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ABSTRACT

Small solid particles, droplets, and bubbles can form clusters in turbulent flows by the action of coherent vortices. This phenomenon,
sometimes called the preferential concentration, was often thought to be most conspicuous when the velocity relaxation time t,, of particles is
comparable with the Kolmogorov time t,. However, since high-Reynolds number turbulence consists of coherent eddies with different time-
scales, particles can form clusters even when 7, > 1,. We demonstrate, by direct numerical simulations, that light particles with different T,
values form clusters around axes of coherent vortices with different sizes in developed turbulence.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0041873

Despite the strong mixing ability of turbulent flows, small par-
ticles can be unmixed to form clusters in turbulence'” if particles and
fluid have different mass densities. This interesting phenomenon has
been attracting researchers in various fields. In fact, many authors
extensively investigated the behavior of small heavy particles in turbu-
lence because it is relevant to the droplet growth in cloud
turbulence,” ° the formation of plane'[s,"‘7 the pattern formation of
river beds,”” and so on. Several mechanisms'’ >’ were proposed to
explain the clustering of particles in turbulence. Among them, the
most fundamental one'” ' is the mechanism by the action of coherent
eddies in the Kolmogorov length #; since heavy particles around an
eddy cannot acquire sufficient centripetal force by the pressure gradi-
ent of fluid, they are swept out from the eddy to accumulate in high-
strain rate regions around it. This classical mechanism is the starting
point of the present study. On the other hand, we often use small light
particles, such as air bubbles in water, for the visualization of vortices
in laboratory experiments (see, for example, Ref. 21). This implies that
light particles form clusters around the axis of vortices. Although this
phenomenon is well known and some recent studies™ ** dealt with it,
the systematic study of small light particles in turbulence is rather
limited.

Recent powerful numerical simulations have revealed that there
exists a hierarchy of coherent vortices with different sizes in high-
Reynolds number turbulence.”” *” This multi-scale nature implies that
turbulence has various timescales, which is important for particle
motions. Since particles tend to follow flow with a finite time lag, i.e.,
the velocity relaxation time 7, [see (3), below], the clusters of small

particles can be different depending on 7, due to the multi-scale nature
of turbulence. In fact, small heavy particles accumulate in the straining
regions between the vortices whose turnover time is comparable
toT 16,18,28

g The purpose of the present study is to show that light particles
with different 7, values also form clusters around the axis of vortices
with different sizes; in particular, the clusters can be much larger than
the Kolmogorov scale in developed turbulence. In the following, we
demonstrate this by direct numerical simulations (DNSs) and explain
the observed phenomenon by simple physical arguments.

We investigate the behavior of small particles in turbulence of an
incompressible fluid. Although here we consider turbulence in a peri-
odic cube with the period being 27, the following arguments are inde-
pendent of the boundary condition. Let u(x,t) and p(x,t) be the
velocity and pressure of fluid at position x and time . The Navier-
Stokes equation, Ju/0t +u-Vu=—(1/p;)Vp+vV?u+f, and
the continuity equation, V - # = 0, govern the fluid motion. Here, ps
and v denote the mass density and kinematic viscosity of the fluid,
respectively, and f(x, t) is an external body force. We consider the
case that the particle is much smaller than the smallest eddies (i.e., the
Kolmogorov length #) of turbulence and the volume fraction of par-
ticles is sufficiently small (say, smaller than 1070),”"" and therefore,
the effect of the particles on the fluid motion is negligibly small.

We assume that particles are spherical, and their diameter D is small
enough for the particle Reynolds number Re, = D|v, — u(x,)|/v to
be sufficiently smaller than unity, where we denote the position and
velocity of a particle by x, and v, (= dx,/dt), respectively. We also
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neglect the gravity and interactions between particles. Under these
assumptions, Newton's equation of motion for a particle is
expressed’' by

vp(t) — u(xp, t)

dv, B
Eiﬁa(xp’t)_T’ (1)

where a(x, t) is the fluid acceleration. In (1),

B=3/2v+1), @)

wherey = p, / py» with p, being the particle mass density, is the added
mass coefficient and

t, = D/ (12fv) ()

is the relaxation time of particle velocity. Note that the heavy- and
light-particle limits correspond to (7, /) — (oo, 0) and (0, 3), respec-
tively. Here, we define the non-dimensional relaxation time, namely,
the Stokes number, by

St =1,/1y, )

where 7, is the Kolmogorov time.

On the basis of (1), we develop a simple theoretical argument to
clarify the condition for small particles (with arbitrary St and f) to
form larger-scale clusters in turbulence. Our argument is similar to the
classical one,'"”” but we show that the argument is applicable to length
scales larger than the Kolmogorov length 7. Recall that larger voids of
heavy particles are located at the positions of larger-scale vortices.'®
We will also show (see Figs. 1 and 3, below) that larger-scale clusters
of light particles are formed around larger-scale vortices. Thus, in
order to examine whether particles cluster by the action of vortices
with size ¢, we introduce an imaginary particle, with position x, and
velocity v, (= dx./dt), which obeys

B vc(t) —uc(x;, t;€)

dv,
g = Pt 56) - O, ©

Here, u.(x, t;¢) and a.(x, t; £) are the velocity and acceleration fields
coarse-grained at scale £. Note that (5) is the definition of v, for arbi-
trary 7,. Since smaller-scale vortices are advected by larger-scale ones,
we may ignore the fluid motion smaller than ¢ when we consider par-
ticle clusters larger than ¢. Therefore, we may assume that the imagi-
nary particles governed by (5) reproduce the clusters, larger than ¢, of
real particles governed by (1). Under this assumption, which will be
verified later in this article, we can examine their formation in terms of
x. and v,, instead of x, and v,.

In practice, we estimate u,. by using the sharp low-pass filtering
of the Fourier modes of u with the cutoff wavenumber k., = 27/¢,
whereas we define a. by —(1/p;)Vpe + vV?u. + f. Here, f (x, t; ()
is the coarse-grained force and p(x, t; £) is the solution to the Poisson
equation:

Ve = —p;V - [ - Vu] = psQ, (6)

where Q, is the second invariant of the coarse-grained velocity gradi-
ent tensor Vu,.

Then, on the basis of (5), instead of (1), we can repeat the classi-
cal argument' " for the relative velocity between the particle and fluid
to obtain

scitation.org/journal/phf

v — (X, 15:0) = 1, (f — 1)ac(xe, t;£). (7)

Note that (7) holds when 7, < T(¢), where T(¢) is the eddy turnover
time of size £. In analogy with the turnover time .7~ (i.e., the integral
time) of the largest eddies, we define T'(¢) by ¢/u.(¢), with u/(¢) being
the root mean square of a component of the high-pass filtered velocity
field at £. In practice, we may estimate T(¢) by (|QC(€)|)71/ ?, where
(-) denotes the spatiotemporal average because Q, is predominantly
determined by the smallest-scale (ie., ¢ = 2n/k.) vortices in the
coarse-grained field; see Ref. 33 for more detailed arguments.

If ¢ is a scale in the inertial range (n < /{¢ < %),
a: =~ —(1/p;)Vp.. Take the divergence of (7) and substitute this
approximation and (6) into it to obtain

_Tp(ﬁ_ 1)QC7 (8)

which implies that blobs of light particles with f > 1 (or heavy par-
ticles with f# < 1) tend to shrink in the region with Q. > 0 (or
Q. < 0). Since Q, > 0 (or Q, < 0) means the dominance of the vor-
ticity (or strain-rate) at scale ¢, (8) implies the tendency that light par-
ticles accumulate around the axis of vortices with size ¢, whereas heavy
particles are swept out from them.

We derive the condition that particles form clusters with size ¢
by considering the contraction rate ¢ of particle blobs. First, note
that (8) implies o =17,(f —1)Q. (>0). Since |Q|~ T(0)?,
o ~1|1 =B/ T(¢)* and particle blobs with initial volume Vj, are
contracted by eddies with size ¢ into the volume

V.ov. =

V = Vyexp l—aT"] = Vg exp [-]1 — BIS(O)K(0)], )

during the mean lifetime™ T (¢) of eddies with size £. In (9), S(¢)
=1,/T(¢) and K(¢) =T (¢)/T(¢) are the scale-dependent
Stokes and Kubo numbers. From (9), the condition for particle cluster-
ing (ie, V <« Vp) is

11— BIS(OK(0)21. (10)

Note that even when the scale-dependent Stokes number S(¢) is much
smaller than 1, particles can form clusters with size ¢ if the lifetime
T (¢) (and therefore, K(£)) of scale-¢ coherent structures is large so
that (10) is satisfied.

Combining the validity condition of (7) (i.e., 7, < T(¢)) and the
contraction condition (10), we see that the clustering of particles
occurs when the scale-dependent Stokes and Kubo numbers satisfy

71 < <

K(€)|1—/3|NS(£)N1' (11)
This implies that particles with a given St may form clusters by the
action of eddies with size £ when

1 T(6) St< T(¢)

KOL—fl o ~7~

(12)

This is the main result of the above argument, which gives the condi-
tion for particles to form scale-¢ clusters. It is now clear that even
when St >> 1, particles can form clusters. Incidentally, by using the
Kolmogorov scaling T(¢) ~ &¢'/>¢*/* in the inertial range, we can
rewrite (12) as [1/(K(0)[1 — B)](¢/n)*> <st< (¢/n)*. Hence, if
K(£) = 1, the cluster size of particles, with 7, being in the inertial time
range (1, <1, < J), would be ¢~ St3/211. However, as will be
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FIG. 1. (a)—(c) Spatial distribution of particles (white dots) with § = 3 and five different Stokes numbers: (a1)—(c1) St = 0.25, (a2)—(c2) 1, (a3)—(c3) 4, (a4)—(c4) 16, and
(ab)—(c5) 64 in turbulence driven by the steady force. (d)—(f) Isosurfaces of the second invariant Q; of the coarse-grained velocity gradient tensor at scale (d) 6007, (e) 1507,
and (f) 9.45. The threshold of isosurfaces is (d) Q; = u + s, (e) u + 4s, and (f) u + 0.6s, where u and s denote the spatial average and standard deviation of Q. (g)—(i)
Vortex axes identified by applying the low-pressure method to coarse-grained turbulence, where the coarse-graining scale is the same as (d), (e), and (f), respectively. The
size of the shown domain is [(a), (d), and (g)] 8001 x 1000 x 2400y, [(b), (€), and (h)] 3001 x 12001 x 200#, and [(c), (f), and (i)] 25 x 651 x 201. The grid width in (d),

(e), (9), and (h) indicates 501.

shown below, the clusters have multi-scale nature, which implies that
coherent structures are rather robust, i.e., K(¢) can be sufficiently
larger than 1.

Since the above argument reduces to the one for heavy particles
in the limit of § — 0 and since large-scale clusters of heavy particles
were demonstrated in Refs. 16 and 18, here, we verify it for light par-
ticles (f = 3) in high-Reynolds number turbulence. For this purpose,
we numerically simulate the motion of fluid and particles by simulta-
neously integrating the governing equations by the fourth-order
Runge-Kutta-Gill scheme. We conduct DNSs with two different exter-
nal forces: one is a steady force expressed by f = (—sinxcosy,
+ cosx sin y,0) and the other is a random forcing imposed in a low-
wavenumber range.”” We evaluate the spatial derivatives in the
governing equations for the fluid by the Fourier spectral method.
We use N* = 1024° Fourier modes to simulate fully developed tur-
bulence with the Taylor-length Reynolds number being R, = 470
by the steady force and R; = 430 by the random forcing. After sta-
tistically steady turbulence is realized, we distribute 256 particles,
for each St, homogeneously in space, with their initial velocity
being 0, and track them by integrating (1). We list the parameters

and statistics of simulated turbulence in Table I. We simulate par-
ticle motions with eight different values of the Stokes number:
St =0.25, 1, 2, 4, 8, 16, 32, and 64; we take their statistics over the
period 75 7.

Figures 1(a)-1(c) show the spatial distribution of light particles
(p = 3) with different values of St: (1) 0.25, (2) 1, (3) 4, (4) 16, and (5)
64 for the case of the steady force. The five panels in Figs. 1(al)-1(a5)
show the observation in a large domain (8001 x 1000n x 2400%). We
can observe clear clusters for St = 16 in this large scale [Fig. 1(a4)],
whereas clusters in this scale are obscure for smaller Stokes numbers
[St =10.25 and 1 in Figs. 1(al) and 1(a2)]. However, looking at a
smaller scale [Fig. 1(c2); 100n x 130n x 50n], the particles with
St = 1 do form sharp curve-like clusters. This cluster is similar to the
accumulation of particles in 1-scale vortices in lower-Reynolds num-
ber turbulence.™ It is also clear that for intermediate values of St (e.g,
St = 4), particles form clusters in intermediate (but much larger than
1) scales [see Fig. 1(b3), whose domain size is 300 x 12001 x 200#].
These observations are consistent with the predictions of the above
arguments; particles even with St >> 1 can form clusters, and the clus-
ters are larger for larger St. Incidentally, similar observations are made

Phys. Fluids 33, 031707 (2021); doi: 10.1063/5.0041873
Published under license by AIP Publishing

33, 031707-3


https://scitation.org/journal/phf

Physics of Fluids

LETTER scitation.org/journal/phf

TABLE I. Parameters and statistics of the simulated turbulence: N°, the number of 12

Fourier modes; R, Taylor-length Reynolds number; L (=2x), side of the periodic

cube; ., integral length; 1, Kolmogorov length; 7 (=% /u’, where U’ is the root

mean square of a component of the fluid velocity), integral time; ,, Kolmogorov

time. The CFL number is defined by v’ AtN/L, where At is the time increment of the

temporal integration. @

Forcing N° R, L/Z  L/y LIn T/t CFL "

Steady 1024 470 56 2.4x 10> 430 39 6.9 x 1072

Random 1024° 430 5.1 23x10° 450 43 7.4 x 1072

0 L L L
0 100

also for the case of the random forcing. We will show the quantifica-
tion and comparison between the two cases in Fig. 2.

The hierarchy of particle clusters observed in Fig. 1 [e.g., (a4),
(b3), and (c2)] reflects the hierarchy of coherent vortices. We plot the
isosurfaces of Q. in Figs. 1(d)—1(f) for three different coarse-graining
scales. It is striking that each cluster for different scales is spatially cor-
related with the coherent tubular vortex at different scales.

It is worth mentioning that since coherent vortices at a given
scale tend to exist around larger ones,”””’ particle clusters at different
scales tend not to overlap. For example, we look at different locations
in Figs. 1(a) and 1(b).

To objectively identify coherent tubular vortices at each level in
the hierarchy of vortices, we apply the low-pressure method”**” to the
coarse-grained pressure field.”” We show the identified vortex axes in
Figs. 1(g)-1(i) for the three different scales, namely, the largest scale

§/n

FIG. 3. Mean number density P of particles as a function of distance ¢ from the
nearest vortex axis with the coarse-graining scale ¢ = 1501 in turbulence driven by
the steady force. P=1 corresponds to the homogeneous distribution. Different
curves are for different values of St from the thinner (and darker) to thicker (and
lighter) lines, St = 0.25, 1, 4, 16, and 64. Average over 80 snapshots. The inset
shows the thickness &* of particle clusters, which is estimated by the condition
P(&") =1, as a function of . M, St=1; ], 2; ®, 4; o, 8; A, 16; A, 32. The
solid line indicates &* = 0.45¢.

(¢ = 6007), the intermediate scale (¢ = 1501), and the smallest scale
(¢ =9.4n). Each vortex axis [Figs. 1(g)-1(i)] almost perfectly
expresses the centerline of the particle clusters shown in Figs. 1(a4), 1
(b3), and 1(c2). These results further support the arguments.

To quantify the observation in Fig. 1, we estimate the probability
for the particles to exist inside vortices of size ¢. Figure 2 shows the

0.9 ————rrr———— 0.9
(©)
e
0.4 0.4 Lol
107 107 10°
0.9 0.9 e
(d)
e
A/
0.4 L PR | L Lol L 0.4 | Lol | | L i
107! 1 10 10° 10?2 10! 1 10 10°
St S(0)

FIG. 2. Number ratio of particles in the vortical region (Q, > 0) as functions of [(a) and (b)] St and [(c) and (d)] S(¢) in the turbulence driven by [(a) and (c)] the steady and
[(b) and (d)] random forces. Different lines (lighter tone denotes larger £) show the result for different scales: [(a) and (c)] W, ¢/ = 9.4; (1, 19; ®, 38; o, 75; A, 150; A,
300; ¥, 600; 57, 1200. [(b) and (d)] W, ¢/n = 8.9; [, 18; ®, 35;0, 71; A, 140; A, 280; V¥, 570; and 7, 1100. We have taken the average over 20 snapshots.

Phys. Fluids 33, 031707 (2021); doi: 10.1063/5.0041873 33, 031707-4

Published under license by AIP Publishing


https://scitation.org/journal/phf

Physics of Fluids

number ratio @ of particles in vortical regions with Q.(x,;¢) > 0,
where ® = 1 (0) means that all (no) particles are in regions Q. > 0.
Note that the volume ratio of regions with Q.(x, t; ) > 0, in the simu-
lated turbulence, is about 0.4 although it weakly depends on /.
Therefore, ® > 0.4 implies that particles are more likely to exist in
vortical regions. We show the results for the steady forcing in Fig. 2(a)
and for the random forcing in Fig. 2(b). Different curves show the
results for different ¢ values. In both cases, we see that eddies with dif-
ferent sizes ¢ attract particles with different values of St. For example,
looking at curves with B and [J [(a) £ =9.4n and ¢ = 19y; (b)
£ =895 and ¢ = 18], we see that particles with St =2 are most
attracted by these smallest-scale vortices. This result is consistent
with the visualization in Fig. 1(c) and with the classical argument that
light particles with St ~ 1 most accumulate around the axes of
Kolmogorov-scale vortices. It is also interesting that these curves seem
universal irrespective of the kind of forcing.

Furthermore, we see that the value of St, which gives the peak of
each curve in Figs. 2(a) and 2(b), monotonically increases with ¢; note
that the lighter tone denotes larger ¢ in Fig. 2. Again, this is consistent
with the observations in Fig. 1, and it supports our arguments leading

o (11). Figure 2 also shows that the largest-scale vortices [in Fig. 2(a)
for £ = 12007 and in Fig. 2(b) for ¢ = 1100#] attract particles with
very large Stokes numbers (St = 32 or 64).

We may expect that K(¢) in the inertial range is independent of ¢
because of self-similarity. In such a simple case, the clustering condi-
tion (11) is expressed only by the scale-dependent Stokes number
S(€). To examine this, we replot @ as a function of S(¢) in Figs. 2(c)
and 2(d). Here, as mentioned below (7), we estimate T({) by
(\QC(K)D*I/Z. In both cases, the peaks are located at S(¢) ~ 1. This is
a direct verification of our argument on the clustering condition.

Incidentally, the collapse of the curves in Fig. 2(c) may be coinci-
dence; note that they are collapsed only in small scales for the random
forcing [Fig. 2(d)].

Next, let us evaluate the size of particle clusters. Since we have
identified the vortex axes by the low-pressure method, we may exam-
ine particle distributions around each axis. We evaluate the mean
number density P(¢) of particles at distance £ from the nearest vortex
axis. We show the results in Fig. 3 for the case that the coarse-graining
scale ¢ = 1501, which corresponds to Figs. 1(b), 1(e), and 1(h). In
Fig. 3, P is normalized so that P=1 indicates the homogeneous distri-
bution. The five curves in the figure show P for five different values of
St. Note that P(0) is largest for St = 4. This is consistent with the obser-
vation in Figs. 1(b), 1(e), and 1(h) that particles with St = 4 form the
clearest clusters for the scale (¢ = 1507). We have also confirmed that
P(0) is largest when St = 16 and 1 in the case that / = 6001 and 9.4n,
respectively. These are also consistent with the observations in Fig. 1.

By using the number-density distribution P, we may estimate the
thickness &" of particle clusters by the minimum value of ¢, which sat-
isfies P(¢) = 1 for St giving the maximum of P(0). The inset of Fig. 3
shows &" as a function of ¢, which shows the proportionality
& = 0.45( in the range ¢ < 300#. This is reasonable because of the
self-similarity of coherent structures in the inertial range. The propor-
tionality does not hold for the larger scales (¢ = 600y and 1200#)
because large-scale vortices are directly affected by the external force
and they are not self-similar.

Before closing this article, we develop three discussions. First, we
verify the assumption that is the starting point of our theoretical

LETTER scitation.org/journal/phf

arguments; namely, if the real particles form clusters larger than /,
then the imaginary particles in the coarse-grained field governed by
(5) also form the same clusters. We show in Fig. 4 the direct verifica-
tion in two cases with different values of St. Figures 4(a) and 4(c) show
the distributions of real and imaginary particles with St = 16, respec-
tively. They form the same cluster for the scale ¢ = 6007 although
smaller clusters have different structures, i.e., we do not observe
smaller clusters in Fig. 4(c). We can verify the assumption also for
smaller St (= 4) as shown in Figs. 4(b) and 4(d). It is evident that the
real and imaginary particles form the same cluster in the scale
¢ = 150n.

Second, we emphasize that the particle clusters are not single-
scale structures. Although Figs. 2(c) and 2(d) show that the timescale
matching, ie., S(¢) ~ 1, is important to predict the size of clusters of
particles with a given St, they also show that vortices of size ¢ attract
particles in a rather wide range of S(¢), say, 0.1 < S(¢) < 10. In other
words, particles with a given St are affected by vortices in a wide range
of length scales. In fact, @ for St = 4 in Fig. 2(a) is sufficiently larger
than 0.4 (the value for the uniform distribution) for all the length
scales examined (i.e., 9.4n < ¢ < 1200n). This is consistent with the
observation in Figs. 1(a3), 1(b3), and 1(c3) that particles with St = 4
form clusters by the action of vortices with different sizes."’

This multi-scale nature is similar to the one for the cluster of
heavy particles reported in the previous studies.'”'**"** There are two
causes for this. First, as discussed below (12), K(¢) can be large. In

FIG. 4. Spatial distribution (white dots) of [(a) and (b)] the real and [(c) and (d)]
imaginary particles with § = 3 and two different values of St: [(a) and (c)] St = 16
and [(b) and (d]) 4. The coarse-graining scale ¢ is (c) 6005 and (d) 150x. The
shown location and time are common in [(a) and (c)] and [(b) and (d)], respectively.
The domain size is [(a) and (c)] 6001 x 8507 x 2400x and [(b) and (d)] 13004
x 300n x 200#. Results for the turbulence driven by the steady force are shown.
The grid width in (a) and (b) indicates 50.
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particular, in the case of the steady force, large-scale vortices have a
long lifetime, and they affect particles with a wide range of St values.
This gives the reason why clusters are observed even when S(¢) is
much smaller than 1. The other cause is related to the upper bound of
(11). More concretely, the above argument under the assumption
S(¢) <1 is valid only when v, is regarded as a field quantity and par-
ticles accumulate toward the axes of vortices with a swirling motion.
However, even when S(¢) is larger than 1, but not too large, particles
can oscillate around the axes of vortices.

The third discussion is on the identification of coherent vortices,
which is a difficult task both in DNSs and experiments. Tracking light
particles (with different values of St) is easier than the implementation
of the low-pressure method to capture vortex axes (see Fig. 1) in
DNSs. We may also suggest that if we appropriately choose the Stokes
number of light particles, we can use them for the visualization of
coherent vortices at different sizes in experiments. For example, in
a typical experimental setup® of the von Kdrmdn turbulence
(Ry =890, 7 =0.2 s, and 7, = 0.26 ms), we may visualize the
smallest- and largest-scale vortices by using silica aerogel particles
(whose mass ratio to water is about 0.1;** i.e., p ~ 2.5), with diameter
D being 90 um and 2 mm, respectively."’

In conclusion, small particles with the added mass coefficient f3,
(2), and the Stokes number St, (4), form clusters of size ¢ in fully devel-
oped turbulence when condition (11), where K(¢) denotes the
non-dimensionalized lifetime of coherent structures, is satisfied. This
condition is consistent with the previous reports on the clustering of
heavy particles.''*** To further verify the condition, we have con-
ducted, for the first time, the DNSs of light particles with different
Stoke numbers (0.25 < St < 64) in turbulence at sufficiently high
Reynolds numbers (R, = 470 and 430) for two different external
forces; we have demonstrated that light particles accumulate around
the axes of coherent vortices, whose size depends on St (Fig. 1).
Condition (11) well explains the observations that the particle clusters
are larger for larger St (Figs. 1 and 3) and they have multi-scale nature
(Fig. 2), indicating the longevity of coherent structures.

This study was partly supported by JSPS Grants-in-Aids for
Scientific Research (Nos. 16H04268 and 20H02068). The DNSs
were conducted with the support of the NIFS Collaboration
Research Programs (Nos. 18KNSS108 and 20KNSS145).
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