

Title	Electron microscopy in semiconductor inspection			
Author(s)	Nakamae, Koji			
Citation	Measurement Science and Technology. 2021, 32(5), p. 052003			
Version Type	АМ			
URL	https://hdl.handle.net/11094/79128			
rights	© 2021 IOP Publishing Ltd. This Accepted Manuscript is available for reuse under a CC BY- NC-ND licence.			
Note				

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Electron microscopy in semiconductor inspection

Koji Nakamae (Osaka University)

Figure 1 Electron-specimen interactions (left figure reproduced from [11], with the permission of Springer Nature).

Figure 2 Energy spectrum of electrons emitted (reproduced from [11], with the permission of Springer Nature). U is the accelerating voltage.

Figure 3. Detection of the SE signal where the specimen surface may be contaminated with layer C (SE(4) is added on the figure reproduced from [14], with the permission of AIP Publishing).

Figure 4 Schematic intensity distribution of the SE (1) and SE (2) depending on the distance r from the impact of the PE. FWHM: Full width at half maximum (reproduced from [14], with the permission of AIP Publishing).

Figure 5 Definitions of E^{m}_{PE} , δ^{m} , E^{I}_{PE} , and E^{II}_{PE} (reproduced from [14], with the permission of AIP Publishing).

Figure 6 Dependence of δ on the energy of the E_{PE} for different angle of incident (reproduced from [14], with the permission of AIP Publishing).

Table 1 E^{II}_{PE} values (in Figure 5) for materials used in semiconductor device fabrication (reproduced from [15], with the permission of Elsevier Science & Technology Journals).

Semiconductors			
Compound	E^{II}_{PE} (keV)	Compound	E^{II}_{PE} (keV)
Low density resist	0.55	Cr on glass	2
Resist on Cr substrate	0.7	Glass passivation	2
Resist on oxide	0.9	SiO ₂ (quartz)	3
Resist on poly-Si	1.1	Alumina Al ₂ 0 ₃	2.9
PMMA resist	1.6	High res. GaAs	2.6
Other inorganics			
Compound	E^{II}_{PE} (keV)	Compound	E^{II}_{PE} (keV)
NaCl	2	Pyrex glass	1.9
KC1	1.6	CaF ₂ (fluorite)	1.9
LiF	1.9		

Figure 7. Fundamental calculation step in a Monte Carlo electron trajectory simulation (reproduced from [11], with the permission of Springer Nature).

Figure 8 Results of numerical ray tracings for an electron-optical column employing a FEG source, at 1 keV, 5 keV and 30 keV (reproduced from [15], with the permission of Elsevier Science & Technology Journals).

Figure 9 Detector system (three detectors) used in the review SEM: (a) system configuration, (b) layout of side detectors, and (c) example images captured using the three detectors (reproduced from [30], with the permission of IOP Publishing).

Figure 10 Signal path in SEM with a Everhart-Thornley detector (ETD) (reproduced from [30], with the permission of McGraw-Hill).

Figure 11. Inline inspection system for semiconductor manufacturing (reproduced from [30], with the permission of IOP Publishing).

Figure 12. ADC process flow (reproduced from [30], with the permission of IOP Publishing).

Figure 13 Process flow from optical wafer inspection tools to the ADC (reproduced from [30], with the permission of IOP Publishing).