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Systems biology approaches to a rational drug discovery paradigm 

Philip Prathipati* and Kenji Mizuguchi 

National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, 

Ibaraki City, Osaka- 567-0085 

Abstract: Ligand- and structure-based drug design approaches complement phenotypic 

and target screens, respectively, and are the two major frameworks for guiding early-stage 

drug discovery efforts. Since the beginning of this century, the advent of the genomic era 

has presented researchers with a myriad of high throughput biological data (parts lists and 

their interaction networks) to address efficacy and toxicity, augmenting the traditional 

ligand- and structure-based approaches. This data rich era has also presented us with 

challenges related to integrating and analyzing these multi-platform and multi-dimensional 

datasets and translating them into viable hypotheses.  

Hence in the present paper, we review these existing approaches to drug discovery research and 

argue the case for a new systems biology based approach. We present the basic principles and 

the foundational arguments/underlying assumptions of the systems biology based approaches to 

drug design. Also discussed are systems biology data types (key entities, their attributes and their 

relationships with each other, and data models/representations), software and tools used for both 

retrospective- and prospective-analysis, and the hypotheses that can be inferred. In addition, we 

summarize some of the existing resources for a systems biology based drug discovery paradigm 

(open TG-GATEs, DrugMatrix, CMap and LINCs) in terms of their strengths and limitations. 

Keywords: systems biology, drug discovery, chemoinformatics, chemoproteomics, 
chemogenomics, genomics, phenomics 

INTRODUCTION 

Computer-assisted drug design† approaches have traditionally been classified into ligand- and 

structure-based approaches.[1] [Since this review covers a wide range of research areas, we have 

prepared a glossary for key technical terms (indicated with a dagger symbol) in Supplementary 

File 1.] The former approach, based on the idea of similar chemical structures having similar 

pharmacological effects, led to successful therapeutics even when the mode of action (MOA)† 
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was unknown[2]b,2 The ligand-based approach† mimics medicinal chemistry strategies, such as 

optimizing physicochemical properties, and is widely used and regarded as the most successful 

technique to date3. However, this approach does not offer a rational design† strategy. 

Furthermore, most often the structure-activity relationships† (SAR) guided multi-objective 

optimization† (against both the phenotype† and toxicity†) is fraught with difficulties.1 This 

problem has been attributed to key polar functional groups† or substructures [such as basic 

fragments for G-protein coupled receptors and acid/serine proteases4 (figure 1), or acidic 

fragments for phosphatases], which have to retain a particular physicochemical property† (e.g., 

“basic” in figure 1) for the on-target activity but such a property may be incompatible with 

favorable absorption, distribution, metabolism, excretion and toxicity (ADMET†) profiles. 1 

The latter, structure-based approach† also presents its own set of problems; methods for 

docking a compound into a single well-defined protein structure are reasonably mature but it 

is still a challenge to deal with multiple (functionally distinct) conformational states of the 

target protein. Furthermore, small molecules can interact with numerous other proteins (“off-

targets”) and there is also no rational procedure for understanding how the target-interaction 

profiles (“chemoproteomic profiles”; see section 3.5 for more details) correlate with the 

phenotype (Fig. 2).5, 6 

However, since the beginning of this century, the advent of the genomic era has presented 

researchers with a myriad of high throughput (HT) biological data† (parts lists and their 

interaction networks), which can assist in the optimization of efficacy and ADMET profiles in 

the traditional ligand- and structure- based approaches. This data rich era has, on the other hand, 

presented us with challenges related to integrating and analyzing multi-platform and multi-

dimensional datasets and translating them into viable hypotheses.  

Hence in the following sections, we elaborate on the existing approaches to drug discovery 

research and argue the case for a new systems biology based approach (section 1). We present 

the basic principles and the foundational arguments/underlying assumptions of the systems 

biology based approaches to drug design (section 2). We then discuss systems biology data types 

(key entities, their attributes and their relationships with each other), hypotheses that can be 

inferred, and software and tools used for both retrospective- and prospective-inferences (section 

3). We also review data models/representations that capture systems biology data types (section 

4), In addition, we summarize some of the existing resources for a systems biology based drug 
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discovery paradigm (open TG-GATEs, DrugMatrix, CMap and LINCs) in terms of their 

strengths and limitations (section 5). Finally, we review recent machine learning approaches for 

analyzing systems biology data (section 6). 

 

 

Figure 1: The advantages of structure-based approaches augmenting ligand-based approaches 

are exemplified using FXa inhibitors Dabigatran (A and C) and Rivaroxaban (B and D). Using 

a ligand-based approach, a basic fragment at P1 site (circled in A and C) was shown to be 

essential for FXa inhibition. Hence, the optimization strategy involved exploring other basic 

fragments at this site, which led to unfavorable ADMET profiles. A structure-based approach 

was used for replacing the basic amidine fragment of Dabigatran at the P1 pocket with a neutral 

chlorothiophene fragment by exploiting FXa’s binding site information and the full range of 

intermolecular interactions such pi-pi, cation-pi and anion-pi, in addition to the usual hydrogen 

bonding, hydrophobic and salt bridge interactions. This strategy has led to the design of the 

new inhibitor Rivaroxaban (B and D) with favorable ADMET profiles. For more details, the 

readers can refer to a review by Nar et al.4 
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Figure 2: The cancer model built using the fruit fly Drosophila pathway† data was used to 

rationally arrive at a compound (AD80) that was shown to inhibit four of the 10 selected cancer 

targets, dRET, Src, Raf and S6K. This chemoproteomic profile (inhibiting these four targets 

out of the 10) was associated with high efficacy and low toxicity in whole animal screening.. 

Further SAR analysis also led to the identification of dTOR as an anti-target responsible for 

toxicity. AD80 proved far more effective and less toxic than standard cancer drugs, which 

generally focus on a single target. This study by Dar et al.6 was the first time that whole-animal 

screening has been used in a rational, step-wise approach to identifying favorable 

chemoproteomic profiles and laid the case for a rational systems biology approach to drug 

discovery. For a more general discussion of chemoproteomics, see section 3.5. 

1. THE CASE FOR A SYSTEMS BIOLOGY OR NETWORK BASED DRUG 

DISCOVERY PARADIGM  

1.1 From phenotypic and target based screening to systems biology based 

screening 

In the pre-genomic era, two broad types of screens have sequentially dominated early-stage 

drug development—phenotypic screens and target† 

-based screens.7 The former quantifies the effects (phenotypes) that compounds induce in cells8 

and tissues. The correlation between the phenotypes and the compounds’ chemical structures 

is studied and incorporated into ligand-based in silico drug design efforts. The latter, target-

based screening assesses the effect of compounds on a purified target protein via in vitro† assays 

and is supported by structure-based computer-aided drug design techniques. These 

computational methods have fundamental limitations as described in the previous section, as 
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well as technical limitations discussed in ref1. To address the technical limitations, integrated 

HT computational protocols have been also proposed, combining ligand- and structure-based 

approaches.1,9 Structure-based approaches were integrated into ligand-based approaches with 

a view to select the model that reflects biological reality,9a, 10 while ligand-based models were 

integrated into structure-based models to address issues related to pose prediction and scoring 

functions.1,9c, 9d, 11 

One important technical limitation in these computational methods is the accuracy with which 

molecular recognition events are captured. Thus, molecular dynamics† (MD)12 simulations and 

quantum chemical calculations†13 such as Density Functional Theory (DFT) using graphics 

processing units (GPUs) can complement the traditional HT in silico techniques. in drug 

discovery research. The GPUs have greatly mitigated the computer scalability issues by 

accelerating the calculations tens of times. While MDs simulations can identify cryptic or 

allosteric binding sites,14 enhance traditional virtual-screening methodologies,15 and aid in the 

direct prediction of ligand binding energies, quantum chemistry calculations based on ab initio 

and DFT16 provide estimations of several physicochemical properties with increasing accuracy 

and establish data-driven sound relationships between structure and observable properties. 

With constant improvements in both computer power and algorithm design, MD simulations 

and quantum chemical calculations are likely to play an increasingly important role in the 

development of novel pharmacological therapeutics. 

However, even these integrated and accurate in silico approaches have proved insufficient for 

compound prioritization, because of difficulties in correlating phenotypic and target-based 

screens.17 For example, before the advances in molecular biology, phenotypic screens were 

primarily used with the hope of subsequently identifying the target or targets of intervention.18 

However, target identification and validation† proved difficult or impossible in most instances.7 

Hence in the last few decades, phenotypic† screens were mostly replaced with target screens, 

in which the target was validated with genetic studies, in early stages of drug discovery 

research.19 However, the over-reliance on target screening manifested as reduced discovery of 

first in class drugs.20 

Thus, integrative systems biology based screening methods were proposed as a solution, which 

combine elements of both phenotypic and target-based screens. This integrated framework 

hopes to expand and augment target-based screening by providing chemical validation of drug 
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targets, i.e., identifying the target or targets that are modulated by the candidate molecule when 

the desired phenotype is observed.21 

1.2 Use of gene†/protein/metabolite profiles as surrogates for phenotypes 

For a realistic application of a HT systems biology based integrative approach, phenotypic 

screens represent a bottleneck and present two major problems. First, phenotypes are difficult 

to quantify22 and second, running phenotypic screens (quantification of observable traits) for 

complex multifactorial diseases such as cancer, diabetes and cardiovascular diseases have 

logistic difficulties.23 For instance, according to the current cancer drug discovery paradigm, a 

rare population of tumor cells with stem cell characteristics (known as cancer stem cells) are 

considered to be responsible for tumor growth and metastasis and are the focus of much 

attention. However, monitoring and quantifying cancer stem cell content presents considerable 

challenges, including a) the requirements of serial biopsies of the tumor or b) counting the 

number of cells with a particular stem cell marker such as a surface protein or c) injecting the 

treated cancer stem cells into immune-deficient mice to see if they form tumors. Hence gene 

expression† signatures that correlate with “stemness” and are sensitive to chemotherapy are 

often used. 23 In a similar vein, the use of the gene/protein/metabolite expression/concentration 

signatures as surrogates for many other phenotypic endpoints has steadily been gaining 

acceptance in drug discovery and toxicological research.24 Huntington’s disease and 

Congenital adrenal hyperplasia are two examples where elevated metabolite profiles such as 

hydroxykynurenine and quinolinate levels and decreased metabolite profiles such as 

aldosterone and cortisol are used to the respective phenotypic states. Metabolomics is a study 

that aims to characterize the metabolome† (all endogenous metabolites found in cells and body 

fluid) under different conditions (for example, in disease states]. 25,26,27,28 Metabolomics can 

not only help us illustrate the underlying molecular disease-causing mechanisms but also gain 

broad recognition in discovery of metabolic signatures† [biomarkers] for disease diagnosis. 

25,26,27,28 

1.3 Integrative systems biology or network based drug discovery paradigm 

Given this background, systems biology approaches analyze how genes†, proteins, metabolites† 

and other molecular profiles and their interactions are maintained in health and how they 

become perturbed by genetic and environmental stressors and cause disease (“cause-effect 

mechanisms”).29 Thus the in silico systems biology or network-based drug discovery paradigm 
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attempts to model all major components and processes involved in early stages of drug 

discovery and development as described in figure 3.30 More specifically, the elucidation of 

cause-effects mechanisms can be realized in three ways: (a) a HT bioinformatics† approach for 

analyzing retrospectively the cause-effect mechanisms (such as master regulators of 

phenotypes or cellular states or enriched substructures associated with toxicity or 

pharmacological activity), (b) advanced machine learning methods for prospective predictions, 

or (c) both (a) and (b) together in one integrated protocol. We will describe these protocols in 

more detail in sections 3 and 6. 

The analysis of cause-effect mechanisms in chemoinformatics or chemoproteomics (see Table 

1 in section 3) may be relatively straightforward for the following reason. These studies deal 

with a matrix of whether a particular compound interacts with a particular protein 

(chemoproteomics) or whether a particular chemical possesses a particular substructure 

(chemocinformatics). Elucidating the cause-effect relationships in chemoproteomics involves 

identifying statistically significant associations between common structural features (cause) 

and protein-interaction profiles (effects). This analysis is straightforward, because we model 

direct binding events in isolated protein (in vitro) assays.  

However, a proper analysis of cause effect mechanisms in chemogenomics, genomics and 

phenomics† (see section 3 for the definitions) additionally requires the use of 

qualitative/quantitative pathway models for understanding the paths between the perturbed 

elements and the manifested outcomes.31 For instance, chemogenomics is the study of changes 

in gene expression profiles induced by chemical compounds. Thus the chemically induced gene 

expression signature can only be interpreted by modeling protein and gene networks†. 

[Chemicals binding to proteins transmit the signal to transcription† factors (TFs), which 

modulate gene expression.]32 Genomics and phonemics studies typically analyze the changes 

in gene expression profiles in diseased states induced from normal states by non-chemical 

perturbations. They include: (a) natural substrates (e.g., hormones, neurotransmitters, extra-

cellular signals/factors), (b) RNAi† (SiRNA, shRNA) (c) genome† editing (CRISPR) for 

knockdown or knockout, and (d) cDNA constructs for overexpression of master regulators†. 

These studies also require the use of gene regulatory networks together with protein and 

metabolic regulatory networks to interpret meaningfully the path between the signal triggers 

and output.33 
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Systems biology using qualitative/quantitative models as part of the cause effect 

elucidation efforts attempts to understand the following elements. First, it concerns the 

structure of the biological system, i.e., all the elements linking the signal trigger (e.g., ligand 

binding to its cell-surface receptor) through the diverse pathways and mediators to a specific 

set of regulator proteins (such as TFs) that are responsible for altering the expression of a large 

number of genes, which then gives rise to phenotypic changes. (Such a structure is known as 

the bow-tie architecture34 because the signal converges to a small number of regulator proteins 

at the knot region and then diverges.)  The second element is the dynamics of the system by 

constructing predictive qualitative or quantitative models. Third, we need to identify “control 

elements” based on the predictive model simulations. These control proteins regulate the 

information flux between the input and the output and are also called bottleneck elements. 

These bottleneck elements are often prioritized as drug targets. Forth, we also need to 

understand how the system is constructed by combining known network motifs (i.e., repeating 

subnetworks such as feed-forward and other regulatory loops).  

Thus, to implement a systems biology approach to drug discovery research, we need to 

integrate chemoinformatic, proteomic, genomic, phenomic, chemoproteomic, chemogenomic 

data together with qualitative and quantitative cell signaling models.34 This approach, in 

addition to elucidating the cause-effect mechanism, can also identify a collection of modifiable 

drug targets and predict the effect of single- or combinatorial-drug treatments. The modulation 

of multiple targets may be required, because in most instances, phenotypes have back-up or 

alternate survival mechanisms, which also need to be perturbed to achieve phenotypic 

transition.  

Although many compound and target prioritization methods have been proposed, most 

of them are not based on the systems biology framework as described above. For example, 

compounds and targets that match a given set of proteomic, genomic or metabolomic profiles 

can be prioritized by searching appropriate databases such as ChEMBL,35 BindingDB36, 

TargetMine37, and Possum38 for proteomics,, cMap,39 CIDD,40 Toxygates41, GSEA42, and 

QSTAR project43 for genomics, and MSEA44 and MetaboAnalyst45 for metabolomics. The 

application of integrated approaches such as Galahad46, Expression2Kinases47, and 

CellNOptR48 which uses both genomic (or proteomic) profiles and protein-protein interaction 

(PPI) data, is also gaining attention. In its essence, all these prioritization processes involve 

comparing a molecular profiles (e.g., protein-target interaction or gene expression response) 
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associated with a chemical with a database of disease or pathway signatures such as MSigDB49, 

GeneSigDB50, and EnrichR51. The comparisons can be performed using a variety of association 

measures39, 52, but have limitations such as ignoring the topology of the regulatory networks 

and the relative rank of the strength of the association. These limitations can be addressed using 

the systems biology framework incorporating qualitative and quantitative models, since these 

models consider the topology of the network and the quantitative measure of molecular 

activities (such as protein activity, mRNA† expression and metabolite concentration). Thus in 

silico systems biology is regarded as a promising avenue to discover a combination of targets 

and modulators to produce synergistic effects or avoid antagonist effects.53,54 

method.52g  

 

Figure 3: A schematic flow chart summarizing the process of drug discovery, including major 

in silico contributions (italicized) to chemistry, biology† and ADMET. 
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2 BASIC PRINCIPLES AND UNDERLYING PREMISES OF SYSTEMS BIOLOGY 

APPROACHES TO DRUG DESIGN 

Since systems biology based approaches attempt to integrate (a) metabolic/chemical 

concentrations, (b) protein activity, (c) protein expression, (d) gene expression and (e) 

phenotypic endpoints and use one as a surrogate for the other, it is vitally important to 

understand some of the underlying assumptions and foundational arguments for application of 

this strategy for drug discovery. BCL-ABL and epidermal growth factor receptor (EGFR) 

kinases are prototypical examples, which exemplify correlations between genes, transcripts†, 

proteins, and protein activity and led to conceptualization of systems biology approaches55 

(figure 4). 

 

Figure 4: BCL-ABL: correlations between gene fusion and protein activity levels. BCR-ABL 

kinase is a major drug target for a range of blood and solid tumors. Systems biology 

researchers aim to identify similar such drug targets using HT data and the conceptual 

workflow described in section 1.3. 

2.1 Correlations between mRNA and protein abundance levels 

The principle hypothesis of genomics is that steady state mRNA levels correlate with protein 

concentrations. The reported correlations between mRNA and protein levels by different 

groups vary from R= 0.4 to R=0.7.56 The limited correlation was attributed to the importance 
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of post-transcriptional-, translational- and protein degradation-regulation in controlling steady-

state protein abundances, and it was suggested that better correlations may be obtained by 

addressing experimental artefacts. 

2.2 Gene co-expression for estimating protein-protein interaction probability 

Proteins involved in regulatory interactions are assumed to have more similar gene expression 

profiles than random pairs. Supporting evidence comes from studies comparing gene 

expression profile with large-scale PPI data sets.57 Thus mRNA co-expression profiles may be 

used to infer cell-signaling networks. 

2.3 Existence of upward and downward causation in biological systems 

The advances in genetics and epigenetics unequivocally demonstrate the existence of 

downward causation (e.g., from protein to gene), which is seen as completing a feedback circuit 

and has formed the founding principle of systems biology58. Some of the most important 

downward causation events include triggers (hormones and neurotransmitters) of cell signaling, 

control of gene expression by TFs and epigenetic regulators, the protein machinery that reads 

and repairs making the genome reliable59 (as described in figure5). 

 

Figure 5: Systems biology view of upward and downward causation in biology as a feedback 

diagram. While the upward causation is well known (black links), some of major downward 

causation (blue links) elements include TFs, epigenetic regulators, reverse transcriptases, 

DNA_polymerases†, and recombinases.  

2.4 Multiple targets for structure-based drug design 
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Complex multifactorial diseases show perturbations at pathway levels and not necessarily at 

individual proteins/genes. Hence the systems biology based drug design paradigm focuses on 

searching for multi-target drugs to perturb disease-associated networks rather than designing 

selective ligands to target individual proteins. Furthermore, studies on drug promiscuity in 

proteome-wide binding60 estimated that an existing drug binds to, on average, 6.3 protein 

receptors, which include targets (favorable) and anti-targets (unfavorable). Thus given this 

promiscuity and the systems biology view of diseases, it is important to build actionable models 

(i.e., models that can predict the effect of perturbations on the relevant physiological process) 

to guide structure-based drug design (as illustrated in figure 2). 5 

2.5 Correlation between drug-induced protein activity levels and gene expression 

profiles 

The correlation between drug-induced protein activity levels and mRNA abundance is another 

founding principle of systems biology based drug design. This principle was examined by 

analyzing the protein activity and mRNA concentrations upon rapamycin treatment.61 A 

significant number of proteins with decreased activity caused decreases in their mRNA levels. 

This result may be explained by common network motifs.62 

In another study, Iskar et al63 showed similar trends after analyzing 1,290 drug-target and drug-

mRNA profiles, although the sample size was small. A recent study by Koussounadis et al 64 

showed that differentially expressed mRNAs correlate significantly better with their protein 

product than non-differentially expressed mRNAs. These results have increased confidence for 

the use of differential mRNA expression for biological discovery in various disease systems, 

as well as providing optimism for the usefulness of inferences from mRNA expression in 

general.56d, 65 

2.6 Qualitative and quantitative cell signaling models to simulate the effect of 

cues on cellular behavior and phenotype 

Qualitative and quantitative cell signaling models or network-based computational models are 

broadly classified as Bayesian, logic based (qualitative) and mass-action (quantitative) 

models.54 These models capture the dynamic signaling networks that drive biological decision 

processes and cellular states in response to cues. In a network based computational model, 
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cellular behavior (e.g., cell migration) or phenotypic states (e.g., metastatic) can be considered 

a steady state high dimensional vector of gene/protein activities66,67 

We can thus expect network-based computational models to be able to simulate diseases such 

as cancer, which are not just regarded as ones with a genetic basis but as those that are driven 

by perturbations at the signaling network level. For instance, network based computational 

models can simulate the events, involving perturbations to some network components, that 

change normal cells to new malignant states (e.g., EGF induction leading to metastasis), or the 

events, involving drug mediated perturbations, that might reverse or inhibit certain phenotypic 

states. 5, 66,67 

3 IMPORTANT ELEMENTS AND RELATIONSHIPS IN SYSTEMS BIOLOGY 

DATASETS 

Systems biology analyzes global profiles of chemicals, proteins and genes to understand and 

predict biological complexity by using a cross-disciplinary approach.68,69 Hence it integrates 

many multi-scale (genes to phenotypes) types of biological information. Systems biology data 

are best described as a graph, consisting of nodes (elements) and edges (relationships between 

elements), and analyzed using graph (network) based methods (tables 1 and 2). While Table 1 

summarizes some of the datasets that usually are integrated and used in the systems biology 

based drug design paradigm and hypotheses that can be derived from retrospective analysis, 

table 2 catalogs open access databases and software packages useful for systems biology 

approaches to drug discovery. 

Table 1: Summary of the datasets used in the systems biology based drug design paradigm and 

the nature of the hypothesis that can be inferred by analyzing these datasets.  

Data type Parts list Hypothesis from a 

retrospective analysis of the 

interactions 

Chemoinformatics 

 

Nodes: Chemicals 

Node Attributes:  Proteins, Domains, 

Substructures, Enriched fragments†, 

Pharmacophores, Toxicophores, 

Physicochemical properties, 

Structural descriptors, etc 

(a) Chemical similarity 

network analysis that can 

complement 

chemoproteomic and 

chemogenomic analysis. 

Proteomics 

  

Nodes: Proteins 

Node Attributes: Domain 

definitions,Ssequence motifs(linear 

(a) Protein similarity and 

(b) protein interaction 

networks:  
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Data type Parts list Hypothesis from a 

retrospective analysis of the 

interactions 

and non-linear), Superfamily 

definitions, Sequence descriptors, 

Cognate ligands, Pathways, other 

protein interacting partners 

Genomics 

 

 

 

 

Nodes: Genes/ transcripts 

Node Attributes: 

Phenotypes/indications, 

Perturbagens† (small molecule or 

si/shRNA), motifs, regulators (TFs, 

Epigenetic factors, Master 

regulators), Pathways, Literature 

gene sets. 

 

(a) Finding and interpreting 

genes/ transcripts associated 

with phenotypic changes or 

perturbations.  

Phenomics 

 

Nodes: Diseases/ Indications/ 

phenotypes 

Node Attributes: in vivo† Biochemical 

data, Hematology, Organ Weight, 

Pathology Data, Histology, Pathways, 

Genes, Proteins (drug targets), 

Chemicals, Chromatin regulators. 

(a) Studying the genotype–

phenotype map, (b) 

Identifying the genetic basis 

of complex traits. 

Chemoproteomics 

(bipartite 

networks – edges 

between chemicals 

and proteins only) 

Nodes: Chemicals, Proteins 

Edge Attributes: Activation, 

inhibition, degradation. 

(a) Analyzing the 

pharmacological map of the 

druggable proteome and 

discovering ligands for 

undruggable proteome, (b) 

drug target discovery. 

Chemogenomics 

(bipartite 

networks – edges 

between chemicals 

and genes only) 

Nodes: Chemicals, Genes 

Node Attributes: : in vivo Biochemical 

data, Hematology, Organ Weight, 

Pathology Data, Histology, Pathways, 

Genes, Proteins (drug targets), 

Chemicals, Chromatin regulators. 

Edge attributes: activation, 

repression. 

(a) Determining mode of 

action, (b) drug repurposing 

and drug target 

identification 

Qualitative and 

quantitative 

network models 

 

Nodes: Chemicals, Genes, Proteins, 

protein complexes, phenotypes 

Node Attributes: Activity levels 

inferred from mRNA or protein 

expression activity data. 

Edge Attributes:  

Regulatory interactions, PTMs,  

(a) Represent existing 

knowledge of biological 

systems, (b) predict the 

effect of perturbations on 

other components of the 

pathway, (c) identify 

missing components in a 

pathway, (d) determine the 

most critical components of 

the pathway,  
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Understanding complex systems often requires a bottom-up analysis which involves 

investigating a system, not only as individual components but as a whole.70 Such an 

investigation can be done by examining the elementary constituents (nodes) individually and 

then how these are connected. The myriad components of a system and their interactions are 

best characterized as networks and they are mainly represented as graphs where thousands of 

nodes are connected with thousands of vertices. 

In general, a graph based computations have been successfully applied to the study of 

biological network topology, from the global perspective of their scale-free, small world, 

hierarchical nature, to the zoomed-in view of interaction motifs, clusters and modules and the 

specific interactions between different biomolecules. 70 

In particular, network-based approaches can elucidate the cause-effect mechanisms of existing 

observations (“retrospective systems biology analysis”) by clustering entities and analyzing 

properties enriched within clusters. For example, genes can be clusters based on expression 

profiles and common regulators within a co-expressed cluster can be identified by the 

enrichment of regulator binding sites. Similarly, chemical fragments that preferentially inhibit 

a given protein family can be identified by clustering chemicals based on their protein 

interaction profiles.71.  

Weighted gene co-expression network analysis (WGCNA) is one of the best suited data mining 

methods for retrospectively analyzing the various systems biology data described above. 

Though it can be applied to most systems biology data sets, it has been most widely used for 

cause-effect interpretation in genomics. WGCNA allows one to define modules (clusters) and 

intramodular hubs, correlate the modules with attributes or perform enrichment analysis. Some 

of the typical hypotheses derived from retrospective analysis of the systems biology databases 

described in table 1 are discussed below. 

Table 2: Open access databases and free software and tools for retrospective analysis. Only 

tools used and verified by the authors are presented. 

Data type Open access 

Datasets and tools 

to import 

Open access software 

Chemoinformatics TargetMine37, 

Chembl35, 

Pubchem72, 

(a) Descriptors: ChemmineR73, SNG74, Rcpi75, 

OpenBabel, jCMapperCLI.76 
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Data type Open access 

Datasets and tools 

to import 

Open access software 

BindingDB36, 

STITCH36 

(b) Cluster and enrichment analysis:WGCNA77, 

Fabia78, Bicluster, SuperBicuster. 

Proteomics TargetMine, 

STRING79, 

KEGG80, 

Uniprot81, etc. 

(a) Descriptors: Uniprot.WS, Protr82, Rcpi75, 

BioMartR.83 

(b) Cluster and enrichment analysis: WGCNA77, 

Fabia78, Bicluster, SuperBicuster. 

Genomics NCBI GEO84, 

Arrayexpress84 

(a) Differential gene expression analysis: Affy85, 

Limma.52f 

(b) High Throughput Sequencing Data analysis: 

Babraham Bioinformatics86 

(b) Gene coexpression analysis: WGCNA77, 

Fabia78, SuperBicuster. 

(c )Databases for gene set enrichment analysis: 

MSigDB 49, GeneSetDB50a, ConReg, EnrichR51, 

Hippi.87 

(d) Tools for gene set enrichment analysis in 

bioconductor: SPIA88, gCMAP52a, Piano89 

together with webservers like Targetmine37 and 

DAVID.90 

Phenomics ICD10/991, -

SIDER92, -OMIM, 

etc 

(a) Cluster and enrichment analysis: WGCNA77, 

Fabia78, Bicluster, SuperBicuster. 

Chemoproteomics ChEMBL35, 

bindingDB36, 

TargetMine37. 

(a) Descriptors: ChemmineR73, SNG, Rcpi, 

OpenBabel, Uniprot.WS, Protr82, Rcpi75, 

BioMartR.83 

(b) Cluster and enrichment analysis:WGCNA77, 

Fabia78, Bicluster, SuperBicuster. 

Chemogenomics Japanese TGP93, 

NIBIO immune 

adjuvant database, 

SAHA-PIP gene 

expression 

profiles94, 

DrugMatrix95, 

CMap39 and 

LINCs 

(a) Differential gene expression analysis: Affy85, 

Limma52f 

Gene coexpression analysis: WGCNA, Fabia78, 

SuperBicuster 

(b) Databases for gene set enrichment analysis: 

MSigDB 49, GeneSetDB50a, ConReg, EnrichR51, 

Hippi.87 

(c ) Tools for gene set enrichment analysis in 

bioconductor: SPIA88, gCMAP52a, Piano89 

together with webservers like Targetmine37 and 

DAVID.90 

Qualitative and 

quantitative 

network models 

EBI biomodels96, 

KEGG80. 

 

(a) import and parse systems biology models: 

KEGGgraph97 for KEGG 

(b) Network inference: CellNoptR48, BoolNetR98 

and Copasi99. 

(c )Network simulation: CellnOptR48, 

BoolNetR98, Copasi99 , GINsim100 and 

CellDesigner101. 
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3.1 Chemoinformatics: Chemoinformatics is the field of study of all aspects of the 

representation and use of chemical and biological information on computers. Since similar 

chemical structures generally give similar activities, the identification of the links between 

chemical structures in terms of their attributes can lead to a comprehensive understanding of 

the nature of the chemical space, inform SAR and polypharmacological profiles, and provide 

mode of action (MOA) hypotheses for orphan compounds.102 The chemical similarity network 

analysis can also complement chemoproteomic and chemogenomic analysis and provide a 

more complete hypothesis for drug discovery research. 

3.2 Proteomics: Proteomics is the large-scale study of proteins, particularly their 

structures and functions. It is broadly divided into abundance and functional proteomics. While 

abundance proteomics catalogs protein components, identifies differences between states, finds 

biomarker and examines post-translational modifications, functional proteomics identifies 

interactors (PPIs, signal transduction pathways, biochemical machinery), finds enzymatic 

substrates and studies drug selectivity profiles. The comprehensive characterization of protein 

similarity and PPI networks can provide useful hypothesis for binding site predictions, and 

inform on polypharmacology profiles to guide rational optimization of the efficacy and 

toxicity.103 The now mature field of PPI network analysis has led to considerable successes in 

identifying protein modules related to important biological processes and diseases. 

3.3 Genomics Genomics is a discipline in genetics that applies recombinant DNA, 

DNA sequencing and bioinformatics to sequence, assemble and analyze the function and 

structure of genomes. Genomics research has been used for finding and interpreting 

genes/transcripts associated with phenotypic changes or perturbations. The identification of 

events (differential expression of genes; DEG) associated with phenotypic changes is now 

routinely performed and used for developing diagnostic, prognostic and gene signature assays. 

However, methods for inferring the causative events and for understanding the cause-effect 

mechanisms are currently being developed.104 The understanding of cause-effect mechanisms 

could provide valuable new points of intervention (drug targets) for restoring the normal 

phenotypes. It could also provide important regulators for the emerging field of rational cellular 

reprogramming and phenotypic transitions.77 As the field of genomics matures the limitations 

of single gene based DEG approaches and the benefits of gene set based approaches such as 

gene set enrichment analysis (GSEA)42 and WGCNA 77 are also being recognized and driving 

the field.  
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3.4 Phenomics: Phenomics is a very broad study that deals with measuring how much 

the physical and biological traits in an organism is affected due to genetic and epigenetic 

(environmental) effects. Phenomics research contributes to an understanding genetic disorder, 

cancers and other diseases. It involves mapping genotype to phenotype either directly using 

single nucleotide polymorphism† (SNP) arrays or via the intermediate gene expression profiles 

with various phenotypic endpoints. While background normalization† of SNP arrays is major 

obstacle to SNP array based analysis, the identification of causal elements (master regulators) 

or interpreting the cause-effect relationships is an area of current phenomics research. 77, 104 

Several successful master regulators such as Oct4/Sox2/Nanog for induced pluripotent stem 

cells were identified retrospectively or prospectively using systems biology tools described in 

table 2.105 

3.5 Chemoproteomics: Chemoproteomics is a field of study linking chemicals to 

molecular targets implicated with therapeutic indications.38 Chemoproteomic analysis can be 

used for (a) analyzing known ligand-protein interactions (“druggable protein space”) and 

predicting ligands for proteins with no known small molecules (“extrapolating to the un-

druggable protein space”), (b) discovering drug targets and (c) identifying favorable sets of 

targets responsible for mediating cellular effects. For instance, Crizotinib, which was initially 

developed as a c-Met inhibitor, was also found to target ALK in NSCLCs. Since ALK 

mutations were also identified as causative events for NSCLCs, ALK was proposed as a drug 

target for this indication. 71b, 106 

3.6 Chemogenomics: Chemogenomics is the systematic screening of targeted chemical 

libraries of small molecules against the global transcriptome space or against individual drug 

target families. (such as GPCRs and kinases).  Chemogenomics analysis of datasets such as 

cMAP39 or Japanese Toxicogenomics Project datasets (TGP)93 have been used to identify well 

established gene signatures and biomarkers and several successful repurposing efforts were 

published using the tools presented in table 1.107 Further analysis of these data sets by using 

gene set analysis methods such as GSEA42, Galahad,46 Expression2Kinases47 should be able to 

provide additional hypotheses about potential pathways (and eventually drug targets) or gene 

sets perturbed by the compound of interest.  

3.7 Qualitative and quantitative network models: While all the datasets above are 

experimentally obtained global profiles, the datasets in this category are theoretical models 
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inferred using the above datasets for understanding specific diseases or pathways. We included 

this category in table 1 because these models can provide hypotheses and interpretations that 

are not available from any of the datasets above. These qualitative/quantitative models 

represent actionable cell signaling pathways and simulations can lead to the identification of 

drug targets (bottleneck proteins), master regulators (TFs and extracellular cues), missing 

components of networks, derive novel disease phenotypes (such as heterogeneous mutant 

cancer cellular states) and can be used for interpreting gene expression analysis.108 

4 REPRESENTATIONS FOR SYSTEMS BIOLOGY DATA 

The practice of systems biology (tables 2) depends upon many software tools, operating on 

many kinds of data elements from many different sources as described in table 1. These 

elements may have different attributes (properties described in table 1) and can be connected 

by different types of edges (links described in table 1), which can be directed or undirected. 

The edges/links can have physical meaning, denote functional associations or can represent 

shared characteristics between components.109 Hence the field of data integration actively 

researches appropriate frameworks that are applicable to systems biology data.  

The resource description framework (RDF) offers a simple mechanism to identify and describe 

the components and the links between systems biology data. In RDF, the elements are 

described in terms of their types, attributes and relations to other entities or elements. RDFS 

(RDF schema) is an extension of RDF and provides additional vocabulary for naming resources 

(rdfs: labels) and specifying simple type and relational hierarchies (rdfs: subclass of, rdfs: 

subproperty of). Most RDF resources (such as EBI RDF109 and bio2rdf) are now implemented 

as RDFS and can be queried using the SPARQL query language. SPARQL quires may contain 

triples patterns that can be conjunctively (AND) or disjunctively (OR) combined with 

mandatory or OPTIONAL triple query patterns.  

DrugBank110 is a prototypical systems biology database, which includes most of the datasets 

described in table 1. Hence many example protocols to query drugs (as the subject) and various 

attributes (pka, WaterSolubility, target, DrugClassificationCategory, Indication, 

Mechanismofaction) as objects are provided as a supplementary file 1. More complex quires 

can be made integrating the bio2rdf endpoint with other related databases. The readers can refer 

to EBI’s example SPARQL quires111 for additional details and bio2rdf example quires112. 
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Data warehousing is another method for integrating systems biology datasets. InterMine113 is 

an open source data warehousing framework, built specifically for the integration and analysis 

of complex systems biology data. TargetMine37 is one of the applications developed using the 

InterMine framework and was designed specifically for assisting early-stage drug discovery 

and development. It enables the creation of biological databases accessed by sophisticated web 

query tools. Parsers are provided for integrating data from many common biological data 

sources and formats along with a framework for adding your own data, as well as a powerful, 

scriptable web-service API to allow programmatic access to your data.114 

5 EXISTING RESOURCES FOR THE SYSTEMS BIOLOGY BASED DRUG 

DISCOVERY PARADIGM 

Table 1 shows multi-disciplinary systems biology datasets on different levels and in the 

previous section, we described general technologies for data integration. System biology 

discovers how function arises in dynamical systems (cells) by integrating diverse datasets and 

infers the missing links between molecules and phenotypes.  

Several projects were aimed at integrating multiple datasets and implementing a rational 

systems biology approach to drug and toxicity research115, such as Japanese TGP93, cMAP39, 

DrugMatrix95 and the LINCS33 project. In table 2, we attempt to discuss the basic structure of 

the data generated by these projects and their strengths, and highlight the missing links, which 

limit the use of these data for a systems biology approach.  

Japanese TGP93is probably one of the richest sources of in vivo and in vitro chemogneomic 

data with ~170 compounds-49K transcript profiled in different tissues, at different time points 

and at different doses (~20K GeneChip assays including histopathological data). Gene 

signatures and selected gene sensitivity markers were proposed for several toxicological end 

points but further analysis is required to translate these signatures into anti-targets of interest 

to drug research. However, a limited number of compounds and a lack of human in vivo or in 

vitro samples are some of the limitations of the dataset. Since no chemoinformatic or 

chemoproteomic profiles were considered this protocol has to be further appended by 

integrating it with chemoinformatic and chemoproteomic datasets to incorporate target 

identification and structure based drug design aspects. 
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DrugMatrix95 was designed along the same lines as the Japanese TGP with 600 compounds, 

including ~4,000 dose time–tissue combinations, ~2 million dosed tissue samples, ~18,000 

microarrays†, ~127,000 histopathology measurements and ~100,000 haematology and 

chemistry measurements. Furthermore, more than 800 compounds were profiled across 130 in 

vitro pharmacology assays. Like the Japanese TGP, several gene signatures and selected gene 

sensitivity markers were proposed for the several toxicological end points but further analysis 

is required to translate these signatures into anti-targets of interest to drug research. Since 

DrugMatrix is designed along the same lines as Japanese TGP, it has the same limitations and 

needs to be integrated with chemoinformatic and chemoproteomic datasets to be useful for 

drug discovery projects. 

The connectivity map39 is the most cited of the chemogenomics datasets and includes 453 

Affymetrix profiles for 164 drugs across multiple cell lines, doses and time points. Several 

repositioning hypothesis were validated and proposed using positive correlation of 

transcriptional profiles with other drugs. It has limitations similar to those with the Japanese 

TGP. In addition, no phenotypic endpoints were measured/reported but can be inferred by 

linking to ATC or ICD or sider codes. 

The Library of Integrated Cellular Signatures (LINCS)33 is an NIH funded program for the 

generation of perturbational profiles across multiple cell and perturbation types, as well as read-

outs, at a massive scale. To date, LINCS has generated over 1 billion data points of 

perturbational profiles spanning small-molecules and genetic gain- and loss-of-function across 

multiple cell types. It currently includes (~5K small molecules+ ~22K CRISPR or cDNA 

constructs) -induced molecular (1,000 landmark genes+500 kinome) and cellular signatures 

(876 cell lines). This massive project aims to create a network-based understanding of biology 

by cataloging changes in gene expression and other cellular phenotypes. The LINCS project 

addressed most of the limitations of its predecessor the cMAP build 1 and 2 and integrated the 

chemogenomics dataset with chemoproteomic and chemoinformatic datasets together with 

several other relevant datasets (e.g., compound-cell perturbations, shRNA-gene perturbations, 

and kinome scans). However, since only expression profiles of 1000 landmark genes are 

currently available, LINCS cannot readily be analyzed with conventional approaches such as 

GSEA. In addition, LINCS does not include cell signaling networks and hence cannot be used 

to rationally infer the paths between physical target and differentially expressed master 

regulators. 

http://www.lincsproject.org/
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6 MACHINE-LEARNING METHODS FOR PROSPECTIVE SYSTEMS BIOLOGY 

DATA ANALYSIS 

While the software and tools described in table 2 are mostly used for retrospective analysis (see 

section 3), network-based approaches can be used for prospective predictions as well, for 

example, proposing novel biomarkers and validating them by new experiements.116 In 

particular, recent advances in machine-learning methods have brought about the possibility of 

applying these methods to prospective systems biology data analysis. Systems biology data 

described above have many-to-many relationships (many drugs associate with many targets) 

and are best analyzed using advanced machine-learning methods. 

Drug repurposing is the most sought after predictive hypothesis generation application and the 

numerous approaches which can be classified as similarity based, 3D structure based, network 

inference, machine learning are summarized in table 3. As seen from the cited examples in 

table 3, many methods with unique applicability ranges have already been used for drug 

repositioning studies. As suggested by Meslamani et al.117 there is no rationale for considering 

a single profiling method for drug repositioning. On the basis of a comparative evaluation of 

several ligand-based and target-based methods in profiling 157 diverse ligands on 2556 

different targets, Meslamani et al 118previously shown that (i) ligand-centric methods should 

be used whenever possible (which means when enough ligands are known for a particular 

target), (ii) 2D ligand descriptors are usually preferred to 3D descriptors, with the exception of 

low molecular-weight apolar ligands, (iii) protein−ligand docking should be reserved to polar 

and buried active sites of known structure for which few ligands are available, and (iv) 

receptor−ligand pharmacophore search may then be applied to all other protein structures. 118 

Traditional methods in machine learning and statistics provided data-driven models for 

predicting a single target or label (Y) either as binary values in classification and real-values in 

regression. However in recent years, novel application domains such as systems biology 

datasets have triggered fundamental research on more complicated problems, where multi-

target predictions are required.119 In the realm of systems biology, the targets (Ys) often have 

diverse relational structures; for instance, biological attributes or entities such as international 

classification of diseases (ICD) 10/9 annotations, protein domain annotations, Gene Ontology 

terms, all of which have parent child relationships, while gene co-expression, protein- and 

chemical- similarity networks are known to be scale-free or follow power law relationships and 
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can be presumed to have a tree shaped hierarchy. Thus a range of machine learning methods 

have to be considered depending on the data types such as support vector machines (SVMs), 

neural networks (NN), k-nearest neighbors (kNN), boosting methods for unrelated multi-label 

datasets and similarity based approaches such as DT-hybrid, kernel regression methods such 

as lasso or elastic nets or pairwise kernel method (PKM) for related multi-label datasets. 105a-d 

Table 3: Systems biology based prospective methods for drug repositioning can be classified 

as similarity-, 3D structure-, network inference- and machine learning-based methods. Some 

of the well-known studies in each category are presented. 

Prospecti

ve 

systems 

biology 

methods 

Similarity based 3D structure 

based 

Network inference Machine 

learning 

Chemical 

structure 

Gonzalez-Daz et 

al., (2011)120, 

Keiser et al., 

(2007&2009)102

b, 121. 

Meslamani et 

al.117 

Meslamani et al. 
118  

 Yildirim et 

al. (2007)122 

Ekins et 

al.(2007 & 

2014) 32, 123  

Protein 

structure 

(inverse 

docking) 

  Li et al., 

(2006)124;  

Xie et al., 

201160b; 

Martínez-

Jiménez 2015125 

    

Side 

effect/phe

notype 

Campillos et al. 

(2008)126 

Chen L 

(2012)109b 

    Yildirim et 

al. (2007)122 

Gao YF et 

al.(2013) 105b 

Wu L et 

al.(2013)105c 

Liu M et 

al.(2012)105e 

Transcript 

expressio

n 

Iorio et al. 

(2010) 127; 

Dudley et al. 

(2011) 107a 

Sirota et al. 

(2011)107c 

     Fernald et 

al.(2013) 128 

Protein 

attributes 

     Yildirim et 

al. (2007)122; 

Jacoby et al.129  

 Clark  et 

al.(2014) 130 

Chemical 

and 

protein 

attributes 

    Cheng et al. (2012) 
131; 

Zhou et al. (2007)132; 

van Laarhoven et al. 

(2011) 133; 

Prathipati et al. 

(2009) 106a; 

Nidhi et 

al.(2006) 136; 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722516/#btt307-B20
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722516/#btt307-B20
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722516/#btt307-B20
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722516/#btt307-B20
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722516/#btt307-B20
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722516/#btt307-B20
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Prospecti

ve 

systems 

biology 

methods 

Similarity based 3D structure 

based 

Network inference Machine 

learning 

Mei et al. (2013) 134; 

Alaimo et al. (2013) 
119a; 

Yamanishi et al 

(2013).135  

Wale et al. 

(2009) 137  

Pathway     Zhao et al 

(2014)53 ;Pan et al 

(2014)138; Han et al. 

(2008).139 

  

7 CONCLUSION 

In this article, we present a case for a systems biology approach to drug discovery research 

given the issues with either ligand-based or structure-based approaches for mitigating 

efficacy and toxicity. Some of the foundational principles and presumptions of systems or 

network approaches were discussed together with representative multi-scale databases used in 

systems biology research and different tools used to retrospectively or prospectively analyze 

the data together with the data models used to best capture and retrieve systems biology data. 

Given the enormous advances in computing technologies, miniaturization and HT 

experimental technologies, systems biology approaches have enormous potential to change 

the landscape of healthcare and contribute to drug discovery research. 
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