¥
Here Heg(m) is given by Eq.(6.10) with replacement of Gtg(w)

by Geg(w), which is the Fourier transform of

t Tty : oy
Geg(¥) = ~10(R)<IMe (8),mg (01> 5wy, = =2 . (6.16)



TI1-28

It is needless to say that Geg(wj is obtained from Eq.(5.10):.
In Fig.7 we plot thé differential cross sections computed
separately for Eg and.Tg, which 1is the'average over two-sets of
pure Eg* and pure Tg— modes of the theoretical sqpptession
formulas (AppendixrB). ‘Our result seems to be in satisfactory

9)

agreement with the experimental ones, which are also shown
in Fig.7.>

As can te seenvin the same figure we have considerable .
o#erlapping between Eg~ and Tg- spéctra. Hérdy et al (HSM)9)
resolved the above two components of spectra by the following
way. They set the incident light to be parallel to the [111]-
axis of the crystal, which is chosen to be Z-axis, and observe
the intensity of scattered light along X-axis. In the above
arrangement they get four kinds of scattering data: [XY], [YY],
[XZ] and‘[YZ], in which, for instaﬁce , [XY] stands for the
intensity of scattered light with polarization parallei to the
Y-axis in the case when the polarization of incident light is
parallel to the X-axis. Thus HSM have observed for libron that
either Eg or Tg is suppressed in certain linear combinations of
[Xy], [yyY], °--,'being applied to resolution of the roton spectra.
The suppression formulas will be discussed in Appendix B.

In Table IV we recapitulate our theoreticél results; includ-
ing the Raman inactive modes. Tie Omitted‘5=0 modes with higher

energy are so much broadened due to considerable increase of

Im ZR(E) in the relevant region (See Fig.6).
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Let us finally 1ook into the libron excitation. For this case

_ i +
P, = (VB/15)/N AY (m, +7 ) | (6.17)
in place of Eq.(6.7), where one has
(6.18)

5 ~ aAz,;1+

T, = V3 a

2 L

in place of Eq.(6.8). Thus Htg(w) is written similarly as Eq.

(6.10), in which [Gtg(w)-Gtg(—m)] should be replaced by

[Gtg(w)-PGtg(w)-Gtg(—w)-Gtg(—w)] . : (6.19)
Here Gtg(w) is the Fourler transform of the retarded Green's

function

atg(t)v= —i6(t)<[v;(t),w;(0)]> i (6.20)

With the help of Eq.(3.4) in the retarded form, we get

Gy () + 0y (0) = {1 - [latug) Ty + 353 +283) o) 1702520

L )
. G3 (N)JA21+’A21+ .(6.21)

in accord with Eq.(5.l3); The corresponding éxhressién for
Eg may be Qmitted.

The computed results are shown in Table V. For the excit-
ation energies the results by Coll and Harris (CH)S) is somewhat
closer to the expefiments than ours, while for the Raman |

intensities the situations are reversed.. CH obtained a larger



IT-30

(2)

energy depression of Tg where their self—consisfent equation
is confined to the k=0 ﬁanifold, resulting from a simple pole
approximation to thé self-energy part.

Throughout the present part we have neglected contributions
of the order I/B. vThey are not negligibly small for each con-
tribution and hence have been soméwhat.controversial.8’9’18)
However the net effect is shown to be small as a result of

cancellation. The result is given in part IV.
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endix A

-,

5 given by Eq.(5.12), y and § are

chosen so that the matrix [azR(E)]—1 may be transformed as

-C. b ‘ d
0 .d a

. d 0O (¢4

- a -¢c 0

q

0
c

b.

-

r € 0 b B da 7.

0
. (A1)

o o
.

b

o]

Accordingly, we shall introduce the following operators

a1+ YaAo,3

o
!

1- - YaA2,32'

Note that the sub-matrix of §," referring to {|1->,

o+ + 08,

- 8a

03

bys3

1t 8 T 53A2,32‘ * 63A2,31“ >

1™ a2_ = —GaA0332++YaA0:31+ -

(A.2)

|2->} must be equivalent to that referring to {|1+>,]|2+>}.

Consider an operator Q =7.u tTou, with L defined by

171

Eq.(6.8) and wirh uv=={n(1) XEﬂv. Then we have

Q = (V/I5y - W/38)u,a;, - (V158 +U/3y)uja,,

with the help of Eq.(A.2).

We shall now introduce G(A,B)

by G(A,B) =~i8(t)<[A(t),B(0)]>. Then
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a(a,Q")

(I5v - 4/38)%u 2 6lay,,a,0) + (/I58 + 4/3n) 2w alay,,a,0)

(VIBy - 4/38) (VI58 + W/3y)ujuy {G(ay,,a,0) + Glag,,2 )Y

b - . (a.4)

where the omitted terms belonging to the subspace {|1->,[2->}
can easily be seen from Eq.(A.3).

Owing to the equivalent form of sub-matrices we may put
Gla_.,a t.) = ala ,a_ b ) n,n =1, 2 (A.5)
n+t’“n’+ n-"n’- > s 5 > .

which tells us the third term in Eq.(A.l4) to be cancelled by
the corresponding term in the other subspace. In this way

2

G(Q,QT) proves to include ul-i-u;2 as a factor.

Appendix B

According to the frame of HSM’s scattering experiment
described in §6, we may put 0 =arccos(l/vY3), ¥ =3w/L in the
(1)
v

expressions for {n(l) XEﬂv Zu , which were given in §6 of
Ref. M.+) Here (¢,0,9) denote the Euler angles, by which
the crystal fixed frame referred to the cubic axes is specified

in the laboratory-fixed frame. Thus we get
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ugl) 1 -sin ¢ cos ¢ El ~
1 -- L [ ] { } . (B.1)
uél)_ 2 . cos ¢ sin ¢ E, .
N cos 20 sin 20y E;y |
[ --1 ]ﬁ [ ] (B.2)
u£2) -sin 2¢ cos 2¢/ 'E2 ,
for the Eé-components and‘
uél) cos (¢p+a) sin(¢+a) El
uﬁl) = j% cos(¢+2a) sin(¢+2a) [E2]’ (B.3)
uél) cos ¢ sin ¢
u§2)\4 -2 sin2(¢+a) 142 cos 2(¢+a) E1
N .
u = - -2 sin (2¢+a) 142 cos (2¢+a) E
4 2/3 2
u(2) -2s8in2¢ 1+2 cos 2¢ (B.4)

for the Tg-—components, where o =27/3.

In the above expressions, the electric field vector
associated with the incident light is defined by (El,Ez,O)
and the polarization ve;:tors associated with the scattered
light respectively by n(l) =(0,0,-1) and n(2_) =(0,1,0), all
referring to the laboratory frame (XYZ). Keeping these in
mind, one easily evaluates Feg(n) defined by Eq.(6.15) to be

1/8, 1/8, 1/4, 1/4 respectively for [XY], (YY1, [XZ], [YZ],
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assuming E=(1,0,0) or = (0,-1,0). In evaluating th(n)

defined by Eq.(6.12) we notice Zmio

1/4, 1/12, 1/12 respectively for [XY]1, [Y¥], [Xz], [YZ]-

exp(ima) = 0; th(n) =1/6,

Therefore [XY]-2(X2], [¥¥]-2[¥2] suppress E, while
[XZ]-%[XY], [YZ]-—%[YY] suppress Tg. The coriesponding
experimental results are [XYj-—Q.53[XZ], [YY] -0.57[YZ] for
the suppression of Eg and [XZ]-0.60[XY], [YZ]-0.45[YY] for

that Qf Tg.g)
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Table I Numerical vglues of WMM,a)

N0 1t 1" 2t 2~ 3* 3
0 9.7 6.7 6.7  22.7  22.7 0 0
1¥ | 11.3 19.3 21.6 1o;§>" 11.1 u.o- 4.0
1" 1.3 21.6  19.3  11.1  10.5 4.0 5.0
2" | 28.7 13.0 13.0  29.5  11.1 5.5 5.5
2" 28.7 13.0 13.0 11.1 29.5 5.5 5.5
3 | 31.6 30.6 30.6 12.6  12.6  61.9 0
3 31.6 30.6 30.6 12.6 12.6 o 61.9

a) Estimates up to the nearest neighbors are given in units

of P2.
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Table II Inequivalent matrices for I (2) in the [Ai,M> scheme

11
and in the k=0 1imit.2)
A) Rotonb)
. + _ - ' ,
1855337> 14,,337> 144,30 la,.32">  84,317>
25.92 0 0 -
£.(2), 0 25.92 0|, Iy s [ ]
1 2 ~2.82 ~0.01
0 -0 ~ -8.92
(2).
20

+ - + - + -
|65,337> ]84,337> [4,,327> |4,,327> [4,,317> }4,,317> [4,,30>

(25.92 0 0 0 0 0 0
0 25.92 0 0 0 0 0
0 0 14.63 0.85 2.14 -7.61 0.33
0 0 0.85 17.30 7.61 3.38 -7.91
0 0 2.14 7.61 5.94 5.44 0.29
0 0 ~7.61 3.38 5.4l 15.15 7.07
) 0 0.33 -7.91 0.29 7.07 7.37 J
B) Libronb)
JUTRR 1a,,117> |ag,117>
z (2, (-6.20) s £, (2), {—0.99 H-T6 ]
2 3 4.76 7.07

a) Estimates with lattice summation over all neighbors are
given in units of I.

(2) (2) (2) _ .
b) %q > I, > Ig refer to the Ag, Eg and Tg manifolds

respectively.

>
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Table III Inéquivalent sub-matrices of W(M)a)
() RotonP?)>¢)
o+ + - -
[A0}32 > _[A0,31,> [A2,32-> |A2,3}_>
r-a(M) -c{M) 0 da(m)
—e(M)  b(M) agm) -0
w;(M) = .
0 a(Mm)  a(M) - e(M)
| Loa) 0o e (M) b (M)
with
M a(M) b (M) c (M) d(M)
0 8.65  15.56 1.74 -2.18
1 31.79 55.14 1.36 0.20
2 20.45 13.79 3.39 4.58
3 11.03 8.03 0 0
(B) Libronc)
+ ja,,117> |A,,117 >
[85,117> 2 o
5.84 ~-0.11
W, = (5.47) Wy = [ ]
-0.11 13.67 J

a) W(M) is defined by W(M) = X W(M°).
s=%
b) Wl(M) and w3(M) are omitted.
c¢) Estimates based on the nearest neighbor approximation (:

unit: F2).
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Table IV The k=0 roton spectrum and Raman intensity.

Mode Energy shifta)(unitzr) Raman intensityb)
‘H.A.Q), Present Exp.d’e) H.A.c) Present Exp.d)'

Aél) -8.92  -11.7 | o 0o 0

Eél) ~0.89 4.1 —4.7h 1.00  1.00 1.00
Tél) ~1.92 ~3.8  (-4.09) 0.35  0.28  (o.74)F)
Téz) 0.10 ~3.0  (-4.09) 0.14  0.16  (o.7m)D)
Eéz) 9.02 4.4 3.12 1.12 1.15 0.92
Té3) i3.12 5.8 L.y5 2.70 2.7h 3.70

a) The energy shift relatively to the free roton value QO=1OB.

b) The intensities for a powder sample are normalized to that of

g(1)
g

c¢) Ref.8 based on the harmonic approximation.

d) HSM’s data for p-D, with 98% J=1 molecules (Ref.9). The

2
values in parenthesis are not resolved.

e) The energy shifts relatively to the disordered state are
scaled by I'=0.802 em * after Ref.9.

f) The resultant value of Tél) and T(g)

based on a numerical
interaction of HSM’s experimental curve is converted into

the powder value.
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Table V Thevgfo libron spectrum and Raman intensity.

Mode ‘ Energya)(unit:r) Raman intensity

b)

da) a)

CHc) Present Exp. CHC) Present Exp.

11.29  11.4 11.3 1.000  1.00  1.00

E

p(1) 14.07  14.2 14.0 0.211  0.25  0.26
p(2) 19.55  20.8 19.1 0.080 0.07 0.06
two-libron 28.2 35.5 31.1 0.25 0.21 0.18

a)

b)

c)

e)
f)

The energy values in the harmonic approximation are 13.68,
17.73, 29.04 (Ref.h4).

The intensities are normalized to that of Eé.

Coll and Harris (Ref.5).

HSM's data for p—D2 (Ref.9), where the enefgies extrapolated

1

to 100% p-D. are scaled by I'=0.81 cm .

2
The value evaluated from Berlinsky’s result (Ref.6).

The mean positions of the energy spectra are given. The

peak positions are 25.87 and 26.8T respectively for Berlinsky

and HSM while our peak is located at 35T with broader width.
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Figure Captions

Fig.l. Energy diagram of the k=0 rotons as a function of
G/T. The roton energies in the harmonic appfoximation_(Ref.B)
are compared with the Raman feaﬁure of p--D2 observed by HSM
(Ref.9). The crystalline field energy Vc is defined by |
v, =-(2/9) (4m) Y Zary, 0 (2) + (1o/7) R -y, 5(0) +3y_J(@))].

Only the modes shown by thick lines have sizable Raman intensity.

FPig.2. Designation of the sublattices.

; (3)

Fig.3. Diagramatic representation of 11 .

The wavy lines
represent the EQQ interaction. ‘
L ML
Fig.4. Curves for % (e) vs. /T Here L (g) is plotted in
4V]
units of T and the broken line shows Re ZL(e) in the molecular
field approximation. The density of states DL(E) in the

harmonic approximation are also shown in the same energy scale,

whereas the corresponding ordinate is taken arbitrarily.

R
M

approximation. Here DMR(Q)EE DMSR(Q) with s=*.

Fig.5. Effective density of states D, () in the harmonic

Fig.6. Curves for %oR(E) VS. (E—QO)/P and for §M§(E) VS .
(E—QO)/F. The both self-energies are in units of T.

Fig.7. Raman features for Eg~ and Tg~ modes. The inten-
sities are in arbitrarily units. The theoretical curves are
obtained with account of the experimental resolution width 1.25
em™ L, where T =0.802 cmfl and 2, =298.75 em™t are assumed in

accord with the experiments on p-D, by HSM (Ref.9).

2
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Part III

Localized Excitations in the Ordered Solid Hydrogen

The excitations due to a parahydrogen in the ordered
state of solid orthohydrogens are studied. The anharmonic
processes prove to gilve significant effects on J=2
rotons. The virtual creation of libron (J=1 excitation)
in the vicinity of roton is taken into account with the
interactions between roton and libron, where the relevant
Green’s function is determined self-consistently. ‘The
results for Raman intensities are in good agreement with
the experiment by Hardy, Silvera and McTague. It is shown
that the local perturbation in the presence of a parahydrogen
gives large effects on libron. The concentration dependences
of the k=0 libron energy at very low concentrations of
rarahydrogens are also studied in a fair agreement with the

Raman experiment by Hardy et al.
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§1 Introduction

In Part II]J_ referred to as I1, a study has been,preSented
for the rotational excitation in the ordered solld hydrogen,
particularly for J=3 excitation. ' The ground'state of pure 
J=1 hydrogen systém is of the Pé3 structure.233) The dominant
interactions betweeﬁ molecules are EQQ interactions.3’u)

The rotation-phonon interaction does not alter the angular
dependence of EQQ interactions.B) This effect 1s taken into
‘account as a renormalization of the EQQ coupling parameter T,
P=6e2Q2/25a5 with eQ the electric quadrupole moment and a
the distance to nearest neighbofs.

6) that librons (J=1

It was first shown by Harris et al.
excitations) are strongly perturbed by thHe anharmonic processes.
With due account of the mentioned processes, they got a good
agreement with experiments.7) It is also the case for rotons

1)

(J=3 excitations), where the anharmonic processes are

considerably effective in achieving the agreement of theory

7)

with experiment.

In the present paper, we studbe=2 rotons localized at
the parahydrogen site in J=1 hydrogens on the same footing.
The Raman scattering experiment7) shows four lines with the
higher two lines broadend considerably, compared with the ‘

molecular field theory giving only three lines. Hardy et al.

pointed out7) the second highest line to be mainly |2 2%>
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with a large frequency shift due to the anharmonic effect.
(See Eq.(2.3) for our state as designated by IJMi>.) They
also pointed out the highest broad line to be |21t> combined
with a libron, i.e. {]2 1*> + libron}.

In contradistinction with'Hardy’s.interpretation, it
appears that the highest broad line 1s mainly [2 2t>. Thev
broad width of it comes from the virtual processes of libron
creation. However there is no large frequency shift for
the considered liné.‘ This follows simply from a second order
perturbation; the energy of |2 2%> 1s larger than that of
{|2 0 > + 1libron}, while it is smaller than that of
{]2 >*} + 1ibron}. The energy shifts due to these energy
levels cancel each other. It should be noted that |2 2%>
combines strongly with {]2 1%> + 11ibron} through the anharmonic
term, becauée they are nearly degenerate. While this gives
the highest line, the second highest line also comes from
|2 2*> strongly combined with {|2 0> + libron} again through
the anharmonic term with considerable lowering of the energy.
The situations are shown in Fig. 1 schematically.

The local perturbation in the presence of impurity gives
large effects on libron, though no local mode comes out.

This change of libron state in turn affects roton. This
effect is also taken into account in our study.

The above effect ‘gives rise to change of‘&fo libron if

the concentration of parahydrogens 1s finite. The
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concentration dependence of the libron energy thus produced
is studied 1in good agreement with the Raman experiment.7)
The treatment has been confined térthe system at very low
centration of impurities.

Our Hamiltonian is described in §2. In §3, we discuss
the local character of libron in the presence of a J=0 molecule.
§4 is devoted to the study of J=2 excitation. In §5, the
Raman intensity 1is evaluated in agreement with experiments.

The concentration dependence of the energy of‘K:O libron is

studied in §6.
§2. Hamiltonian

The molecular configuratioﬁ in the ordered pure J=1
hydrogens is a fcc lattice consisting of four sc sublattices.
We choose new coordinates systems with z-axls parallel to
the molecular direction, which is directed along one of four
body-diagonals as is shown in Table I.

In the local frame, EQQ interactions are written as

H = 552 ufv zu(j)fu\,(;,l)z\)(l) s (2.1)
Z1, _ hw\1/2., 1 | 1 |
(D) = GPYPLLDI @) + DY, 0T,

Z . .
3y _ 4w 1/2 i i
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_ lUw1/2
Z5 = (T; YZO(

.) , ’ ' (2.2)
where Y, (@) denotes thesphérical'hafmonic~function with Qj
the orientational angle of the molecule at site . ; The
coupling parameter I is included in fuv(j,ﬁ), a function of_
le with the distance dependenqe-Rjg_S-

Let us introduce the real basic states by

+ o .
<2l oL e Ly oy + (By. (@)}, M0
<lom™> vz T T toa-n

<0|J0> = Y, (0) . (2.3)

Let us then consider the system wlth a parahydrogen substituted
into the matrix of J=1 system. In the approximate ground
state, all molecules arej11|10>, except the origin with state
|OO>. In order to get the elementary excitation, we adopt

the bosonic representation:

zu(j) =m§ﬁ{<mlzuln>[a;(3)(f—an(j)SnO-Fa;(j)an(j)]-+h.c.}

‘ L .
s oy
+ i{<m|zu|m>-—<0|Zu|0>}am(3)am(3)-»<Olzu]O>, (2.4)

where £ = (1-X a;(j)am(j))1/2. Here in the case of j#O0,

|n> stands for |JM> with odd J-number and [0> for |10>.
At the origin, |n> stands for |JM> with even J-number and
|0> for |00>. (The inclusion of a, which must have no sense

is due to a formal simplicity.) We assume that an(j) and
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a;(j) satisfy the boson commutation relations.

(a) The case when the parahydrogen is in»J=O state.
In this case, éne has Zﬂ(j) = 0 for j=0. It is here noted
that in Eq.(2.4) for j#0 |n> is restricted to J=1 manifold,
because the energies of J=3 states are higher than those of_
J=1 by 10B with B the rotational constant. From Eq.(2.4),
we obtain

L L

H =E0+Hpure+V1+V2+V3+"' . (2.5)
Here EO denotes the energy of the approximate ground state,
and H;ure the Hamiltonian of pure J=1 hydrogen system as

classified into the quadratic, cubic and quartic terms in

boson operators:

L L L

Hpure.= Hy * H3 T
Hg‘= % I I I{<m]z |m">-<10|z |10>6mm’}f 5(1,3)
ijmm” u H H M
* <10]z [10>{a+(i)a (i) +h.c.}
2 m m” tveS 2
1 | :
+= % I I <m|z |10>f (i,j)<n|z |10>
2 ij mn uv H Hv ,v
af ra_ al gy ra )y, (2.6)
. m m " n S n ? )
b = L 3 2 T <m|z [10>f (i,j){<m”|z_[n>-<10[|z_|10>6 }
3 2 H pv T2 v v m’n

ij yv mm”n
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(al (1) +a_(1)Ha L()a_(3) +n.c.l . (2.7)

The terms of V. Vv -+ stand for the local perturbations

;l, '2: V3:
in the presence of a J=0 molecule. Here Vi is writteh as

v, o= - ;zﬁz <m|zul1O>fu2(j,O)<10[22]10>£a;(j)-+am(j)} >
Jmi ~ (2.8)

and we similarly have V2 and V, which in reversed sign are

3

merely a sum of the two terms obtained respectively from Egs.

(2.6) and (2.7) if we put i=0 or j=0. Here we use

3)

z fu2(ij) = 0 for u#2. Note that the creation and annihilation

J
operators assoclated with l11i> can also be effective for the
varahydrogen_ site due to our division of the Hamiltonian.

(b) The case when the parahydrogen is in J=2 state.

In this case, from Eq.(2.4) we obtain

L Z"<2m|zu]2m’>{b;(0)bm,(0)-+h.c.} . (2.9

Zu(j=0) = z

n

If one substitutes Eq.(2.9) into Eq.(2.1), the correction

terms to Eq.(2.5) come out as follows:

R _ + R, R, R, ... |
H = 6B i bm(O)bm(O)-+H2-+H3-+Hu-+ N (2.10)
uE = 33 <2m|z.|2m>F.,(0,5)<10]z,]105b (0)b_(0) , (2.11)
2 m j 2 227> 2 m m ? *
H§ =1 111 <om|z |omsr (0,)

“jwwn ~H M

. <1n|zv[10>{b$(0)bm,(0)-Fh.c.}{a;(j)-kan(j)} (2.12)
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R 1

Hy = 7 z ‘<2m|zu[2m’>fuv(0,j)

b
Jj nn

)
mm(‘
-‘{<1n|zv|1nf>-<1o|zu[10>6nn,}

(ol (0)p_.(0) +h.c.}{ajl(j)an*,<j> fhic.} . (2.13)

In the above expression b; denotes the creation operator as

defined by b;l00> = |2m> . We note that Eq.(2.11) cor-

responds to the molecular field energy.
§3. Libron

We shall for a moment ignore the linear term Vl’ which
comes out due to presence of impurities. The effect of it
has proved very small, 8) as will be discussed in Appendix A.

In the presence of an impurity, let us introduce the

temperature Green’s function

. e o R T,e-
Gm,m;(J,J 3T) = = <T_(a (J,t)a -(j7,0)> ,
@ .(3,3731) = - <T_(al(3,0)a_t(57,00)> (3.1)
mm’ dsd 3 T m Jos m’ i 2 .
where j and j~ denote the molecular site. Here

am(j,T) = exp(TH)am(j)exp(—TH) with 1t the imaginary time.

We also introdice the Fourier transform of Gmm,(j,j’;r) by

B .
s s~ 1 « s
Gom- (3,3 750,) = Jo e™nt @ .(3,375T) , (3.2)
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where w_ = 2mn/8 and B"l = k_T
. n B
For a pure J=1 system described by the Hamiltonian
L . ; . . . T pe s
pure’ we introduce the Green’s functions, P__.(J,] ;wn)

and Pmm,(j,j’;mn), corresponding respectively to Gmm,(Jsj';wn)
and Gmm,(j,j’;wn). Referring to Fig. 2, we write down

Dyson’s eauations

P(0) = O(w) + PO(w)E (w)P(w) + PO(w)E, P(w) , (3.3)

P(0) = PO(-0)Z ) (-0)B(w) + PO(-0)5,P(w) . (3.4)

Here J and m are absorbed into the formal matrix notation.
In II, we have taken the diagonal term of Eq.{(2.6) to be the
unperturbed Hamiltonian. In the present paper,

however, we introduce the free propagator matrix by

_ . =1
[P (w)]gm,g 0 = (iw) 6mm’5jj’ ] (3.5)

We note here

£ () = 2§20 4 5 (P S (3.6)

with zﬁ) and zg) as defined in Fig. 2. The effect of
the cubic anharmonicity is included in the site-diagonal part

[2(3)(w)13m,jnr’ whose expression may be given by

(283 (w1

Jm,jm”

=-g7ly r x Z<n|z |10>f (2,3){<n|z [n"> - <10]|z |10>5 .}

m
Lnn” pvv’ w” 1
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. <n|zu|10>fuv,(l,5){<m’lzv,[n’>-—<10|zv,|10>§m,n,}

CIPG-e) Tgn g P e g (3.7)

We note [253)(w)] =0 if m#m”~.

1
We can formally solve Egs.(3.3) and (3.4) as

jm,jm”

P(w)™" —w)} g, L (3.8)

=Po(w)-l-211(m)-—ZQO{PO(—w)-211(

In the right side of Eq.(3.8), 211(w) includes P(w), and
hence the self-consistent solution of Eq.(3.8) must be solved.
The solution is obtained by a transformation of Eg.(3.8) from

1)

the coordinate space to the momentum one. (See Appendix B.)
By the same consideration as above, we get the formal

equation of G(w) as:
0 Hw) =P%) T -2 2 w) - 2,0 (R0 a2 (e) B, . (3.9)

Here le(w), 220 and I,5 are the self-energy parts

in the presence of the impurity, where the notétion follows
Fig. 2. Needless to say, the (jm,j " m”) components of the
above self-energy parts should be zero if either of j and j~
is at the impurity site.0. Similarly Eii)' corresponds to
Zii) in the perfect lattice as given by Eq.(3.7) and vanishes
if one of j and & is at the origin. The expression for
Zé%)' includes G(w) in place of P(w). .

iw. This is

~ -1 -
It should be noted that [G (w)]Om,Om-
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the Green’s function at the impurity site. Here a spurious
reaonance comes in at zero frequency because excess degrees

of freedom are brought into the impurity site. However, the
mentioned singular term can be isolated from our libron solution;

Let us now subtract Eq.(3.9) from Eq.(3.8). We obtain

P i) - 67 (w) = clw) , (3.10)
where

[C(w)] =—{<m|22|m>-<lO|z2|10>}{§f22(0,i)}

Jm,j m”

. <1O|z2|10>6 s

.6, .
Jj” 30 mm

—§{<mlzu|m >-—<10|zu|10>6mm,}fu2(j,0)<10|22l10>6jj,

-§;<mlzu|lo>fuv(j,j )<m lzv|1o>(5jo-+5j,o)
-1 . -
+877L I X ’Z[<n|zu|10>fuv(2,3){<m|zv|n >-<;0lzv|10>6mn,}]
w nn uvv’L

I3

. [<n|zu|10>fuv,(2,j){<m‘|zv,ln’>-<1o|zv,llo>6m,n,}]_

In the right~hand side of Eq.(3.11), the first three terms come

from V,, and the others from V3. The frequency sum in C(w)

2
is performed by the sSame procedure as was done in Eq.(4.12) of II,

In deriving Eq.(3.11), we‘neglect the difference between
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ZQO{P (-w) -—le(—m)} Zy5 and 220{P (-w) -le(—w)} 202,
because it has proved very small. In Zé%)’(w), we may also
replace G by P by the same reason.

In Eq.(3.10) with replacement of w by -iw+0+, we wrilte

the Dyson equation for the retarded functions as
F(w) = Blw) + (o)) (w) . (3.12)

Here the retarded functions are defined, for instance, by

T(w)

i}

G(—iw+0+). (The temperature is assumed zero throughout
the present paper.)

Solving Eq.(3.12), we have

It

F(w) Plow) + B(o)¥(w)B(w) , (3.13)

where

il

V(w) = [T - Blw)¥(w)] L (3.14)

with I the unite matrix. 7
In our site representation, the defect matrix a(m) is
the most effective for the diagonal term with respect to the
impurity site, decreasing rapidly with increasing distance
from.it. Thus the effective sites of E(w) can_be confined
to the nearest neighbors to the origin. Then E(w) is a
26%26 matrix. Accordingly, B(w) and G(w) can also be assumed
to have the same dimensionality.
Let Wy be the bottom of the libron band. For W< Wy, both

%(w) and the diagonal part of a(w) are negative, and hence
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some local modes may appear at the frequency satisfying
det [I - %(m)a(w)] = Q. However no local mode appears

according to the numerical inspection.

'} L) - ; ..
For wi>mo, we look into -(1/24w) E ZImEa(m)]jm’jm

J#0 m ,
This spectral density for libron at the neighboring site is
different from that in the perfect lattice. The result is
shown in Fig. 3. The computations of %(w) were performed

for 1,000 points in the 1/8 part of k-space.
§4. Locallzed roton at parahydrogen

Let us consider the roton associated with a parahydrogen.

Consider the Green’s function of roton
_ +
Dm m,('r) = - <Tr(bm(0’T)bm’(o’O))> . . (4.1)

whose Fourier transform 1s denoted by Dm m,(w). The total

Hamiltonian is given by

_ 4R R R L
H—H2+H3+HM+H, (4.2)
according to §2. As mentioned before, V1 in HL may be
eliminated by a canomical <transformation. In Appendix A,

the effect of the elimination on the Hamiltonian for roton

will be given. Using that result we obtain
B = HE-+ HE + HY 4 HUC | | (4.3)
2 3 4 > .
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where
R. _ .
Hy” = ; [6B-+<2m[22|2m>{§f22(0,3)}<10lz2]10>-+Aem}

-t.
f bm(O)bm(O) . (4.4)

Here Aem is the term coming from the eliminatidn as given by

Lecgl 4 v 49, + e+ . Let HY” be

Eq,(A.M) and hence H pure 2 3 2

the unperturbed Hamiltonian. Thus the free propagator

matrix becomes

(% (w) = Gm—6B—€mrl%m,, (4.5)

€y = <2m|z2l2m>{§f22(0,j)}<10|22110>-+Aem . (4.6)
Let us now consider the Dyson equation as shown in Fig. 4:

-1 .t
(D (w)]mm, = (1m-—6B-—em)§mm,-me,(m) R (4.7)

me,(w) = —s'lz X )3 )X r(o) (j)Gn n (J,Js07)

j mlmznlne(u’ Mty »m 12

- D (w-w”)T
m, m,, m

S(jsw-0’,0"30) . (4.8)
PR R

In the above, G, , (j,j;w”) is the libron Green’s function
1.2

as derived from HL’. In Eq.(4.8), P(O)(j) is defined by

(0) N .
lenl,m(J) = I <2m|zu|2ml>fuv(0,3)<nl|zv[10> . (4.9)

uv -

We shall below use Eq.(3.2) for G (J,i"s07). Only the
‘ ‘ 172
site~diagonal part of G will be taken into account.
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For the vertex‘part, we might have

;. P _ ~(0) .
an,m’»(‘] sWw—w LW :w) - rmn.,m’(J)

_1 . . Py .
-7 ¥ X U (J)a_ - (Jj,jsu")D (w-w™)
o mn,m.n n.n m. m
W mlm2 nln2 -l 1 12 172
. Pm2n2’m,(q;w—w‘,w sw) (4.10)

in a ladder approximation (Fig. 4), where U is defined by

U -(J)

mn,m’n

=1ﬁ)<2m|zu|2m >fpv(0,3){<n|zv|n >-—<10lzv|10>6nn,}
, (4.11)
In order to solve Eq.(4.10), we introduce

S . _— _1 : . -
an,m’(J’w) = -8B (f’mzn Gnnl(j’J’w )
171
. Dmml(w-w )lenl’m,(j;w—w LW W) . (4.12)

And F(O)(j;w) is defined by Eq.(4.12) with replacement of

T by F(O). From Eq.(4.10) we have
F(i30) = P00 (J30) + K(F;0)U)F( ;) (4.13)

in the matrix form, where K(j;w) is defined by

[K(330) g = —B_l(f'Gmm,(w')Dnn,(w—w’) ENTRTS

Then FCO)(510) = k(53007 %) (3). Thus Eq.(L.13) is solved to be
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F(j30) = [I-K(30)0()1 G300 (5) . (4.15)
By the use of Eq.(4.15), Eq.(4.8) is rewritten as

me,(w) = m 0y ,m .mlnl,m,(j;w) . (4.16)

Equations (4.7), (4.14), (4.15) and (u.16).are a set of

equations, which will below be solved self-consistently.

By the same procedure as we obtained Eq.(4,18) of II

[K(530)] --1

m ’b - ..
I fo B _(u-e) Im¥___.(j,33e)de , (4.17)

where k(j;m) and B(w) are the corresponding retarded functions.

Using Eq.(4.17), we evaluaté %(w) = Z(—iw+0+) by an
iterative method, where the summation over j in Eq.(4.16) is
taken up to the nearest neighbors of the parahydrogen.

The self-consistent solution for %(w) has a simple form
as shown in Table IIT. This form brings us two two-fold
degenerate levels, as required from a symmetry reason.

In Table II, d should be reversed in sign if the.parahydrogen
site belongs to B- and D-sublattices.

The‘computed results for %(w) are given in Fig. 5, where
only the diagonal parts of ¥(w) are shown. The off-diagonal
parts of %(w) are fairly small. Ih FPig. 6 is shown the
density of states as given by —(1/W)Im[8mm(m)]- The line
|2 2i> is ﬁow splittead into‘two parts, where each part appears

with considerably broad width.

£
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§5. Raman intensities for J = 0 » 2 transition

According to II, the differential cross section of

light scattered by the system is given by

y .
Iw,n) = 2= 5?2 . a®xer (0 Pxp) o w-e®) .51
- 2me wve -y '
Herevafl) andlgfz) denote the unit polarization vectors of the

scattered light with propagation direction n==n(1)xn(2) and
W Vi W

with frequency uw, ELthe electric field vector for the incident

light with frequency wo, and'ﬂgfl)ﬁg}v the v-th component

of the second-rank irreducible tensors constructed by\g}l)
and E in accordance with Eq.(2.2). And T, .(w) is defined by
_ -1 = ' _ ~iwt A
HW,(w) = (27) Lw <Pv(t)Pv,(o)> e at -, (5.2)

with Pv the polarizability tensor of the system.
Let us consider the system at very low concentrations.

Now Pv for roton may be given by the orientation-dependent

polarizability tensors of parahydrogens. Hence we have
P, = AX :ZLI z7, (1) , | (5.3)

where AX = Xy, —xi—with xll‘and xl_the polarizabilities of
molecule parallel and perpendicular to the molecular axis respec-

tively. The summatidn 1s taken over parahydrogen sites. And

z:)(i) defined in the crystal-fixed frame is transformed into
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our zu(i) in the local coordinate frame by

z (1) = ﬁ Tyu(8ss 0402z, (1) (5.%)
where Tvu(i) is given in Table VII of Ref. 9. Here

6; = arc cos(1/¥3), and ¢; = w/4, -w/8, -3w/4, 3n/4,
corresponding to A, B, C, D sublattices, respectively.
The primary terms of Eq.(5.4) prove to be
ey t,. .
zl(1) = fmTvu(ei’ ¢i)<2m]zu|oo>{bm(1)-+bm(1)} . (5.5)
We introduce the following function:

R .(w) =1/4+% = = T <2m|z |o0>
vV o pp” mm” v u

. Tg;u,<2m'|zu,[00> 3;m,(m) (5.6)
after averaging over sublattice o. Then va,(w) = Rl(w)avv'
for v=1, 2 and R2(m)6vv’ for v=3, 4, 5, where

Ry (w) = 1/5:{1/3-B,2,2(w) +2/3-B 2 2 (w)} (5.7)
5, n, | & |
R,(w) = 1/5{4/9-D ¢ (w) +2/9-D % (w) +1/3-Dy (w)}. (5.8)

Thus we obtain va,(w) = Hl(m)va, for v=1, 2 and

H2(w)6vv’ for v=3, 4, 5, where

M (w) = =Ny (80 2(eP9-1)"H/m) In (R (@) ~Ry(-w)]  (5.9)

and Héuﬁ given by Eq.(5.9) with replacement of R1 by R2.
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Here Ni is the number of parahydrogens.

Then we have

R
Tlo.m) =~ (§)° [2F) (T (@) + 37, (T, (0] (5.20)
2 2 :
Fo(n) = 1/2- ¢ 1 [{n®xp} 12 (5.11)
2=1 v=1
2 5
Po(n) = 173+ 5 1 [{n{"xgy 12 . (5.12)
- =1 v=3 T

7)

According to the experiment, we assume the incident
light to be parallel to [111]-axis of the crystal, being
parallel to Z-axis, and the scattered light to be observed
along X-axis. Using the formula of Appendix B in IT, we
can evaluate Eq.(5.10) for arbitary polarization.

In Fig. 7, we show the calculated differential cross
section for the polarization XY + XZ, in agreement with the
experiment.7) Here XY stands for the polarization of the
scattered light along Y-axis for the incident light
polarization parallel to X-axis.

Table IITI shows the peak positions and the Raman
intensities. The theoretical peak positions deviate slightly
from the experiment?) Howeﬁer we can get.the further improve-
ment by taking account of the neglected effects of the order
r/B. These contribdtions are estimated to be about 1.5T for

D as are shown in Part IV.

2,
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§6. Energy shift of k=0 libron at very low concentration

For the system»df impurity concentration x, we must take
the configurational average of the Green’s function, Q(w).
In the low concentration limit, by the well-known procedurelo)
we obftain
Blw) = Bw + B ¥(w)¥(w), Yw) = xz ¥(w), (6.1)
L
where H%(w) = 6% (w) [I-B(@)&(w)17t. Here ¥*(w) 1s the

defect matrix due to the impurity at 2-site.

By the Fourier transformation of a(w) we obtain

(4™ (k00 ] =¥k, 0)] .

om,o m” am,o”m am,a’m'qg’w)’ (6.2)
where
. (k,w) = x(U/N) T % o L (W)
am,o m —— ) j[OL] j»[a;] jm’J m
© e liklzyrg )~ 5oy} - (6.3)

Here N denotes the number of lattice sites, and j[o] stands
for a lattice site belonging to the sublattice a.

Remember that we have brought degrees of freedom into
the impurity site for our impurity problem. The spurious
resonance associated with these degrees of freedom are
completely decoupled from libron in E(w).

At finite conceﬂfrations, however, this spurious

resonance couples to libron through %l(m) of Eq.(6.3).
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In order to remove it, we must impose [a(w)]Om om - 0 for
2

the single impurity case, because the impurity site should

not involve the excitation. This is satisfied by adding
a hard core potential,at’the impurity site of the formll)
AV(0) = A, T al(0)a_(0) (6.4)
m ™ m

with a very large AO. Thus we obtain %z(w) in the low
concentration limit.
We note here that the symmetry of ¥(k=0 , w) is the

same as that of %’l(gfo,w). We evaluate the libron energy

£ = eo(l-Kx) ' (6.5)

with estimates K=1.69 for Eg, 0.12 for Tél) and 0.38 for Té2).

It is noted that Re %(Efo,eo) depends sensitively on eo’s,
the libron energies in the pure system: €0==10.5P for Eg,
14.0T for Tél)and 22.0T for Té2> in accordance with §3.

Our calculation is based on the_neglection of the site=
nondiagonal components of % in %2 farther than the second
neighbors. This treatment does not make any serious error
for the results given up to 85, because the over-all nature
of libron is relevant there. In the present problem, it is
not the case. However the error is believed to be not so
large. In view of the experimental errors, our results

.T)

seem consistent with the experimental ones for D2

K=1.42 for Eg and 0.57 for Téz).
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Appendix A: Elimination of V1

The linear term V., may be eliminated by a well known

1
transformation. The transformed Hamiltonian is assumed to be
H” = e SHeS with
S =332t (3) {a(i)-a (N} (A.1)
i m m m m ’ -

where j runs over nearest neighbors to a impurity.

We feplace H in [H,S] by the sum of the diagonal
parts of Eqg.(2.6) and V2 in the site representation,
since they are most dominant in the quadratic terms. The

above terms cancells Vl’ if tm(j) is determined by

[iio{<m|22lm>-<10|z2|1O>}f22(j,i)<10|22]10>]tm(j)

= <mle|10>fu2(j,O)<1O|22[10> , U= 3, 4 " (A.2)

Equation (A.2) gives Itm(j)| < 0.052. Since ltm(j)| is small,
the other terms from [HL,S] prove small and hence ignorable.

If the parahydrogen is in J=2, we obtain

[HY,8] = ¢ = I <2mlz, |2m*>f (0,3)<nlz ] 10>
Jmm n uv

+ {1 (0)p_.(0) +n.c.}t_(3) (A.3)
from Egs.(2.16) and (A.2). Thus we get

R o7 L .
[H3,81 = & bey b (035, (0) (A1)
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=-1.3UI, Ae.+ =0.67T and Ae. =1.34T.

with the estimates Ae 1 0

+
2.

~(w)

A dix B: Derivati of P. .
ppendix erivation jm, 3 m

The Fourier transform of P -(w) is denoted by

Jm,J "m

~(k,w), which is identical with Ga ,m,(k,w) in ITI.

P -
om, o’ m
We also define [Z(k,w)]

m,o
- s8imilarly.
am, o m y

By the same procedure as I, the self-consistent solution

for Zii) may be written as

02330 Ge,0) 1y e = BU(0) B8, (B.1)

where ZL(w) is given by Eq.(4.11) in I. Moreover we have

- (2)
=008 oS P T T e s (BL2)

(2)
[le (k’w)]am,u’m’ 0" ao m

where W is given by Eq.(3.8) and Z(E)(k) by Eg.(2.9) in ITI.
The matrices 202(k) and Z2O(k) are identified with Z(i)(k).

Let us introduce SL(k) such that
L ~-1.(2) L -
st o2 00st 07, .5 0 (08 - (B.3)
Then Eq.(3.8) gives

- L rekL
e (ka0) = 8700 4+ 18P0 T,

P v .
am,a’m .1

s {iw-w +0i(k)-+ZL(—w)},

(B.4)

0

-0, (k) - sLw) + ci(k)/(iw +ug

Aw).

whence one gets P, .
ne 8 Jm, 3 m
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Table I Designatlon of the local coordinate system

# 4 e Ty e s
swieteice | postvion”) | GFRRUER | OFUTLED
A (0, 0, 0) (1, 1, 1) (1, 1,-2)

1
B 0, 3, 2 (1,-1, 1) (1,-1,-2)
c (%, 0, %) (-1,-1,1) (-1,-1,-2)

1

D (%3 53 O) (_1,13 l) (—1, 1,—2)

¥) unit: the lattice constant of s.c. sublattice.

Table IT Symmetry of the matrix ?mm,(m)

|2

a

+

>

2>
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Table IIT

Theoretical Raman results in comparison

with experiments

ITI-26

Energy shifta)(unitzf) Raman intensityb)
M.F.A.c) Present Exp.d)’e) M.F.A.c) Present Exp.d)
-10.1 -10.2 -8.09 1.00 1.00 1.00
-5.05 -6.1 -4.86 2.67 2.53 2.33
10.1 2.8 3.32 2.33 0.72 0.83

11.0 10.09 1.60 1.17

a) The enérgy shift is measured from the free molecule value.

b) The intensities for the polarization XY + XZ are

normalized to that for the lowest spectrum.

¢) The molecular field approximation.

d) Data for D

2

based on Ref.7).

is taken as 30==178.66cm"l.

e) The energy is scaled by T =0.805cm

The origin of the energy

1

after I1.
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Figure Captions

Fig. 1. Schema for energy levels. (a) : the energy levels
without anharmonic process. (b): the density of

states with anharmonic processes.

) o £(2) (3)
Fig. 2. Diagrams for %171 > 202, 220 and le .

Fig. 3. Curves for -(1/24mw) Ik EZDn[a(E)] vs. E/T.
J#0 m ‘
The solid line shows the density of states in the

Jm,Jjm

presence of a impurity and the broken one that for
the perfect J=1 system.

Fig. 4. Diagramatic representation fof the Dyson equation.

Fig. 5. Curves for »_(E) vs. (E-6B)/T. The solid lines
stand for n=2i, the broken onés for n=1i and the
dotted broken ones for n=0.

Fig. 6. Density of statesv—(l/ﬂ)Ihn[Bmm(E)] as a function of
(E-6B)/T. The area under the curve with each value
of m is normalized to unity. The sharp spectra for
m=0 and m=%*1, which are located at -10.2T and -6.1T,
have the area of 0.96 and 0.91, respectively.

Fig. 7. Raman intensities for the polarization XY +XZ7Z as a
function of (E - 6B)/T. The theoretical curve
represented by a broken line is obtained by the
convolution with a Lorentzian instrumental line§shape
function of width 1.250m_1. Here I' is taken to be

1

, and 6B=l78.66cm—1 for p-D, in accord with

0.805cm 5

the experiment.7)
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Part IV

Polarization Effect on the Excitations

in the Ordered Solid Hydrogen

In the ordered solid hydrogen, the polarization effect on
the excitation energies of k=0 librons (J=1 excitations) 1is
studied in the first order of I'/B, where B is the rotational
constant and I' the electric quadrupole-quadrupQle cbupling
parameter. ~ The similar effect on J=2 rotons in the presénce
of a parahydrogen is also studied. The inclusion of the

polarization effect has improved the results without it.
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§1. Introduction

In the previous parts referred to as II and III, we have
studied the rotational excitaﬁions in the ordered solid hydrogen.
In I1I, we have studied the anharmonic effect on both roton
(J=3 excitations) and libron systematically for pure ortho-
hydrogen system in good agreement with the Raman scattering'

1)

experiment. In ITI, we have also studied the localized
excitations (J=2 roton) due to parahydrogen. We have shown
a strong anharmonic effect to exist for J=2 rotons in goocd agree-

1)

ment with the experiment. However the theoretical peak
positions have slightly shifted from the experimental ones.

In this part, we study the neglected effect of the first
order in T/B, wﬁere B is the rotational constant and T the EQQ
coupling parameter with the similar notations to II and III.
The mentioned effect is important at high pfessures, because
I'/B increases there.

2)

First FujJio and Nakamura have calculated the energy shift

for the k=0 libron by taking into account the effect of thHe virtual
excitation to J=3 states. However their calculation is based

3)

on the harmonic theory. Then Harris et al. evaluated the
average energy shift for libron by constructing the effective
Hamiltonian based on the second order perturbation. The
renormalized value of T, deduced froﬁ the k=0 spectrum, seems
3)

more consistent with the other experiments.
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First, we evaluate the polarization covrection to the k=0
libron modes. The average energy shift obtéined from the
present treatment is smaller than the previous ones by Harris
et al. It 1s noted here that the mode-dépendence of the energy
shifts 1is rather small. Secondly we evaluate the similar
cofrection‘to the energy.of J=2 rotons in good agreement with

1)

experiments. In 82 the correction to the energy ofvthe k=0

libron is evaluated. The roton for J=2 1s treated in §3.
§2. Correction to the k=0 lilibron energy

Let us first consider the pure orthohydrogen (J=odd) system.
In 82 of II, we have given the represéntation‘for the EQQ
interactions in terms of boson operators, where the terms respon-
sible for the non-conserving processes in the number of rotons.
are neglected. Note that B is considerabl& large compared with
the EQQ coupling constant. Taking account of the neglected

terms, we shall now write down the total Hamiltonian as

_ L R R RL RL RL e
H—HO+H +H1+Hkin+H2 + H3 +Hu + e . (2.1)

Here HO
HL the Hamiltonian for librons. Thelr expressions have been

- denotes the energy of the clgssical ground state, and

given already. The notations follow the previous parts.

The other terms are new and may be given by the followings:



TV-L

HY = <3o|zz|1o><1olz2110>igéfg§<o>)(N/q)l/z{cug(o>+cao<o>}
: (2.2)
R, = 10BrIc T(k)e (k) . o (2.3)
kin am’ " “om ) _

k am

RL, _ B ¥ '
H,o = E[JEI£1<3m|22|ln><lO|22|10>f22(0){cam(k)aan(k)+h.c.}

4+ I I I <3m|z |lO><ln|Zv|10>fa€(-k)
off pv mn H H

¢ e mtote (O HagT (<o+a, (1031 (2.4)

o = (4125 £ [(-1/2)<30|z,|10><10]z,]|10>5%B(0)
3 . kqoB m 2 2 22

. {cag(k—q)aa;(q)aam(k)+h.c.}

o (/2)z I <3m|zu|lo>{<lm’|zv[1n>-—<10izv|10>6m,n}
mm n uv

c 2B 0 e T (K)o, (0 HagT ((a)ag, (kea)+h.c.)

+ I I <ln|z |10><3m]|z |1n”>fu6(«k)
pv mnn” H -V HY

+ LT ay (<K}t (a)ay, Ccta)th.c.)

+ %% <3mlz |10><3m” |z | 1n>£%B (k)
. M v py
pv mmn -

C Logh G be, (R el (a)ay, Geba)4nie.} T, (2.5)



L . .
Hy' = (4L F B % [T (-1/2)<ln|z [10><3m|z |10>230 (k)

kk”“qaBpv mn”

V q)an | - T,
. {adjl‘(k+k""q)ad%{q)aom(k)+h'C'}{CBm(-k )+c8m(_k )}

+ 5 (-1/2)<3m|z. |10><1n”|z. |10>2%F (~k")
. u v uv
mnn

. {ca;(k+k,—q)a@;(q)aan(k)+h.c.}{aBn((kA)+aBnt(—k’)}

+ I (~l/2)<3mlzu|1o><3m‘|zv|10>f3§(_k')
mm n

. {cd;(k+ki—q)aa;(q)aan(k)+h.c.}{cem,(k,)+cgg‘(_k,)} 1.

(2.6)
In the above expressions, H? i1s the primary term for the
polarization, Hiin the rotational kinetic energy and H?L, H?L

and HEL the libron-roton interactions without conserving‘the

number of rotons as clasSified by the number of operators.

The notation follows II, where the previous annihilation operator

aam(k) associated with roton is now replaced by Cam(k)’ In
deriving Egs.(2.5) and (2.6),kwe expandfz(l-—Za:lam)l/2 as
1-(1/2)Zma$am +---. And we utilize "

I f,(1,5)=0 for u# 2.' (2.7)

J

In order to eliminate H? we use the following unitary

transform:
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U= exp [ (/)2 zg fe f(0)-c (0331 . (2.8)

o

The transformed Hamiltonian is given by

1

H” = UTTHU | N (2.9)
where :
R* _ .-1.R
Hpesn = U "Hppv
_ R 2
= Hp,, + 10B(N/U) Zg
. v}
1/2 +
+ 10B(N/4) z:ga{cao(o)+cao(o)} . (2.10)

o

If we choose ga to be

- -1 aB
g8, = 158 <3olz2[10><1o|z2|10>z £55(0)

B

It

1.388 T/B , (2.11)
then H§ cancels the third fterms in the right-hand side of

Eq.(2.10), Thus g, proves to be very small, since T'/B 1s very

small. The other parts of the transformed Hamiltonian are
given by
RL” -1..RL. _ _RL .
H2 =0 H2 U = H2 (2.12)
RL~ -1_.RL
H = U "H,7U
3 3



RL

= Hy +g [z <30lz |10>{2<1n[z |ln>-—3<lO|Z | 10>}
: kaoaB n
. 0B, -t
fgzko)aan(k)aqn(k)
+3 I <in|z |10><30]z |1n" >f“6( i)
pv

- Lot (e (-0 Ha, 2 () +ag (-0}

+ % $<3m|z |10><30|z | 1n>£%B (k)
UV mn H ¢ uv

¢ om0 e, () Hay () +a, T-10))

+ 273 <30]2,]10><3m|z, | 1n>£%5 (0) {e +(k)a L(K)+n.c. )
mn

. ’ Ol
+ 3 Z<3m|zu|10><30|zvlln>fu§(—K)
UV mn ’

. {Ca;(k)+cam(—k)}{aBn(k)+aB§(—k)}] + (constant term).

(2.13)
We neglect the effect of the transformation on HEL.

Let us consider the k=0 libron Green’s function on the same
footing as in II with cbrrection terms of the order T/B to the
self-energy parts.

From the second and third terms in Eq.(2.13) we have the

o n
correction to L i, I,; in the unit of re/B as follows.



+ + -

) IAOsll > [A2,11 > [Ao,ll >
BT, By (B80T (789 P SENERTY
A,y By (11.3) T, (1.8 -8.7y . (2.15)

-8.7 -12.9

In the above expression the designation of the k=0 1libron states

refers to II. By using Eq.(2.4) and taking account of the

processes shown in Fig. 1, we also have

|A0911+> |&2,11+> |A0,11->
V] | |

IS E, (~38.0) T, (—3%:8 _3%:2) ,(2.16)
\ .

2%, B, (-25.2) T, (-12:8 ooth) (2.17)

By combining the second, third and forth terms in Eqg.(2.5),

we have the following results (See Fig. 2):

+

IAO,ll > ja 117> ]AO,11">

v

A% E (~46.5) T

11 g e (23 b s

In the above expresslon we neglect the contribution from the
repeated pfocesses due to the first term of Eq.(2.5), since
these processes>may be of the higher order. (The inclusion of
this term does not alter the result significantly.)

Let us further take account of the combined actions of

H?L and HﬁL, which are shown diagramatically in Fig. 3. The

result becomes

Y
S B, (29.3) g (P70 L9 . (2a9)
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In the calculation of Egs.(2.18) and (2.19), the interactions

are confined to the nearest neighbors. Note that AEZO =A¥bz.

Let us consider the energy shift for each mode.

Expanding

Eq.(5.13) of II in a small parameter T'/B, wé have

(¥ (e)17 = (emup1, - 2{%

+

ziz)[(e+wo>zx-+z§2)

N N
- AJ +A220[(€+w0)lk-+zx

11

'Z)(\Z)[(aﬂoo)l)\ +Z§\2)

+

Z§\2)[(s+w0)l>\ + }:§\2>

(2

+Z§3)(—e)]_lAgo

—2)(\3)(8)

r2(3) ey 171z ()

Vez{3 ey {2

2

c 8Ty [leroT, #2820 4 2(30 (o)1 {?) | A= 23

Here the corrections to the self-energy parts

the Eg—part for A=2 and the Tg~part

We note that Eg part is 1x1 and Tg part is 2x2 matrix.

(2.20)
are taken to be

for A=3, respectively.

The

terms in the first two lines of Eg.(2.20) stand for the zero-th

order terms as given in IT.
and the remainders be the perturbed
perform a perturbation calculation.
unperturbed matrices in €-€4> where
while

energy 1in the zero-th order,

Let these be the unperturbed part

one. By this way we shall

Thus we expand the

€O denotes the excitation

€, is substituted into €
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for the perturbed matrices,. The matricesvcoming from the
unperturbed one, being linear in E-€4> must gancel the remainders
from the perturbed one in the sense of the average, where the
average 1s taken over the relevant eigenvector of the

unperturbed matrix. |

The resultant energy shifts are given by

A = 30.
e(E,) = 30.0 ,

As(Tél)) = 32.4 Ae(Té2)) = 35.8 (2.21)

in units of F2/B.
The average energy shift proves to be 33.1 which is
compared with U45.2 obtained by Harris et al. The difference

comes from the neglection of the site nondiagonal correction

v

A . v
to Lll and the neglection of %20 and 202

authors, as will be discussed in Appendix. The effective

by the mentioned

value of T is determined by the comparison of our theoretical

1)

energies with the Raman experiment. The values are shown

in Table I 1n good agreement with other experiments.
§3. Correction to the J=2 localized rotons
Let us consider the orthohydrogen system containing

a parahydrogen as a impurity at the origin. By the similar

procedure as in 82, we write down the total Hamiltonian as
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_ Lo, R R, R ..
Ho=H'+H +hyt H +H, +h, +h,+hoth), +°

(3.1)

Here HLEﬂMiHR are the Hamiltonian of librons and J=2 rotons,

which are given by Egs.(2.5) and (2.10) of ITII, respectively.
The kinetic energy term of J=2 rotons is given by the

first term of Eq.(2.10) in III. The kinetic energy of J=l

rotons and of J=3 rotons are given by

_ I
Bisp = 2OB§f%#o)dm(o) s (3.2)
R _ t, . .
Heyp, = 10BZ 2 c (e (3) , (3.3)
m j#0 :
respectively. Here we introduce the creation operator d;(o),

such that d;(0)|00> = | im>.

R .
The terms of Hl’ hl’ h2, h3 and hu are responsible

for the non-conserving processes of the roton number and

given by
hy = <20|22|10><1O|Z2[10>§‘ﬂzz(o,j){bg(0)+bo(0)}, - (3.4)
H? = <3o|22|10><1o|z2|10>.z. f22(i,j>{cg(i)+¢o(i)}, (3.5)
i,J#0
h, =223 <2mlzu]OO>{b£(O)+bm(O)}fuv(O,j)

J uvm

. [i<1nlzvllo>{ag<5>+an<J>}
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+ é‘<3m‘IZVI10>{c£;(j)+cm,(j)}]

+ ;20|z2|40><1o|z2|10>§.f22(o,j){dg(o)b0(0)+h.c.}, (3.6)

?li(-1/2)<20]22|00><1O[z2|10>f22(0,j)

e nteoyt
{bO(Q)bm(o)bm(o)+h.c.}

+I I I <2m|zu[2m'><3n|zv|10>fuv(0,j)
J uwv mnin

bl (0 _(0)Lel (H)+e (3D}

' - T .
IR <4m!zul2m >{dm<o)bm,(o)+h.c.}fuv(o,J)
Juvnmm

© [2<anlz, 10> ag () 4a, ()

+ §<3n'1zv|1o>{cni(j)+cn,<j)}] (3.7)
n

R Z)(—l/2)<2mlzu|00>fpv(0,j)
J vy mmn .

_}. .i.
. {bm(o)bm,(o)bm,(o)+h.c.}

. [i<1n|zv|10>{a;(j)+an(j)}

+ 3 <3n” |z 1050 L()re ()} . (3.8)
nf‘
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Now we introduce the following canonical transformation:

S = expl ig(j){cg(j)—co(j)}+g(0){bg(0‘)—bo(0)}] . (3.9)
370 |

Then we have the transformed Hamiltonian

H” = s™1Hs . ' (3.10)

The kinetic energy terms are transformed as

-1, +
S (QBEt%#O)bm(O))S

- AT T + 2
= 6820, (0)0,,(0) +6Bg(0) (b (0)+0(0)} +635(0)" , (3.11)

sTHHL, S = HE +10B I g(3)cp(J)+e (i)} +10B T g(i)° .

an e J7#0 370 (3.12)

The terms of h1 and H? cancel with the second terms of

Egs.(3.11) and (3.12) respectively, provided that

g(0) (_1/6B)<20|22|OO><1O|22|10>Zf22(0,2) R (3.13)

L

g(3) (—1/1OB)<30|z2r10><1o|z2[10> r f,5(3,1) , for j#0.

i#0 (3.14)

in the transformed Hamiltonlan, the corrections coming from
Eq.(3.6) and Egs.(2.11) and (2.12), both of the latter equations
in IIT,are neglected, since they are of the higher order |
correction in I'/B to the‘energy of J=2 rotons.

'The other parts of the transformed Hamiltonian, which

bring us the correction linear in I'/B to the energy of the
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J=2 rotons, are the followings:

-1 B ' . v .
S""h; 8 = hy -g(o)<2olz2|oo><1o|z2110>{§f22(o,3}}

. [:ﬁ bx'n(O)bm(O“bé(O)bo“”

&
+ ngzr:x'ﬁ g(j)<2m[zu|2m’><30[22|10>f’p2(0,j)bI;l(O)bm,(O)

+ (remainder)

> (3.15)

where the remainders linear in I'/B are non-diagonal in the
unperturbed energy levels and hence may be neglected.

Let us consider the Green’s function of the J=2 roton and
the correction terms of the self-energy part. Then, from the
second and the third terms of Eg.(3.15) we obtain the correction

N
to the self-energy parts AL, being diagonal in |JM>:

il

30.3, A%’gigi:m.u, (3.16)

in units of FZ/B and with double signs in order. The other
processes bringing the correction are represented by the
diagrams shown in Fig. 4. The corresponding values are given

in Table IT. The net results are estimated to be

o "N
AT =64.1 AT

- , jrqr =723, AL 4,4 =83.5 . (3.17)

The curve for the Raman -intensity with the corrections

fhus obtained is shown in Fig. 5, where the previous result
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without correction is also plotted. As can be seen in Fig. 5,
we have achleved a closer agreement with experiments, though

the intensity at high frequency side is less well.
Appendix

In this Appendix we shall show how to get the previous
results by Harris et al. by dropping partially the diagrams
taken into account in our paper. Let us confine ourselves to
the site diagonal parts of the correctign to the self-energy as
shown in Fig. 6. If the virtual creation processes aré assumed
to occur to the hearest neighbors, the estimated corrections to

the self-energy % are given in the same figure. The

11

n
correction to X from the second terms in Eq.(2.13) is equal to

11
77,1?2/3, The net correction is proved to be 45.9 F2/B, which

is didentical with the result of Harris et al.
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Table I Comparison of the k=0 libron energy with

the Raman experiment

. a)
Libron ¢nergy - - reff
B . b) c) . _
Xperiment Theory without J=3 Present
_(cm—l) <without J=3) correfglons (cm_l)
corrections (em ) ,
D,
Eg 9.183 *0.05 ' 11.47 0.805 0.755
Tél) 11.35 0.1 14, 2T 0.799 0.756
Téf) 15.50 £ 0.05 20.8T 0.745 0.716
Hy
Eg 6.75 £0.15 11.4T 0.592 0.577
Tél) 8.58 +0.2 14.2T 0.60L 0.591
Téz) 11.80 £0.2 20.8T 0.567 0.558
a) Estimates of T obtained by,fitting theoretical energies to

b)
c)

the experimental ones_(B=3Ocm—1 for D, and =60cm™t for H

2
are used.)
Data based on Ref. 1).

Anharmonic theory given in part II.



Table ITI Polarization corrections to the self-energy
parts of J=2 rotons

‘Dia rama) AL A+ + AT 4at
& 00 1#1% 2o

(A) -13.6 -12.5 -13.2

(B) -13.1 0 0
(C) -22.3 -22.1 -22.9
(D) 52.6 51.6 55.2
s 2
(unit: T~ /B)
a) The diagrams are 1in accordance with Fig,

b,
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Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
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Figure Captions
Diagrams for A%ll and AE2O arising from Eq.(2.4).
The solid lines represent the Green’s functions of

librons and the broken ones those of J=3 rotons. The

- wavy lines represent the EQQ interaction.

n,
Diagrams farAle arising from Eq.(2.5). Notations
are in accordance with Fig. 1.

n R
Diagrams for AL arising from Egs.(2.4) and (2.6).

11
Notations are in accordance with Fig. 1.

Diagrams for A%mm' The solid lines represent the
Green’s functions for J=2 rotons and the dotted broken
ones those for J=4§ rotons. The broken lines represent
the Green’s functions for 1librons or those for J=3
rotons.

Raman intensities of J=0 - 2 transition for D, as a

2
function of (E-6B)/T' in the case for the polarization
XY+X7Z. The broken line represents the theoretical
value without polarization effects. The theoretical
curve with the polarization effect is represented by the
dotted broken line. I'=0.755 em™t and B=30 cm™ ' for

D2 are used (See Table I).

Diagrams for Agll relevant to the previous calculation
by Harris et al. The solid lines represent the

Green’s functions for librons and the broken ones
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those for J=3 rotons in the site'représentation
with 1 and J the lattice site. The evaluated value
for the diagonal part of each diagram is shown in

the fight_hand side of the figure.
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Fig. 2
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Fig.3
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Fig.4
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Fig -6

(unit:r2/B)
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