Osaka University Knowledg

Quasiconformal mappings of submanifolds in Rn

Title with their application to a problem of minimal
surfaces
Author(s) |Shibata, Keiichi
Citation Osaka Journal of Mathematics. 1981, 18(3), p.

643-667

Version Type

VoR

URL

https://doi.org/10.18910/7912

rights

Note

Osaka University Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

Osaka University




Shibata, K.
Osaka J. Math.
18 (1981), 643-667

QUASICONFORMAL MAPPINGS OF SUBMANIFOLDS
IN R* WITH THEIR APPLICATION TO A
PROBLEM OF MINIMAL SURFACES

Kercur SHIBATA

(Received February 28, 1980)

0. Introduction

R. Courant conjectured in his eminent monograph [6] that a minimal surface
could be analytically extended as a minimal surface beyond any analytic subarc
v of the boundary curve. In comparison with the case where  is a straight
segment he remarked: “The difficulty of the problem will be appreciated if one
notes that the analytic boundary ¢ may conceivably be represented by a vector
whose components are non-analytic functions of the arc-length on the contour
of its parameter domain.”” This question, already elucidated by Hildebrandt
[11] in the affirmative, has undoubtedly motivated the present investigation.

We shall be aware that we often encounter the typical theorems in numer-
ous text books, monographs and papers on the complex analysis of one or several
variables whose assumptions involve analytic arcs or analytic curves, for example:

Let v (resp. 7’) be a non-singular analytic boundary subarc of a plane
region B (resp. B’). If a univalent holomorphic function f(z) maps the region
B conformally onto B’ and further BU v homeomorphically onto B’ U7’, then
f(2) is continued analytically up to BU .

In my previous paper [17] I pointed out the fact that the analyticity as-
sumption in all such statements can be weakened up to the regular smoothness
as a corollary to a general theorem on the Teichmiiller mapping.

Curiously enough, intensive studies concerning the analytic arcs immersed
in the general position of R" (n>3) seems very rare within the knowledge of
this author. According to his opinion, a kind of obscurities against the com-
monness of the term analytic arcs subsisted even in the Courant’s conjecture.

The present memoir has been written from an attempt to clarify those
questions and answer the aforesaid conjecture through a quasiconformal ap-
proach under the much less restrictive situation that v has only to satisfy some
non-singular smoothness. As a matter of fact, a conditioned non-singular
thrice continuous differentiability of v is sufficient.
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1. Notations and terminologies

In this paper nEZ* is always not smaller than 3 unless otherwise stated
explicitly and 7 is the index running from 1 to n. Let 4, A’ be subsets of R".
The difference of the sets 4, A, i.e. the set of elements belonging to 4 but not
to A’ is denoted by 4 \ A’. Thesymbols int 4 and clo A4 stand for the set of
interior points of A and the closure of A4 respectively in reference to the neigh-
bourhoods of dimension considered. The term region shall always mean a con-
nected open set, while domain need not even be open. The notations £, u, v
are used as real variables and w=u-+\—1v, W=u—\/—1v&C. Furthermore
the followings are employed consistently:

I=[—1, 1]: the 1-dimensional unit closed interval;

la, b[={x= R|a<x<b}, everytime a<b;

B*={(u,v)| —1<u<1,0<ov<1}

B ={(u,v)| —1<u<l, —8'<ov<0}/

x="(x', %, -++, &"): the real n-vector with the i-th component &’, or equiva-
lently a point of R" with the i-th coordinate x' (1=1,2,-:+,n).

C"=C"[-] denotes, as usual, the class of functions with the 7-th continuous
derivatives on the point set -. Similarly Cj[B] is the subclass of C'[B] with a
support comprised in the region B.

When x varies in a continuous manner depending on one real variable ¢,
one will obtain an arc v defined by the equation x=x(¢). Here we introduce
the three classes of arcs for later use:

A=A the collection of all simple open continuous arcs whose loci lie in

: the 2-dimensional open intervals;

R";

A" (reZ™): the collection of all non-singular simple open C"-arcs embedded
in R";

A°: the collection of all non-singular simple open analytic arcs embedded
in R".

If x depends, on the other hand, on two independent real variables, say u
and v, or equivalently on one complex variable w=u-++/—1 v ranging over a
subregion of R*=C, one has a surface .S as a 2-dimensional submanifold of R".

In both cases we need sometimes regard those submanifolds merely as
subsets of R" discarding their parametrizations, which is the so-called locus of
the arcs or of the surfaces, denoted by locy or locS etc. henceforth.

The inner product of real n-vectors x, x’ is written as <x, x">, whereas
lx]=V{x, xD.

In reference to a differentiable surface S: x=x(u,?)

gu(u, v) = |6x/8u|2’ 2, v) = |8x/6‘0|2
Lio(u, v) = {0x/[0u, 0x[0v)
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are designated as the components of the first fundamental form of S. The
dilatation-quotient of the mapping x=ux(x,v) is defined in terms of them as

EnteatV (gu—g) +4¢%
D ’ =
@ x) 2V l gngn—gfz l

at points where g,,g,,—g%, does not vanish.

When we take a closed Jordan region cloB for a quadrilateral by marking
four points on 8B, we sometimes write B instead of cloB. The modulus of a
quadrilateral Q can be defined, regardless of whether lying on a plane or on a
surface, directly by means of the path-families or through conformal mappings
onto a rectangle, which shall be denoted by Mod Q.

2. One and two-dimensional submanifolds in R"

Having examined and compared as various defining statements for arcs or
curves included in prevalent monographs on analysis as our eyes could reach
(e.g., Ahlfors-Sario [3], Fleming [7], Nitsche [12], Osgood [13], Radé [15],
Sasaki [16], Springer [19], Viisilda [20], etc.) we finally come to be convinced
that the followings are the fittest for our current purpose.

Let ¥'=ux'(f) (=1,2, :++,n) be an n-tuple of real-valued continuous functions
in a real variable # ranging over the open interval int I=]—1,1[ such that
(1) —1<t,#t,<1 implies 37 |w(t;)—a'(t;)| =£O0.

i=1

Then we understand that a parametric representation (or equation)
(2) ®=xi(t), 1=1,2,,n

of a simple open continuous arc 7 has been set up, calling the point set {x=x(t)
| —1<<t<1} the locus of v and denoting it by the symbol locy. Let I denote
the collection of all orientation-preserving homeomorphisms 7(t) of the 1-sim-
plex I. 4 is non-void, since we have a function

[(1—ay+1y—1]j(1—d),  (—1<t<0)

3 == o, 0=e

with any r& Z* and a constant a<]0, 1[, which is of class C*, strictly monotone-
increasing for —1<¢<1 and satisfies 7(—1)=—1, 7(1)=1, 7O(—1D=7Y(1)
(»=1,2,:).

DeriNiTION 1. Under the term simple open continuous arc lying in R" we
mean the equivalence class of all homeomorphisms of int I onto loc 7 factored
by modulo 4. 1If, in particular, the equation (2) are defined on the closed inter-
val I and fulfill the subsidiary condition &'(—1)=x'(1) for all i=1,2,-+,n, 7 is
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a Jordan curve in R". As an immediate consequence we have

Theorem 1. The concept of a simple open continuous arc or of a Jordan
curve is equivalent to the real 1-dimensional topological submanifold of R".

Next suppose that the representative (2) of v fulfills the conditions below
not necessarily including (1):

1° x(t)isof class C" in int I (rEZ™);

2° lim d°x/dt’ exists finitely for every s=1,2, -, 7;

t>*1

3°  dx/dt +0.
Then we say (under the additional hypothesis lim d°x/dt’=lim d°x/dt’ (s=1,2,
t>-1 t>1

.-+, 7) in case clo (loc v) has no extremities) that a C"-diffeomorphism x=x(t)
of I onto clo (loc 7) is defined. By analogy with &,9" denotes the collection
of all orientation-preserving C"-automorphisms 7(t) of I such that d’r/dt’|,-_;
=d’t[dt’|,-, for every s=1,2,-++,7. 9" is non-void owing to the actual presence
of (3) and we have naturally

DerFINITION 2. Under the term open (resp. closed) non-singular C’-arc o
immersed in R" we mean the equivalence class of all C"-diffeomorphisms of
int I (resp. I) onto loc v (resp. clo (loc 7)) (modulo I%). If (2) satisfies (1)
in addition, v is a non-singular simple C"-arc.

Theorem 2. The non-singular open C'-arc or the Jordan C'-curve in the
above sense is a real 1-dimensional C"-submanifold of R".

Let us impose a far stronger restriction than the non-singular C’-differen-
tiability on the representative x=x(#) of v. To any #,Eint I there shall be
some §'=38(#,)>0 put into correspondence in such a way that each component
¥'(t) admits a power series expansion in the real variable ¢ with real coefficients
convergent in the interval #,—&'<<t<<t,+8° (/=1,2,+--,n). We obtain a pair of
statements:

DerFINITION 3. Under the term open analytic arc v we understand the
equivalence class of all real analytic mappings x=x(t) of int I onto loc v fac-
tored by modulo 9%, where 4 denotes the group of all non-singular real analytic
automorphisms of int I preserving the orientation. Of course it is meaningful
to talk about I in view of the presence of one element 7(¢)=sin (z¢/2). Sim-
ilarly to the above two cases we have a simple open analytic arc by adding the
subsidiary condition (1).

Theorem 3. A non-singular open analytic arc is a 1-dimensional analytic
submanifold of R".

The non-singular C’-differentiability (resp. analyticity) of an arc implies no
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more than the fact that it admits at least one parametrization which enjoys the
non-singular C"-differentiability (resp. analyticity). Hence we have trivially

ACACA (1<r<+),

but it is not so clear whether or not the inclusions are strict. Indeed we have
shown

Theorem 4 (cf. Shibata [17], p. 100). If n=2, then A= "

The above definition for an analytic arc immersed in R” is substantially the
same as the one included in the classical book by Osgood ([13], II;, pp. 1-2),
and in case n=2, it turns out to coincide with the one appearing in most of text
books on the theory of functions of a complex variable or on the Riemann sur-
faces through the customary identification of the real (x',x?)-space with the com-
plex (x'+V/—1 a?)-space.

Before passing to the 2-dimensional submanifolds let us recall an important
lemma in the theory of plane quasiconformal mappings which remains to hold
even for non-quasiconformal mappings:

Lemma 1 (Gehring-Lehto [8], cf. Ahlfors [2], pp. 24-27 too). If an open
mapping ¢(w) of a subregion B of C into C has partial derivatives 0¢|0w, 0¢p[0w
almost everywhere on B, ¢(w) is totally differentiable almost everywhere on B.

It seems difficult to give a complete definition for a surface which applies to
all uses. We shall be obliged to content ourselves with the one that suits our
current purpose.

DEFINITION 6. Suppose that a real n-vector-valued continuous function
x=x(w) is L*-derivable (cf. Bers [5]), absolutely continuous in 2-dimensional
sense in a Jordan subregion B of C with sufficiently smooth boundary and that
gugn—g:2>0 almost everywhere on B. Assume further that o=¢(w) is a L*-
derivable, measurable orientation-preserving homeomorphism of B onto the open
unit disk A={w||w|<<1} together with its inverse ¢ (w). Then we call the
equivalence class S of {x(w)} divided modulo the collection {¢(w)} to be a real
differentiable surface-portion.

ReEMARK 1. w=d¢(w) is totally differentiable almost everywhere on B
(Lemma 1).

Let T' be a Jordan curve in R" such that I'— 0B is a homeomorphism.
If x(w) and ¢(w) in the above definition of differentiable surface-portion satisfy
the following boundary conditions, we call the similar equivalence class S=
{x(w)} to be a differentiable surface with the contour T':

1°  x(w) is continuous up to clo B;
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2° ¢(w) is a homeomorphism of cloB onto clo A.

By replacing the L*-derivability of x(w) and ¢(w) by C’-smoothness (1<
r< +o0) we can obtain the definition for C’-smooth surface-portions or surfaces
with boundaries. Further by taking a complex n-vector-valued mapping z=z(w)
instead of x=x(w), we can define the differentiable or C"-smooth complex surface
likewise.

Theorem 5. Let v be a simple closed C"-arc embedded in R" (r& Z™) with
the parameter interval 1. Then, for the open arc, which is the restriction of 7 to
int I to be a simple analytic arc it is necessary and sufficient that there exists a certain
surface-portion S in the complex n-space C" of complexification of R"= {x}, satisfy-
ing the conditions :

1° loc S comprises loc v;

2°  the parametrization that makes S C’-smooth in a region comprising I also
induces a parametrization that makes v C'-smooth on I;

3° when S is mapped conformally into the plane C, loc v goes to a straight
segment.

Proof. Since the defining i-th coordinate x‘(x) of 7 is of class C' in the
open u-interval int J={u| —1<u<1} and the finite limits lim 0x‘/0u exist as
u—+1+ F0, »*(u) is considered to be continuous on I (i=1,2,:+,n). Itiseasy
to construct real-valued functions ¢'(, v) which are of class C'[R?] and coincide
with x'(x) on I (i=1,2,---,n). The complex-valued function

F(w) = ¢'(u, v)+V —1 [¢'(u, v)—x'(u)]

is of class C'[C] and coincides with x*(x) on the real segment I. Recommended
is the function z*(w) as the i-th complex coordinate z'=x'-+-+/—1 ¥ of the smooth
surface-portion S subject to the requirements 1°, 2°. A simple calculation

0z (0z)
o0(0)
& = e G NG 5 Ge)
-4 lG) G -G -G =165+ 5 o)
yields
(5) 2% (%) = L (gt 0)—gali 0)—2v T gulw,0)

with the components of fundamental tensors referred to the coordinate (x',y",
<, ", y") in R*™.
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Now suppose that the restriction of ¥ to int I is an analytic arc in the sense
of Definition 3. Then the defining power series for 7|, ; extends naturally to
a system of holomorphic functions z'=2‘(w) defined in some region B contain-
ing int I (=1,2,+++,n), which determines a surface S immersed in C” and subject
to the requirements 1°, 2° of the theorem. Since this surface S makes the left-
hand side of (5) vanish, we must have gy,(%,v)—gx(%,v)=g,,(¥,v)=0 in B, which
proves the necessity.

On the other hand from (4) it follows that

02' #| 02}
ow

-3 au> GGG G o )

i\ 2) |2 n i ) i i\ 2
ol Rty e A9
= (gu(“: )+ o, v))'—4H(gu(w, V)gx(, v)—g12(4, v)°)
= (gu(®, v)—gx(u, v))*+4g0(u, v)°.
If the correspondence of (#,v) onto S satisfying 1°,2° is conformal, the right-

hand side of (6) vanishes. Hence we must have

02*
9% _ o 9% _
ow o ow

2 2

162

<

But the first case cannot occur on account of the orientation-preserving property
of the mapping (u,v)—S (cf. Remark 2 below) and 2/(w) (i=1,2, :-+,n) are holo-
morphic in a neighbourhood of int I, i.e. ¥ is an analytic arc. q.e.d.

RemARk 2. Of course the simple C’-smoothness or analyticity of arcs are
local properties and the context of the theorem remains invariant under the
positive orthogonal transformation of R". So we may assume without losing
the generality that every projection z‘(loc v) (i=1,2,+-+,n) is a simple arc, that
the sufficiently narrow surface-portion S is an embedding into C"=R? and that
the complex coordinate 2*(w) (i=1,2,-+, n) has a Jacobian |0z![0w|2— |0z‘[0w |?
of definite sign in some neighbourhood of int I.

Within a similar circle of ideas we can show

Theorem 6. Let S be an arbitrary differentiable surface-portion in R".
Then there exists a suitable complex surface-portion S with the following properties :

1° S liesin C*;

2°  the projection of Sinto R" Just coincides with S ;

3° S admits an isothermal coordinate w=u-+~/—1 v at the point where it
is totally differentiable if and only if the mapping wi— S is derivable either in w or
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in W on its definition domain ;
4°  wi> S is injective if and only if wi— Sis injective.

Proof. Suppose that S is represented by an equation x="(x'(u,v), ¥*(»,?),
-, &"(4,v)) on aregion B in the w=u-++/—lv-plane. Of possibly various com-
plexifications of our real surface S we are merely concerned with the simplest
one at present, which serves us fairly well. Denoting by (3',5%+:+,»") a permu-
tation of (x!,4% ---,x") such that ' %« for alli=1,2,.--,n, we set 8'=x 4/ —1y’.
Then we have a complex surface-portion S represented by the equation 2'=z2*
(u,9) (i=1,2,-++,n) which satisfies the conditions 1°, 2°. At the point where
x'(u,v) (1=1,2,+,n) are totally differentiable, we have

(7) 2;1620( ) (s, 0)— g, ©)—2v/ —1 g, v),
(8) 432 %2 < (g, 0)—gula, 0+ Agitu, o

similarly to (5), (6), the components of fundamental forms at the right-hand
side being referred to S. Assume the coordinate w to be isothermal for S. Then
either 0z'/0w or 9z'[/0w must vanish identically for every i=1,2, ---, # on account
of (8). The converse is immediate from (7).

Next let ‘(x'(w), ¥*(w), -+, &"(w)) be injective but let z(w,)=2(w,) for some
parameter values w;,w,. Then we have y'(w,)=y'(w;) (i=1,2,+--,n) by defini-
tion and hence ¥'(w,)=x'(wy) (i=1,2,+-,n). Therefore w,—=w,, showing the
injectiveness of z(u,v), and vice versa. q.e.d.

DerFINITION 7. If an isothermal coordinate w of the surface S satisfies
0z/0w=0 for the coordinate z of some complexification S throughout the
interior of its definition domain, we call w+ S to be a holomorphic extension of
S into C".

3. Statement of the main theorem and quasiconformal continua-
tion of a minimal surface

x (u, )\
A vector-valued C%*smooth function x(u,v)= xz(l_‘: 7’)) is called to be a
x"(u, v)
harmonic vector in a region B of (u,v)-plane, if each component x'(x,v) satisfies
the Laplace differential equation

0% | 0%’
_l_
0u? 0v°

=0, 1=12,--,n
in B.
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DeriniTioN 8. (Courant [6], p. 100). A minimal surface spanning a given
contour I' is the differentiable surface with the boundary curve T', which is
represented by a harmonic vector g(u,v) and for which (, %) is isothermal in
the interior of its parameter domain.

In the present study we restrict ourselves to the minimal surfaces spanned by
a Jordan contour. Consider a Jordan curve I': x=1(u, v) in R”", which shall be
parametrized in such a way that, as the parameter w runs around the boundary
of a domain, say B*, counter-clockwise, the vector g(w) describes monotonically
the curve T exactly once: T' is just the bounding frame of our minimal surface
inquired. First we pose

Assumption I. The contour I' spans at least one minimal surface S, with-
out boundary branch points defined on B*.

The above hypothesis should be taken for granted. Based on Assumption
I, our reasoning will make full use of the results of the following statements
henceforth:

1° there exists a vector-valued function x=g(w) which is harmonic in B*
and is continuous on clo B™;

2° the parameter w is isothermal with respect to the harmonic surface
Sy= {x=1(w)|lweB*}.

Now, we wish to notice below that it is not so hard but is rather natural to
replace the amalyticity of the subarc v appearing in the aforesaid Courant’s
conjecture (or equivalently in our extension problem) by the C*-regularity. So
we pose

Assumption II. The contour T'" contains a non-singular simple open
C3-smooth subarc v with the parameter interval int I.

Lemma 2 (Hildebrandt [11], Nitsche [12], pp. 306-312). Under As-
sumptions I, I let t(w) denote the harmonic vector in B* which spans the minimal
surface S,. Then ¥(w) is of class C*[int I].

RemMARK 3. Our stand-point is such that the word C"-smoothness of arcs
should be understood as the one we have fully discussed in introducing Defini-
tion 2. According to Gulliver-Spruck [10] (p. 331), however, the smoothness
of T' (accordingly, of 7) is originally meant by the smoothness induced from
the minimal surface in question. If one adopts this definition, our assumption
posed on 7 in the following Theorem 7 can be weakened, at least formally, up
to the regular C?-smoothness.

Now let us announce our main result which we shall prove in the next
section:

Theorem 7. Under Assumptions I, II the contour T' spans at least one
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minimal surface which is prolongable beyond the non-singular open subarc v of T
as a minimal surface.

The main body of its proof will be preceded by some preparations con-
cerning the boundary behaviour of harmonic functions as well as the dependence
of solutions of an ordinary differential equations on the initial condition.

Lemma 3 (Zygmund [21], pp. 102-103). Let U(w) (w=pe* ~1) be a real-
valued function continuous on |w| <1 and harmonic in |w|<<1 such that dU(e” ~1)/
00 exists and is of class C'[10,, 0,[] (0<£6,<0,<2x). Then

(a) lpmgl U(pe” ~10)[00=0U(e""1%)/00 ;

(b) lim 8U(pe*'~10)/0p exists and is continuous on 10, 6,[.
p>1
The convergences are uniform on every closed subinterval of 10,, 6,[.

Lemma 4 (Petrovski [14], pp. 96-97). Let x='(x',+--,x™) be an m-vector
and let an m-vector-valued function f(t,x) together with its m partial derivatives
0f(¢,x)/0x' (1=1,2, -+, m) be continuous in a product-subregion B=Jx B, of R™",
where B, is a subregion of R" and J={t|a<t<B}. Then to any point (1., a;) of
B there corresponds a constant ¢>0 such that for every (7, a) in the open subinterval
{rll7—7,1<q} x {a| |a—a,| <q} of B the solution x=X(t;,a) of the differential
equation

(9) & _fe, %), (& 9=B)

satisfying the initial condition X(1;7,a)=a, known to exist uniquely, is differentiable
in the variable a='(a',---,a™), and further 0X(t;7,a)/0a’ (i=1,2,---,m) are con-
tinuous in J X {t||7—7,| <q} X {a| |a—a,| <g}.

Taking an arbitrarily small positive number »(<1), we fix it once and for
all. Notice that the quantity |0t/0u| has a positive minimum on the closed
subinterval I'={u| —1+%<u<1—%} of I. Letus denote by 7’ the restriction
of the arc v to the parameter interval I’.

Theorem 8. In a sufficiently small neighbourhood of I' the minimal surface
Sy s an embedding into R".

Proof. It suffices to show the following fact: there is a positive number
8(<1) such that the restriction of the mapping w g(w) to the subregion

B = {(u,v)| —14+np<u<l—z, 0<v<8}

of B* is an injection.
Suppose, contrary to the assertion, there were a sequence {8,},-, , .. decreas-
ing to zero such that the rectangle B;'={(u,v)| —14+7<u<1—y, 0<0<3§,}
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contains a pair of points wj,w’ satisfying f(w;)=%x(w}’). The formers cannot
contain any respective subsequences with distinct limit points, since ¥ is simple.
Hence they must cluster at a single point w,&1’. On the other hand every i-th
coordinate x'(w) of the vector f(w) has at least one stationary point @’ on the seg-
ment connecting w with @}’ (1=1,2,---,m). For every 7,4’ tends to w, as v— oo,
since both w] and w]’ approach a single point w,. It must follow that 0%/ou
vanishes at @, (Lemma 3), contradicting the non-singularity assumption of £ on

r, g.e.d.

A. Letus denote by S§ the restriction of S, to the subregion B*' of B*.
Let the unit open disk in the pe*~1-plane (0< p<1, § € R) be a conformal image
of B* and let the closed f-interval [0,, §,] come from I'. If we write Y(p, §)=
t(w), both 8%(p, 0)/06* and dy(p, )/0p are continuous for p&|[0, 1], 0[6,, 6,]
(Lemma 3 (a), (b)), hence is 9°¢(p, 0)/0p* seen to tend to a finite limit as p— 1
on 6,<6<0, on account of the Laplace equation.

B. The normal directions to I’ and to the closed circumferential arc

€"=16,¢V=1; corresponds to each other. Therefore 9% (u, v)/0v? can be defined
continuously up to B*UI’. Further 8%(u, v)/0v°+0 on I’ for similar reasons.

The non-vanishing continuous n-vector-valued function b&(x)=[3%(u,v)/

8v*]w=z"1(x) is defined on some closed subset of loc g(clo B*’) including loc 7’

(Theorem 8). The Lebesgue’s theorem allows us to extend b(x) continuously

up to the whole space R". There is an #-dimensional neighbourhood N(loc ")

of loc v’ in which the non-vanishing continuous vector field {b(x)} is defined.

By solving the differential equation

Z_: = b(x), (x&N(loc "))

with the initial value [0(x, v)/0v]w=z"1(x) on loc ¥/, we have a vector field {p(x)}
xElocr’

in N(loc "), which agrees with [0x(u, v)/0v]w=¢1(x) on loc SN N(loc 7). It
amounts to saying that the vector field [0%(x, v)/0v]w=¢"1(x) on loc S;N N(loc v)
has been extended up to N(loc ') in C'-smooth manner.

C. There is an n-dimensional neighbourhood N,(loc 7’) of loc " in which
p(x)=+0: for, p(x)=[0%(u, v)/0v]w=;1(x) =0 for all xEloc v/, since otherwise
&u(u,v)=gn(u,v)=0 somewhere on I’, which contradicts the non-branching char-
acter of f(w). Denoting the C'-smooth components of the non-vanishing #-vector
p(x) by pi(x), p(x), -**,p"(x), we consider the quasilinear partial differential equa-
tion

(10) Sip) 2 — prix)

as well as the system of ordinary differential equations
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o N
Pi(x)  p(x) P'(x)

We can solve (10) locally with the initial arc ¥’ to obtain a smooth surface S’
comprised in the #n-dimensional neighbourhood such that clo (loc S")N
clo (loc Sp)=loc ¥’. Let y be an arbitrary point on loc ¥’ and let C,(y) the solu-
tion arc of (11) through y. Then C,(y) intersects ¥’ orthogonally and is known
to lie on S’. Let us denote by & the minimal length of the family of arcs
{C,®)}yerocv- Itis evident that 8 >0.

D. Now let us start from one end point x,=x(—1+7%) of ¥’ to proceed
along the arc Cy(x,;) on loc S’. We stop just after the trip of length 8’ at the de-
terminate point x*. The subarc of C,(x,) with the extremities x;, x* shall simply
be denoted by C’.

Given any point £ on loc C’, a unique (7—1)-dimensional submanifold
through # intersects the vector field (p'(x), p*(x), --+, p"(x)) orthogonally (cf.
Shibata-Mohri [18], Theorem 3), whose meet with .S” shall be denoted by C,(¢).
Denoting by x, the other end-point (1—2) of v/, we write x**=loc C,(x*)N
loc Cy(x;). Thus we have obtained a subquadrilateral Q(x;,x*,x**,x,) of loc S’
bounded by the four arcs v/, C’, C,(x*) and C,(x;). We are going to represent
the quadrilateral Q(x,, x*, x**, x,) by the parameter (u, v) ranging over the plane
rectangle

(11)

B~ = {(u,v)| —1+p<u<l—y, —8'<v<0}.

To this end, to any point x&Q(x,, x*, x**, x,) we put the Cartesian coordinates
(#,v) into correspondence in the following way:

1° wu is the parameter value representing the point loc C,(x)Nloc o’ as the
one on the boundary subarc 85, of the original minimal surface Sy;

2° o is the length of the subarc of C’ with the initial point x, and the
end-point loc C,(x)Nloc C'.

Then the correspondence B~' = (u, 2) > xEQ(x,, x*, x**, x,), which we shall
still denote by Y(#,v), is one-to-one. Lemmas 3, 4 and the compactness of
clo B™', allows us to conclude that the components g,(%,v), g12(%,), g,(u,v) of
the fundamental form of the closed subsurface Q(x;,x*, x** x,) with respect to
those parameters (#,v) are bounded above on clo B’. From the construction
of the parameters follows g,(#,v)=0 and further we can see by interchanging
the initial and variable points in Lemma 4 and Theorem 3 in [18] that g,,(x, v),
Zgn(u,v) have a positive lower bound on cloB~’. Therefore the Jacobian
V gu(#, v)g(1, v)—g1(1, v)* never vanishes and there exists a constant K,>1
satisfying

gu(u, v)+gx(u, v) < [(Ki+1)/K] \/gn(”» 0) 82U, V) —g1o(4, V)’
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throughout B*UI'UB™'. The extended surface S,U7v’US’ has obviously a
finite area, say V. We have proved

Proposition 1. The minimal surface S, with the parameter domain B* is
prolongable across the subarc v’ of v up to SoUv'US’ in the following manner :

1° 8’ is represented injectively in the parameter domain B™' contiguous to B*
onl;

2°  the parametrization B*UI'UB™"— S,Uv'US’ is K-quasiconformal for
some K (= K,).

Hereupon let us make mention of a slight modification of the familiar
modulus-estimate for plane quadrilaterals which was originated by Grétzsch
and generalized later by Ahlfors (cf. Ahlfors [2], pp. 6-7):

Lemma 5. Let {=+r(w) be an orientation-preserving L*-derivable homeomor-
phism of a rectangle R={w|0<Re w<a, 0<Im w<b} onto an arbitrary plane
curvilinear quadrilateral Q) satisfying |0r[0w|*— |0 [0 |*>0 almost everywhere
on R. If \r(w) is absolutely continuous in 2-dimensional sense on R, we have

(Mod @ Mod R 1 | 0[O0 | + | /0 | _
(12) - max \N1od R’ Mod Q} S flabSRS 00w | — | orjom | NP

Proof. Since both sides of the inequality (12) is invariant under conformal
mappings of int Q, it suffices to show the validity of (12) for the case in which
Q is a rectangle R'={{|0<Re ¢{<a’, 0<Im {<b’}. Further we may assume
a’'[b'>alb, since otherwise we have only to interchange the order of those co-
ordinates. The dilatation-quotient of Yr(w) is well defined almost everywhere in
R. If it is not integrable over R, the conclusion takes place trivially. So we
may assume that the right-hand side integral is finite. For almost all v,&[0, 5]
we have

a'SS;old\Ir(u,‘vo)lSS:( g%' +l%’ )du

* [ T0v[0w] + [0y-[om | ; _
- SoV|6¢/6w|—|a¢/aw| V[0 [0w [*— | O[O0 | du .

Integration of both end sides over 0<v<b yields

OJr /0w
ab< Sj&”gﬂgz{ i_ :83;6;: V|0 [0w |2— | Or/0w | ? du N\dv

and it follows by Schwarz’s inequality that

S ol 1owael
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that is,

1 (([0y/0w]| + |9y-/0w | a. a
absﬂgwxp/awl—|a\p/aw;d“/\d”2 b b

q.e.d.

4. Prolonging the minimal surface

From now on we shall write B’ for the region B*Uinty’UB™’ for short-
ness’ sake. This is nothing but the definition domain for the Dirichlet’s func-
tionals we intend to minimize.

Consider the family X={X,(w)},cn of real m-vector-valued continuous
functions on the closed region clo B’ satisfying the conditions 1°~7° described
below:

1° the mapping x=JX,(w) provides a representation for a differentiable
surface-portion =, with the parameter domain B’;

2° X,(w) sends 0B* onto T' homeomorphically in the same sense as
r(w) did;

3° X\(I")=locv’;

4°  X,(w) is injective on B*'UI'UB™’;

5° the range X,(clo B*Uint B~') comprises the range X,(clo B*) as a
proper subset;

6° there is a finite constant M such that | X,(w)| <M on B’ for all AEA;

7° there exists the coordinate transformation w=g¢,\(w) of clo B’ onto the
closure of the unit disk A= {w | | @ | <1} such that  is the isothermal parameter for
the surface-portion =, in A with the normalization ¢,(0)=0, ¢,(1)=1 admitting
the holomorphic extension and that ¢,(w) is a mean K-quasiconformal homeomor-
phism, namely

[ DG; $0+UD@; g duAde < (K1) [1+1-93VK,
B,

SS[ | Ocba /O | 2+ | 0¢ha [0 |2] du Ao < m(K?+-1)[2K .

B’

REMARK 4. One might assume beforehand that no m& Z™* smaller than #
exists satisfying loc ’'C R™. For otherwise, the concurrence functions could be
restricted only to the m-vector-valued ones, because the integrand of the energy
functional to be minimized in Proposition 3 satisfies trivially

S |0 /ow|2 < 3 |0xi /0w 2.
i=1 i=1

Proposition 2. The prolonged surface S,Uintv'US’ admits not only an
isothermal parameter but also a holomorphic extension.

Proof. A. We solve the Beltrami differential equation 0w/0%—=~h(w)0w /0w
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with the coefficient
h(w)

g11+gzz+\/(gu—gzz)z’l“"g%z—“2\/gugzz—gfz ex I:\/-——l Tan-! 281, :I
= g11+g22+\/(gu"‘gzz)z“l““gfz-"2\/g11g22‘—g§2 P

2 Eu— L
0 elsewhere on B’ on B,

to obtain the unique homeomorphism w=¢(w) of B’ onto A normalized by ¢(0)
=0, ¢(1)=1. This is the desired coordinate transformation such that w is an
isothermal parameter on A for the surface S,Uint ¥'US".

B. We shall show that the surface Lo ™'(w) represented by the isothermal
parameter » extends holomorphically on A in the following way.

(a) Since xo¢ '(w) is harmonic on the simply connected region ¢(B*), there
exists a real-valued harmonic function y*=y’(») conjugate to the i-th coordinate
x'=x'(») of the surface considered, which is determined up to an additive con-
stant. Obviously & =x'-++/—1 3 satisfies 8z'/0a=0 on $(B*) (i=1,2,*, n).

(b) On the other hand, however, we don’t know yet about the harmonicity
of x'(w) off $(B*). So we cannot but complexify the questioned real surface-
portion by utilizing only the isothermal character of x’(w) in a neighbourhood
of the border ¢(I') (1=1,2,::+,n) (Theorem 6). But in order to visualize those
circumstances more vividly, we give first a little detailed illustrations for the
simplest case n=3.

The individual complex coordinate 2* (r=1,2,3) introduced in Theorem 6
amounts to nothing but the projection of the surface into the respective co-
ordinate-plane regarded as C in the space R® Keeping the simplicity of ¥’
in mind, let us concern ourselves only with a restriction of the surface to a 3-
dimensional neighbourhood of an interior point to loc ¥’. According to The-
orem 6, x'(w)4-V/ —1 x%(w) is either holomorphic or anti-holomorphic.

In the first case the projection map loc (S,Uint ¥’ U 8")—2'=a'4-v/—1 &*is
sense-preserving. Then #*++/—14* is not anti-holomorphic, since otherwise,
%3+ —1 &2 must be holomorphic, accordingly x*—x'=const. identically, which
cannot occur in view of Remark 4. Hence x*4+\/—1 #? is holomorphic. Analo-
gously #3++/—1 #' is holomorphic, because not anti-holomorphic.

If, on the contrary, #'(w)+V —1 #%() is anti-holomorphic, #*++v —1 &*, &*
+V —1 4% x4+ —1 & are holomorphic.

(c) Let w, be an arbitrary point in I’ and let a disk-neighbourhood, say p-
neighbourhood, of w, be denoted by N, (w,). Write w, for ¢(w,). As was seen
in (b), to any x(w,) (i=1,2, :++,n) there corresponds a unique 9" (w,) of a permuta-
tion Y/, 3%’, -++,9"" of &, 4% ++-,x" anyhow, such that x*(wg)-+V —1 y"(w,) is holo-
morphic. The inverse map of the homomorphism ',% -+, 5" 3", 3%, -, 3" is
also one-valued by the same reason, hence isomorphic. If p>0 is sufficiently
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small, the above circumstances occur for all » of ¢p(NN,(w,)), because ¥ is simple.
The closed interval I’ is covered by a finite number of such neighbourhoods
{Ny(@p)}woer.  Therefore 2(w)=x'(0)+V —15"(w) is holomorphic on ¢(B~’
Uint I) so far as we choose §’>0 sufficiently small in advance.

(d) Since Re #'(w)=Re 2"'(0)=u'(w) for all € $(N(I') U BY), 2”'(w) turns
out the unique holomorphic continuation of z(»w) on A. q.e.d.

Proposition 3.  The family X contains at least one X(w) for which the energy
integral

2
E[X(w)] = 2 m gif ‘ du A do — %SS[(gu(u, ) +gu(u, ©)]du A do
B/ w B/
over B' is finite. Every minimizing sequence for this functional on 2 constitutes a
normal family on clo B’ and is compact in the topology of uniform convergence on
clo B'.

Proof. 2is non-void. In fact, the quasiconformal representation x=g(w)
of B’ onto S,Uint IV U.S’ whose existence has just been established by Proposi-
tion 1 fulfills evidently the above conditions 1°~6°. As to the isothermal co-
ordinate w=d(w) of the surface S;Uvy"US’, the composite mapping Y(w)=to
¢ '(w) induces a holomorphic extension (Proposition 2). Furthermore x=g(w)
fulfills E[x(w)]<(K§+1)V/K,.

(a) The sequence of holomorphic extensions induced from the minimizing
sequence for E[X(w)] is equicontinuous on clo A; suppose the contrary. It con-
tains a sequence {Z,(®)}y; ..such that | Zy(w))—Zy(w}’)| >c for some point-se-
quences {w}}y-; .., {0}'}v=12.. on clo A and with a positive constant ¢. We lose

no generality in assuming lim w/=lim &} =w,Eclo A. To any small €>0 there
V-poo Vyoo

corresponds a v,=v,(§)EZ" such that |w,—ow}'|<E so far as v>v, Fix such
a v for a moment. At least one coordinate-index, say 7, fulfills the inequality

(13) |2i())—#())] = cfn.

Though the number 7 varies with »—co in general, we may assume, by choosing
a suitable subsequence of v=v,,v,+1, --+ if necessary, that (13) holds good for all
sufficiently large index ». Let «(p) denote the circumferential subarc of {w|w—
wo| =p} comprised in A (§<p<1). Since

S()Idzﬁ(m)lZc/n for every pe[é, 1],
x(p

we have

=], (

0z} 2

0w

0z!

0w

0w

0w

+ + z)pd@ ,

=
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hence
(c*/8nx) log (1/6) <V,
which is absurd.
(b) {#\(w)}rea is equicontinuous on clo B’. Suppose, on the contrary,

there were sequences {w(}y=;; .., {#}'}v=12..Cclo B’ and {¢(®)}+—, ;... such that
lim w=lim w}'=w,, while |dy(w))—py(w})|=c>0. Set wi=dy(w)), 0i/=a

Vpoo VY00
(w$’). To any (but smaller than min {|w,|, dist (w, 8B")} if w,=0) positive
€ there corresponds a vy Z* such that |w]—w,| <&, |w] —w,| <& for all v>v,.
Let #(p) denote the subarc of the circumference |w—w,|=p (>€) lying in B’".
Let p vary over the interval [€, p], where py=max {|w,|, dist (w,dB*)}. Then
the diameter of ¢,(«(p)) is not smaller than ¢. From

< <Sx(p) | depy(w)]| )2_<_ 4rp S:ﬁ < ' 0¢y 2+) 0y

2
do
ow | | 0w )”

(Lemma 1) follows

& (Podp T 12
S 2 D
(cond. 7°), which is absurd.

() The minimizing sequence for the functional E[X(w)] defined on the
space X is equicontinuous on clo B’ ((a), (b)), hence a normal family (cond. 6°),
namely it contains a subsequence {X,(@)}y-; , .. uniformly convergenton clo B".

(d) Set E(w):}im X,(w) oncloB’. Then E(w) is one-valued continuous

mapping of cloB’ into R" and has the properties 2°, 3° postulated in this pro-
position. We show the injectiveness of E(w) in the neighbourhood of I'. De-
note the normalized isothermal coordinate of X,(w) by ¢,(w) and the holomorphic
extension of Y,(w)=X,0¢;*(w) by Zy(»). Let {1;};-, ... be a sequence of indices
such that {¢, (w)},—; ;.. and {Z, (®)}4-1,,.. converges uniformly on cloB’ and
cloA respectively ((a), (b)). Set ¢(w):=}i:g Pu,(w), Z(“’)Zlijf} Z, (). By virtue

of uniform convergence of {¢, (@)};-1 .. on clo B’ the limit ¢(w) never sends
8B’ to int A, i.e., ¢ is a surjection of cloB’ onto cloA. Next suppose ¢(w) takes
the same value o, at two distinct points »’, w”EcloB’. Given any small £€>0,
there is a v, such that |, (w)—wy| <&, | by, (") —w,| <€ if k=, Describe
the circle centred at w, with radius p, where p<<|w,| or p<1 according as w,=0
or wy=0. In the same way as in (b) we have

k

jw—w|? < ({ 1dg7()1 )

[@=wgl=p

(14 < (] (10451001 + 105,101 )pds )

[0=wg)=p
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2n
< 4mp | (1045, 100 ]+ 1093, 0 |)pdt
Hence

o' — | ( d . . 0
(15) B STJP’ = SBS,[D(M’ bkt (1/Dl; duuAE

< (K1) [1+(1—n)3') /K
(cond. 7°), which is absurd. Therefore ¢(w) is a homeomorphism of clo B’ onto
cloA. Since Z(w) is injective on ¢(B*') by Hurwitz’s theorem, E(w)=£ijlg X, (w)
:1/,112 Zy 0y (w)=Zog(w) is also injective on B*'.
(e)? Henceforth we write simply » in place of the index »;. Recall that
¢(w) shares the ACL-property with X,(w) (cf. Bers [5]). Take an arbitray C*-

function T(w) supported by B’. Then it follows from the definition of L?-
derivatives that

Ss [u(@) = dura(w)] gg duN\dv

B/ w

=—{{ [%—%r_k]nw) duNdo .

B’
Since {¢y(@)}v-1,.. is a Cauchy sequence in the topology of uniform con-

vergence on clo B’, the sequence {SS(G(j),,/ﬁw) T(w)duNdv}y-ys,.. of linear

functionals in T is fundamental in the space C3[B’]. The limit
W[T] = lim gg 0y () du Ado
v JJ Qw

is bounded in the space LB’]. Riesz’s theorem ensures an inner product re-
presentation for the limiting functional in T with some element of L*B’], which
we denote by 9¢/dw, namely W[T]=<8¢/dw, T>. Putting the identity {¢,, 07T/
Ow>=—<d¢,/0w, T> into the relations

lim <¢p—¢y, 0T[0w)> = 0 = —lim {(¢p/0w)—(0\/0w), T,
we get

¢, 0T [0w) = —<0¢[0w, T .

In the same way we can see
{¢, 0T jow) = —<d¢/ow, T

1) In this subsection we quote from Ahlfors [1] but without any quasiconformality assump-
tion at all,
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to hold, hence ¢ is L’-derivable and its L*-derivatives are 0¢/dw, d¢/0w above
introduced.

Next given any €>0, there is a v,=,(€), such that |y (w)—Pu(w)| <€
everywhere on clo B’ for all v>v,and k=1,2,---. Let #(p,): |w—w,| <p, be an
arbitrary disk comprised in B’. Consider the curvilinear integral

Josle) = [dves)— s @ [pr@)— )], (0<p=p)

along the circumference, which is well defined by virtue of Lemma 1. Applying
the Schwarz’s inequality to the estimate

ad)v 6¢V 6¢v+k 6¢v+k
FOIES: ¢, vk | 1 |90+4 | darg w,
el <ef ow +‘6w +l ow +‘ ow )p darg w
we see
Po
(L1 ao)F dp < 487K+ DIK,
hence
(16) lim [lim J, ,(p)] = 0
V30 kpod

for almost all p€[0, p,]. Fix such a p at will. On the other hand the Green’s
theorem yields

w gi(\z%% |50 -
(P s 2] [ 28 0 O e

Let k—co first then let v—>co. The first and the second terms in the right-hand
side of (17) are equal to mes ¢,(x(p)) and mes ¢y, 4(x(p)) respectively, both
tending to mes ¢(x(p)), while the third approaches twice of the double integral of
|0¢p/0w |2 — | 0¢/0w | ? over «(p) owing to the weak convergence of those derivatives
considered. We conclude from (16) that

mescj)(x(p)):xgg ('gg Z) duNdv ,

2_‘8_4)
0w

which is valid for every p<€][0, p,] by continuity of both sides. It follows
that every Borel subset e of A has the measure expressed by the integral of the
Jacobian of ¢(w) over ¢~'(e), which shows the absolute continuity of ¢.

(f) We can assert that {¢;"(w)}v=y 2. is the normal family on clo A refer-
ring to the absurdities (14), (15) in (d). Moreover, {¢;"(®)}v-1, 2. itself is seen
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to converge, without mentioning any subsequences, uniformly on clo A towards
¢ Y(w) by virtue of their injectiveness. The partial derivatives 0¢;'/0m=—(0¢,/
ow)/(| 3¢y /0w |?*— | 8¢, /0w |?) and 050w =(0¢p,[0w)/(|0py/0w |2— |0, /0w |?) (¥
=1,2,-:+), defined almost everywhere on A, satisfies together with an arbitrary
function T(w0)ECT[A] the relation

lim (B(¢7*—¢730)f00), TO =0 (k= 1,2,).

Hence follows the L?-derivability, absolute continuity of ¢ () and the weak
convergence 0¢;"'/0w—0¢ /0w, 0¢;*[0w—>0¢p /0w (v—o0) in quite the same way
as in (e). Therefore ¢(w) turns out an isothermal parameter of the differentiable
surface represented by x=5(w).

(g) Notice that Lemma 5 holds good in the fashion

(18)  max {M°d X,(B) _Mod B' }g L ([pes ) dunde
Mod B’ ~ Mod X,(B’) mes B’

B’
for all X,e2, since both the moduli of quadrilaterals and the dilatations of
mappings are conformally invariant.

For shortness’ sake we prefer hereby the abbreviations below for some specific
points in R”", namely, the image-points of the corners of B™":

X(—147) = Oy, Xy(1—) = O,
X(—149—V—18) = Q, X(1——V—=18) = Q,.

Further we mean by saying simply ‘distance’ the one on the subsurface loc X,(B")
for a moment. Any two of the four vertices O;,Q; (j=1,2) of the quadrilateral
loc X,(B~') stand away at a distance with some positive lower bound for every
AMEA. For otherwise, suppose that only one pair of them could approach
each other, say, O, and Q, for example, while the others not. Regarding the
Jordan region B’ as a quadrilateral B’ with vertices —1+%, —147—V —1§,
1—x, 14-v/—1 and applying (18) to B’, we arrive at an absurdity contrary to the
condition 7°.  On the other hand under the assumption that three of those four
vertices might happen to approach simultaneously, say O,,Q,,Q, for example,
application of the same lemma to the quadrilateral B’ with vertices at — 14,
1—p—V —18", 14V —1, —14++/—1 leads to a similar contradiction.

For any fixed A, the shortest distance d between a pair of opposite sides

~ ~~
0,, O; and Q,, Q; of the quadrilateral XA(B’") is attained by the one of some

~ —
point P,€0,, O, to some point P,&Q,, Q,, When A varies, we see first that P,
approaches neither O, nor O, and that P, approaches neither Q, nor Q, with the
aid of the super-additivity of modulus and the condition 7°. Therefore
inf d = 0 would yield again the same contradiction.
(h) The space of L?-derivatives is weakly compact (cf. Akhiezer-Glazman
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[4], pp. 4647):

ey,

S( |0¢p/0w | 2-- | 0¢p/07 | %) du N\ dov

B’

< tim inf {{(10¢./0w1*+- 109, /0w |9 dundo,

B’

SS[D(W; &)+ (1/D(w; ¢))] du Adv
(19) B’

—_ \/_—1 -1 2 -1/3—12 __
_ngﬂaqb /80| %+ |07Y03|?) do Adw

B’

< lim inf\/ 2—1“( 107" /0w |*+10¢7/0w|?) do Adw
B’

= lim inf SS[D(w; bu)-+(1/D(w; ¢,))] duAdo,

hence the isothermal coordinate ¢(w) of E(w) also satisfies the condition 7°.
Since Z(w) was holomorphic in A ((d)), x=E(w)=Zo¢(w) turns out to be
one of the representations of a certain differentiable surface with contour defined

on clo B’ satisfying the conditions 1°~7° and the proof of the proposition is
completed.

If we denote by = the differentiable surface represented by x=E(w) on
clo B’, we have

Proposition 4. The family X contains at least one mapping x=E(w) which
minti1.i3es the functional E[X(w)] within . x=E(w) provides one of the param-
etric representations of a certain differentiable surface 34§ with contour.

The proof is immediate in view of the weak compactness of L*[B’] again.

Now, in broad terms, a minimal surface is characterized by the harmonicity
of the surface with respect to an isothermal parameter. The thing well known
but of some interest hereof is that the limiting surface above constructed, the
solution to the minimum problem for the Dirichlet integral, reveals a kind of
holomorphy of the parametrization automatically (cf. e.g., Courant [6], pp. 105-
107). It seems to come from the simple connectivity of the parameter domain
and we propose an alternative process showing the holomorphy before the har-
monicity in a series of propositions as follows:

Proposition 5. The dilatation-quotient D(w; ¢) of the coordinate-transfor-
mation w=d(w) of the limiting map x=E(w) is not only finite but also equal to
1 abmost everywhere on B’.

Proof. The derivatives of the function w=¢(w) are finite almost everywhere
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on B’ and ¢~Y(w) is a measurable mapping (Proposition 3 (), (f)). Hence D(w; ¢)
<+ oo almost everywhere on B’.

Next suppose impossibly there were a subset e of B of positive measure on
which D(w; ¢)>1+-€ holds almost everywhere with some constant €>0. The
Beltrami coefficient p(w)=(3¢/0w)/(0¢/0w) vanishes nowhere on e. Let Im £>0
be a uniquely determined conformal map of B’ by means of the holomorphic in-
jection §{=F(w) with the normalization F(—1)=0, F(—14»)=1, F(1—n)=co.
Let A(%) be a complex-valued measurable function in Im §>0 such that

arg h({) = arg poF7'(£)+(7/2), (mod 27)
0<KE)| <|poF ()| EEOF
h(§) =0 elsewhere.

There exists a unique quasiconformal homeomoprhism G(¢) of Im {>0 onto
itself satisfying 0G/0=h({)0G[0¢ and leaving the three points 0, 1, oo fixed. If
we set E(w)=EoF 'oGoF(w), we have

D(w; E) < D(w; E), (wEe)

D(w; E) = D(w; E) elsewhere on B’
or equivalently

D(x; E™Y) < D(x; E™), (xEE(e))

D(x; E™") = D(x; E™') elsewhere on loc =¢.
Hence

2B[8] = [_[D(e; E)+(1/D(x; E7))do

3
< [_IDGes B+ (1D(x; B )] do = 2E[E]
(do being the area-element of ={), which contradicts the minimality of E[E].
q.e.d.

Proposition 6. The original parameter w itself is isothermal for the limiting
surface 3 on B'.

Proof. Since 0¢/0w=0 almost everywhere on B’ (Proposition 5), ¢(w) is
holomorphic on B’ by Morera’s theorem. Therefore Zo¢(w) is holomorphic on
B’ too. The conclusion follows immediately from Theorem 6.

Corollary 1.
[[pw; #)+(11D@; e dendo< (&1 [1+(1—m)8 VK,

B’
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H[[@gb/awlz—f- |00 |2] du A do < m(K*+-1)[2K .

B/
Corollary 2. x=E(w) belongs to C[B’].
Proposition 79. x=E(w) s harmonic on B’.

Proof. Let h(w) denotean arbitrary complex-valued Cg-function supported
by a compact set xkCB’. From the A(w) we make a deformation

E(w) = E(w-+ah(w))

of E(w) with an arbitrary complex constant « such that ah(w) is real on I'. If
|| is sufficiently small, Z(w) enters X (Corollary 1). Hence

(20) E[E] > E[E].

Comparing |dE|? with |dE|?in regard to the direction-independent term |dw|?
and taking account of arbitrariness of @, we see, after a rather lengthy but routine
computation, that (20) implies

ReSS[(gu— g2)—2V —1 g,] (Oh)0w) du Adv = 0

B’

(Lemma 1), or equivalently

(21) [[teu—g—2v'=T gl (@Hfow)du Ao = 0,

BI
where gy,=|05[0u|?, g,,—=<0E[0u, 05[0v), gp= |05 [dv|%. Applying the Green’s
theorem to (21), we get

[[10(eu—ga—2v/ =1 go)fomli(w) dundo =0

B’
for any h&Cy[B’] (Corollary 2), whence 9(gy—g»—2V —1 g1,)/0w must vanish
identically. It amounts to saying that 9%5/0w0w=0 holds everywhere on int B’
q.e.d.

In consequence of Propositions 6 and 7 %{ has turned out a minimal surface
with the parameter domain clo B’. Further 9(loc =) contains loc T \ loc ¢’
whereas loc =§ comprises int (loc v’) in its interior. The restriction =, of %§ to
BT is of course a minimal surface bounded by I". Since >0 could be taken as
small as one wanted, one has a true prolongation of X, across v defined on the
parameter domain clo (B*UB~). Thus Theorem 7 is proved.

Corollary 3. Assume that the contour T' contains a sufficiently smooth non-

2) This treatment probably originated in Gerstenhaber-Rauch [9].
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singular arc and that T bounds a unique non-branching minimal surface =,. Then
S, can be continued beyond v as a minimal surface.

Corollary 4 (Extension of Theorem 4). Suppose a non-singular simple open
C3-arc v admits at least one polygonal extension which bounds a minimal surface
without boundary branching. Then v is an analytic arc.

Proof. Let v be represented with the parameter interval int I and let 7’
the restriction of ¥ to I'=[—1+5, 1—5]. There is a simple polygon II connect-
ing the both extremities of loc ', such that ¥’ UII is a homeomorphic image of
dB* bounding a minimal surface S, without boundary branch points. Among
all the minimal surfaces bounded by loc (v/UII) there is at least one, say =,
which is prolongable beyond int 9’ up to a minimal surface =§ with an isothermal
parameter domain B* U int I'UB™’ (Theorem 7). Therefore v" (except the ex-
tremities) is an analytic arc (Theorem 5), so is 7 too.

ReMARK 5. In contrast to the familiarity with the fact that every compact
smooth surface is made into a Riemann surface with the aid of a suitable change
of local parameters, explicit mentions about the context of Corollary 4 have
hitherto escaped the author’s attention regrettedly.
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