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0. Introduction

In this paper we investigate complex analytic completeradssertain unramified
covers of proper families of analytic spaces with -dimenaldfibers. Whem = 1,
T. Ohsawa has studied the stability of unramified coveringcep of complex analytic
families of Riemann surfaces, and proved the following [[134]):

Theorem O. (1) Let X be a connected complex manifold of dimenscand T
the unit disk ofC. Let 7 : X — T be a proper surjective holomorphic submersion.
Then every unramified covering space %f is holomorphicadigvex.(2) Let T be
any contractible complex spacand X a complex space. Let: X — T be a proper
surjective holomorphic map with one-dimensional fibensd o : X — X an unram-
ified cover. Then a point € T has an open neighborhood  such thato o) ~1(U)
is holomorphically convex if and only {fr o 0)~(z) is holomorphically convex.

In connection with Theorem O, the author ([10]) and M. Coltaiod V. Vajaitu
([4]) have investigated completeness of the covering spaxdeproper families with
higher dimensional fibers. Here we shall prove a new resuthis direction.

Let 7 : X — T be a proper surjective holomorphic map of connected complex
manifolds, andn = dinX — dimT the relative dimension. Let : X — X be an un-
ramified cover. We remark that whet  is an analytic subset(A) and ¢roo)~1(A)
have possibly non-reduced structures. Then we prove thewiolg.

Theorem. Let z be a point ofT satisfying the following two conditiorn)
77Y(z) is a reduced connected complex space of dimensja(i) (7 o o)~(z) has no
compact irreducible component of dimensienwheren = dimX — dimT is the rela-
tive dimension. Then there exists an open neighboridod z oth that (7o o) 1(U)
is n-complete.

It is well known that everyn -dimensional reduced paracorhgacplex space is
n-complete if it has no compact irreducible component of disienn ([12], [6]). Our
theorem is a relative version of this fact. We also remark @altoiu and \ajaitu have
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shown in [4] the result in the case whereis a holomorphic submersion in our theo-
rem.

In §1, we prepare notation and terminology. §B, we study convexities of certain
subdomains inX . Ir£3, we recall the construction of -convex functions by usihg t
argument of J.P. Demailly([6]) and prove the existence afcsg n -convex functions
on (r o 0)~1(z). In §4, we use the argument of Coltoiu andj#itu in [4] and prove
the above theorem.

In Appendix, we explain the following two facts. In Appendk, we describe
constructions of ‘holomorphic motions’ of complex anatyfamilies of relatively com-
pact complex manifolds by using the argument of M. Kuranf8hi( In Appendix
B, we prove the existence of certain exhaustion functionghenunramified covering
spaces by using the argument of T. Napier([11], [2]).

AckNowLEDGEMENTS  The author would like to express my thanks to Professor
Takeo Ohsawa for his suggestions during the preparatiohisfpaper. He also thanks
Professor Mihnea Coltoiu who has pointed out mistakes in tre fiersion of the
manuscript. Finally, he would like to thank the editor ané treferee for comments
and suggestions.

1. Preliminaries

Let X be a complex space arfgX  the Zariski tangent spack of p aX. We
put TX =U,exTpX .

A real-valuedC°-function ¢ on X is said to bej-convexif there exists an open
covering {A)},ca Of X such that each, is isomorphic to a closed analytic set in
an open sef2, C C* and eachp|,, has an extensio, to Q, such that the Levi
form of ¢, has at most¢ — 1) non positive eigenvalues at each point$@f. This
property does not depend on the covering nor on the local eédibgs.

A real-valued functiony on a topological spac& is said to be arhaustion
function if the sublevel setX, :={p € X | ¢(p) < ¢} is a relatively compact set
of Y for anyc € R.

A complex spaceX is said to hgcompleteif there exists an exhaustion function
v, which is g -convex onX .

A set M C TX is said to bea linear set over Xif, for every pointp € X,
M(p) == MNT, X is a complex vector space. We put codivh:= sup,. y codimM(p)
and M|y := M N (Upea T,X) for AC X .

Derinimion 1.1, LetX be a complex space anid be a linear set ovek
(1) Let p be a point ofX . A real-valued*>°-function ¢ is said to be weakly 1-
convex with respect toM(p) if there exists a local embedding: A — €, where
A denotes an open neighborhood pf X  a@d  denotes an open €%, imnd
an C>-extension to Q of p|4 such thatidda((p))(t«(€), t«(&)) > 0 for every
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§ € M(p).

The functiony is said to be weakly 1-convex with respect Ad if ¢ is weakly
1-convex with respect toV(p) for every p € X.
(2) The functiony is said to be 1-convex with respect fof if every point of X has
an open neighborhoo@ C X and a 1-convex function) on U such thatp — ¢ is
weakly 1-convex with respect tdA1|.

Then the following hold.

Proposition 1.2 ([15]). Let X be a complex space anda g-convex function on
X. Then there exists a linear seé¥t over X with codimM < ¢ — 1 such thaty is
1-convex with respect tou.

Lemma 1.3 ([15], Lemma 1.2). Let X be a complex manifold with a hermitian
metric g. Let M be a linear set overX . Then a real-valuagd™-function ¢ is 1-
convex with respect ta if and only if for every compact sek C X, there exists a
constants > 0 such thatiddp(p)(€, €) > 6 - [|€]|2 holds for everyp € K and £ € M,
where]|| - ||, denotes the norm induced gy

We introduce the following class which consists of contimsidunctions.

Derinimion 1.4, Let X be a complex space and a linear set overX . A real-
valued continuous functiorf ol is said to Be-convex if every point ofX has
an open neighborhood  and finitely many functiofis..., f; : U — R which are
1-convex with respect toM|y satisfying f|y = maxX{ fi, ..., fi}.

We denote byB(X, M) the set of allM-convex functions onx .
From the argument of [17], we approximate Ar-convex function up to second
order derivative. Then we have the following result.

Proposition 1.5 (cf. [17], Theorem 1). Let Y be a complex manifold with a her-
mitian metricw and £ a linear set overY . Ley):Y — (0,00) andk : ¥ — (0, 0)
be continuous functions. Lab : ¥ — R be an £-convex function such that ev-
ery point of Y has an open neighborhoa@d = O(p) and finitely many functions
wi, ..., w;: O — R with

wlo = max{wy, ..., w},
100w (p)(€. &) = rlI€]1Z

for p € O and ¢ € L(p). Then there exists @*°-functionw : ¥ — R which is
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1-convex with respect t@ such that

w<w<wtr,

100w(p)(&, &) = KlIE]1Z

for every p € Y and § € L(p), where|| - ||, denotes the norm induced hy.

On the other hand, we can approximate -convex functiong; bpnvex Morse
functions as follows.

Proposition 1.6 ([3], [17]). Let (Y,w) be a hermitian manifold and be agq -
convex function. Therfor any continuous function : ¥ — (0, ), there exists & -
convex Morse function on Y with distinct critical values such thator everyp € Y,
() le(p) — (Pl < e(p). (i) ldp(p) — dy(p)llw < e(p). (i) |00¢(p) — 00Y(p)llw <
e(p).

Let Y be ann -dimensional complex manifold with a hermitian nmcef. Let
{(z1, ..., z»), U} be a local coordinate neighborhood pfe Y and ©i7)1<i,j<n the
matrix representation of  with respect {dzi, ..., z,), U}. For a real-valuedC°-
function v onY , we introduce the trace of the Levi form with respto ¢ defined
by

0%
0z;07;

Ngv(p) = Trace iddu(p) = Y g(p)

1<i,j<n

(p),

where Q"f) is the conjugate of the inverse matrix ogl.]() (cf. [6]). Then A,v is a
C*°-function onY . We will say that istrongly g -subharmoniéf A,v(p) > O for
every pointp € Y. The C*°-function v isn-convex ifv is strongly -subharmonic.
Let Z be a complex submanifold &f and Z:— R be aC°-function. We define

0%

A = ij
lz(p) =) g 9207,

(r)

z

z(p) -

for p € Z in the similar way. We will say thav istrongly g -subharmonic or¥ if
A,v|z(p) > 0 for every pointp € Z.

Let X be a reduced complex space of dimension . It is known fhats n-i
complete if X has no compact irreducible component of dimensi ([12], [6]). In-
deed, we can prove it as follows. We find that there exists &icgritly small n -
complete neighborhood of Sing( ). Then we prove the -corapkgs by showing the
following proposition. We need this to show our claim.

Proposition 1.7 ([6], p. 290). Let X be a reduced complex space of dimension
n with no compact irreducible component of dimension . Mt bpraper open
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subset ofX, which isn -complete neighborhood 8ing(X ). Let  : M — [0, 00) be
an n-convex exhaustion function ad . Lt (0, o) be a constant with{y < d} D
Sing(X ) Then there exist a hermitian metric ~ &®eg(X ) and ann -convex exhaustion
functiony on X such that(i) v =g on{p e M | p <d}, and{p < d} ={y <d},
(i) 1 is strongly g -subharmonic oRReg(X )

Moreover, we use the following theorem in [6] to examine nbwhoods of sin-
gularities.

Theorem 1.8([6], Theorem 1). Let N; be an analytic subset in a complex space
No. If N7 is g-complete then N; has a fundamental family af -complete neighbor-
hoodsN’ in N».

To construct speciah -convex functions, we also need toceothe following
claims whose proofs are more or less immediate. For the léetaroofs, the reader
is referred to [4].

Lemma 1.9 (cf. [4], Lemma 3). Let Z be a complex space ari* an analytic
subset containing the singular pa8ing(Z ) of Z. Let{Z,}.ca be connected compo-
nents ofZ \ Z*. Let N be an open neighborhood @f* with Z\ N # ¢. For \ € A,
let Ry := {ai,...,a,} be finite points ofZy \ N with a; # a; if i # j, and let
Sy :={b1,...,by,} be finite points ofZ, \ N with b; #b; if i # j. Then there exist a
diffeomorphismF : Z — Z and a compact subset, of Z, with Ky NN = ¢ such
that (i) F(R)) = Sy, (ii) F is biholomorphic nearR,, (iii) F is the identity map on
Z\ K.

Lemma 1.10 (cf. [4], Lemma 4, [10], Proposition 3.2).Let Z be a complex
space andZ* an analytic subset containing the singular pa®ing(Z) of Z. Let
{Zx} ea be connected components Bf\ Z*. Let N be an open neighborhood af*
with Zy \ N # ¢ for each A € A. Let {L,},en be a family of open sets df, and
{My, C Zy|veNwith (ZxNL,)\N # ¢} be a family of open sets &, for each
A € A such that
(1) {L,} is a locally finite open covering o  with relatively compacinoected sets
(2) M), is a non empty relatively compact set@,NL,)\ N and M,,NL,=¢
if vZpu.

For each\ € A, let R, be a discrete set o, \ N and we putR := UyR).
Then there exists a diffeomorphisf: Z — Z such that(i) F(R)) C U,enM), for
A€ A, and F(R) C Uy, M, ,, (i) F is biholomorphic nearR, for A € A, (iii) F is
the identity map onv.
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Proof. We may assume th&\ Z* has only one connected componé&fit, and
R = Ry is non empty set. We put, =Ly, and M, := My, for v € N.

We putO;, =U_ L, for I € N. By using induction, we will construct a sequence
of diffeomorphisms{F; : Z — Z},cn satisfying the following:

(A), there exists a compact sé&, of; wilty NN = ¢ and F; is the identity map
on Z\ K,

(B) Fi(R1N O)) CU,<iM,,

(C), F; is biholomorphic neaR, N O,

(D)[ F,=F_,o0onZ \ L.

Forl =1, we putR;N Ly ={as,...,a,} and choose finitely distinct many points
{b1, ..., by} C M1 with {ay,...,an}N{b1,...,by} = ¢. Let K1 be a compact set of
0; with Ky NN = ¢. From Lemma 1.9, there exists a diffeomorphigin: Z — Z
such thatFi(a;) = b; for i =1,...,m, and Fy is biholomorphic neamR; N 01, and F;
is the identity map orZ \ K;.

Suppose that there exist diffeomorphisiis . .., F; satisfying @ ) .8 } ,C ) .0 )
for j =1,...,1. From Lemma 1.9, there exists a diffeomorphigin, : Z — Z and
a compact set/,; with K/,; N N = ¢ such thatfi1(R1 N Li+1) C My, and fia
is biholomorphic nearR; N L;+; and fi+1 is the identity map onZ \ K;+;. We put
Fis1:= Fy o fis1 and Kj41 := K; U K/,;. Then the mapFj; satisfies 4 )1 — (D)1

From (D), there exists the limif' :=Ilimk; . TheR is a diffeomorgpim satisfy-
ing (i)—(iii). ]

Let Y be an ¢ +m )-dimensional complex manifold adild  be a domairC6f
which containsU, whereU denotes the unit ball @". Letw : Y — T be a surjec-
tive holomorphic map with maximal rank. We pity = 1(A) for A C T. Suppose
that there exists @>°-map S :Yy x T — Y satisfying the following: (i)S is a dif-
feomorphism, (i)T > z — S(y,z) € Y is a holomorphic retraction ovdy  for every
y € Yo, andY is the disjoint union ofS(y, T) | y € Yo}, (iii) the mapr Y — Yo,
defined byS £ p )w(p)) = p, is a C>-retraction ontoYy, (iv) there exist am -convex
Morse functionh Yo — [0, oo) with distinct critical values and an open neighbor-
hood V; of all critical points of such that|,-:(Vo) is holomorphic.

We put=, ={S(r(p).z) |z € T} and F, :=w 'ow(p) for p € Y. Then the
following holds.

Lemma 1.11 (cf. [4], Lemma 7). There exists a hermitian metri6 on  such
that 7,X, andT,F, are orthogonal with respect G

We fix an open neighborhoo#fj of all critical points of & satisfyingVo’ C V.
We put V; = r~Y(Vo) and V; := Yo \ r~3(V{). Let N be a linear set oveW, with
codimA < n — 1 such thath is 1-convex with respect A6 over Vy. We put M; :=
r*(N) over Vi, which is a linear set ovev; with codimM; <n —1. Let ', denotes
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the holomorphic tangent space @t to the real smooth hygacsufh or = hor(p)}
and F;,’ denotes its orthogonal complement IpY with respect to a hieommetric
G onY in Lemma 1.11. We putMy(p) := T,X, © T, for p € V3, which is a linear
set overV, with codimM, =n — 1.

We also suppose the following for the functian : (v) TheresexiaC>°-function
¢: [0, ) — (0, 00) such that

(0 o r)(p). €)| = )€1

holds fort € [0,00) and p € {hor =t} Nw Y U) NV, and ¢ € T, where|| - ||¢
denotes the norm induced &y . Then the following holds.

Proposition 1.12 (cf. [4], Lemma 9). There exists a strictly increasing convex
function A : R — R with A\(0) = 0 such that(i) i99(\ o h o r)(p)(&, &) > ||
for p € w X U)N Vi and &€ € My(p) N T, F,, (i) i09(\ o hor)(p)E, &) > [|€||% for
pew {U)NV, and € € ry.

We puth* := Aohor, where A denotes theC>°-function in Proposition 1.12. We
put ¢, 4 := —log(r —h*)+ A||w||?, where A denotes a positive constant. Then we have
the following.

Theorem 1.13 (cf. [4], Lemma 10, Lemma 11). (1)The functiony, 4 is 1-
convex with respect to\; on Vi N {h < t} for every constantd > 0 and¢ > O.
Moreover, for any positive constant> 0 and any relatively compact open s&  of
Yo, there exists a constamd; > 0 such thatiddy, 4(p)(&, &) > [|€]|3/s holds for
O<t<sandpecVin{h<t}nr }(K)and¢ e M;(p) and A > A,.

(2) Lets > 0 be a positive constant an&  be any relatively compact operoket
Yo. Then there exists a sufficiently large constant> 0 such thatiddy, 4(p)(&, &) >
[€]12/s holds forO < ¢+ < s andp € Van{h <t} Nr~YK) and £ € Mp(p) and
A > A,. Especiallyy, 4 is 1-convex with respect td1, on V,N{h < t} Nr~Y(K) for

A > A,

Proof. (1) The first part follows from Proposition 1.12 (i)cathe fact that- is
holomorphic onVj.

We show the second half as follows. We putp ( )A#1(p) N T,F, for p € V1.
Then A (p) andT,X, is orthogonal with respect to the hermitian roei We put
£ =(¢,¢&") € Ma(p) for the orthogonal decompositioMi(p) = T,=, & A(p). Then
there exists a constamtly = My(s) > 0 satisfying the following:

190w |2(p)(, €) > Mo|€'|1%

for 0 <t < s and everyp € Vin{h < t}Nnr 1K) and ¢ € My(p). By using
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Proposition 1.12 (i), we have

I€"11%:

100014 (P)(E: €) = AMo|l€'[ + =08

for 0 <t < s andeveryp € Vin{h < t}nr~YK) and ¢ € My(p). We put
A, = (sMo)~L. Then we have

€2 +16"11E _ NI€lIE
N

N

109p1,4(p)(E, €) >

for0<t <s and everyp € Vin{h <t} Nr-}K) and ¢ € My(p).

(2) We puté = (¢,¢") € May(p) for the orthogonal decompositioM,(p) =
T,%, ® F/p’. Since K is a compact set ofy, there exist constantsf; #; s () O
for i =1, 2 3 satisfying the following:

[(0h*(p). )| = M€ |1Z.
00h* (p)(E. §) > ~2Mal|E'l6l1€" 6 + 1€

i90||w||*(p)(&. &) > M3||¢|I%

for 0<t <s and everyp € Vo,N{h <t} Nr~}K) and ¢ € My(p). Then we have

- My, 22Vl € * 1€713) y
100p,4(P)(€, &) = W”f G + {—h(p) + AMs|[E]|G
2 2 M; 1 1 )12
> (camg+ ams) €13+ (=~ o amiop o ) 1€

for 0 <t <s and everyp € Von{h <t} Nr~}K) and ¢ € My(p) anda > 0. We
put o = 1/M; and A, =M3(1/s + M3/M;). Then we have

100¢,.a(p)(E, €) >

IE'1Z + 16”115 _ N1€lIE
N N

for 0<t <s and everyp € Von{h <t} Nr~%K) and ¢ € Ma(p). O

2. Convexity properties of certain subdomains ofX

Let X be a connected complex manifold of dimensign » = + @nhd beuttie
ball in C™. Let 7 : X — T be a proper surjective holomorphic map andX — X
an unramified cover. We piX, = 1(A) and X, := (7 o 0)~1(A) for every subset
A C T. We denote by Sing( the set of all pointsp € X such that the differen-
tial of 7 does not have maximal rank @ . We denote by Rgdlie complement of
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Sing(r) in X. We put Regf) := o~(Regr)). To show our theorem, we may prove
the following claim from the result of Coltoiu and&#itu in [4].

Ciav. Suppose that ()X, is a reduced connected complex space of dimen-
sion n, (i) dimSing) N Xo < n — 1, (iii) Xo is connected, (iv) Sing¢) N Xo and
Reg@)ﬁfo are non empty, and, has no compact irreducible component of dimen-
sion n. Then there exists an open neighborhébd  of 0O such)}Bats n-complete.

Here we note that the assumption (i) in our Claim containp giid the latter
part of (iv). Indeed,n is a flat morphism on each point oty from the assump-
tion (i). On the other handX, contains a smooth Zariski open sub3gt such that
w is a holomorphic submersion oW  sin¢&) is a reduced complex space. Hence
dim Singgr) N Xo < dim(Xo \ W) < n — 1 holds. Moreover, since Reg(N Xy contains
W and o is surjective, Regf) N Xo = o~ Y(Regfr) N Xo) is non empty. However we
formulate such assumptions in our Claim for the plainnesthisf paper.

First of all, we have the following by using the argument ofr&ishi. It is a
revising version for complex analytic families of relafiveompact complex manifolds
of so-called ‘holomorphic motions’ (cf. [7]).

Theorem 2.1 (cf. [8], [10], [4]). For every relatively compact open s& &
Regr) N Xo and every set of finitely many poin:= {pi1, ..., p;} C W, there exist
an open neighborhoo® d < T and aC>®-mapsS: W x U 3 (x,z) — S(x,2) €
Xy, where W denotes the topological closure 6 i, satisfying the following
(i) S: WxU — S(W,U) is a diffeomorphism(ii) U > z — S(x,z) € Xy is
a holomorphic section ovet/ for evety € W, and S(W, U) is the disjoint union
of {S(x,U) | x € W}, (iii) The mapr : S(W,U) > p — r(p) € W, defined by
S(r(p), 7(p)) = p, is a C-retraction such that there exists a relatively compactrope
neighborhoodQ € W of P in W such thatr|,.-:(Q) is holomorphic.

Proof. See Appendix A. ]

From now on,U denotes a Stein neighborhood of @'in  and denostscy
plurisubharmonic exhaustion function a . We will replatle ithwa sufficiently
small one if necessary.

For any subsetA of a topological spate , we denotedBy the topological
boundary ofA inY . LetU be a neighborhood of€OC™ andr be aC°-retraction
in Theorem 2.1 for any relatively compact open #éte Regr) N Xo and any finitely
many pointsP? in W. Then we define the following from Theorem 2.1.

DerinmioN 2.2 (cf. [14]). For anyA C Xg such thatW contains its boundary
0A, we defineA* ¢ Xy with the boundarypA* = r~1(04) in Xy, and A* N X, = A.
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Here we consider the geometry of Siny() Xo and its neighborhood.

Lemma 2.3. There exist an open neighborho@d @fc 7, and a sufficiently
small open neighborhoods’ of Sing(r) N X in X, and ann -convex exhaustion func-
tion ¢ : N’ — [0, o0) satisfying the following(i) N'NX, and Xo\ o~ (N'NX,) have
no compact irreducible component of dimensign(ii) N’ containsSing(r) N Xy .

Proof. LetN; be an open neighborhood of Sirg( X, in X such thatv; and
Xo \ o~1(N1) have no compact irreducible component of dimension . Sucieigh-
borhood N; exists from assumptions (ii) and (iv) of our claim and thet fdmat X is
locally isomorphic toX andXp is compact.

Then there exists an -convex exhaustion functign N1 — [0, co) from result
of Ohsawa in [12] (cf. [6]). LetN, be an open set ok such thah is an analytic
subset inN, with N, Xo = N;. From Theorem 1.8, there exist an open neighborhood
N’ of N in N, and ann -convex exhaustion functign: N’ — [0, oco) with N'NXg =
N1. Moreover there exists an open neighborhddéd  of @ such thatN’ contains
Sing(r) N Xy, sincer is a proper holomorphic map. Hence we have Lemma 2.3.

]

Let W be a relatively compact open set of Reg(l X, satisfying
(N/ﬂX())UW = Xo.

Let V/ be an open neighborhood &f in X, such thatV’ and?(vo\cfl(v’) have no
irreducible compact component of dimensien . Such a neidgfdonl V/ exists from
Lemma 2.3 (i). Letd* > 0 be a constant such that

N:={peXo|pp)<d}>dXe\W D Singlr) N Xo,
where |y is ann -convex exhaustion function o wifli U W = X,. We put
N:={peX|p(p)<d}.

Proposition 2.4. For a sufficiently small positive constant there exist a hermi-
tian metric go on Regr) NV’ and ann -convex exhaustion Morse function: V' —
[0, co) satisfying (i) |ho(p) — p(p)] < e for p € N and N C {ho < d* + ¢}, (i)
ho is strongly go-subharmonic onRegr) NV’ and ¢ is strongly go-subharmonic on
Regfr) N N.

Proof. From Proposition 1.7 There exists an -convex eximustnction Ay :
V' — [0, o0) with hg = on N and{hy < d*} =N.

From Lemma 6 in [6], there exists a hermitian metgg on Reg) N V' such
that hg is strongly go-subharmonic on Regf N V'. We apply Proposition 1.6 and
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approximatehy by ann -convex Morse function up to second order derivativeeriTh

there exists am -convex Morse functidg such that|/hg — hy| < ¢ and |Ag ho(p) —

Ngoho(p)] < € on V', This functionhg satisfies (i) and (ii), ife is sufficiently small.
]

Let U be a neighborhood of @ T andr aC-retraction satisfying properties of
Theorem 2.1 for the relatively compact open #t  of Rgg(Xo and finitely many
points ? ¢ W, which will be chosen later. By replacing  with a sufficiengynall
one, we may suppose that

N UW* = XU
holds. Then the following holds.

Proposition 2.5. For a sufficiently smalll oD € T, there exist an open sat
of V/ with N C V, and a hermitian metrig 0orXy, and positive constantg; and dy
with d1 > dp and a boundedC*°-function i : V* — [0, d1) such that
(i) V and X, \ 0~ X(V(¢)) have no compact irreducible component of dimension
where we putV(r) ;= {p € V | h§ <t} for t € [do, di],

(i) h§oo =diondV; and [do, d1) C (h§ o o)(V;) for everyi € I, where{V;}ics
denotes connected componentssof(V),

(i) W containsV \ V(dp) and V* U W* = Xy,

(vi) h§ has no critical point onV \ V(dp), and h§ = h§ or on V* \ V(do)*,

(v) h§ is n-convex onV* N X, for everyz € U, and {p € X, | hi <t} is a relatively
compact open set of * N X, for everyz € U andt € [0, dv),

(vi) h§ is strongly g -subharmonic on each subdét N Reg@r) N X, of X, for every
zeU,

(vii) h§ is n-convex on the subsét* \ w*.

Proof. Letd; be a regular value oy satisfying the following:
(25.1-a)N = {p € Xo | p(p) < d*} C {ho < di},
(2.5.1-b)hg 0o 0 = dy on 9V; for everyi € I, where{V;};,c; denotes connected com-
ponents ofo ~1({ho < d1}).
Such a constand; exists from Proposition 2.4 (i) and the fact theg is locally iso-
morphic to Xy, and Xy is compact.
Let dy < d; be a constant satisfying the following:
(2.5.2-a)N C {ho < do},
(2.5.2-b) Ho, d1] has no critical value ofy,
(2.5.2-c) Ho, d1) C (hg o o)(V;) for everyi € I.
Such a constand; exists if d; — dg is sufficiently small. We put

V= {ho < dl}.
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Then W containsV \ V(dp) since N U W = Xp, and V* U W* = X, for a sufficiently
small U . Hence (ii) and (iii) hold.

The setV’\ V(r) has no compact component Ih , and the boundary of each con-
nected component of’ \ V(¢) intersectsdV in X,. Indeed, if one of the two claims
does not hold, there does not existian -convex exhaustioctifumig : V! — [0, o)
in Proposition 2.4. Thew~1(V’\ V(r)) has no compact component &7 (V) and the
boundary of each connected componentooft (V' \ V() intersectso~1(0V) in Xo,
because?(vo is locally isomorphic toX,. On the other hand?,(vo\a—l(v’) has no com-
pact irreducible component of dimensian . Hence (i) holdmbee?(vo\a—l(v(t)) is
the union of Xo \ o~ X(V’) and o= (V/ \ V(¢)).

From Proposition 2.4, there exists a hermitian meggoon Regf) NV such that
(2.5.3-a)hg is strongly go-subharmonic on Regj NV,

(2.5.3-b) is strongly go-subharmonic on Regj N N.

Then there exist a sufficiently small neighborhobd  oEOT' and a hermitian
metric g on Xy such that
(2.5.4-a)hg o r is strongly g -subharmonic on(* N V*) N X,
(2.5.4-b)¢ is strongly g -subharmonic on Reg(N N N X, for everyz € U,
since hg is bounded up to second order derivative Wn  and &°&map (cf. [14],
Theorem 1).

Let a1 € (0,d*) be a constant with

V\W*"C{peXy|hoor(p)<ar} EN

for a sufficiently small neighborhood of © T. Let a; € (a1, d1) be a constant and
p1:V — [0, 1] be aC°°-function with p; = 1 on {ho > a,} and suppi C {ho >
ai}. Let L; be an open set wit{ho < az}* € Ly € AN, and L, an open set with
Li € L, C N. Let p, : V¥ — [0, 1] be a C*>-function with p, = 1 on L; and
supppz C L,. Then we haver, = 0 on {do < ho < d1}*.
We puth§ := Ao (p1-ho)or+Cpz- @, whereC denotes a positive constant and

A1 R — R denotes aC°°-function such that\; = 1 on {r < a,} and )\; is strictly
increasing convex ofr > ay}. Then the functiorij is bounded onv*, and equal to
(p1 - ho) or + Cpz - ¢ on L;. Hence there exists a sufficiently large constant- 0
such thathj is n-convex onL; and stronglyg -subharmonic oh; N Regr) N X, for
everyz € U. We fix a positive constant such thatL; contains{ho < a, +¢}*. Then
h§ is strongly g -subharmonic ofr* N Reggr) N X, for everyz € U if \] and \] are
sufficiently large on{t > a, + §}. For such)\; and C > 0, we replace\i(d;) with
d; for i = 0, 1. Thenh{ satisfies (iv), (vi). Since\; > 0 and A\{ > 0 hold, A also
satisfies (v), (vii). Ol

Remark 2.6. SinceX, is compact, there exist a finite open coverif@, C
Xo}u=1...s Of Xo and finitely many points® := {p,} satisfying the following:
(i) eachoO, is connected,
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(i) o is biholomorphic from each connected componen@f to O0,,
(iiiy it 0, \'V #¢, U;%0,\V does not contairo, \ V, -
(vi) if 0,\'V # ¢, there exists a poinp, € 0, \ V with p, ¢ O, if p 7.

From now on, letU and be the same as those in Theorem 2.Wfor and
P={p,€0,\V|p=1...,s with 0,\V #¢}

in Remark 2.6. Obviously, this modifications f and do noeetfffProposition 2.5.
For everyp € W*, we putx, :={S(r(p),z) |z € U} and F, :=r~lom(p). Then
¥, and F, are closed complex manifolds. From Lemma 1.11, we hawdoallowing.

Lemma 2.7. There exists a hermitian metri€ oW™* such that for any p €
W, the complex vector subspacgsx, afig,  ToW™* are orthogonal with re-
spect toG .

We denote by - ||¢ the norm induced byG . We may assume tgat &hd are
guasi-isometrically equivalent oWw*, by replacing a relatively compact open d&t
of W satisfyingN U W’ = Xq (resp.G|w+) with W (resp.G ), if necessary.

We fix constantsl/s and d, with dy < d3 < d» < d1. Then the following holds.

Lemma 2.8 (cf. [10], Proposition 3.3 (Il)). There exist constants; > 0, A; > 0
and a linear setM; over V(d3)* with codimM; <n — 1 such that

100 (—log(t — hg) + Al|7||?) (p)(&. &) > c; €12

holds fort € [dp, d1], p € V(d3)* and £ € M1(p) and anyA > A;.

Proof. From Proposition 2.5 (vi), there exists a 1-dimenalccomplex subspace
I(p) of T,F, such thatidd(—log(t — hy))(p)(&', &) > 0 for t € [do,d1), p € V()* N
Regfr) and ¢’ € I(p).

Let dj be a constant withis < dj < do. For p € V(d3)* N Regr), let Z(p) be an
m-dimensional complex subspace BfXy  with dinZ(p) = m.

We put Mi(p) = Z(p) @ I(p) for p € V(d;)* N Regfr), which is an fu + 1)-
dimensional complex subspace X, . L&tp) = {6;(p)} be a basis ofMj(p)
satisfying spatfi(p). ... 0u(p))c = Z(p) and spatf,.(p))c = I(p) for any p €
V(d3)* N Reggr) with ||6;(p)|l = 1. We may assume thd#'s are C>°-sections, by
taking eachZ f ) and f ) adequately.

Then we have
09712 = (%1 8)

as the matrix representation with respectftowhere C; is anm x m-matrix valued
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function, sincer is constant onX, forz € U. The matrixC; is positive definite on
V(d3)* N Reg(r).

Let K1 be an open neighborhood of Sing(with K; C V*\W*. Then there exists
a constantc; > 0 such that def; > ¢; holds onV ¢2)* \ K1. We putidd(— log(t —
hg)) = (bij) with respect tad. The functionsb;; are bounded dn d;f* NReg(r). Since
bm+im+1 IS the matrix representation abo(—log(t — hg))|; with respect tod, there
exists a constant, > 0 such that,,+1,+1 > c2 on V d4)* \ K.

We put Cz = (bij)i<i,j<m and Cs = (d;j)1<i,j<m- Then there exists a positive con-
stantcz > 0 such thatACy + C2 + C3 > c3l,, on V(dy)* \ K1 if A > A) for a large
constantA} > 0, wherel, denotes the: x m-identity matrix. We denote by the
matrix representation of the hermitian for@0(— log(t — ) + A - ||7||?) with respect
to 6. By a calculation we have

detM = G]m-q.lm-q.]_)Am detCy + Qm_]_(A)
> c102A" + Qp—1(A),

where Q,,_1(A) stands for a polynomial oA of degree — 1 whose coefficients are
bounded functions oV df)* \ K1. Hence there exists a positive constant> 0 such
that detM > ¢4 on V d4)* \ K1 if A > A/ for a large constanty > 0. Hence, from
Theorem 13.3.2 in [9],

100 (—log(t — hg) + Al|7[)?) (p)(E, €) > 0

holds fort € [da, d1], p € V(dy)* \ K1 and€ € M/(p) and A > Ay := max{A], AT}
Since the function—log(t — k) + A||x||? is a C>=-function onV (})*, there exists a
constantcs > 0 such that

100 (—log(t — hg) + A|l7|%) ()€, €) = cs€?

holds fort € [d2, d1], p € V(d3)* \ K1 and§ € M/(p) and A > A;.

On the other hand, from Proposition 2.5 (vii), the functieflog(t — hg) is n-
convex onV*\ W*. Let K, be an open neighborhood of Sing(with K; € K, and
K, c v*\ W*. Then we have(V(ds)* \ K1) U K> = V(ds)*. From Proposition 1.2
and Lemma 1.3, there exist a constagt> 0 and a linear sefM/(p) over K, with
codimM{ <n — 1 such that

100 (—log(t — hg) + AlI7||%) (). &) > c6ll€]|3

holds fort € [do, d1], p € K> and§ € MY (p) for every A > 0, by replacingU  with
a sufficiently small one.

We denote byM]’ be the restriction ofM) on V (ds)* \ Ko. We put My :=
M7] U MY, which is a linear set oveV d§)* with codimM; < n — 1. We put
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¢y = min{cs, ce}. Then we have
109 (—log(r — hg) + Allm[|?) (p)(€. &) = 1 ]1€]3
for t € [da,dq], p € V(d3)* and& € My(p) and A > A;. ]
Let A\, : R — R be aC*-function in Proposition 1.12 with respect to the func-

tion hg and the hermitian metricG o™, and we replace\,(hg) and \x(d;) for
i=0,1 2 3 withhg andd; fori =Q 1 2 3, respectively. Then the following holds.

Proposition 2.9. There exist a linear setM, over V* with codimM, < n — 1
and positive constantd, and ¢ such thatidd(—log(t — hg) + Al x||?)(p)(E, &) > ¢ -
||§||§ holds fort € [d, d1), p € V*(tr) and £ € My(p) and anyA > A,.

Proof. Letd, € (do, d3) be a constant. From Theorem 1.13 (2), there exist a lin-
ear setM/, over V*\ V(ds)* and a positive constam, such that

1

109 (~loglt = hg) + All|*) (P)(&. ©) > -l

holds for p € V*(t) \ V(ds)* and ¢ € Mi(p) and anyA > A}. Sinceg andG is
guasi-isometrically equivalent oW *, there exists a constant > O such that

2 2
I1€llG = cali€ll

holds for p € V*(¢) \ V(da)* and & € M5(p).
On the other hand, from Lemma 2.8, there exist positive emtst; and A; and
a linear setM; over V (d3)* such that

i00 (—log(t — hg) + Al|7?) (P)(E. &) = cxI€]g

holds for p € V(d3)* and & € Mi(p) and anyA > A;.

We denote byMY the restriction ofM5 on V*\V(d3)* and putM; := M"UMjy,
which is a linear set oveV* with codimM; < n — 1. We putc; := min{c1/d1, i }.
Then we have

100 (—log(t — hg) + All7|1?) (p)(&, &) = ¢ - |I€]5
for t € [do,d1], p € V*, £ € My(p) and A > A, .= max{A), A1}. O

3. Constructions of specialn-convex functions on the fiberS(vZ

We putw := 7o o, Sing@) := o~ *(Sing(r)) and Regf) := o~ (Reg(r)). We
denote byA the seta*l(A)EJr A C X. For B C Xy, we denote byCl B ) oB the
topological closure ofB  inXy.
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Let § andr be the same as those in Theorem 2.1Wor  7navhich are fixed
in §2. Let S (resp.7) be the lift of S _(resp.r ) overC! W ). We puth = o* Ms
over V=, g = o*g on CZ(XU) and G = ¢*G on W*. Theng and G are quasi-
isometrically equivalent oriW* since g andG are quasi-isometrically equivalent on
w*.

Here, we can define the following by lifting results of Theor@.1.

Derinmion 3.1 (cf. [14]). For anyA C X, with CI(W) containsdA, we define
A* C Xy with the boundarydA* =7—1(0A) in Xy and A* N X, = A.

Let {Vi C Xolic; be connected components &f = o~(V). From Proposition
2.5, hi oo = di on 0V, and Ho,d1) C (h§ o o)(Vi) hold for everyi € I. We put
Vit)={p e Vi|hioo <t} fordy <t <dyandi € I. Then we haveV = Uie; Vi
and V(1) = Uie; Vi (0).

In this section, we will construct a special -convex funeti, on X, by using
the argument of Demailly (cf. [6]) and show the existenceaaf > -function 23 on
XU such thaths is n-convex onX, for everyz € U as follows.

Lemma 3.2. There exists an open subsgf of Xo satisfying the following (i)
Xo \ Y1 has no compact componer(ii) U;c;Vi(d2) C Y1 C V,and 9y, N AV = ¢
in Xo, (i) for everyj € J := {jel|V;e )70}, YiNV; = V(d), (iv) for every
i € I\ J, there exists a sequence of compact §&$(r)}:¢[4,,4) Of Vi such that(Y1N

Vi) \ Ki(1) = Vi(0) \ Ki(2) for 1 € [dz, d).

Proof. Leti € I\J. Then eachV; is noncompact and connected, apddf] has
no critical value ofhgoo|;; from Proposition 2.5. Hence there exist an open sulbget
of V; and a sequence of compact subsSeks(¢) }:c[a,.4) Of Vi satisfying the following:
(3.2.1-a)V; \ Y1; has no compact component & , and the boundary of each con-
nected component o¥; \ Yy, in )70 intersectsoV;,
(3.2.1-b)V; @) C Y1; and Y1, N OV, =¢ in V;,
(3.2.1-C) {1 N Vi(1) \ Ki(r) = Vi(1) \ Ki(¢) for any 1 € [dy, d).

We put

Y1:= (Uieny Y1) U (Ujes Vi(da)-

Then X \ ¥1 has no compact component from Proposition 2.5 (i) and (%ap.and
the fact thatV; \ V;(d2) has no compact component &  and the boundary of each
connected component df; \ V;(do) in Xo intersectsoV; for every for j € J. Prop-
erty (ii) follows from (3.2.1-b) and the definition df;. Property (iii) follows from the
definition of Y1, and (iv) follows from (3.2.1-c). U

Let {Q;};en be connected components of Reg( From the assumption (iv) of
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our claim, X, has no compact irreducible component of dimension . Hefgeis
noncompact inXo. Then we have the following.

Lemma 3.3 ([6], Lemma 10). For eachj € N, there exists a family of open sets
{Ujx € Qj}ken such that(i) €2;\ vV C UrenUjx C 2\ Y4, (ii) for every connected
componentl/; ;. olU;, there exists a connected componéht+1,¢) Of Uj x+1, SUCh
that Uj s1.16) N Ujies 7 ¢ @NA Ujj i) \ Ujikeis 7 @

We put
(3A) V= —log(dy — hgoo)+C; on V7 for i€l

where {C; };c; are positive constants satisfying

(3A-a) C1=0

(3A-b) W (V; (d2)*) and W (V; @>)*) do not intersect ifi 7 j,

(3A-c) W is exhaustive omJ;c; V;i(dy).

Such constant§C;} exist sinceV;*(resp.V; {2)*) and V;(resp.V; {2)*) do not inter-
sect ifi # j. We put

Yo = Xp \ Uj’kUj’k,

which satisfiesV(dz) C Y1 C Y2 C V from Lemma 3.3 (i). Then we have the follow-
ing.

Proposition 3.4 (cf. [6], p. 290). There exists am —convefouncti(m  Xo —
[0, o) such that(i) hy =W on Y2, (i) for any ¢ € [0,00), {p € Xo | h1 <c} \ Y2 is
relatively compact inXo.

Proof. There exists & °°-function v :% — [0, 00) such thatv =¥ onY;
andv is exhaustive o \ Y». From Proposition 2.5 (v) and (3A), the functian is
n-convex onY,. Hence, from Lemma 6 in [6], there exists a hermitian megricon
Xo \ Sing(r) such thatv is strongly;-subharmonic ont,. Lemma 7 in [6] implies
that, for anyj andk , there exists @ -functionv;; :U;x — [0, co) with support
in Ujx U U+ Which is strongly g;-subharmonic onU;; , wher¢U;;} denotes a
family of open sets in Lemma 3.3. We piat := v +3_;, C;xv;, for large constants
C;«- By induction, we have a sequence of positive constduts, } such thath; is
stronglygl -subharmonic on Reg() N Xo andhy; =¥ on Y,. Sincev is exhaustive on
Xo \ Y2, hy is exhaustive orXy \ Y,. Henceh; satisfies properties (i), (ii). U

Let r andQ be the same as those in Theorem 2.1Wor  7andvhich are fixed
in §2. Then the following holds.
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Proposition 3.5. There exist an -convex functioh, : Xo — [0,00) and a
strictly increasing convex functions : R — R such that(i) i, = A3(W¥) on Y3, (ii)
for any ¢ € [0, 00), {p € Xo | ho < ¢} \ Y1 is relatively compact inXo, (iii) & is a
Morse function with distinct critical values oﬁvo\ﬁ, (iv) all critical points of 3 in
Xo\ Y1 is contained byQ = o—1(Q).

Proof. From Proposition 2.5 (iv) and Proposition 3.4 (i)e tunctionz; = W
has no critical point ont, N o~V \ V(dy)). Let ¢ : Xo — (0, ) be a continuous
function. From Proposition 1.6, there exists mn -convex Mdimction with distinct
critical valueshy, : ffvo\?l — [0, o0) satisfying |ho(p) — ha(p)| < e(p) and||dh(p) —
dhi(p)|lz < e(p) for any p € Xo\ Y1.

Let Y3 be an open set of(vo with Y1 C Y3 and Y3 C Y. Let Y, be an open set of
Xo with Y3 C Y4 and ¥, C Y». Let p: Xo — [0, 1] be aC>-function with p = 1 on
Y3 and suppf) C Y4. We put

hy = phy + (1 — p)hs.
Then i} is a C°°-function on Xo with h%y = hi on Y. By a calculation, we have

[dhy(p) — dhi(p)llz < e(p)(ldp(p)llz + p(p)) for p € Xo.

Hencehy = W holds onYs, andkj is ann -convex Morse function with distinct critical
values on3(vo\71 if ¢ is sufficiently small. Moreover, for any € [0, o), {p € Xo |
hy < ¢} \ Y1 is relatively compact inXo.

Let {O,} andP be the same as those in Remark 2.6. Then each connected com-
ponent of X \ Y1 intersectso~1(P). For u=1,...,s with 0, \'V # ¢, let Q,, be a
relatively compact open neighborhood pf with Q, C @ N (0, \ V).

Let {L,.,} be connected components 6, and {M,, ,} connected components
of QVH Then we haveM, » € fo and¢ # M, » C L, . By replacing the set of in-
dices{(u, \) | p=1,...,s, A € N} with {v =v(u, \) € N}, we putL, := L, and
M, =M. Let R be all critical points ofz} in f(vo\?l. ThenR is a discrete set in
Xo\ Y1. - - B

We apply Lemma 1.10 foZ X, Z* = Singf@) N Xo and N =Y;. Then there
exists a diffeomorphisn¥ XVO — % with F(R) C U,enM, and F is holomorphic
nearR andF is the identity map an. Then the functiom) o F~1 is a C*°-function
on )70 such that
(38.5.2-a)hy o F~1 =W on 1y,

(3.5.2-b)hy o F~1 is a Morse function with distinct critical values v \ 77,
(3.5.2-c) all critical points onX, \ Y; is contained byQ and 4 o F~1 is n-convex in
an open neighborhood of all critical points bf o F~1.

We puthy := A\gohf o F~1, where \; denotes a strictly increasing convex func-
tion on R. Then A, is n-convex if \j /)] is sufficiently large, and satisfies properties
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(i)—(iv). O
We put

-1 *
o . { ) on o V)
hpor on Xy \ o H(V(d2)").

From Proposition 2.5 (iv) and (3A), we hawe \ror on \7\7(\41;), wheredy denotes
a constant in Proposition 2.5 willhy < d». Hencehs is a C°°-function on)’(\(/] from
Proposition 3.5 (i).

We putE, := {S(7(p).z) |z € T} for p € W* and F, := w Lo w(p) for p € X.
From Lemma 2.77,%, and T, F, are orthogonal with respect 6 = o*G.

We fix an open seiQ’ containing®? with 0’ ¢ Q. We put W := W* \ (r o
0)~H(Q"). Let L be a linear set ovep with codim£ < n — 1 such thaths|y. is 1-
convex with respect taC over 0. We put £* := r*(L£) over ¢ o 0)~1(Q). Let f’p be
the holomorphic tangent space ate W, to the real smooth hypersurfadéiz o 7 =
h3(7(p))} and f;,’ be its orthogonal complement.

For any ¢ € [0, ), there exists a compact s&,. C Xo such thaths =
A3(—log(dr — h§ o 0)) on {hs = ¢} \ K. holds from Proposition 3.5 and (3A), (3B).
Hence there exists @°°-function ¢ : [0, c0) — (0, co) such that

[(0h3(p), &) |= c)€]1%

holds fors € [0, 00) and p € {h3 =t} Nw YU) N W, and¢ € T”,. Then, by using
Proposition 1.12, we have the following lemma.

Lemma 3.6. There exists a strictly increasing convéx°-function Ay : R —
R with \4(0) = 0 such that(i) A\4(h3) is n-convex on)?Z for everyz € U, (i)
100Xa(h3)(p)(€, €) = [I€]|2 for p € wHU) N (ro0) Q) and & € L(p) N T,Fp,
(iii) i09Xa(h3)(p)(&, €) > [[€]12 for everyp € w=HU) N Wy, £ € T,

4. Constructions of n-convex exhaustion functions on%

We puth* := \y(h3), where )\, denotes aC°°-function in Lemma 3.6. Thena* is
n-convex onX, for every € U. From (3B), we havé:* = h*or on )?Z,\a*l(v(dz)*).

We putZ; :=V; ()" anda, :=inf{h*(p) | p € Z;} and 5, :=suplh*(p) | p € Zi}
for i € 1. SinceW¥ ¢; ) and¥ Z; ) do not intersect from (3A-b), we may assunat th
0B; < ajs1 for i € I, by replacing the indeX with an adequate one if necessary. We
put D) :={p € Xo | h*(p) <t} \ Vi(da) for t € [i_1, 3;). Let D(¢t)* be the open set
of Xy in view of Definition 3.1, which is well-defined sinag W) containsdD(r).
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Proposition 4.1. Let x > 0 be a constant. Then there exist a linear det over
Xy over Xy with codimM < n — 1 and sequence$A; € (0, 00)}en and {B; €
(0, ) }ien such thatiddB - (—log(t — h*) + A - [|w]|?)(p)(&, €) > 2 - [|€]|2 holds for
te(0,1), pe D@), Ee M(p)andA > A, and B > B; for [ € N,

Proof. Let M, be the linear set oveV* with codimM;, < n — 1 in Proposition
2.9. From (3A) and (3B), we have

(4.1.1) h*=Xs0Xz0 (—log(dy —h§oo)) on Yf,

where \3 (resp. \4) is a strictly increasing convex function dR in Proposition 3.5
(resp. Lemma 3.6). Hence, by using Proposition 2.9, therst @ositive constantst™*
and ¢* such that

(4.1.2) i00(—log(t — h*)+ A - |@|?)(P)(& &) > c* - [|€]12

for0<t<landp e Y ND()*" and € /\72(19) and A > A*, where M, denotes
the lift of Mo.

On the other hand, from Proposition 3.B;*(¢) \ Y is relatively compact inXy.
From Proposition 3.5 and Lemma 3.6 and Theorem 1.13, thés¢ @&constand; > 0
and a linear sef\l5 over Xy \ ¥; with codimM3 < n — 1 such that

~Ik

i00( —logt — h*) + A - |[w|?)(p)(E &) = T - €11

holds for 0<t < I, p € D*(t) \ Y7, £ € M3(p) and A > A;. Hence there exists a
constantc; > 0 such that

(4.1.3) i00( —logt —h*)+ A - [|=|?)(p)E. &) > ¢ - |15

holds for 0< ¢t < I, p € D*(t)LY*, & € Ms(p) and A > Aj, sinceg and G is

quasi-isometrically equivalent ow*. . -

We denote byM, tnh/e restriction ofM, on Y7, and M’Qvthe restriction ofM3 on

Xy \Y;. We putM = M5LUMS;, which is a linear set oveky with codimM < n—1.

We putA; :=maxfA*, A}, and¢; = midc*, ¢;'}. From (4.1.2) and (4.1.3), we have
i00( —log(t —h*) + A ||@|)(P)(E &) = e - €13

for 0<r <, pe D*(t), £ € M(p) and A > A;. We putB, := %/c;. Then we have

i09B - (—log(t — h*) + A - ||=|?) (p)(&, &) > 2r - ||€]2

for0<t <!l andp e D()*, £ € M(p) andA > A;, B > B,. O
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Let x > O be a positive constant. LgtA;} and {B;} be strictly increasing se-
guences in Proposition 4.1 for the constantWe put

®, =B, (—log(t —h*)+ A - |w]?) +uow
for 1 <t <1+1, whereu is a strictly plurisubharmonic exhaustion fumcton U .

Lemma 4.2 (cf. [4], Lemma 6, [10]). There exist strictly increasing sequences
{7: € (0, 00)}ien With lim~; = oo, and {4; € (0, c0)}ien With lim §; = oo such that if
we setu; := @5, and D; := D(¢;)*, the following hold (i) {p € Dis1 | uis1 < vi} C
D; for everyi € N, (ii) for every setk C )?Z such that there exists a compact set
Q= Q) C )’(Z with o(K \ ) is relatively compact inV*, there exists an index
J =j(K) € N such thatK C {p € D;+1 | u;+1 <7} holds for everyi > j.

Proof. Let{H; € (0, 0)};,en be a strictly increasing sequence such that @, -
||| < Hj+1 holds for everyl € N.
Let « andb be real numbers with<a <b <[+ 1. If

b—a < exp((B+1+1) Hp1)
holds, we have
(421) {p € D(b) ‘ o, < (B]+1 + 1) H1+1} C D(Cl)*
On the other hand, we have
{pe),(; ’ uow<H1+1}ﬁD(b—l)*
C{pe)f(vy‘uow<H1+1}
v_ * 2
n {P € Xy ’ Bis1- (—logb — h*) + Ajsa||@]|?) < Bpsa - H1+1}

(422) C {p S D(b)* ‘ o, < (B]+1 + 1) H1+1} .

For everyl € N with 0 <[ , we take a sequencll = x;0 < x71 < ---x,q) = [ + 1}
With x7 541 — X760 < €XP( (B2 +1)- Hj+2). We putd; = x;,, where we sei  #I[(k )=
Zf;it(a) +k+1andr (0) = 0. For every € N, we puty; = (Bjg)+1 + 1) - Higy+1,
where! { ) denotes the integer part &f Then the sequenceg and ¢; satisfy (i) from
(4.2.1), and satisfy (ii) from (4.1.1) and (4.2.2). U

Proposition 4.3 (cf. [4], Theorem 3). There exists aC:O-function@v: Xy —
[0, o0) such that(i) i0dw(p)(¢, €) > 2x||€||2 holds for p € Xy and & € M(p), (i) w

is exhaustive onXy \ Y;.
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Proof. Let{v}ien and {d;};en be sequences in Lemma 4.2. By modifying the
sequences, we may assume that there exist sequdnebs{u; = @5}, {D; =
D(6;)*} and {e; > 0} such that
() {pe Xy |uw < +e} C D for everyi €N,

(i)’ for every subsetk € X, such that there exists a subet =K (C)Xy, with
w(K \ Q) is a relatively compact subset of*, there exists a numbef #K( 9 N
such thatk C {p € Di+1 | ui+1(p) < v — &} holds for everyi > ;.

By using induction, we will construct the following sequentw; };en such that
(@); w; € B(D;, M) for everyi € N.

(b)i wi|p,\p,_, > k holds for everyi > k.
(¢)i wi=w;_1 holds on{p € D; |u; >~;_1—¢c;i_1} fori =2,3,....

Indeed, we putwi = u;. Suppose that there exist functions, ..., w; satisfying
(@), (B)i, (c) for k=1,2 ...,i. We define a continuous function
w; on {ujr1 <7 —&i},
wis = Max{w;, xi(ui+1)} on {y; —& Supr <y +eit,
Xi (#i+1) on {uj+1 > i +ei},

where we puty;(¢) = a;t — b; for constanta; and; with

(4.3.1) a; > 1, by >0, a;(y; —&;) —b; <0,
(4.3.2) ai(vi + &) — bi > max{w;(p) | uiv1(p) =i + i},
(433) (l,‘("y,' +5i) — b,‘ >i+1

From (4.3.1) and (4.3.2)w;+1 is continuous anda(;y; holds. From (4.3.3), we
have

wisr >0 +1 on {uj1 >y +e N D;.
On the other hand, by the conditioh { ), we have
wi+1 > w; >0 0N {ujr1 >y + i} N (Djr1 \ D).

Hence b ):1 holds. Moreover, € ;)1 holds from the condition4(,) and the definition
of w;+1. From )., the sequencéw;} has the limitw :=limw; . Then the functiow

is continuous andM-convex, and exhaustive oky \ Y. Every point of X, has an
open neighborhood® and at most two functigns;} on O with

wlo = max{w’},
100w (p)(&, €) = 2xlI€]Z

for p € O and¢ € M(p) from PropositionN4.1. Lei) be a sufficiently small positive
constant. We apply Proposition 1.5 f8r X5, £L = M andw = g. Then there exists
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a Cc>°-function w : Xy — [0, c0) which is 1-convex with respect td41 such that

(4.3.4) w< W< wt,

i00w(p)(€, €) > 2x]|¢ )12

hold for p € )}7] @dg € M(p). Property (ii) follows from (4.3.4) and the fact that
is exhaustive ornXy \ Y;". U

Here we observe general geometric properties of unramifearing spaces of
relatively compact open subsets. Forg € X, letd (p q) be the distance betweem
and g with respect to the metrig. Fix a pointo € Xy and, for each poinp € Xy,
we putr (p) :=d ¢, p). Then we have the following by using the argutnghLemma
3.2 of [11].

Lemma 4.4. There exist ac>-function : Xy — [0, o) and a positive con-
stantC such thati) C-r <7 < C-(r+1), (ii) ||d7|z < C, (i) —C-g <iddr < C-g.

Proof. See Appendix B. ]

A function 7 on (X, g) is said to bethe Napier's function onX with respect tog
if 7 satisfies properties of Lemma 4.4.

Proof of Theorem. Letr be the Napier’s function Oy with respect tog such
that there exists a consta@t> 0 with (i) C-r <7 < C-(r+1), (ii) [|d7|z < C, (iii)
—C-g<idor<C-3g.

Let w be a function in Proposition 4.3 for = 2C. We put

®=w+T

on 5(7; Then the function® is am -convex exhaustion function)am from Proposi-
tion 4.3 and Lemma 4.4. Ul

Appendix
A. Constructions of partial holomorphic motions on X (cf. [8], [10])

We considerC>°-families of relatively compact manifolds in the complex mira
fold X and examine their properties. Then we show Theorem 2.1.

Let X be a real 2 -dimensional’*°-manifold and7T a domain oC™. A C°°-
family of complex local coordinates of over T denotes aC*°-mapw :V x U —
C", whereV (respU ) is an open set af (resp.T ), such that the map®* V. —
C" defined byw® ¢ ) :=w £,z ) is a local coordinate &f for anyz € U.
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The mapw : V x U — C" x U, which is defined byw(x, z) := (w(x, z), z), is
bijective fromV x U to the range. Lev V'’ x U’ — C" be another one oft' over
T. The change of local coordinates fromm @0 denotes the maw)* .

A holomorphic family of complex structures oti over T denotes a collection
A of C°°-families of complex local coordinates of over T satisfying (A) for any
v, w € A, the change of local coordinates fromn #0 is holomorphic iisidefined,
(B) for anyx € X, z € T, there exists av € A with the domainV x U such that
(x,z) € Vx U, (C) if wandw* are C*°-families of complex local coordinates of
X over T, and the change of local coordinates fram utbis holomorphic for any
weE A, w*isin A.

Let A be a holomorphic family of complex structures éhover 7. Then there
exists a unique complex structufé(A) on X x T such that, for anyw € A, w is
holomorphic fromV x U, which is considered as an open setXfA), to the product
complex manifoldC" x U. We setp(x,z) = z for (x,z) € X x T ¥ X(A). Then
v X(A) — T is a smooth surjective holomorphic map.

From now on, letX be a complex manifold of dimensidh »n= m+ dhd a
domain of C" which contains 0 C™. Let 7 : X — T be a proper surjective
holomorphic map. We puX, :=r—(4) for A C T. By Sing(r) we denote the
set of all p € X such that the differential ofr at p does not have maximal rank.
We put Regf) := X \ Sing@r). We suppose that dii; = n and Regf) N Xo # ¢,
Sing(r) N Xo 7 ¢.

Let K be any relatively compact connected open set in Reg(Xo. Let P =
{p1, ..., pr} be finitely many points inK . LeK* be an open neighborhood & in
Regr) with K* N Xo = K satisfying the following:
(A) there exists a local coordinate systemiof : {h, : U, — V, xU} =1, k, Where
{U, },=1,...x are open subsets of Reg(and eachV,, is biholomorphic to a bounded
open neighborhood of @ C", and U is biholomorphic to the unit ball &2”,
(B) for everyp =1,...,k, the pointp, € P is contained byV, and p, is not con-
tained byV, for any v # u.

We denote byKC the underlyingC°-manifold of K . Then the following hold.

Proposition A.1 (cf. [10], Proposition A.1). There exist an open neighborhood
a holomorphic familyA = {w,, : V x U-— C"} of complex structures oft over U,
an open neighborhoo®), € V,, of p, for any p satisfying(i) G(K* N X.) = K x {z}
foranyze U, and G : K* — K x U = K(A) is a biholomorphic map(ii) G oh;1
is the identity map fromQ), x U to Q), x U C A x U for every .

Proof. We can use the argument of Proposition A.1 in [10] esikC has the fi-
nite open covering{i/, }. We apply the argument, by replaciy Ap, {W,} with
K*, K, {Q,,} respectively. Then the desired conclusion follows. O
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Lemma A.2 (cf. [8] p. 26, [10], Lemma A.2). Let {V, },=1_ x be the open cov-
ering of £ and A the holomorphic family of complex structures /6f over U in
Proposition A.1.Then there exist an open neighborhodd of 0 € T, a C*°-map
F:KxKxU* — TYK x U* satisfying(i) F(x,q,z) € T*°K x {z} for any
(x,q,2) € K x K x U*, (i) F(x,x,0) = (0,0) € T'°K x U* for any x € K,
(i) for an open neighborhoo&’ C K x K of the diagonal sef{(x,x) | x € K},
F, : K(A) D K. x U* — F(K. x U*) ¢ T*°K x U* is biholomorphi¢ where we
put {x} x K. :=({x} x K)NnK" and F,(q,z) := F(x,q,z) for (x,q,z) € K x K x U*.

Proof. We apply the argument of Lemma A.2 in [10], by replacky,, Xo, Ao
and W with K*, K, K and K’ respectively. Then the desired conclusion follows.
U

Then we have the following by applying the argument in Apperid [10] in the
similar way to the previous. For the completeness of thisepawe explain the detail
of its proof.

Theorem A.3 (cf. [8], [10]). For every relatively compact connected open set

K € Regfr) N Xo and every set of finitely many poir:= {ps, ..., ps} C K, there
exist an open neighborhood @& ¢ 7 and aC>®-map S : K x U > (x,z) —
S(x,z) € Xy satisfying the following(i) S : K x U — S§(K, U) is a diffeomor-
phism (i) U > z — S(x,z) € Xy is a holomorphic section ovet/  for every
x € K and S(K,U) is the disjoint union of{S(x,U) | x € K}, (iii) The map
r: S(K,U) > p — r(p) € K defined byS(r(p), 7(p)) = p is a C°-retraction
such that there exists a relatively compact open neighbmith® € K of P in K such
that r|,-:(Q) is holomorphic.

Proof. LetG :K* — KxU,{V,}, A={w,} be the same as those in Proposi-
C>-map f; : V! 3 (x,2) — f;(x,2) € V,, such thatw,(f;(x, z), z) = w,(x, 0) for
anyx € V!, z € U. Then the magl > z +— (f;i(x,2),2) € V,xU C KxU is holo-
morphic for any fixedx € V. Indeed we haveu(,(f,;(x, z),z), z) = (w(x,0),2) C
C"x U for z € U.

Then there exist &@>°-map F :K x K x U — TY9K x U and a neighborhood
K' C KxK of {(x, x)|x € K} satisfying conditions of Lemma A.2 fak , by replacing
U* with a sufficiently smallU  if necessary. We may assume thatf( (x, z)) € K’
for any z € U. Let {p,},=1..x be a partition of unity subordinated toV}. We set
YU 32— 2, pu@)F(x, fi(x,2),2) € T10K x U. The map~y, is holomorphic
on U for any fixedx € K. Moreover F, : (C(A) D)K, x U > (fi(x,2),2) —
F(x, fi(x,2),z) € T*°K x U is holomorphic for any fixed € K from Lemma A.2

(i
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We may assume tha, 1o, : U — K(A) is well-defined. We consider @*°-
map S (K x U > (x,z) — S(x,2) := F, L ov,(z) € K* = K(A). Then the Jacobian
of S has the maximal rank oK x {0}. HenceS is a diffeomorphism fronC x U
to K* and S{C,z) = K* n X, for z € U if U is sufficiently small. The open set
K* is the disjoint union of{S(x,U) | x € K} andr : K* — K x U, which is
defined byS € p )m(p)) = p for p € K*, is a C>°-retraction. MoreoverS x,-) : U >
z+— S(x,z) € K* is a holomorphic section ovdy  for any fixede K since~, is
holomorphic onU for any fixed € K.

Let 0, C Q), be an open neighborhood @f, satisfying Q,, N suppp, is empty
for any v # p, where Q) is the neighborhood op,, in Proposition A.1 and we put
0 :=U,0Q,. Let (x, z) be any point ofQ, x U C K x U. Thenw,(x, z) = Projﬂ oh, o
G '(x,z) = x = wy(x,0) holds sinceG o &,,* is the identity map onQ,, x U from
Proposition A.1.

Hence we havef;(x,z) = x for any (,z)€ Q, x U C K x U. Then we have
S(x,2) = Fyloy(z) = (x,2) € Q. x U C K*. HenceS oh;1 is the identity map
on Q, x U and theC*-retractionr p ) is the natural projection fl’OﬁEl(Q# x U) to
Q.. Thereforer|y, xv =rls(o,.v) is a holomorphic retraction. U

By using Theorem A.3, we have Theorem 2.1 as follows.

Proof of Theorem 2.1. It is suffice to show Theorem 2.1 for theecwhereW
is connected. LeK be an open set withe K € Reg@r)NXo andP := {p1,..., ps}
a finitely many point inW . From Theorem A.3, there exist an opeighborhoodU
of 0€ T and aC>-map S :K xU — Xy. We replaceS|w, , r|sa7.yy, QNW with
S:WxU — Xy, r:SW,U) — W,Q, respectively. Then they satisfy properties
of Theorem 2.1. O

B. Existences of Napier's functions on unramified covering [gaces([11], [2])

We use the argument of Lemma 3.2 in [11] and will show Lemma ¥é re-
mark that E. Ballico [2] and Napier [11] have stated exiseanof functions satisfying
conditions which are similar to those of Lemma 4.4.

To prove Lemma 4.4, it is suffices to show the following lemma.

Let (¥, g) be a hermitian manifold ane : Y — Y an unramified covering map.
Let D be a relatively compact subdomain Bf ~ such that= o—1(D) is connected.
We put the hermitian metrig := o*g on D.

For p,q € Y, let d(p, q) be the distance between agpd with respect to the
metric g. Fix a pointo € D and, for each poinp € ¥, we putr (p) :=d ¢, p ). For
any A C Y, we putr @) := infcar(q). For A C Y, we denote byCl 4 ) orA the
topological closure ofd in’. Then we have the following.

Its proof is similar to Lemma 3.2 of [11]. For the completened this paper, we
describe the detail of its proof.
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Lemma 4.4. Suppose that there exists a sequence of pointst,cn with
lim, .. r(y,) = oco. Then there exist aC*°-function 7 : D — [0, ) and a pos-
itive constantC such thati) C -r < 7 < C - (r +1), (i) |ld7|z < C, (iii)
—C-g<iddr<C-3g.

Proof. The manifold ¢! D), ) has ‘bounded geometry’. Namely, for evepye
CZ(B), there exist an open neighborhodt,  pf ¥nand positive constant®  and
C and a surjective biholomorphic map, U, — E(0, R) with
(1-a)¥, (p) = 0 holds,

(l'b) \D;ge/c < g <C- lIJ;ge hOldS,
where R andC are independent pfe Cl(ﬁ) and g, denotes the Euclidian metric in
C", and we putE (OR ):=z € CV||z| < R}.

Hence there exist constants for =0 1 2 3 akd  for ,=0 1 2 such that
(2-2) 2, <rp<r1 <3rp <rg, Ry < Ry < Ry,

(2-b) for everyp € CI(D), there exist an open neighborhodg, pf ¥hand a
surjective biholomorhic mag, U, — E(0, Rg) with

(2b.1)w, () =0,

(2-b.2) Vg, /C1 < g < C1-W¥,g, for a positive constanCy,

(2-b.3)B (p, r3) € B(p,r2) C U(p, R2) € U(p, R1) C B(p,r1) € U(p, Ro), where we
put B(p,r):={g €Y |d(p.q)<r}andU (p.,r) =W HE(,r)) for 0<r <R,

(2-c) vol(B (p, r3))/C2 < vol(B(p, ro)) < C, for a positive constancs.

Then there exists a sequence of poifits, € CI(D)},en such that
(3-8) B (pv,r3) N B(pu,r3) 7 ¢ it v 7 pu,

(3-b) {B(p,,r1)} is uniformly locally finite. Namely, there exists a constayite N
such that each point has an open neighborhbod  which intsragenostN elements
of {B(Pu, rl)}ZIGN! _

(3-¢) {B(p.,r2)}ven is an open covering of'! I¥).

Indeed, we putp; := o and pointspy, ..., p,—1 are given. Let; an®R; be posi-
tive constants satisfying (1-a) and (1-b). Let € 8((UZ;11B(pk, rz))ﬂCl(B)) satisfying
r(p,) = r(UZ:llB(pk,rz)) N CI(D)). We have defined a sequen¢g, } inductively in
this way. Then we have (3-a)—(3-c) as follows.

Proof of (3-a). Letr and p be natural numbers withy < v. Then p, €
I(B(p1,r2)U---UB(pyu,r2)U---UB(p,_1,r2)) holds. Sincep, ¢ B(p,,rz), we have
d(py, pu) > r2 > 2r3. HenceB p,,, r3) N B(py, r3) # ¢ holds. N

Proof of (3-b). Letp € CI(D) with B(p,, r1)NB(p, r1) # ¢. Since maxd(p, q) |
q € B(py,r)} < 3r1 < ro, we haveB p,,r3) C B(p,,r1) C B(p,ro). Let
v1, ..., be distinct natural numbers satisfying p,(, r1) N B(p,r1) # ¢. Then we
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have U*_, B(p,, r3) C B(p, ro). Hence

k

Ca = vol(B(p. 1) = Y- VolB(p, . 72) = ¢
j=1

holds. Hence we may take a natural numbér — with> C2. O

Proof of (3-c). Suppose that! D \ (U,enB(py.r2)) # ¢. Then there exists a
constantr > 0 satisfying (C/(D) N B(o, 7)) \ (UyenB(pu,r2)) # ¢ from (3-b). The
point o = py is contained by(CI(D) N B(o, r)) N B(o,r2). On the other hand, there
exists a natural number € N satisfying (CZ(B) N B(o,r)) N B(py,r2) = ¢ for v > p.
Then we have(CI(D) N B(o,r)) N (UL B(p.,.2)) # ¢, and (CI(D) N B(o,r)) \
(U B(pu,, 12)) # ¢. Hence (CI(D) N B(o, r)) N (UYL B(py,, r2)) # ¢ holds. There-
fore we haved ¢, p,) < r since p, is contained by@(u;’;llB(ka,rz)). On the other
hand, we havel of p,) > r +r, since (CI(D) N B(o,r)) N B(py,.,r2)) = ¢ holds. It
leads to contradiction.

Let A: E(0, Ry) — [0, 1] be aC*-function with suppf) C E(0, R;) and A =1
on E(Q Ry). we putw, =W, and

. M®,) onU(p.,, Ry),
v {o onY \ U(p,. Ry).

Then the function\, is a C>-function onY with supp\,) C U(p,, R1) and \, = 1
on U (p,, R2). We put’ :=>" exp (p.)) - \u(p). Then the following holds.
There exists a positive consta@t satisfying
(4-a) (expr YC3 < 7' < C3-expr,
(4-b) ||dT/H§ < Cs-expr,
(4-C) —C3g - expr < i007' < Cag - expr . O
Proof of (4-a). Letp € CI(D) with p € B(p,,r) for v € N. Then we have
r(p) —r1 <r(p,) <r(p) +r1. Hence

exp(—ry +r(p)) < expr (p,) < expl1 +r(p))
holds. On the other hand, we haxe(p) =0 if p ¢ B(p., r1). Hence
exp(r1 +r(p)) (Z Mp)) <7’ <expl1+r(p)) (Z Mp))
v=1 v=1

holds. From (3-b) and (3-c), we haved 7/ < N. Hence exp{ri) - expr < 7/ <
N exp(1) - expr holds. O
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Proof of (4-b). Forp € U(p,, R1) N CI(D) andv € T,Y,

[(OA)(P) (V) = [(OA) (W (P)) (W) (0))] < Callv]lg

holds for a positive constars. Hence we have{(d\,)(p)|, < Ca. Therefore we ob-
tain

ld'(P)ls <> exp (.)) - [(dN)(p)l; < NCaexpry - expr (p)
sincer p,) < r1 +r(p) holds. ]

Proof of (4-c). Forp € U(p,, Ro) N CI(D) andv € T,Y,

i (99X) (P)(, v)| = |i (BIN,) (W (P))(W.)+ (v), (¥2)(v))]
S CSH (\IJV)* (U)

g < Cs|lv]

vze < Cgllvllg

holds for positive constant§s and C4. Hence we have

|i (007") (p)(v,v)| =

i90 (Z expe @) - A)(p) (v, v)) |

v=1

< expry - expr () _ |i (99\,) (p)(v. v)| < CEN expry - expr ()- [[v]],.

v=1
Therefore (4-c) holds. Ul
We put
7:=logr’ +C,

whereC is a positive constant. Then the functiosatisfies properties of Lemma 4.4
for a sufficiently largeC from (4-a) and (4-b) and (4-c). ]
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