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0. Introduction

R. Courant conjectured in his eminent monograph [6] that a minimal surface
could be analytically extended as a minimal surface beyond any analytic subarc
7 of the boundary curve. In comparison with the case where 7 is a straight
segment he remarked: "The difficulty of the problem will be appreciated if one
notes that the analytic boundary 7 may conceivably be represented by a vector
whose components are non-analytic functions of the arc-length on the contour
of its parameter domain." This question, already elucidated by Hildebrandt
[11] in the affirmative, has undoubtedly motivated the present investigation.

We shall be aware that we often encounter the typical theorems in numer-
ous text books, monographs and papers on the complex analysis of one or several
variables whose assumptions involve analytic arcs or analytic curves, for example:

Let 7 (resp. 7') be a non-singular analytic boundary subarc of a plane
region B (resp. B'). If a univalent holomorphic function/(#) maps the region
B conformally onto B' and further B U 7 homeomorphically onto B' U 7', then
f(z) is continued analytically up to B U 7.

In my previous paper [17] I pointed out the fact that the analyticity as-
sumption in all such statements can be weakened up to the regular smoothness
as a corollary to a general theorem on the Teichmϋller mapping.

Curiously enough, intensive studies concerning the analytic arcs immersed
in the general position of Rn (n>3) seems very rare within the knowledge of
this author. According to his opinion, a kind of obscurities against the com-
monness of the term analytic arcs subsisted even in the Courant's conjecture.

The present memoir has been written from an attempt to clarify those
questions and answer the aforesaid conjecture through a quasiconformal ap-
proach under the much less restrictive situation that 7 has only to satisfy some
non-singular smoothness. As a matter of fact, a conditioned non-singular
thrice continuous differentiability of 7 is sufficient.
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1. Notations and terminologies

In this paper n^Z+ is always not smaller than 3 unless otherwise stated
explicitly and i is the index running from 1 to n. Let A> A' be subsets of Rn.
The difference of the sets A, A\ i.e. the set of elements belonging to A but not
to A' is denoted by A \ A'. The symbols intA and clo^l stand for the set of
interior points of A and the closure of A respectively in reference to the neigh-
bourhoods of dimension considered. The term region shall always mean a con-
nected open set, while domain need not even be open. The notations t, u, v

are used as real variables and w=w-f-V — 1 vy ffi=u—\/ — lv^C. Furthermore
the followings are employed consistently:

/ = [ — 1 , 1]: the 1-dimensional unit closed interval;
]a, b[={x^R\a<x<b), everytime a<b\

„_ r) v Λ Λ *, Λ 1 }: the 2-dimensional open intervals;

χ=t(<x
1

9 x?, •••, χn): the real ^-vector with the i-th component x\ or equiva-
lently a point of Rn with the z-th coordinate x* (i=l,2, •••.«)•

Cr=Cr[ ] denotes, as usual, the class of functions with the r-th continuous
derivatives on the point set . Similarly Cr

0[B] is the subclass of Cr[B] with a
support comprised in the region B,

When JC varies in a continuous manner depending on one real variable t,
one will obtain an arc γ defined by the equation jc=jc(ί). Here we introduce
the three classes of arcs for later use:

Jt=JL°: the collection of all simple open continuous arcs whose loci lie in

Λ";
Jfΐ (r e Z+): the collection of all non-singular simple open Cr-arcs embedded

in Rn;
<JΓ: the collection of all non-singular simple open analytic arcs embedded

in R\
If x depends, on the other hand, on two independent real variables, say u

and v, or equivalently on one complex variable w~u-\-V — 1 v ranging over a
subregion of R2=C, one has a surface S as a 2-dimensional submanifold of Rn.

In both cases we need sometimes regard those submanifolds merely as
subsets of Rn discarding their parametrizations, which is the so-called locus of
the arcs or of the surfaces, denoted by loc γ or loc S etc. henceforth.

The inner product of real zz-vectors JC, X' is written as <JC, JC'X whereas

In reference to a differentiable surface S: x=x(u,v)

gn(u, v) = I dx/du 12, gju, v) = I dx/dv 12

gjμ, v) = <dxidU}
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are designated as the components of the first fundamental form of 5. The
dilatation-quotient of the mapping x=x(u,v) is defined in terms of them as

2V\gllg22-gl2\

at points where g\\g22—g\i does not vanish.
When we take a closed Jordan region clo B for a quadrilateral by marking

four points on SB, we sometimes write B instead of clo B. The modulus of a
quadrilateral Ω can be defined, regardless of whether lying on a plane or on a
surface, directly by means of the path-families or through conformal mappings
onto a rectangle, which shall be denoted by Mod Ω.

2. One and two-dimensional submanifolds in Rn

Having examined and compared as various defining statements for arcs or
curves included in prevalent monographs on analysis as our eyes could reach
(e.g., Ahlfors-Sario [3], Fleming [7], Nitsche [12], Osgood [13], Radό [15],
Sasaki [16], Springer [19], Vaisala [20], etc.) we finally come to be convinced
that the followings are the fittest for our current purpose.

Let xi=xi(t)(i=l,2> ••-,#) be an w-tuple of real-valued continuous functions
in a real variable t ranging over the open interval int /=]—1,1[ such that

( 1 ) — l < f 1 φ ί 2 < l implies Σl \xi(t1)-xi(t2)\ ^Q.
i = l

Then we understand that a parametric representation (or equation)

( 2 ) *' = *'(*), ί = l , 2 , . . ,n

of a simple open continuous arc γ has been set up, calling the point set {x=x(t)
I — l < ί < l } the locus of γ and denoting it by the symbol loc γ. Let 3 denote

the collection of all orientation-preserving homeomorphisms τ(t) of the 1-sim-
plex /. 3 is non-void, since we have a function

with any r £ Z + and a constant αE]0, 1[, which is of class C°°, strictly monotone-
increasing for - l < ί < l and satisfies τ ( - l ) = - l , τ ( l ) = l , τ<v'(-l)=τ<v>(l)

(*=1,2, )

DEFINITION 1. Under the term simple open continuous arc lying in Rn we
mean the equivalence class of all homeomorphisms of int / onto loc γ factored
by modulo 3 . If, in particular, the equation (2) are defined on the closed inter
val / and fulfill the subsidiary condition xi(—l)=xi(ϊ) for all i = l , 2 , •••, n, γ is
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a Jordan curve in Rn. As an immediate consequence we have

Theorem 1. The concept of a simple open continuous arc or of a Jordan
curve is equivalent to the real ί-dimensional topologίcal submanifold of Rn.

Next suppose that the representative (2) of y fulfills the conditions below
not necessarily including (1):

1° x{t) is of class Cr in int / ( rEZ + ) ;
2° lim dsxjdf exists finitely for every s=l,2, « ,r;

/->±1

3° Λc/AφO.
Then we say (under the additional hypothesis lim dsxldts=limdsxldts (s=ί,2,

•• ,r) in case clo (loc γ) has no extremities) that a C-diffeomorphism x=x(t)
of / onto clo (locγ) is defined. By analogy with 2 , 9 r denotes the collection
of all orientation-preserving C'-automorphisms τ(t) of / such that dsrjdts\t=_ι
=dsτjdts 11=1 for every s= 1,2, , r. 2 r is non-void owing to the actual presence
of (3) and we have naturally

DEFINITION 2. Under the term open (resp. closed) non-singular Cr-arc y
immersed in Rn we mean the equivalence class of all Cr-diffeomorphisms of
int / (resp. /) onto loc y (resp. clo (loc y)) (modulo 2 r ) . If (2) satisfies (1)
in addition, y is a non-singular simple Cr-arc.

Theorem 2. The non-singular open Cr-arc or the Jordan C -curve in the
above sense is a real ί-dimensional Cr-submanifold of Rn.

Let us impose a far stronger restriction than the non-singular Cr-differen-
tiability on the representative x=x(t) of y. To any ί o eint / there shall be
some 8t = St(t0)^>0 put into correspondence in such a way that each component
xι(t) admits a power series expansion in the real variable t with real coefficients
convergent in the interval to—8i<t<to-\-Si (/=1,2, •••, n). We obtain a pair of
statements:

DEFINITION 3. Under the term open analytic arc y we understand the
equivalence class of all real analytic mappings x=x(t) of int / onto loc y fac-
tored by modulo £Zω, where 2 ω denotes the group of all non-singular real analytic
automorphisms of int / preserving the orientation. Of course it is meaningful
to talk about 3ω in view of the presence of one element τ(Z)=sin (πt/2). Sim-
ilarly to the above two cases we have a simple open analytic arc by adding the
subsidiary condition (1).

Theorem 3. A non-singular open analytic arc is a 1-dimensional analytic
submanifold of Rn.

The non-singular Cr-differentiability (resp. analyticity) of an arc implies no
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more than the fact that it admits at least one parametrization which enjoys the
non-singular C-differentiability (resp. analyticity). Hence we have trivially

but it is not so clear whether or not the inclusions are strict. Indeed we have
shown

Theorem 4 (cf. Shibata [17], p. 100). // n=2, then JL2=JΓ.

The above definition for an analytic arc immersed in Rn is substantially the
same as the one included in the classical book by Osgood ([13], Π^ pp. 1-2),
and in case n=2, it turns out to coincide with the one appearing in most of text
books on the theory of functions of a complex variable or on the Riemann sur-
faces through the customary identification of the real {xι

yx
2)-space with the com-

plex / ^ T

Before passing to the 2-dimensional submanifolds let us recall an important
lemma in the theory of plane quasiconformal mappings which remains to hold
even for non-quasiconformal mappings:

Lemma 1 (Gehring-Lehto [8], cf. Ahlfors [2], pp. 24-27 too). // an open
mapping φ(w) of a subregion B of C into C has partial derivatives dφjdzo, dφldw

almost everywhere on B, φ(w) is totally differentiable almost everywhere on B.

It seems difficult to give a complete definition for a surface which applies to
all uses. We shall be obliged to content ourselves with the one that suits our
current purpose.

DEFINITION 6. Suppose that a real ^-vector-valued continuous function
x=x(w) is L2-derivable (cf. Bers [5]), absolutely continuous in 2-dimensional
sense in a Jordan subregion B of C with sufficiently smooth boundary and that
gng22— gh>0 almost everywhere on B. Assume further that ω=φ(w) is a L2-
derivable, measurable orientation-preserving homeomorphism of B onto the open
unit disk Δ={ω | | ω | < l } together with its inverse φ~1(ω). Then we call the
equivalence class S of {x(w)} divided modulo the collection {φ(w)} to be a real
differentiable surface-portion.

REMARK 1. ω=φ(w) is totally differentiable almost everywhere on B
(Lemma 1).

Let Γ be a Jordan curve in Rn such that Tt-*dB is a homeomorphism.
If x(w) and φ(w) in the above definition of differentiable surface-portion satisfy
the following boundary conditions, we call the similar equivalence class S=
{x(w)) to be a differentiable surface with the contour Γ:

1° x(w) is continuous up to clo B;
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2° φ(w) is a homeomorphism of cloB onto clo Δ.
By replacing the ZΛderivability of x(w) and φ(w) by Cr-smoothness

r < + oo) we can obtain the definition for Cr-smooth surface-portions or surfaces
with boundaries. Further by taking a complex ^-vector-valued mapping z=z(w)
instead of x=x(w)y we can define the differentiable or Cr-smooth complex surface
likewise.

Theorem 5. Let y be a simple closed Cr-arc embedded in Rn (r^Z+) with
the parameter interval L Then} for the open arc, which is the restriction of y to
int I to be a simple analytic arc it is necessary and sufficient that there exists a certain
surface-portion S in the complex n-space Cn of complexification of Rn= {x\, satisfy-
ing the conditions:

1° loc S comprises loc y;
2° the parametrization that makes S Cr-smooth in a region comprising I also

induces a parametrization that makes y Cr-smooth on I;
3° when S is mapped conformally into the plane C, loc y goes to a straight

segment.

Proof. Since the defining ί-xh coordinate x\u) of y is of class C1 in the
open M-interval int /— {u\ — \<u<l} and the finite limits lim dx^du exist as
a—^zbl + F̂O, x*(u) is considered to be continuous on J(/=l ,2, •••, n). It is easy
to construct real-valued functions φf'(w, v) which are of class Cr[R2] and coincide
with x\u) on / (/= 1,2, ••,»). The complex-valued function

z\w) = φ'(u, v)+\/^Λ [φXu, v)—x\u)\

is of class Cr[C] and coincides with x*(u) on the real segment /. Recommended

is the function z\w) as the ί-ύι complex coordinate zi=xi-\-V — 1 y* of the smooth

surface-portion S subject to the requirements 1°, 2°. A simple calculation

(4) = X f ^ + ^ + V ^ ΐ f ^ - ^

\du/ \dvJ \dv/ \du dv du

yields

( 5 ) Σ^(^) j

with the components of fundamental tensors referred to the coordinate (xι,yι.
- , * " , / ) in R2\
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Now suppose that the restriction of γ to int / is an analytic arc in the sense

of Definition 3. Then the defining power series for 71 i n t / extends naturally to

a system of holomorphic functions zi=zi{w) defined in some region B contain-

ing int 7( ί=l ,2 , ••-,//), which determines a surface S immersed in Cn and subject

to the requirements 1°, 2° of the theorem. Since this surface S makes the left-

hand side of (5) vanish, we must have gn(u,v)—g22(u,v)=g12(u,v)=0 in B, which

proves the necessity.

On the other hand from (4) it follows that

16
dw dw

, ... ... . . ^dυJ i '\du dv dv du)

^ ZJHT"I τ i ~ j "^IT"/ t \ 7 " l ^JLJ\^—-^-~-^—-^-)

KOV' \ 0 ί ) / )\ i=i\OU OV UV OU'

(u, υ)-g12(u, v)2)

= {gn(u> v)-g22(u,v))2+4'g12(u, v)2.

If the correspondence of (u,v) onto S satisfying 1°, 2° is conformal, the right-

hand side of (6) vanishes. Hence we must have

dz* Λ dz* π 1 o
— = 0 or 5 — = 0, z = l , 2 , , n .
dw dw

But the first case cannot occur on account of the orientation-preserving property

of the mapping (u,v)h^S (cf. Remark 2 below) and zι(w) (i=ly2, « ,n) are holo-

morphic in a neighbourhood of int /, i.e. 7 is an analytic arc. q.e.d.

REMARK 2. Of course the simple Cr-smoothness or analyticity of arcs are

local properties and the context of the theorem remains invariant under the

positive orthogonal transformation of Rn. So we may assume without losing

the generality that every projection #'(loc γ) (/=1,2, •••, n) is a simple arc, that

the sufficiently narrow surface-portion S is an embedding into Cn=R2n and that

the complex coordinate z\w) (£= 1,2, •••, n) has a Jacobian | dzljdw \2— \ dz'jdffi | 2

of definite sign in some neighbourhood of int /.

Within a similar circle of ideas we can show

Theorem 6. Let S be an arbitrary dίfferentiable surface-portion in Rn.

Then there exists a suitable complex surface-portion S with the following properties :

1° S lίesinCn;

2° the projection of S into Rn just coincides with S

3° S admits an isothermal coordinate w=u+V — I v at the point where it

is totally differentίable if and only if the mapping w\-*S is derivable either in w or
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in w on its definition domain;
4° w h-> S is injectίve if and only if w\->S is injective.

Proof. Suppose that S is represented by an equation x=f(x\u,v)y x\usv),

•",xn(u,v)) on a region B in the w=u+V — 1^-plane. Of possibly various com-

plexifications of our real surface S we are merely concerned with the simplest

one at present, which serves us fairly well. Denoting by {yι,y2, " ,yn) a permu-

tation of (xι,x2, •• yx
n) such that y 3=x* for all z=l,2, ••-,#, we set zi=xi-\-\/ — ly\

Then we have a complex surface-portion S represented by the equation zi=zi

(u,υ) (z=l,2, •••,//) which satisfies the conditions 1°, 2°. At the point where

x\u,v) (z=l,2, •••, n) are totally differentiable, we have

( 7) 2 ±?f ( ^ ) = gu(u, v)-gju, υ)-2V-lgju, v),
* = i OW \0W'

(8). 4 Σ
dw dw

u(u, v)—g22{u, v))2+^gl2{uy v)

similarly to (5), (6), the components of fundamental forms at the right-hand
side being referred to S. Assume the coordinate w to be isothermal for *S. Then
either dz^dw or dz^dffi must vanish identically for every /=1,2, •••, n on account
of (8). The converse is immediate from (7).

Next let \x\w), x2(w)y'~,xn(w)) be injective but let z(w^)=z(w2) for some
parameter values wlyw2. Then we have yi(zo1)=yi(w2) (/=1,2, •• ,w) by defini-
tion and hence xi(w1)=xi(w2) (ι"=l,2, ••-,//). Therefore w1=tv2, showing the
injectiveness of z(uyv), and vice versa. q.e.d.

DEFINITION 7. If an isothermal coordinate w of the surface S satisfies
dzldw=0 for the coordinate z of some complexification S throughout the
interior of its definition domain, we call w\-+S to be a holomorphic extension of
S into C\

3. Statement of the main theorem and quasiconformal continua-
tion of a minimal surface

A vector-valued C2-smooth function x{u,v)=\x (u>υ) is called to be a

\χn(ύ, v)l
harmonic vector in a region B of (w^)-plane, if each component x^u.v) satisfies
the Laplace differential equation

9 ^ + 9 ^ = 0 ) i = l , 2 , . . ,n
our ovΔ

in B.
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DEFINITION 8. (Courant [6], p. 100). A minimal surface spanning a given
contour Γ is the differentiable surface with the boundary curve Γ, which is
represented by a harmonic vector j(w, v) and for which (uy v) is isothermal in
the interior of its parameter domain.

In the present study we restrict ourselves to the minimal surfaces spanned by
a Jordan contour. Consider a Jordan curve Γ: x=%(u, v) in Rn, which shall be
parametrized in such a way that, as the parameter w runs around the boundary
of a domain, say B+, counter-clockwise, the vector l(w) describes monotonically
the curve Γ exactly once: Γ is just the bounding frame of our minimal surface
inquired. First we pose

Assumption I. The contour Γ spans at least one minimal surface So with-
out boundary branch points defined on B+,

The above hypothesis should be taken for granted. Based on Assumption
I, our reasoning will make full use of the results of the following statements
henceforth:

1° there exists a vector-valued function x=%(w) which is harmonic in B+

and is continuous on clo B+

2° the parameter w is isothermal with respect to the harmonic surface

Now, we wish to notice below that it is not so hard but is rather natural to
replace the analyticity of the subarc γ appearing in the aforesaid Courant's
conjecture (or equivalently in our extension problem) by the C3-regularity. So
we pose

Assumption II. The contour Γ contains a non-singular simple open
C3-smooth subarc γ with the parameter interval int /.

Lemma 2 (Hildebrandt [11], Nitsche [12], pp. 306-312). Under As-
sumptions I, II let l(w) denote the harmonic vector in B+ which spam the minimal

surface So. Then l(w) is of class C2[int / ] .

REMARK 3. Our stand-point is such that the word Cr-smoothness of arcs
should be understood as the one we have fully discussed in introducing Defini-
tion 2. According to Gulliver-Spruck [10] (p. 331), however, the smoothness
of Γ (accordingly, of γ) is originally meant by the smoothness induced from
the minimal surface in question. If one adopts this definition, our assumption
posed on y in the following Theorem 7 can be weakened, at least formally, up
to the regular C2-smoothness.

Now let us announce our main result which we shall prove in the next

section:

Theorem 7. Under Assumptions I, II the contour Γ spans at least one
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minimal surface which is prolongable beyond the non-singular open subarc 7 of Γ
as a minimal surface.

The main body of its proof will be preceded by some preparations con-
cerning the boundary behaviour of harmonic functions as well as the dependence
of solutions of an ordinary differential equations on the initial condition.

Lemma 3 (Zygmund [21], pp. 102-103). Let U(w) (w=peΛ/~1<>) be a real-
valued function continuous on \ w \ < 1 and harmonic in \ w | < 1 such that 3 U(e^-1Θ)I
dθ exists and is of class Cι[]θu Θ2[] (0<θ1<θ2<2π). Then

(a) MmdU{peΛ/^)ldθ=dU(eχ/^)ldθ\
P-ϊl

(b) lim dUίpe^^^/dp exists and is continuous on ]θly Θ2[.
P-*-l

The convergences are uniform on every closed subίnterval of ]θ1} Θ2[.

Lemma 4 (Petrovski [14], pp. 96-97). Let x=t(x1

9 ",xm) be an m-vector
and let an m-vector-valued function f(t,x) together with its m partial derivatives
df(t,x)/dxi (/=1,2, •••,/«) be continuous in a product-subregion B=JχB0 of Rm+ι,
where BQ is a subregion of Rm and J= {t \ a<t<β}. Then to any point (τ0, a0) of
B there corresponds a constant q>0 such that for every (τ,α) in the open subinterval
{T I I T—τ01 <<?} x {a I I a—a0 \<q} of B the solution x=X(t T, a) of the differential
equation

(9) § = / ( ί ) X ) ' ((*>*)ei?)
satisfying the initial condition X(τ;τ,a)=a, known to exist uniquely, is differentiable
in the variable a=t(a1, ',am)y and further dXζt τ^cήlda* (/=1,2, •••,#/) are con-
tinuous in Jx {r I I T—TQ I <<?} X {α I I α—a0 \ <q}.

Taking an arbitrarily small positive number ^(<1), we fix it once and for
all. Notice that the quantity | d^jdu \ has a positive minimum on the closed
subinterval I' = {u\ —l+η<u<l—η} of /. Let us denote by γ ' the restriction
of the arc γ to the parameter interval /'.

Theorem 8. In a sufficiently small neighbourhood of Γ the minimal surface
So is an embedding into Rn.

Proof. It suffices to show the following fact: there is a positive number
δ(<l) such that the restriction of the mapping w\-+l(w) to the subregion

B+'= {(u,Ό)\—l+η<U<l—η,0<υ<8}

of B+ is an injection.
Suppose, contrary to the assertion, there were a sequence {δv}v=i)2, •• decreas-

ing to zero such that the rectangle Bϊ'={(u,v)\ — \-\-η<u<\—η,
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contains a pair of points w{,,w" satisfying £(«>£)=£(«;"). The formers cannot
contain any respective subsequences with distinct limit points, since J is simple.
Hence they must cluster at a single point wo^Γ. On the other hand every z-th
coordinate x*(w) of the vector l(w) has at least one stationary point a* on the seg-
ment connecting w'v with w" (z=l,2, •••,#). For every i^a* tends to w0 as P-^OO,

since both w'v and w" approach a single point w0. It must follow that d^jdu
vanishes at w0 (Lemma 3), contradicting the non-singularity assumption of 5 on
/'. q.e.d.

A. Let us denote by Sf the restriction of So to the subregion B+r of B+.
Let the unit open disk in the p e ^ -plane ( 0 < p < 1, Θ^R) be a conformal image
of B+ and let the closed ^-interval [θl9 θ2] come from /'. If we write ϊ)(p, θ)=
l(zo)9 both 92^(p, θψθ2 and 9t)(p, 0)/9p are continuous for pG[0, 1], 5 G [ ^ , 02]
(Lemma 3 (a), (b)), hence is 92)ζ(p, θ)jdρ2 seen to tend to a finite limit as p-> 1
on θι<θ<θ2 on account of the Laplace equation.

B. The normal directions to Γ and to the closed circumferential arc

eΛ^~^θiJe^~XΘ2 corresponds to each other. Therefore 92£(w, v)/dv2 can be defined
continuously up to B+ U /'. Further 32ϊ(w, v)/dv2 Φθ on /' for similar reasons.
The non- vanishing continuous n-vector-valued function b{x)=\d2y,(u,v)l
dv2]w= ζ~1(χ) is defined on some closed subset of locj(clo B+f) including loc γ'
(Theorem 8). The Lebesgue's theorem allows us to extend b(x) continuously
up to the whole space Rn. There is an w-dimensional neighbourhood Λ^locγ')
of loc γ ' in which the non-vanishing continuous vector field {b(x)} is defined.
By solving the differential equation

^ = 6(x), (ieJV(loc γ'))
dv

with the initial value \pl{u, v)ldv\w=r\χ) on loc γ r, we have a vector field {p(x)}

in ^(locγ^), which agrees with [9ϊ(κ, v)jdv\w=ι-ι{x) on loc 50nΛ^(loc γ7). It
amounts to saying that the vector field \pl{u, v)ldυ]w=r1(x) on loc S0ΓiN(loc y')
has been extended up to iV(loc γ7) in ^-smooth manner.

C. There is an ^-dimensional neighbourhood iV^loc Y) of loc γ7 in which
p(jc)Φθ: for, p(x)=[dl(u, v)ldv]w=z-1(χ)φ0 for all jcelocγ 7, since otherwise
gn{uyv)=g22{u3v)—Q somewhere on /', which contradicts the non-branching char-
acter of £(eo). Denoting the (^-smooth components of the non-vanishing w-vector
p(x) by p1(x),p2(x), " ,pn(x), we consider the quasilinear partial differential equa-
tion

(10) g f£
as well as the system of ordinary differential equations
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dxX dx2 dxn

We can solve (10) locally with the initial arc γ ' to obtain a smooth surface £ '
comprised in the n-dimensional neighbourhood such that clo (loc S') Π
clo (loc S0)=loc Y. Let y be an arbitrary point on loc γ ' and let Cυ(y) the solu-
tion arc of (11) through y. Then Cv(y) intersects γ / orthogonally and is known
to lie on *S". Let us denote by δ' the minimal length of the family of arcs
{Cv(y)}yeioCr It is evident that δ'>0.

D. Now let us start from one end point Xi=ϊ(—lJrη) of γ ' to proceed
along the arc C^Xj) on loc S'. We stop just after the trip of length δ' at the de-
terminate point x*. The subarc of Cυ(x^) with the extremities xly x* shall simply
be denoted by C".

Given any point t on loc C", a unique (n— l)-dimensional submanifold
through t intersects the vector field (p^x), p2(x), " ,pn(x)) orthogonally (cf.
Shibata-Mohri [18], Theorem 3), whose meet with S' shall be denoted by Cu(t).
Denoting by x2 the other end-point ϊ(l—rj) of γ', we write x**=loc CM(JC*) Π
loc Cυ(x2). Thus we have obtained a subquadrilateral Ω(xux*,x**,x2) of loc S'
bounded by the four arcs γ', C, CM(JC*) and Cυ{x2). We are going to represent
the quadrilateral Ω ^ , x*, x**, x2) by the parameter (u, v) ranging over the plane
rectangle

To this end, to any point xeΩ(x 1 ? x*, x**,x2) we put the Cartesian coordinates
(uy v) into correspondence in the following way:

1° u is the parameter value representing the point loc Cΰ(x) Π loc γ ' as the
one on the boundary subarc 3*S0 of the original minimal surface So

2° v is the length of the subarc of C with the initial point x1 and the
end-point loc Cu(x) Π loc C".

Then the correspondence B~'^{u, ^ H x G i l ^ j c V * * , 2̂)̂  which we shall
still denote by l(u, v), is one-to-one. Lemmas 3, 4 and the compactness of
cloB"', allows us to conclude that the components gn(u,v),g^UyV),g22{u,v) of
the fundamental form of the closed subsurface Ω(x!,x*,x**,x2) with respect to
those parameters (u,v) are bounded above on cloi?'. From the construction
of the parameters follows gi2(u,v)=0 and further we can see by interchanging
the initial and variable points in Lemma 4 and Theorem 3 in [18] that gn(u, v),
g22(u,v) have a positive lower bound on cloB~'. Therefore the Jacobian
^/gu(u> v)g22(u> v)—gi2(u> v)2 never vanishes and there exists a constant KQ>\
satisfying

gn(u, v)+g22(u, v) < [(K2o+l)IKo] Vgu(u, v)g22(u} v)-gl2{u, v)2
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throughout B+{JΓ\JB". The extended surface S 0 U7'US" has obviously a
finite area, say V. We have proved

Proposition 1. The minimal surface So with the parameter domain B+ is

prolongable across the subarc 7 ' of 7 up to So U 7 ' U *S" in the following manner :

1° *S" is represented injectively in the parameter domain B~' contiguous to B+

onΓ;

2° the parametrίzatίon B+ U / ' U B~ 'ι-> So U 7 ' U Sr is K-quasiconformal for

someK(>KQ).

Hereupon let us make mention of a slight modification of the familiar
modulus-estimate for plane quadrilaterals which was originated by Grό'tzsch
and generalized later by Ahlfors (cf. Ahlfors [2], pp. 6-7):

Lemma 5. Let ζ=ψ(w) be an orientation-preserving U-derivable homeomor-
phism of a rectangle i?={&?|0<Re w<a, 0<Im w<b} onto an arbitrary plane
curvilinear quadrilateral Ω satisfying \dψjdw\2— |9ψ/9fct;|2>0 almost everywhere
on R. If ψ(w) is absolutely continuous in 2-dimensional sense on R} we have

(\2λ m α X [ M o d Ω Modi?] 1 ff |9^/8«>| + |9^/9iPl d
( 1 2 ) m E X lϊvϊodΛ' Mod ΩJ -2V=ϊabi) I dψldw | - | dψ/dw \ d w A d w ') - | dψ/dw \

Proof. Since both sides of the inequality (12) is invariant under conformal
mappings of int Ω, it suffices to show the validity of (12) for the case in which
Ω is a rectangle R'={ζ\0<Re ζ<a\ 0<Imζ<bf}. Further we may assume
a'jbf>alby since otherwise we have only to interchange the order of those co-
ordinates. The dilatation-quotient of ψ(w) is well defined almost everywhere in
R. If it is not integrable over R, the conclusion takes place trivially. So we
may assume that the right-hand side integral is finite. For almost all vo^[O, b]
we have

u dw
-~-\ )du
dw

Integration of both end sides over 0<v<b yields

and it follows by Schwarz's inequality that

|3-ψ /9ro|-|8-ψ./9M;|
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that is,

~ br b

q.e.d.

4. Prolonging the minimal surface

From now on we shall write B' for the region B+ U int 7' Ui?~' for short-
ness' sake. This is nothing but the definition domain for the Dirichlet's func-
tionals we intend to minimize.

Consider the family 3£— {Xλ(w)}λeΛ of real /z-vector-valued continuous
functions on the closed region clo B' satisfying the conditions 1°~7° described
below:

1° the mapping x=Xλ(w) provides a representation for a differentiable
surface-portion Xλ with the parameter domain B'\

2° Xχ(zo) sends dB+ onto Γ homeomorphically in the same sense as
S(«0 did;

3° X λ (7')=locτ';
4° Xλ(w) is injective on B+' U Γ U B~'
5° the range Xλ(clo ^ U i n t B~r) comprises the range Xλ(clo B+) as a

proper subset;
6° there is a finite constant M such that \Xλ(w) | < M o n β ' for all λ E Λ ;
7° there exists the coordinate transformation ω=φλ(w) of cloi?' onto the

closure of the unit disk Δ = {ω | | ω | < 1} such that ω is the isothermal parameter for
the surface-portion Σλ in Δ with the normalization φλ(0)=0, φ λ ( l )=l admitting
the holomorphic extension and that φλ(w) is a mean i£-quasiconformal homeomor-
phism, namely

\\[D(w; φλ)+(llD(w; φλ))]duΛdv <(
B'

[\[\dφxldw\2+\dφJdW\2]duΛdv <π(K2+l)βK.

REMARK 4. One might assume beforehand that no m^Z+ smaller than n
exists satisfying loc Γ c J ? w . For otherwise, the concurrence functions could be
restricted only to the m-vector-valued ones, because the integrand of the energy
functional to be minimized in Proposition 3 satisfies trivially

Proposition 2. The prolonged surface SQ\Jtnt γ ' U S ' admits not only an
isothermal parameter but also a holomorphic extension.

Proof. A. We solve the Beltrami differential equation dωjdW=h{w)dωjdw
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with the coefficient

to obtain the unique homeomorphism ω=φ(w) of Br onto Δ normalized by φ(0)
=0, φ(l) = l. This is the desired coordinate transformation such that ω is an
isothermal parameter on Δ for the surface So U int γ ' U S'.

B. We shall show that the surface Joφ'^ω) represented by the isothermal
parameter ω extends holomorphically on Δ in the following way.

(a) Since ^Coφ~\ω) is harmonic on the simply connected region φ(B+), there
exists a real-valued harmonic function yt=yt(ω) conjugate to the z-th coordinate
xtz=χt(^ω) of the surface considered, which is determined up to an additive con-
stant. Obviously zi=xi+V=^yi satisfies d^/dω^O on φ(B+) ( ί=l,2, —, ft).

(b) On the other hand, however, we don't know yet about the harmonicity
of x%(ω) off φ(B+). So we cannot but complexify the questioned real surface-
portion by utilizing only the isothermal character of ^(ω) in a neighbourhood
of the border φ(Γ) (1=1,2, -- yn) (Theorem 6). But in order to visualize those
circumstances more vividly, we give first a little detailed illustrations for the
simplest case n=3.

The individual complex coordinate zι (z=l,2,3) introduced in Theorem 6
amounts to nothing but the projection of the surface into the respective co-
ordinate-plane regarded as C in the space R3. Keeping the simplicity of j '
in mind, let us concern ourselves only with a restriction of the surface to a 3-
dimensional neighbourhood of an interior point to loc 7'. According to The-
orem 6, x\ω)-\-\/— 1 x2(cύ) is either holomorphic or anti-holomorphic.

In the first case the projection map loc (So U int 7' U S')\-*z1=x1+χ/' —1 x2 is
sense-preserving. Then x2-\~\/ — 1 x3 is not anti-holomorphic, since otherwise,
x3-\-\/ — 1 x2 must be holomorphic, accordingly χ3—χ1=const, identically, which
cannot occur in view of Remark 4. Hence x2+\/ — 1 x3 is holomorphic. Analo-
gously xz-\-\/ — 1 x1 is holomorphic, because not anti-holomorphic.

If, on the contrary, x\ω)-\-\/ — 1 x2(ω) is anti-holomorphic, x2-\-\/ — 1 x1

y x3

+ λ/ — 1 x2, x1JrV — 1 x3 are holomorphic.

(c) Let w0 be an arbitrary point in Γ and let a disk-neighbourhood, say p-
neighbourhood, of w0 be denoted by Np(w0). Write ω0 for φ(w0). As was seen
in (b), to any (̂COQ) (i= 1,2, , n) there corresponds a unique y'(COQ) of a permuta-
t iony,^ 2 ' , •••,/" of JC1,^2, •• ,,x:M anyhow, such that Λ?ί(ω0)+v/ — l/ '(ω 0 ) is holo-
morphic. The inverse map of the homomorphism x1,*?, •--,xnt->y1',y2/, •••,/" is
also one-valued by the same reason, hence isomorphic. If p > 0 is sufficiently
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small, the above circumstances occur for all ω of φ{Np(w0))y because γ ' is simple.
The closed interval /' is covered by a finite number of such neighbourhoods
R W ί . o e / ' Therefore zi/(ω)=xi(ω)+V^Ϊ/'(ω) is holomorphic on φ(B~'
U int /') so far as we choose δ '>0 sufficiently small in advance.

(d) Since Re z\ω) = Re zi\ω)=xi{ω) for all ω(Ξφ(N(Γ)ΌB+)y zif(ω) turns
out the unique holomorphic continuation of z*(ω) on Δ. q.e.d.

Proposition 3. The family 3C contains at least one X{w) for which the energy
integral

E[X{w)] = 2 5JJ g ' duΛdv = ~\\l(gn(u, v)+g22(u, v)]duΛdυ

over B' is finite. Every minimizing sequence for this functional on 3C constitutes a
normal family on clo Br and is compact in the topology of uniform convergence on
clo B'.

Proof. 3£ is non-void. In fact, the quasiconformal representation JC—%(w)
of B' onto So U int Γ/ U *S" whose existence has just been established by Proposi-
tion 1 fulfills evidently the above conditions lo<^6°. As to the isothermal co-
ordinate ω=φ(w) of the surface S0\J7fliS\ the composite mapping Y(ω)=JCo
φ~\ω) induces a holomorphic extension (Proposition 2). Furthermore x=%(w)
fulfills E[i(w)]<(K2o+l)VIKo.

(a) The sequence of holomorphic extensions induced from the minimizing
sequence for E[X(w)] is equicontinuous on clo Δ; suppose the contrary. It con-
tains a sequence {Zv(ω)}v=12>...such that |Zv(ωί)—Zv(ω")| >c for some point-se-
quences {ω£}v=12..., {ωί/}v=i)2, •• o n clo Δ and with a positive constant c. We lose
no generality in assuming lim ωί=lim ω ^ ω o ^ c l o Δ. To any small £>0 there

corresponds a vo=vo(ε)^Z+ such that |ω(—ω"\ <£ so far as v>v0. Fix such
a v for a moment. At least one coordinate-index, say /, fulfills the inequality

(13) |s;K)-* « ) l>Φ

Though the number / varies with i -^oo in general, we may assume, by choosing
a suitable subsequence of v=vo,vo-\-l, ••• if necessary, that (13) holds good for all
sufficiently large index v. Let κ(ρ) denote the circumferential subarc of {ω \ ω—
ωol — p} comprised in Δ ( £ < p < l ) . Since

I I dzι

v(ω) I > c\n for every p <Ξ [£, 1],

we have
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hence

{cψnπ)\og{\lS)<Vy

which is absurd.
(b) {φλ(^)}λeΛ is equicontinuous on clo B'. Suppose, on the contrary,

there were sequences {ωC}v=i,2f. > {zϋ"}v=i,2,.c:clo B' and {φv(α>)}v=i>2, such that
\imw^\\mw"==wQy while \φJwQ—φJw(/)\ >c>0. Set ωi=φJwζ)y ω£'=φ v

(α>") To any (but smaller than min{|ίϋo | , dist (wo,dB')} if &>0φ0) positive
£ there corresponds a vQ^Z+ such that |«;£—wo| <£, \w"—zuo\ <£ for all v>vQ.
Let /c(p) denote the subarc of the circumference \w—wo\ = p (>£) lying in B'.
Let p vary over the interval [£, p0], where po=max {| wQ |, dist (wo> dB+)}. Then
the diameter of φ-»(κ(ρ)) is not smaller than c. From

(Lemma 1) follows

(cond. 7°), which is absurd.
(c) The minimizing sequence for the functional E[X(w)] defined on the

space 3: is equicontinuous on clo B' ((a), (b)), hence a normal family (cond. 6°),
namely it contains a subsequence {^v(^)}v=i,2, •• uniformly convergent on cloB'.

(d) Set Ξ(w)=lim Xv(w) on clo B'. Then Ξ(w) is one-valued continuous
V->oo

mapping of cloB' into Rn and has the properties 2°, 3° postulated in this pro-
position. We show the injectiveness of a(w) in the neighbourhood of /'. De-
note the normalized isothermal coordinate of X^(w) by φ-,{w) and the holomorphic
extension of Yv(ω)=Xvoφ~\ω) by Zv(ω). Let {vk}k=12... be a sequence of indices
such that {φvk(w)}k=i2 ••• and {ZVk(ω)}k==12t... converges uniformly on cloB' and
cloΔ respectively ((a), (b)). Set φ(zί;)=lim φVjk(w), Z(ω)=lim ZVjfe(ω). By virtue

of uniform convergence of {ΦV^)}A=I,2, . °n clo 5 ' the limit φ(w) never sends
85' to int Δ, i.e., φ is a surjection of cloB' onto cloΔ. Next suppose φ(w) takes
the same value ω0 at two distinct points w\ o/'eclol?'. Given any small £>0,
there is a vQ such that \φ^k{w')—ωo| <£, \φ^k{w")—ωo| <8 if k>v0. Describe
the circle centred at ω0 with radius p, where p< \ωo\ or p < l according as ω0φ0
or ω0—0. In the same way as in (b) we have

(J
|ω-ωQ|=p

(14) < ( j (13ψ-;/9ω I +1 dφ ΪJdω \ )PdθJ
|ω-ωo|=p
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< 4τrp ( *( I dφ-^dω \ 2+ | dφ'^dω \ 2)pdθ .
Jo

Hence

(15) ~~& ~

(cond. 7°), which is absurd. Therefore φ(w) is a homeomorphism of clo 5 ' onto

clo Δ. Since Z{ω) is injective on φ(B+') by Hurwitz's theorem, B(w)=lim Xvk(w)

=lim Z^koφyk{w)=Zoφ{w) is also injective on B+f.

(e)υ Henceforth we write simply v in place of the index vk. Recall that

φ*(w) shares the ACL-property with X^(w) (cf. Bers [5]). Take an arbitray C°°-

function T(w) supported by B'. Then it follows from the definition of L2-

derivatives that

ozo

/ ^ dw

Since {φv(̂ )}v=i,2,... is a Cauchy sequence in the topology of uniform con-

vergence on clo B', the sequence {\l (dφvldw)T(w)duΛdv}v=:12t... of linear
B'

functionals in Tis fundamental in the space Co[B']. The limit

ΨΓ7Ί = lim ( ί ^ T(w) duΛdvJj

is bounded in the space L2[B']. Riesz's theorem ensures an inner product re-

presentation for the limiting functional in T with some element of I?\B'\ which

we denote by dφjdw, namely Ψ[T]=<βφjdw, Γ>. Putting the identity <φv, 9Ϊ1/

dwy=— <3φv/3zc;, Γ> into the relations

lim <φ-φv, dT/dwy = 0= - l i m <(9φ/9w)—(8φv/9w), T> ,

we get

In the same way we can see

= -<βφldw,

1) In this subsection we quote from Ahlfors [1] but without any quasiconformality assump-
tion at all.
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to hold, hence φ is ZΛderivable and its L2-derivatives are dφ/dw, dφjdw above

introduced.

Next given any £ > 0 , there is a vQ=v0(β), such that \φv+k(w)—φ*(w)\<£

everywhere on clo B' for all v> v0 and k= 1,2, . Let κ(p0): | w—w0 \ <p0 be an

arbitrary disk comprised in B'. Consider the curvilinear integral

(

(0<p<p0)

along the circumference, which is well defined by virtue of Lemma 1. Applying

the Schwarz's inequality to the estimate

+ 9φv

dW

uφ-y + β

dw +
9φv+*

dW
J p darg w,

we see

hence

(16)

for almost all pG[0, p0]. Fix such a p at will. On the other hand the Green's

theorem yields

(17)

+
KCP)

dW

J duΛdv

9ίP\ 9M;

Let /ί->cχ> first then let z -^oo. The first and the second terms in the right-hand

side of (17) are equal to mes φv(/c(p)) and mes φv+*(tf(p)) respectively, both

tending to mes φ(κ(ρ))y while the third approaches twice of the double integral of

I dφjdw 12— I dφjdw \2 over κ{p) owing to the weak convergence of those derivatives

considered. We conclude from (16) that

dφ2

dw
8φ
dW

jduΛdv ,

which is valid for every p e [ 0 , p0] by continuity of both sides. It follows

that every Borel subset e of Δ has the measure expressed by the integral of the

Jacobian of φ(w) over φ~\e), which shows the absolute continuity of φ.

(f) We can assert that {Φ71(ω)}v=i>2,.. is the normal family on clo Δ refer-

ring to the absurdities (14), (15) in (d). Moreover, {φ71(ω)}v-i,t2, •• i t s e l f ί s s e e n
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to converge, without mentioning any subsequences, uniformly on clo Δ towards
φ~\ω) by virtue of their injectiveness. The partial derivatives dφ

dw)l( I dφjdw 1 2 - I dφjdϊϋ |2) and dφ-^dω=(dφφw)l( I dφjdw 1 2 - I dφjdw 12) (v
= 1,2, •••), defined almost everywhere on Δ, satisfies together with an arbitrary
function Γ(ω)eCίΓ[Δ] the relation

lim<(d(φ?-φτh)idω), τy = o (k= 1,2,...).

Hence follows the ZΛderivability, absolute continuity of φ~\ω) and the weak
convergence dφ-ιjdω->dφ~ιldω, dφ~ιjdτδ-^dφ~ιldτδ (i;-*oo) in quite the same way
as in (e). Therefore φ(w) turns out an isothermal parameter of the differentiable
surface represented by x=Ξ(w).

(g) Notice that Lemma 5 holds good in the fashion

(Mod *»(*) M o d B' 1 < J(18) max (Mod *»(*) M o d B'. 1 < - J _ (ίz>(«,;Xλ) * Λ *
V ' I Mod B' Mod Zλ(β')^ ~ # ' J}

for all X^DC, since both the moduli of quadrilaterals and the dilatations of
mappings are conformally invariant.

For shortness' sake we prefer hereby the abbreviations below for some specific
points in R", namely, the image-points of the corners of B~':

O» Xtίl-v) = O2,

l+η-V=ϊδ') = Qlt Xλ(l-V-V=ϊδ/) = Q,

Further we mean by saying simply 'distance' the one on the subsurface locXλ(Br)
for a moment. Any two of the four vertices Oy,Qy (7=1,2) of the quadrilateral
locXλ(2?~') stand away at a distance with some positive lower bound for every
λ £ Λ . For otherwise, suppose that only one pair of them could approach
each other, say, Ox and Q1 for example, while the others not. Regarding the
Jordan region Bf as a quadrilateral Bf with vertices —1+77, — \-\-η—V — 1 δ',
1—97, I + N / —1 and applying (18) to B', we arrive at an absurdity contrary to the
condition 7°. On the other hand under the assumption that three of those four
vertices might happen to approach simultaneously, say O^Q^Qg for example,
application of the same lemma to the quadrilateral B' with vertices at —
1—η—\/ — l δ ' , 1 + N/ — 1, — 1 + \ / — 1 leads to a similar contradiction.

For any fixed λ, the shortest distance d between a pair of opposite sides

Oχ, O2 and Ql9 Q2 of the quadrilateral Xλ(B~') is attained by the one of some

point PjeOi, O2 to some point P 2 ^Q!, Q2. When λ varies, we see first that P1

approaches neither Oj nor O2 and that P2 approaches neither Qx nor Q2 with the
aid of the super-additivity of modulus and the condition 7°. Therefore
inf d = 0 would yield again the same contradiction.

(h) The space of L2-derivatives is weakly compact (cf. Akhiezer-Glazman
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[4], pp. 4*47):

j j( I dφldw 12+1 dφjdw 12) duΛdv
B'

< lim inf (ί(Idφv/dw\2+ \dφjdw \2)duΛdυ,
B'

\\[D(w; φ)+(l/D(w; φ))] duΛdv
(19) J/'

B'

< lim i n f ^ - 1 f ((1dφζ'/dω12+ |dφ^Qm\2)dω/\dm

= lim inf [[[D(w; φv)+(ί/D(w; φv))]

hence the isothermal coordinate φ(w) of H(w) also satisfies the condition 7°.

Since Z(ω) was holomorphic in Δ ((d)), x=a(w)=Zoφ(w) turns out to be
one of the representations of a certain differentiable surface with contour defined
on cloi?' satisfying the conditions 1°~7° and the proof of the proposition is
completed.

If we denote by Σo the differentiable surface represented by x=Ξ(w) on
clo B\ we have

Proposition 4. The family 3C contains at least one mapping x=a(w) which

minimizes the functional E[X(w)] within 3C. x=S(w) provides one of the param-

etric representations of a certain differentiable surface Σo with contour.

The proof is immediate in view of the weak compactness of L2[B'] again.

Now, in broad terms, a minimal surface is characterized by the harmonicity
of the surface with respect to an isothermal parameter. The thing well known
but of some interest hereof is that the limiting surface above constructed, the
solution to the minimum problem for the Dirichlet integral, reveals a kind of
holomorphy of the parametrization automatically (cf. e.g., Courant [6], pp. 105-
107). It seems to come from the simple connectivity of the parameter domain
and we propose an alternative process showing the holomorphy before the har-
monicity in a series of propositions as follows:

Proposition 5. The dilatation-quotient D(w; φ) of the coordinate-transfor-

mation ω=φ(w) of the limiting map x=l=ί(w) is not only finite but also equal to

1 almost everywhere on B'.

Proof. The derivatives of the function ω=φ(w) are finite almost everywhere
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on Br and φ~\ω) is a measurable mapping (Proposition 3 (e), (f)). Hence D(w;φ)
< + oo almost everywhere on B'.

Next suppose impossibly there were a subset e of B' of positive measure on
which D(w; φ ) > l + £ holds almost everywhere with some constant £>0. The
Beltrami coefficient μ{w)={dφjdw)j{dφjdw) vanishes nowhere on e. Let Im ζ>0
be a uniquely determined conformal map of Br by means of the holomorphic in-
jection ζ=F(w) with the normalization F(—1)=0, F(—l+η)=l, F(l—η)=°°.
Let h(ζ) be a complex-valued measurable function in Im f > 0 such that

Γarg h(ζ) = arg μoF-\ζ)+{*β), (mod 2πh

\θ<\h(ζ)\<\μoF-\ζ)\ I lςe*V»>

[h(ζ) = 0 elsewhere.

There exists a unique quasiconformal homeomoprhism G(ζ) of Im ξ">0 onto

itself satisfying dGjdξ=h(ζ)dGjdζ and leaving the three points 0,1, oo fixed. If

we set B(zo)=EoF~loGoF(w)f we have

D(w;E)<D(w;B)y (w(Ξe)

D(w;a) = D(w;S) elsewhere on B',

or equivalently

D(x; Ξ"1) < D(x; H"1), (xeS(ί))

D(x; Ξ"1) = D(x; Ξ"1) elsewhere on loc Σo

Hence

[B] = ί p(x; E-*)+(llD(x; B^))]dσ

[D(x; B-^+il/Dix; Ξ" 1 ))]^ = 2E[S\

(iσ being the area-element of Σ6), which contradicts the minimality of E[3\.
q.e.d.

Proposition 6. The original parameter w itself is isothermal for the limiting

surface Σ6 on B\

Proof. Since dφ/dw^O almost everywhere on B' (Proposition 5), φ(w) is
holomorphic on B' by Morera's theorem. Therefore Zoφ(w) is holomorphic on
B' too. The conclusion follows immediately from Theorem 6.

Corollary 1.

\\[D(w; φ)+(llD(w; φ))]duΛdv<(K2+l) [ l + ( l -
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j j[ I dφjdzυ IM-1 dφ/dW | *] duΛdv <π(K2+ \)J2K.

Corollary 2. x=a(w) belongs to Cβo[Br].

Proposition^. x=S(w) is harmonic on Br.

Proof. Let h{w) denote an arbitrary complex-valued CSΓ-function supported
by a compact set κdB\ From the h(w) we make a deformation

B(w) = B(w+ah(w))

of E{w) with an arbitrary complex constant a such that ah(w) is real on /'. If

\a\ is sufficiently small, B(w) enters 3£ (Corollary 1). Hence

(20) E[E] > E[B].

Comparing | d E | 2 with |da\ 2 in regard to the direction-independent term \dw\2

and taking account of arbitrariness of α, we see, after a rather lengthy but routine
computation, that (20) implies

gn-g22)-2V^ΐg12] (dhldW)duΛdv = 0

(Lemma 1), or equivalently

(21) [\[(gn-g22)-2V^Ϊg12] (dhldw)duΛdv = 0 ,

where gn= \ dBjdu \ \ g12=<βBjduy 9Ξ/9^>, g22= \ dBjdv \ \ Applying the Green's
theorem to (21), we get

ii-^22-2\/ : =T g12ψW]h(w) duΛdv = 0

for any h<=Co[B'] (Corollary 2), whence d(gn~g22—2V^Ϊg12)ldw must vanish
identically. It amounts to saying that d2Eldwdw=0 holds everywhere on intB r.
q.e.d.

In consequence of Propositions 6 and 7 Σo has turned out a minimal surface
with the parameter domain clo Br. Further 9(locΣo) contains loc Γ \ loc γ '
whereas loc Σ6 comprises int (loc 7r) in its interior. The restriction Σo of Σo to
B+ is of course a minimal surface bounded by Γ. Since η > 0 could be taken as
small as one wanted, one has a true prolongation of Σo across γ defined on the
parameter domain clo (B+ \JB~). Thus Theorem 7 is proved.

Corollary 3 Assume that the contour Γ contains a sufficiently smooth nσn-

2) This treatment probably originated in Gerstenhaber-Rauch [9],
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singular arc and that Γ bounds a unique non-branching minimal surface Σ o . Then

Σ o can be continued beyond γ as a minimal surface.

Corollary 4 (Extension of Theorem 4). Suppose a non-singular simple open

C3-arc 7 admits at least one polygonal extension which bounds a minimal surface

without boundary branching. Then γ is an analytic arc.

Proof. Let γ be represented with the parameter interval int / and let y'

the restriction of γ to Γ~[—ϊ-\-η} l—η]. There is a simple polygon Π connect-

ing the both extremities of locγ', such that ^LJΠ is a homeomorphic image of

dB+ bounding a minimal surface So without boundary branch points. Among

all the minimal surfaces bounded by loc (γ' U Π) there is at least one, say Σo,

which is prolongable beyond int Y up to a minimal surface Σ6 with an isothermal

parameter domain B+ U int I'\jB~f (Theorem 7). Therefore Y (except the ex-

tremities) is an analytic arc (Theorem 5), so is 7 too.

REMARK 5. In contrast to the familiarity with the fact that every compact

smooth surface is made into a Riemann surface with the aid of a suitable change

of local parameters, explicit mentions about the context of Corollary 4 have

hitherto escaped the author's attention regrettedly.
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