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Abstract 

The D3R 2015 grand drug design challenge provided a set of blinded challenges for evaluating the 

applicability of our protocols for pose and affinity prediction. In the present study, we report the application 

of two different strategies for the two protein targets HSP90 and MAP4K4. HSP90 is a well-studied target 

system with numerous co-crystal structures and SAR data. Furthermore the D3R HSP90 test compounds 

showed high structural similarity to existing HSP90 inhibitors in BindingDB. Thus, we adopted an 

integrated docking and scoring approach involving combination of both pharmacophoric and heavy atom 

similarity alignments, local minimization and quantitative structure activity relationships modeling, 

resulting in the reasonable prediction of pose (with the root mean square deviation [RMSD] values of 1.75Å 

for mean pose 1, 1.417Å for the mean best pose and 1.85Å for the mean all poses) and affinity (ROC AUC= 

0.702 at 7.5 pIC50 cut-off and R = 0.45 for 180 compounds). The second protein, MAP4K4, represents a 

novel system with limited SAR and co-crystal structure data and little structural similarity of the D3R 

MAP4K4 test compounds to known ligands. For this system, we implemented an exhaustive pose and 

affinity prediction protocol involving docking and scoring using the PLANTS software which considers 

side chain flexibility together with protein-ligand fingerprints analysis assisting in pose prioritization. This 

protocol through fares poorly in pose prediction (with the RMSD values of 4.346Å for mean pose 1, 4.69Å 

for mean best pose and 4.75Å for mean all poses) and produced reasonable affinity prediction (AUC= 0.728 

at 7.5 pIC50 cut-off and R = 0.67 for 18 compounds, ranked 1st among 80 submissions). 

Introduction 

Computer-aided drug design approaches for pose and affinity predictions have traditionally been classified 

into ligand- and protein structure-based approaches.[1-3] The former is generally applicable when a 

sufficient number of protein-ligand co-crystal structures and structure-activity relationships (SAR) data (in 

the form of ki, kd or IC50) are available [1,2] and primarily uses quantitative structure activity relationships 

(QSAR) and  pharmacophore models for the prediction of affinity and pose, respectively [1,2]. Whereas 



the latter is preferred in their absence or scarcity [1,2] and uses docking and scoring protocols for pose and 

affinity predictions respectively [1,2]. Due to their heavy reliance on statistical measures, identifying a 

QSAR or pharmacophore model that reflects the biological reality of the molecular recognition event in 

question from a pool of models is difficult.[4] Furthermore in view of their ability to better capture the 

features relevant for explaining the training set data, they often present high predictive performance for 

internal test set and modest predictive abilities for an external test set depending on the applicability domain 

of the model.  Protein structure-based approaches on the other hand can perform de novo pose and affinity 

predictions[4] and have greater applicability domain and presents reasonable quantitative or qualitative 

predictive ability. However, this approach continues to suffer from the problems related to scoring functions 

and pose prioritization[4].  

Pharmacophore models based on bioactive conformations derived from protein-ligand co-crystal structures 

[5-7]could mitigate some of the problems associated with ligand-based approaches for pose prediction. On 

the other hand, protein structure-based approaches [7] could be enhanced by introducing a protocol for pose 

prioritization assisted by protein ligand fingerprint analysis of the predicted poses. Such a procedure has 

been shown to greatly benefit the de novo pose and affinity prediction.[8-12]. The D3R grand challenge 

offered a great opportunity to evaluate these integrated protocols in an unbiased manner through expert 

evaluation on previously unseen data.  

The D3R grand drug design challenge for pose and affinity prediction consisted of two protein targets 

HSP90 and MAP4K4. The assessments consisted of pose predictions for six HSP90 ligands and 30 

MAP4K4 ligands, together with affinity predictions for 180 HSP90 and 18 MA4K4 ligands. While HSP90 

[13-16] is a well-known protein target with numerous inhibitors reported in the literature with ki, kd and 

IC50 data, MAP4K4[17,18] is a novel target with few co-crystal structures and very few compounds with 

ki, kd or IC50 data. Hence for the D3R challenge, we applied two different strategies for pose and affinity 

predictions of HSP90 and MAP4K4 ligands, using the integrated protocols presented above. The pose 

prediction protocol for HSP90 inhibitors consisted of a ligand-based pharmacophore alignment approach, 



followed by local docking. Predictive QSAR models derived using a large set of HSP90 SAR data, was 

used for affinity predictions. For MAP4K4, we used a de novo docking protocol augmented with protein 

ligand fingerprint analysis for pose prediction and the free energy measures of these poses were used for 

affinity predictions.  

Materials and methods 

HSP90 pose prediction protocol 1 to 4: The ligands and proteins were prepared (converted to 3D 

coordinates, protonation, lowest energy conformer generation, etc) according to default settings of the 

software programs MarvinView 16.2.8.0 (2015, ChemAxon, http://www.chemaxon.com), Discovery 

Studio (Version 3.5.0). and PyRx [Python Prescription 0.8]. The 180 HSP90 inhibitors provided by the 

D3R organizers together with 15,926 HSP90 subtype (we considered all the five functional human genes 

encoding Hsp90 protein isoforms, namely HSP90AA1, HSP90AA2, HSP90AB1, HSP90B1 and TRAP1) 

ligands obtained from bindingDB website, were clustered using WGCNA[4,19] (with parametric settings: 

“signed” and “module cut-off as 0.45”) based on the computed ECFP_12 fingerprint[20,21], which resulted 

in ~40 clusters (supplementary material 1, data presented in column “moduleColorsAutomatic_ 

net_12_bicor_t_signed_0.45”). These WGCNA-generated clusters were further grouped manually into 

three clusters using visual inspection. The HSP90 IDs for the three clusters were as follows: cluster-1: 

hsp90_1 to hsp90_61, represented by the co-crystal structure of the Protein Data Bank (PDB) entry 4YKR, 

cluster-2: hsp90_63 to hsp_90_120, represented by the co-crystal structure of 4XDX, cluster-3: hsp90_121 

to hsp90_179, represented by the co-crystal structure of 4KYK.  

The three co-crystal structure ligands of  4YKR, 4XDX, 4YKY were taken as templates for the three 

clusters and MIXED (ATOM and pharmacophore) alignments were performed using Open3Dalign.[22] 

This method represents the pharmacophore aligned docking approach. The docked poses were further 

minimized and scored within the active site of 4YKR, 4XDX, 4YKY and 4TOZ using SMINA[23] and 

presented as docking poses numbered 1-4, respectively.  



HSP90 scoring protocols 1 to 4: The SAR data in terms of ‘ki’ and ‘IC50’ values of 15,926 ligands for 

Hsp90 homologs (HSP90AA1, HSP90AA2, HSP90AA2, HSP90B1 and TRAP1) were extracted from 

BindingDB. The ‘IC50’ values were converted to Ki values using the variant of Cheng-Prusoff equation.[4] 

ECFP12 fingerprints were computed for the 15,926 ligands and cross-validated machine-learning models 

for 1262 training set compounds were derived using Lasso[24], Elastic Net, [24] Ridge regression[24] and 

random forest. These models regressed 9-log10Ki values (y) on ECFP12 fingerprints (x) (using the 

jchemmapper[25] package). The predicted ki values from the models presented reasonable agreement with 

the experimental ki values both for the training and test sets as presented in results and discussion section. 

It may be noted that Lasso and Elastic Net perform both parameter shrinkage and variable selection 

automatically, while Ridge regression and random forest use a different heuristic for dimensionality 

reduction (without a priori feature selection). Since different techniques account for different limitations 

of modeling high-dimensional data,[26] we decided to evaluate the performance of all the four methods in 

the present study. Ridge regression and random forest further differ in the polynomials that they model, to 

account for non-linear dependencies. Elastic Net further differs from Lasso by penalizing correlation among 

the features. Thus, our scoring scheme incorporates predictions from Lasso, Elastic Net, Ridge regression 

and Random forest for HSP90 QSAR models (supplementary material 1, data presented in columns 

“ridge_predicted”, “enet_predicted”, “lasso_predicted” and “RF_predicted”). 

HSP90 pharmacophore and local docking protocol for free energy prediction: The HSP90 protocol for 

pose prediction used a ligand-based MIXED (ATOM and pharmacophore) alignment protocol. However, 

scoring the aligned pose without optimization may lead to steric clashes and non-optimal orientations of 

ligand hydrogens with respect to the protein. Thus for measuring the free energies of the binding poses 

determined by Open3Dalign[22], we decided to use an empirical scoring function, SMINA[23] which 

optimizes the ligands’ co-ordinates (along with hydrogens) within the active site of the following protein 

crystal structures ‘4YKR’, ‘4XDX’, ‘4YKY, ‘3T0Z’ and ‘2JJC’ (supplementary material 1, data presented 

in rows pred_4yky, pred_4YKR, pred_2XDX, pred_2JJC  and pred_3TOZ). Although SMINA is 



not a force-field based scoring function, it indirectly maps to physical forces such as electrostatic 

interactions, and are parameterized to reproduce binding affinities or other data. 

MAP4K4 pose prediction protocol: The de novo pose prediction protocol for MAP4K4 primarily 

employed the enhanced protocol involving PLANTS1.2[27] for docking and PyPLIF[9] for pose 

prioritization. Essentially, SPORES[27] was used to split the MAP4K4 PDB file ‘4U44’ into the protein 

and ligands using the ‘splitpdb’ module. The protein was recognized, protonated and stored as protein.mol2, 

while the reference ligand was also recognized, protonated and stored as ligand.mol2. The docking was 

performed using PLANTS1.2[27] The bind module of PLANTS1.2 was used to identify the binding site 

(defined as non-hydrogen atoms within 5 Å of any non-hydrogen atom of the reference ligand). The 

PLANTS1.2 docking procedure produced 50 docking poses for each of the 30 MAP4K4 compounds. Since 

protein-ligand complexes can be either a thermodynamically or a kinetically stable entity, we prioritized 

the best binding poses using the following three methods instead of the default free energy approach alone 

used in many docking protocols. The first method prioritized the best poses using the lowest free energy 

value. The second used a hybrid score (geometric mean) of the free energy and the Tanimoto similarity to 

the reference ligand (ligand code 3D9 of the PDB entry 4U44, the most potent MAP4K4 inhibitor) based 

on the protein-ligand interaction fingerprints of selected evolutionarily conserved and functionally relevant 

residues implicated in ligand-mediated kinase inactivation (see Results and Discussion for the selected 

residues). The third protocol was similar to the second, except that the Tanimoto similarity is computed 

using all the protein-ligand interaction fingerprints. The second and third protocols involved submitting the 

docking output from PLANTS as input to PyPLIF[9] for the calculation of the protein ligand fingerprints 

(with selected and all the residues of the binding site) and the Tanimoto similarity of the docked poses with 

respect to the reference pose(the co-crystal structure of ‘4U44’. 

MAP4K4 scoring protocol: The PLANTS CHEMPLP scores (the default scoring function used in 

PLANTS) of each of the 18  ligands were based on the poses prioritized using the three methods described 

above (Supplementary material 4, data presented in columns PLANTS global minimum, PLANTS + 



PyPLIF _subset, PLANTS + PyPLIF _all). The free energy scores obtained from SMINA scoring function 

served as the affinity predictions for stage-2 of the MAP4K4 contest (Supplementary material 4 , data 

presented in column SMINA_free_energies). 

Performance evaluation metrics in terms of RMSD: Detailed procedures for evaluating final pose 

predictions can be accessed from the D3R website. Unfortunately, some of our predicted poses did not 

conform to the format requirements of D3R, leading to a lack of cumulative evaluation for all the values 

(as D3R required error-free computation of RMSDs in all poses). To complete the picture for our entire set 

of predictions, we extended these evaluations by performing RMSD calculations ourselves using Discovery 

studio visualizer 4.0 which uses a heavy atom based RMSD computation. The three kinds of mean RMSD 

values (‘mean pose 1’, ‘mean best pose’ and ‘mean all poses’) were computed to enable comparison with 

other contestants for which the RMSD values were provided by D3R. During the course of our 

communication we realized that D3R organizers RMSD computation was based on maximum common 

substructure functionality of the OEChem Python toolkit. 

Results and discussion 

The D3R grand drug design challenge consisted of two targets HSP90 and MAP4K4. HSP90 is a well-

known target, with several SAR data-points and protein-ligand complexes, hence we attempted to verify 

the utility of ligand- and protein-based 3D pharmacophoric alignments, followed by local docking for pose 

and free energy prediction. We further employed machine learning-based QSAR models for affinity 

prediction. The pose and affinity prediction protocol for the MAP4K4 target, was performed using three 

different de novo docking protocols. (See Materials and Methods). Two of three pose prediction protocols 

involved using protein-ligand interaction fingerprints computed using the PyPLIF software. The free energy 

values corresponding to the poses selected by the three protocols served as the affinity values.  The pose 

prediction evaluations in the form of RMSDs are presented in table 1 for the two targets and for the 3 types 

of poses. Table 2 presents the affinity prediction evaluations in the form of Pearson and Kendal tau and 



Spearman correlation are presented for the 3 affinity prediction protocols of MAP4K4 and the 4 affinity 

prediction protocols of HSP90. Figure 1 depicts the comparison of the performance vis-à-vis other 

participants protocols of our pose and affinity prediction protocols for D3R HSP90 and MAP4K4 datasets. 

Figure 2 depicts quantitative (scatterplots) and discriminative ability (ROC curve) of the random forest 

QSAR model against the HSP90 training and test sets. Figure 3 depicts the quantitative (scatterplots) and 

discriminative ability (ROC curve) of our best affinity prediction protocols for the D3R’s 180 HSP90 and 

18 MAP4K4 ligands. Figure 4 illustrates the classification ability of all our HSP90 and MP4K4 affinity 

prediction protocols used for the D3R challenge, using ROC curves.  

Table 1:  Overview of our Pose prediction performance for the D3R grand challenge vis-à-vis all other 

submissions, presented in parenthesis. 

Performance measures mean RMSD of 

pose 1 

mean RMSD of 

best pose 

mean RMSD of 

all poses 

# ligands 

MAP4K4 (mean, median of 

all groups submissions) 

4.346(5.21,5.12) 4.753 (4.20,4.17) 4.69 (5.34,5.37) 30 

HSP90 (mean, median of all 

groups submissions) 

1.751 (3.01,3.14) 1.417 (2.27,1.81) 1.854 (3.41,4.12) 6 

 

 

Table 2: Correlation between experimental activities and the predicted affinities for the D3R grand 

challenge vis-à-vis all submissions presented in parenthesis. 

Performance measures R Pearson R Kendal tau 

R 

spearman 

# 

ligands 

MAP4K4, score1 (mean all, median 

all) 

0.672 

(0.22,0.28) 

0.516 

(0.15,0.19) 0.620 18 

MAP4K4, score2 (mean all, median 

all) 

0.469 

(0.22,0.28) 

0.326 

(0.15,0.19) 0.400 18 

MAP4K4, score3 (mean all, median 

all) 

0.462 

(0.22,0.28) 

0.326 

(0.15,0.19) 0.370 18 

HSP90, score 1 (mean all, median all) 

0.451 

(0.22,0.24) 

0.312 

(0.15,0.16) 0.420 180 

HSP90, score 2 (mean all, median all) 

0.405 

(0.22,0.24) 0.28 (0.15,0.16) 0.370 180 

HSP90, score 3 (mean all, median all) 

0.389 

(0.22,0.24) 

0.255 

(0.15,0.16) 0.380 180 

HSP90, score 4 (mean all, median all) 

0.381 

(0.22,0.24) 

0.252 

(0.15,0.16) 0.390 180 

 



 

Figure 1: Comparison of the performance of our pose prediction protocols vis-à-vis other participants in 

D3R; (A) Open3Dalign and SMINA assisted HSP90 mean pose prediction RMSD of 1.417 is among the 

top ranked,(B) PLANTS docking augmented with PyPLIF  analysis presents MAP4K4 mean pose 

prediction RMSD 0f 4.753 is among the median ranked, (C) with a spearman  of 0.42 and ROC AUC of 

0.703 the random forest QSAR ranked highly and (D) With a spearman   of  and ROC AUC 0f 0.728 

PLANTS+PyPlif protocol is among the top ranked. 

 

Figure 2: A) Scatterplot of the correlation between the random forest QSAR model predicted HSP90 

activity scores (ki pnM values) in the x-axis plotted versus the observed HSP90 values (ki pnM values) in 

the y-axis for the training set (n=1262, R2= 0.96), B) ROC curve (AUC= 0.995) for the 1262 HPS90 

training set predictions based on the random forest QSAR models. The 1262 HSP90 training set compounds 

were split into two classes using their experimentally pIC50 at a cuf-off of 7.5, C) Scatterplot of the 

correlation between the random forest QSAR model predicted HSP90 activity scores (ki pnM values) in the 

x-axis plotted versus the observed HSP90 values (ki pnM values) in the y-axis for the test set (n=14664, 
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R2= 0.79) and D) ROC curve (AUC= 0.949) for the 14664 HPS90 training set predictions based on the 

random forest QSAR models. The 1262 HSP90 training set compounds were split into two classes using 

their experimentally pIC50 at a cuf-off of 7.5. 

 

 

Figure 3: A) HSP90 predicted activity scores (ki pnM values) in the x-axis plotted versus the observed 

HSP90 values (pIC50 nm values) in the y-axis for D3R HSP90  test set (n=180, R= 0.45), B) ROC curve 

(AUC=0.702) for the 180 HPS90 predictions based on the random forest QSAR models. The 180 HSP90 

dataset was split into two classes using their experimentally pIC50 at a cuf-off of 7.5, C) MAP4K4 predicted 

activity scores (PLANTS docking score values)in the x-axis plotted versus the observed MAP4K4 values 

(pIC50 nm values) in the y-axis for D3R MAP4K4  test set (n=18, R= 0.67), D) ROC curve (AUC=0.728) 

for the 18 MAP4K4 predictions based on the random forest QSAR models. The 18 MAP4K4 compound 

set was split into two classes using their experimentally pIC50 at a cuf-off of 7.5. 

 

Figure 4:  A) Receiver operating characteristic (ROC) curves for the D3R HSP90 cross-docking binding 

affinity predictions against 4yky, 4YKR, 2XDX, 2JJC and 3TOZ with AUCs estimated to be 0.587, 0.675, 

0.669, 0.581 and 0.718 respectively. The 180 HSP90 dataset was split into two class using their 

experimentally pIC50 at a cuf-off of 7.5 The open3Dalignment based docking approach also involved using 
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SMINA for local docking, minimization and score estimation, B) ROC curves for the D3R HSP90 affinity 

predictions obtained from QSAR models derived from Ridge regression, Elastic Net, Lasso and Random 

Forest with AUCs estimated to be 0.691, 0.684, 0.687 and 0.702 respectively. The 180 HSP90 dataset was 

split into two classes using their experimentally pIC50 at a cuf-off of 7.5 and C) ROC curves for D3R 

MAP4K4 affinity predictions obtained using protocols PLANTS+PyPLIF _sub, PLANTS global minimum, 

PLANTS+PyPLIF _all and SMINA demonstrated AUCs of 0.729, 0.642, 0.580 and 0.679. The 18 D3R 

MAP4K4 dataset was split into two classes using their experimentally pIC50 at a cuf-off of 7.5. 

Utility of ligand pharmacophore based 3D alignments for placing ligands within the active site of 

proteins (HSP90 pose prediction):  

For proteins with crystal structure complexes, ligand alignment-based approaches can greatly aid in the 

placement of new ligands within the active site of a protein. While a traditional docking approach employs 

an electrostatic and/or geometric complementarity of the active site of a protein, the ligand alignment-based 

approach uses either 3D shape similarity, 3D electrostatic similarity, pharmacophoric similarity or heavy 

atom similarity or a combination of both pharmacophoric and heavy atom similarity. In the present study, 

we used the MIXED (atom and pharmacophore) alignment protocol using Open3Dalign.[22]. To avoid 

steric clashes and non-optimal orientations of ligand hydrogens with respect to the protein, we further 

minimized the binding poses determined by Open3Dalign through a local docking protocol provided in 

SMINA. This application optimizes the ligand co-ordinates (including hydrogens) within the active site of 

the protein and further scores the interaction between the minimized ligand and the protein crystal structure 

(in our case PDB IDs ‘4YKR’, ‘4XDX’, ‘4YKY, ‘3T0Z’ and ‘2JJC’). We submitted the minimized docking 

poses against ‘4YKR’, ‘4XDX’, ‘4YKY’ and ‘3TOZ’ for the root mean square deviation (RMSD) 

evaluation. Overall, RMSD values of 1.75Å (mean pose 1), 1.417Å (mean best pose), and 1.85Å (mean all 

poses) demonstrate the utility of the MIXED ligand alignment for pose prediction, since the average ligand 

poses were within 2Å RMSD of the crystal poses (Table 1 and Supplementary material 2) The low RMSD 

values could also be due to the high structural similarity of the HSP90 test compounds to the template co-

crystal structures (‘4YKR’, ‘4XDX’, ‘4YKY’). Another group who used similar protocol in the D3R contest 

presented similar results albeit using a different type of analysis. 



Utility of SMINA scoring function for explaining the variation in activities: Empirical scoring functions, 

incorporating elements of both force-field based and knowledge-based scoring schemes, are typically 

trained using existing protein-ligand crystal structure.[23] The inability of empirical scoring functions to 

explain the variation in affinity was widely reported in the literature[28]. Several reasons, ranging from 

limitations in our understanding and quantification of the molecular recognition process to the need for 

customized scoring functions for specific protein families, have been implicated. In the present study, free 

energy scores for both HSP90 (correlation coefficient R = 0.20) and MAP4K (correlation coefficient R = 

0.34) obtained with SMINA scoring were less than 0.40, suggesting a requirement for an improved or 

customized scoring function to explain the variation in activities more accurately. Previous studies have 

reported better correlation using customized scoring functions [23] and are best suited for classifying 

actives from inactives. The reasonable classification ability of SMINA scoring function for the 180 D3R 

HSP90 inhibitory data is depicted in figure 4A. The modest classification ability of SMINA and PLANTS 

scoring functions for D3R’s MAP4K4 datasets is illustrated in figures 4C. These results are consistent with 

other participants’ results[29],[30] in D3R exercise. 

Machine learning-based QSAR models to explain the variation in HSP90 activities: Docking-based 

scoring functions generally do not capture subtle changes in structure, which lead to a large variation in 

activities (often termed activity cliffs).[23,28,31] Ligand-based approaches are better tuned to handle 

activity cliffs, since they are often trained to capture molecular features correlated with such a variation. In 

the present study, ECFP12 fingerprints were computed for the 15,926 HSP90 ligands and cross-validated 

machine-learning models were derived using Lasso, Elastic Net, Ridge and RF (see Materials and Methods). 

The predicted ki values from these models presented reasonable agreement with the experimental ki values 

(mean R2 for the training set with Lasso (0.84), Enet(0.80), Ridge(0.82) and RF(0.96) models and  R2 for 

the test set with Lasso(0.66), Enet(0.67), Ridge(0.68) and RF(0.79) models) (Supplementary material 1, 

data presented in columns ridge_predicted, enet_predicted, lasso_predicted and RF_predicted). We further 

evaluated the performance of each of the four methods individually using Pearson correlation co-efficient, 



Kendall-tau and Spearman correlation coefficients (table 2). Overall, Ridge regression and RF produced 

better Pearson correlation values (R=0.43, ranked 3rd and R=0.45, ranked 1st, respectively) than elastic net 

(R=0.38) and Lasso (R=0.38).  All these scores were modestly in the D3R evaluation, however in view of 

ability to explain the variance of ~20% only, additional methodological improvements are required for 

affinity predictions. As depicted in figure 4B, these models however demonstrate moderate discriminative 

ability (ranging from 0.684 to 0.701) against the D3R’s HSP90 dataset. 

Docking protocol combining PLANTS and PyPLIF fingerprints for MAP4K4 pose and affinity 

predictions: The MAP4K4 target system of the D3R contest presents an interesting problem for pose and 

affinity prediction. The 30 MAP4K4 test ligands are structurally diverse, with little structural similarity to 

existing co-crystal structures of this protein. Furthermore, there are very few compounds (~10) with ki, kd 

or IC50 data in the bindingDB[32] database. Given this background, for the MAP4K4 target we decided to 

apply a de novo docking protocol using the PLANTS docking software. The PLANTS software (Protein-

Ligand ANT System)[27] is based on a class of  stochastic optimization algorithms called ant colony 

optimization (ACO); it considers full ligand flexibility and flexible protein side-chains. The PLANTS suite 

also includes the pre-processing of the ligands and the protein performed by the program SPORES 

(Structure PrOtonation and REcognition System). 

Given the de novo nature of docking studies, pose prioritization protocol is a critically important aspect of 

pose and affinity prediction. Several approaches have been suggested in the literature for this purpose, 

including the selection of the pose with the lowest energy or the lowest RMSD to the reference ligand. 

However, from protein folding and other thermodynamic studies[33], it is widely recognized that the global 

minimum is not always the preferred solution in biological systems. Given the limited time scale for a 

biological process, a kinetically stable solution (one of the local minima) is most often the preferred solution 

over a thermodynamic solution (global minimum). This concept has also been corroborated in several 

articles evaluating the redocking performance of existing docking software, where the pose with the least 

RMSD does not often present the lowest interaction energy [34-37]. Given this background, pose 



prioritization protocols that can take advantage of known ligand-bound structures are of special interest. In 

this regard, structure interaction fingerprints (SIFt) were introduced with an objective to represent and 

analyze 3D protein-ligand interactions by encoding them by a one-dimensional binary string. The 

construction of SIFt is a two-step process consisting of (1) identification of residues interacting with the 

ligand and (2) classification of ligand-residue interactions into any of the predetermined types (e.g., 

hydrogen bond accepter/donor pairs and pi-interacting partners). Among several available methods, 

PyPLIF is the only available open source software for the calculation of these protein-ligand fingerprints. 

In view of the above, the MAP4K4 pose prioritization was performed using three different protocols, 

combining the free energy value and the Tanimoto similarity to the reference ligand based on protein-ligand 

interaction fingerprints (see Materials and Methods). Using this approach, the average RMSD values were 

found to be unacceptable (mean pose 1 = 4.346Å, mean best pose = 4.69Å and mean all poses = 4.75Å) 

and ranked 8th in the final evaluation (Table 1 and Supplementary material 3). However, the affinity 

predictions afforded good R values (pose prioritization protocol 1 = 0.67 [ranked 1], pose prioritization 

protocol 2 = 0.47 [ranked 2] and pose prioritization protocol 3 = 0.46 [ranked 3]] (Table 2 and 

Supplementary material 4). 

Affinity prediction of the poses prioritized using a composite score comprising both fingerprint 

similarity and free energy performs better than poses prioritized using free energy alone. 

Protein-ligand interaction fingerprints are commonly computed using all the residues within the active site 

(generally within 5A of the reference ligand) of a protein.[9] However, from site-directed mutagenesis, 

residue conservation analysis and other residue level functional analysis often highlight the preferential role 

of a subset of residues, which are involved in the ligand-induced modulation of protein function. A kinase 

inhibitor mediated functional modulation subset typically consists of five residues, which includes two 

hinge-binding residues, a gate keeper residue and two catalytic site residues (the catalytic lysine and aspartic 

acid from the DFG motif).  



Thus for the MAP4K4 pose and affinity prediction challenge, we assessed the performance of the composite 

score computed using two different approaches, against the pose prioritized using free energy alone. The 

first pose prioritization approach used a composite score comprising the geometric mean of the Tanimoto 

coefficient and the free energy value with the protein-ligand interaction fingerprints of five selected residues 

only. Poses prioritized by this method achieved an excellent Pearson correlation coefficient (R = 0.67 and 

ranked 1st among all the contestants). In contrast, the second approach, in which all the residues of the active 

site (within 5Å of the ligand) were considered for computing the protein-ligand interaction fingerprint, 

afforded a sub-optimal but still modest performance of the affinity prediction (with an R value of 0.47 and 

ranked 2nd). Notably, the free energy based approach without these two steps afforded an R value of 0.46 

(ranked 3rd). 

The local optimization of the pharmacophore aligned compounds and the inability to consider 

bridging water molecules affects HSP90 pose prediction results. 

The local docking approach using the SMINA software optimizes, the docked conformation obtained from 

‘open3Dalign’ alignments, within the active site of various HSP90 protein structures (figures 5 and 6). The 

success of this docking approach is critically dependent on both the quality of the alignments and also on 

the minimization problem. Minimization of the docked structures performs a local docking and the 

minimized solutions in some instances tend to greatly differ for molecules like HSP90_44 (figure 6) where 

a major part of its substructure accesses solvent exposed region of HSP90. Hence the poor RMSD values 

in spite of a good chemical similarity in case HSP90 compounds are mostly due to the ‘minimization 

problem’. Since the HSP90 ligands are relatively rigid with extensive delocalization of pi-electron densities 

that confers certain conformational rigidity to the D3R HSP90 chemical structures. Hence we decided to 

use a single low energy conformations obtained from ChemAxon’s ‘cxcalc’ suite for performing alignments. 

However the high RMSD could also due to the alignment problem. The pi-electron density delocalization 

especially to neighboring substructures like aromatic systems is highly context specific, if sufficient 

delocalization via various electronic effects has occurred the structures assume flat planar conformations 



else they can acquire dihedral angles which are perpendicular(and other angles) to the substructures they 

are connected to. Hence for more accurate alignments and for chemical structures with large number of 

rotatable bonds, multiple conformers could be generated using the ‘qmd’ (quenched molecular dynamics) 

module of open3Dalign prior to alignments. Furthermore structural water molecules play an important role 

in the recognition of ligands by the heat-shock protein HSP90 as rightly pointed out by the D3R 

organizers.[38] While four conserved water molecules bridge the interactions between HSP90 with ADP 

or PU3 (a purine based lead compound) [39], Radicolol on the other hand, displaces one of these water 

molecules and noticeably shifts two others [40]. However, current methods do not deal adequately with 

shifting the positions of bridging water molecules and hence we ignored such detailed analysis. This 

omission may account at least partly for the inability of our method to achieve considerably low RMSD 

values. In view of our inability to consider bridging water molecules, we decided to use predicted ki values 

obtained as scores from various QSAR model trained using a dataset of HSP90 inhibitors (Figure2, Figure 

3 and Figure 4B). 

 

Figure 5: (a) HSP90_40 exemplifies the good docking prediction and low RMSD values for a compound 

which only accesses buried binding pocket. The co-crystal structure derived binding mode provided by the 

D3R organizers is depicted as a stick and our predicted poses as lines. The various RMSD values are 

presented in supplementary material 2 (b) HSP90_44  is the example of a compound which accesses both 

buried and solvent accessible binding pocket. Since solvent accessible generally do not have anchor 

A) B)



residues ligand pose prediction is challenging and leads to high RMSD values. The co-crystal structure 

derived binding mode provided by the D3R organizers is depicted as a stick and our predicted poses as 

lines. The various RMSD values are presented in supplementary material 2 

 

Figure 6: (A) 2D interactions of HSP90_44 with 4YKT, the lack of anchor resides  to in teract with 

HSP90_44’s sulphonamide fragment and the importance of bridging water molecules (W:175 and W:4) is 

also highlighed, (B) The surface depiction of HSP90 showing the sulphonamide fragment of HSP90_44 

sticking out into the solvent exposed region. 

Solvent exposed ligand-binding site, use of incorrect tautomeric forms of MAP4K4 ligands and 

PLANTS docking approach are responsible for deviations between predicted and experimental 

binding modes 

A typical kinase ligand-binding site consists of the hinge-binding region, the catalytic site, the gate-keeper 

region and a solvent exposed region. Docking a ligand to these solvent exposed regions is often challenging, 

as there are very few polar residues to which ligands can anchor. These solvent exposed regions are not 

believed to contribute to binding affinities and are often included primarily to improve pharmacokinetic 

and pharmacodynamic properties of the ligands. Furthermore, docking small molecular fragments also 

represents a significant challenge.[41] Firstly, fragments are more promiscuous in their binding modes than 

larger ‘drug-like’ molecules making their predictions difficult; second, docking scoring functions are 

inaccurate even for the larger molecules against which they have often been parameterized, and are likely 

to be still less accurate for fragments[42],[43,44]. Unconstrained docking may thus not be widely accepted 

as a reliable method to for pose and affinity predictions, and there are few if any studies that compare 

docking-predicted fragment geometries to subsequent structural results. Kinase inhibitory fragments 

A) B)



typically access only the hinge-binding pocket and anchor via hydrogen bonding interactions with the main 

chain atoms (cys108 in case of MAP4K4) and also via pi-stacking or hydrophobic interactions with 

aromatic residue of the hinge loop. In case of our analysis, an incorrect tautomer of MAP32 was docked 

which further exacerbated the deviation in the predicted pose. We have erroneously used the structures 

provided by the D3R organizers without tautomer enumeration. For the small fragments hinge binding 

predictions are critically impacted by tautomer enumeration and prioritization (Figure 7). On the other hand 

pose prediction of MAP4K4 inhibitors which access both the hinge and catalytic site are predicted relatively 

better (Figure 8). Other sources of poor pose predictions for MAP4K4 in terms of their RMSD estimates 

include of the use of PLANTS docking approach which considers side chain flexibility and the use of an 

approach, different from D3R to calculate the RMSD measures. In all constrained docking approaches, 

such as PoPSS[45], which predict the binding pose of a query ligand using 3D shape similarity with known 

crystallographic ligands may be more appropriate for docking kinase fragments which only target the hinge 

region. 

 

Figure 7: (A) 3D interactions of MAP32 with 4U44 highlight the hinge-binding interactions of MAP32 via 

the hydrogen bond. The catalytic site comprising of the Lys54 and Asp 171 is not occupied (B) The poor 

docking prediction for MAP32 (small fragment) can be attributed to the lack of strong anchor residues in 

A) B)



the hinge region (for RMSD values of ‘MAP32’ pose predictions please kindly refer to supplementary 

material 3). The co-crystal structure derived binding mode provided by the D3R organizers is depicted as 

a stick and our predicted poses as lines. 

 

Figure 8: (A) 3D interactions of MAP25 with 4U44 highlight the hinge-binding (hydrogen bonding with 

Cys108 and pi interactions with Phe107) and catalytic site interactions of MAP25. The catalytic site 

comprising of the Lys54 and Asp 171 is also occupied (B) The good docking prediction for MAP25 can be 

attributed to the strong anchor residues in the hinge region (Phe107 and Lys54) and conformational rigidity 

of the molecule (for RMSD values of ‘MAP25’ pose predictions please kindly refer to supplementary 

material 3). The co-crystal structure derived binding mode provided by the D3R organizers is depicted as 

a stick and our predicted poses as lines. 

Better affinity prediction performance of the relatively novel target MAP4K in comparison to the 

well-established target HSP90 could be a dataset attribute characteristic. 

The prior knowledge in terms of activity as well as crystal structures for HSP90 is much greater in 

comparison to MAP4K4. However the affinity prediction performance however seems counter intuitive.  

The relatively poorer performance of MAP4K4 could just be an artifact of the dataset attributes such as the 

size and the spread of activity data. The HSP90 dataset with around 180 compounds is 10-fold larger than 

the MAP4K4 dataset with 18 compounds. Furthermore a significant portion of HSP90 compounds are 

inactive and show no variation in activities. Hence we analyzed the receiver operating characteristic AUC 

for both HSP90 and MAP4K4, where similar AUC values of 0.702 for HSP90 and 0.728 for MAP4K4 were 

observed (Figure 3). 

A) B)



Counter intuitive performance of MAP4K4 pose versus affinity prediction performance. 

The poor MAP4K4 pose prediction results in terms of mean RMSD of 4.346 seems counter-intuitive, in 

light of a comparatively better affinity prediction performance in terms of ROC AUC value 0.728 at 7.5 

pIC50 cut-off and R = 0.67. In addition to small size of this dataset, the following argument could explain 

the counter-intuitive results. Kinase fragment docking using our protocol, wherein protein-ligand 

interaction fingerprint analyses were used for automated pose prioritization, needs further validation and 

revision. Pose selection is often performed manually using visual inspection or automatically selecting the 

lowest energy pose. In the present studies we tried to address the automatic selection of poses which engage 

with hinge-, gatekeeper- and the catalytic- site residues. An exhaustive survey of the kinase fragments 

crystallized with their cognate proteins reveals that chemically similar fragments bind alternatively to either 

hinge or the catalytic site (consisting of the catalytic lysine and DFG motif). The compounds which failed 

the pose prediction assessments were predominantly hinge binding fragments. The protein-ligand protocol 

which employed a composite score comprising both fingerprint similarity and free energy primarily 

prioritized poses in which the fragment bound with the catalytic site since they are relatively more polar 

than the hinge pocket. These fragments primarily engaged the catalytic lysine via cation-pi and hydrogen 

bonding interactions. The plausibility of these alternative poses could explain why good affinity predictions 

were seen even when the pose prediction seems to far from reasonable. Furthermore the PLANTS docking 

procedure considers the side chain flexibility of amino acid residues, which could have also impacted the 

pose prediction accuracy’s in few other D3R MAP4K4 molecules. Pose prediction RMSD are known to be 

significantly impacted by the use of flexible docking procedures.[28,31,46] Finally our RMSD estimation 

method employed the DS Visualizer (which uses an all heavy atom approach to calculate the degree of 

overlap) differs from the protocol used by the organizers who used the maximum common substructure 

functionality of the OEChem Python toolkit. 

Conclusion 



In the present study, we report the application and results of two different strategies for the two protein 

systems in the D3R grand drug design challenge. For the well-studied HSP90 target system, our integrated 

docking and scoring approach performed well in pose and poorly for affinity prediction. For the second 

protein MAP4K4 with limited data available, we implemented an exhaustive docking and scoring protocol 

assisted by novel pose prioritization using protein-ligand interaction fingerprints. It resulted in reasonable 

affinity prediction and poor pose predictions. 
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