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In this paper we are concerned mainly with the sine-Gordon equation

0.1) Ug,+sinu =0, u=u,n)
and the equation of Pohlmeyer-Lund-Regge [18], [24]
vgv, sin (wf2) | . . o
0.2) Ugy,— %c—cw(ﬂ/))—*—smu =0, u=uk ), v=ovEn),
vt _{__ué'vvl“*‘unv& =0.
! sin u

In part I of this paper we construct multi-soliton solutions of these equations
and some related nonlinear equations. In part II, we construct quasi-periodic
solutions by using the abelian integrals. We also discuss the following relation
between these equations (0.1), (0.2) from a view-point of the theory of algebraic
curves: if v=const. in (0.2), then (0.2) reduces to (0.1). We show that this
reduction corresponds to fixed point free involutions of hyperelliptic curves.

We explain briefly the background of this work. Multi-soliton solutions
are a class of exact solutions characteristic of nonlinear equations solvable by the
inverse scattering method. Several methods of constructing multi-solition
solutions are given (see, for example, [22], [29]). A typical class of nonlinear
differential equations solvable by the inverse scattering method is the class of
nonlinear differential equations for (M X M)-matrix-valued functions u;(x, y, ),
0<j<m—1, vy(x,y,t), 0<k<n—1 which admit the so-called Zakharov-Shabat
representations

(0.3) [0 u,Di—8/[dy, S0 0;,Di—0[0t], D = 0/ox

where u,, v, are non-singular constant diagonal matrices [29]. The Korteweg-
de Vries (KdV) equation, the Boussinesq equation, the Kadomtsev-Petviashvili
equation and the nonlinear Schrédinger equation are examples of equations in
this class. Hereafter we call this class the Zakharov-Shabat systems. The
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class of nonlinear equations equivalent to the Lax representations

oL
or

is a subclass of the Zakharov-Shabat systems.

Periodic and quasi-periodic solutions are studied as a periodic analogue of
multi-soliton solutions (see, for example, Dubrobin-Matveev-Novikov [11]).
In these studies connection with the theory of Riemann surfaces (algebraic
curves) was found via spectral theories of linear operators used in the inverse
scattering method. Kricheber [16] extended this connection with the theory
of Riemann surfaces to the Zakharov-Shabat systems without using the spectral
theory explicitly and gave an unified view-point for quasi-periodic solutions of
the Zakharov-Shabat systems. This connection between the theory of quasi-
periodic solutions of the Zakharov-Shabat systems and the theory of Riemann
surfaces is further formulated in algebro-geometric languages (see, for example,
Drinfeld [10], Manin [20], Mumford [23]).

The crucial role in this connection is played by functions ®(x,y,¢?,p)
which as functions of (x, y, t) are simultaneous solutions of two linear operators
in the Zakharov-Shabat representation (0.3) and as functions on Riemann surfaces
have essential singularities at prescribed M points. The forms of singularities
depend on the orders of linear operators in (0.3). These functions ® are
constructed by using the theory of abelian integrals. Such a construction goes
back to Baker [3] and Akhiezer [2].

This connection, on the one hand, suggests a direct method of constructing
multi-soliton solutions of the Zakharov-Shabat systems. Namely, multi-
soliton solutions are obtained by applying the above construction to rational
algebraic curves with double points. Such an algebro-geometric method is
given by Kricheber [16] and Manin [20] (see also [7]).

The equations (0.1), (0.2) are not included in the Zakharov-Shabat systems.
The equation (0.1) is the integrability condition of the following pair of linear
differential equations

=[L, M], L=2>-oux,t)D’, M = 3,0, t)D

. 1 A (01
0.4 =
(0.4) i+ 2(0 et 2 (8 )e—o,
1 0 exp (zu))q):O
22 \exp (—1u)

where \ is a parameter ([1], [31]) and the equation (0.2) is the integrability con-
ditions of the following pair of linear differential equations

z‘c1>5+(2 g*)qwrl ((1) _O)qn =0,

2
(0.5) oy
iCI>7,+—1~< cosu  —exp (—zco)smu>q>=0
20 \—exp (iw) sinu —cos u
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where

(0.6) a = i(exp (fo) sinu)g/2 cosu, wg = v¢ cos u/2 cos® (u/2),
w, = v,[2 cos? (u[2),

A is a parameter and ¢* denotes the complex-conjugate of a ([18], [24]). The
main difference from the Zakharov-Shabat systems consists in the point that
coeflicients of the linear equations (0.4), (0.5) depend on a parameter rationally
(For the Zakharov-Shabat systems, the parameter appears linearly as a spectral
parameter in the case of the Lax representations.). This makes the procedure
of the inverse scattering method complicated. Quasi-periodic solutions of
(0.1) are discussed by Kozel-Kotlyarov [15], Its [21] and Cherednik [4,5]. In
these results it is shown that quasi-periodic solutions of (0.1) correspond to
hyperelliptic curves of the forms

(0.7) wi+az TT Zi(z—2;) = 0

where a is a constant. In [15], it is shown that a parameter A in (0.4) is related
to the meromorphic function z on the Riemann surfaces of these curves (0.7) by
the relation A=2"? by using the pair of linear differential equations (0.4). In
[21], simultaneous solutions of linear differential equations of the form (0.4) are
constructed by using abelian integrals on the Riemann surfaces of curves (0.7).
In this construction simultaneous solutions are two-valued on these surfaces and
the parameter ) is related to the meromorphic function 2 by the realtion A ==2"2

In part I of this paper we generalize the method of Kricheber and Manin to
equations (0.1), (0.2) and some related nonlinear equations and give explicit
formulae of multi-soliton solutions by this method.

In part II, we construct quasi-periodic solutions of (0.1), (0.2) by combining
a method similar to that of Kricheber [16] and fixed point free involutions of
hyperelliptic curves. We also give an explanation of the appearance of two-
valued functions in [15], [21].

The contents of this paper is as follows. In section 1 we formulate the
method of Kricheber and Manin for constructing multi-soliton solutions of the
Zakharov-Shabat systems as given in [7]. Next in section 2 we explain a gene-
ralization of this method to a class of nonlinear differential equations which is
proposed by Zakharov-Mikhailov [28] and Zakharov-Shabat |[30]. This class
consists of nonlinear differential equations of the integrability conditions of
pairs of linear differential equations of the following forms

(0.8) D =UE, 7, NP, D,=V(E NP, ©=DE 7,2)

where @, U, V are (M X M)-matrix-valued functions and U, V are rational
functions of a parameter A whose poles are independent of (£,7). The equa-
tions (0.1), (0.2) are examples of equations in this class. We construct multi-
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soliton solutions by constructing functions ®(£, », A) which turn out to be
simultaneous solutions of equations of the forms (0.8) by simple characterizations
as functions of A. By this method we construct multi-soliton solutions of (0.1),
(0.2) and the equation of the classical massive Thirring model

tu,+204+2|v|2u =0

0.9
09 we+2u-+2|u| =0

in section 3. Maulti-soliton solutions of the equation of the Toda lattice, which
is a typical example of nonlinear differential-difference equations solvable by
the inverse scattering method, are also constructed by this method in section 3.
In section 4, quasi-periodic solutions of the class of nonlinear differential equations
of the integrability conditions of pairs of linear differential equations

CI)E = (2?;0 7\'ij(§7 77))(1’ ) q)'n - (ZZLU X—ij(E) n))qD ) D = q)(‘f) 7, 7\‘) )

where ®, M;, N; are (2X 2)-matrices and A is a parameter, by using the theory
of abelian integrals on hyperelliptic curves. As a particular case of this con-
struction, we obtain quasi-periodic solutions of (0.2) in section 5.

Quasi-periodic solutions of (0.1) are constructed in Section 6 by introducing
fixed point free involutions of hyperelliptic curves. We also explain the ap-
pearance of two-valued functions on Riemann surfaces in [15], [21] from our
viewpoint, at the same time discussing a reduction of the equation (0.2) to the
equation (0.1). Finally in section 8 we discuss the condition on Riemann surfaces
to make our solutions real-valued. For that purpose we employ the concept of
symmetric Riemann surfaces, which is introduced by Klein as the Riemann sur-
faces that correspond to real algebraic curves and developed by Weichold [26].

After the completion of the present work, a paper of Cherednik’s [6] was
published, in which quasi-periodic solutions of equations expressed as the
integrability conditions of linear equations like (0.8) are considered, but the
reductions by involutions in this paper nor the concept of symmetric Riemann
surfaces are not discussed there.

Some of results in this paper are announced in [7], [8], [9].

Throughout this paper for a matrix ¢, ¢* denotes the complex-conjugate
matrix of c.

The author expresses his deep thanks to Professor S. Tanaka, who con-
stantly advised and encouraged the author during the preparation of this paper.

Part I. A direct method of constructing multi-soliton solutions

1. The Zakharov-Shabat systems

In this section we review the method of Kricheber and Manin for con-
structing multi-soliton solutions of the Zakharov-Shabat systems in a manner
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given in [7].
We consider (M X M)-matrix valued functions F(x, y, t, A) of the following
forms

(L.1) Fx, 3, 8, N) = (220 MFj(%, 3, 7)) exp (AP+yQ(N)+tR(N))

where N is an arbitrary positive integer, A&C, P is a non-singular constant
diagonal matrix with entries p; and Q(A), R(\) are diagonal matrices with
entries ¢;(M)=2>3r-0 ¢;x\, ¢ EC, r;(N)=2Tk-0 7\, 7,, EC, respectively.

Let a, «++, atw, B, ***, By be mutually distinct complex numbers such that
all possible expressions > %o V1 v, pu, viEia), B}, j=1, -, N, pirE{p,
-++, pu} are mutually distinct and Cj, *++, Cy, C;=(cj ) be arbitrary constant
matrices.

Proposition 1.1. There exists a unique function ®(x,y,t,\) of the form
(1.1) that satisfies the following conditions

(1.2) Fy=1
(L.3) ®(x,y,t, a;)=P(x, 9,8, B;)C;, i=1,+-,N.
Proof. By condition (1.2), we can denote as
D(x, y, t,) A = AWVI+23/50 MDy(x, v, 1)) exp (xxP+yO(\)+tR(N))

where I is the identity matrix. The conditions (1.3) are equivalent to the
following system of linear equations for unknowns ®,(x, y, £)==(D; (¥, y, t)),

a,b=1,-- M, k=0, .-, N—1:

2050 @y {aj exp (vat;P+yQ(a;)+iR(a;))—B; exp (xB;P+yQ(8;)+1R(8,))C;}

= —aj exp (va;P+yQ(a;)+1R(a;))+BY exp (x8;P+yQ(8,)+1R(B)C; ,
j=1,-N.

This system splits into M systems of linear equations for ®, ,(x,y,t), k=0,
ooy, N—1, b=1, -+, M:
oo >, @k,ab{a'}eb(aj)sbc—3§eb(3j)cj,bc}
= _—ayea(aj)aab—{_ﬁyea(ﬁj)cj,ab > ]:1’ ) Nr Czl, "ty M
where e,(A) =exp (sAp, + 33, (\) +tr,(\)). The coefficient matrices of these

systems which are labeled by a=1, ---, M are the same. The determinant of
the coefficient matrix is a linear combination of

Hﬁvl H?Ll Ejk(ij) ’ DjbE {C(]-, ,8]} s jk — 1, eey M.

By our assumptions on a;, B3j, these functions of x are linearly independent.
Consequently the determinant does not vanish identically as a function of .

(1.4)
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Therefore the coefficients ®;(x, y, £), k=0, -, N—1 are uniquely determined.
Q.E.D.

RemMARK 1.2. i) The conditions (1.2), (1.3) are suggested by the method of
Kricheber and Manin.
ii) For our arguments, we need only the fact that the coefficient matrix of

the system (1.4) is non-singular.

Next we derive a pair of linear differential equations which the function
D(x, y, t, \) satisfies.

Proposition 1.3.  The function ®(x, y, t, \) satisfies the following pair of linear
differential equations

20 ui(®, ¥, )D'® = (0/0y)®, 23j-0vj(x, ¥, t)D'® = (3/0t)®
where u; (resp. v;) are determined by the equations
SV o SYar ;O DI, =SV .0, 1=0, -, m,
(resp. 23700 2hat O =20 EjLR;,  1=0, -+, m)

E;=Py-; and Q;, R; are constant diagonal matrices of order M with entries g,
74, respectively.

Proof. First we note that the system of linear equations

(1-5) 27=-0 Uj ELI jCij—kEk—I = Z?ﬂ Ej—IQj > l=0’ e, m

is uniquely solvable. For the coefficient matrix of this system is similar to a
triangular matrix whose diagonal entries are 1. Consider the function

F(x, y, t, ) = 2370 u;Di®—(0/0y)D .

Since functions u;(x,y, t) are determined by the equations (1.5), the function
F(x,y,t,\) has the form

F(x, y, t, ) = Q15 MF(x, v, 2)) exp (sAP+yOQ(\)+tR(\)) .
This function satisfies the relations
F(x,y,t, ;)= F(x,9, ¢ B;)C;, j=1,-,N.

By the argument in the proof of Prop. 1.1. and the fact that in this case the
coefficient of A" is zero, we see that F; satisfy the system of linear equations
(1.4) in which the right hand side is set equal to zero. Therefore we have
F;=0. Q.E.D.

Theorem 1.4. [>37,u;D'—0/0y, >Vi_o v,D'—0/3t]=0, that is, we have a
Zakharov-Shabat representation.
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Proof. By Prof. 1.3., we have
270 u;Di—0/8y, 2Vt v;DI—0[0]® =0,

The operator on the left hand side is a linear ordinary differential operator

with respect to ¥ and does not contain a parameter A. The kernel of this

operator contains one parameter family ®(x,y,f,\) and consequently infinite

dimensional. Therefore this operator must be identically zero. Q.E.D.
The Lax representations are drived as follows.

Corollary 1.5. If O(a;)=0(B;), /=1, ---, N, the functions u;, v, are inde-
pendent of v and we have

[0 0DV, Xm0 0, —0J01] = 0

Proof. If O(a;)=0(B;), we can cancel g,(a;)=g,(8;) on the both hand
sides of (1.4) and the resulting system is independent of y. Thus ®,, and
consequently #;, are functions independent of y. Q.E.D.

Corollary 1.6. If O(a;)=0(B;), R(a;)=R(B;), j=1, +++, N, the functions
u;, v, are independent of v, t and

[2?-0 u; D/, Vo v;D'] =0
holds.

RemARk 1.7. For scalar cases (M=1), the assumptions on «;, 3; are sim-
plified. We only require that @;, B; are mutually distinct. The coefficient
matrix of the system (1.4) is the wronskian of functions (of x)

Ji(x) = exp (a;x+v0(a;)+tR(et;))—c; exp (B;x+yQ(B,;)+tR(B))) »
j=1, N

where we put p=1 without loss of generality. This wronskian does not vanish
identically, because we have the following.

Proposition 1.8. If the wronskian of analytic functions F;(x), j=1, .-+, n, of
x vanishes identically, then functions F; are linearly dependent.

Proof. There exist a natural number m(1<m<n—1) and j,, -+, ,(<#n) such
that the wronskian of F;, ---, F;, does not vanish at some point x=x, and for
all 7, -+, 4, (I=m+1) the wronskians of F;, ---, F; vanish identically. By
renumbering the indices, we put j=1, -+, j,=m. The functions Fj, -, F,,
form a fundamental system of solutions of the linear ordinary differential
equation L(F)=w(F, F,, -+, F,))=0 in a neighborhood U of x, where w(F, F,,
.-+, F,,) denotes the wronskian of functions F, Fy, ---, F,. By the choice of m,
we have L(F,)=0, k=m-+1. Therefore F,(k>m) are linear combinations of
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F, ---,F, in U. By analyticity, these linear relations hold in the whole domain

of definition of F;. Q.E.D.
Corresponding to various choice of P, Q(A), R(\), we obtain various

Zakharov-Shabat, or Lax, representations. We give an example.

ExampLE i) For M=1, Q(A\)=\?, R(\)=\*+bx, bEC, we have
[D*+u—08/9y, D*+(3u/2--b)D+v—0/0f] = 0

where
= —20/0x)Dy_y, v=(0/0x)(3(Py-1)?/2—3(0/0x)Py_1—3Dy_;).
This operator equation is equivalent to the following system of nonlinear equa-
tions for u, v,
3u, = 4v,—3u,, ,

Vy—Uy = Vpy— Uy — Utk [2—bu, .
By elminating v, we have the Kadomtsev-Petviashvili equation

Suy, [44-(—u+-bu, 41, [4+3un,[2), = 0.

In other words, we have a solution u= —2(0/0x)®y_, of the Kadomtsev-
Petviashvili equation by the above construction for the choice Q(A)=2A%
R(\)=7\3+b.

ii) The Korteweg-de Vries equation is derived as follows. In the con-
struction in i) we put B;=—a;, j=1, -+, N and =0, then Q(a;)=0(8;),
j=1,-+,N. By Cor. 1.5., we conclude that u(x, f)= —2(0/0x)Dy_,(, ) is a
solution of the KdV equation

u,—3uu,/2—u,,, = 0.

Next we show that solutions constructed in this way are the same as N-
soliton solutions obtained by the inverse scattering method. We show this
for the Kadomtsev-Petviashvili equation.

By Cramer’s formula and u=—2(0/0x)®y_;, we have

> = 2(62/6.962) IOg w(fl) ""fN)

where fi(x, y, t) = exp (a;x+ajy+-(aj+ba;)t)—c; exp (8;2+B5y+(8+bB;)t),
j=1, -, N and w(fy, :-+, fy) is the wronskian of functions f;, ---, fy of x. By
direct calculations we have

0(fs -+ fa) = T efey) det [} —c;85 el ()]
— T et (@)t {8 (B et )]
X [det ()]
= s, (o) dec 3= et 00 )

N23>b521 I=1; %k (ka _051)
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where e(\)=exp (Ax+A*+4-(A3+b)t)). Introducing notations g(A)=TII}.; (A—
a;), g=dg|dn, we can rewrite the above expression as

= TTY0 e(et;) T mavios (cta—ats) det [, ggﬁ’) e(3;)e(;)] .

Thus we have

(s, 3, 1) =27 log detls;— 5.7 fﬁﬁf; exp {(8;—a)-+(81—ad)y

—l—(,@,--aj—l—bﬁj—ba,-)t}] .

From this expression, we see easily that our solutions are identical with N-soliton
solutions.

2. A generalization of the method in Section 1

In this section we explain a generalization of the method described in
Section 1. to a class of nonlinear equations of the integrability conditions of
pairs of linear differential equations (0.8). To simplify the arguments, we
assume that functions U, ¥ do not have poles at oo,

We aim to construct (M X M)-matrix-valued functions ®(€, 7, A) which
turn out to be simultaneous solutions of pairs of linear differential equations of
the following forms

D = (271 2o ' ay ) M€, M),

1
@, = (X1 o —— Ny, 7))@
= (27 2o —ay) (&, 7))
where m, 7, -++, 7, are fixed positive integers and a, --+, a,, are fixed mutually
distinct complex numbers.
We consider (M X M)-matrix valued functions of the following forms

(2.1) F( ) = (Fot+ 2255 - )F(g, 7)) exp (231 Zk=o( o)

I
where N is an arbitrary positive integer, A;, -+, Ay are arbitrary mutually dis-
tinct complex numbers and f,(&,7) are (M X M)-matrix-valued smooth func-
tions of (&,7). We intend to single the function ®(&, », 1) out from functions
of the form (2.1) by the conditions

Jin(5 M)

F,=1
CD(E) 7 Mj)cj = O) ]:1, °tty MN

where gy, -+, pyy are mutually distinct complex numbers and ¢, «, cyy are
contant vectors. These conditions are equivalent to a system of linear equations
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for unknown coefficients @;(&, 7;) j=1,+,Nof

(D(E» 7, 7\') - (I_I_Zl'l N CI) (E’ 77)) €xXp (EJ=1 Ek—o f:k(g, ’7))

(A — ,)"

We assume that the coefﬁc1ent matrix of the system is non-singular as a
function of £(or 7). This is an assumption on w,;, ¢, for fixed N;, fi, @.
Though to express this assumption explicitly in terms of u,;, ¢, is difficult in
general, we can write down this assumption explicitly for each special case which
we discuss later.

If this assumption is satisfied, then the function ®(£, », ) is uniquely
determined.

Further by an argument similar to that in Section 1, we can show that
the function ®(&, 5, \) satisfies the pair of linear differential equations of the
form

D = (E,=1 2k=0 Jk(E’ 7)),
( a;)

(Z] 12k=0( ) jk(E’ 77))(1)
where My(£, 1), N (€, 7) are rational functions of elements of (3/08)f;, (&, n),
(0/0m)fu(€, ), (&, 7).
In this way we can construct solutions of nonlinear equations of the inte-
grability conditions of pairs of linear differential equations of the form (2.2).

(2.2)

3. Construction of multi-soliton solutions

In this section we construct multi-soliton solutions of (0.1), (0.2) (0.9) and
the equation of the Toda lattice by the method explained in Section 2.

3.1 The sine-Gordon equation.

Let N be an arbitrary positive integer «;. --+, @y be mutually distinct com-
plex numbers such that a;+—a,, j, k=1, -+, N and ¢, .-+, ¢y be arbitrary
complex numbers.

We consider functions ®,(&,, ), n=1, 2 of the following forms

(3.1) D,(E, 2, A) = W +23/0 (€, MN) exp 27H(ENAMTY) .

Lemma 3.1. There exist unique functions ®,;(&,7,\), n=1,2 of the form
(3.1) that satisfy the conditions

(3‘2) q)n(g: 7, aj) = (_l)n—lch)”(g, 7, aj) ) ]21, *tty N) n=1’ 2.

Proof. Conditions (3.2) are equivalent to the following systems of linear
equations for unknowns ¢,;(£, 1), j=1, ---, N, labeled by n=1, 2:
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ioo {af exp (27%(aE+ai'n)+(—1)"c;(—a;)* exp (—27%(a;E
(3.3), +ai ' n))} pul€, 1)
= —aj exp 27%(a;E+ai )+ (—1)"c,(—a;)" exp (—27%(etjE+a7 '),

j=1,-,N.

The determinants of the coefficient matrices of these systems are constant
multiples of the wronskians of functions (of &)

f+i(®) = exp @7(aE+a5 m)H(—1)"¢; exp (=27 +a5 ™)), j=1, -, N.

By Prof. 1.8. and assumptions on «;, these wronskians do not vanish identically
Q.E.D.

Remark 3.2. We can put the above argument to fit in with the argument
in Section 2 by defining (2 X 2)-matrix-valued function ®(&, 7, \) by

. @1(5, 7, 7\') CI)I(E’ 7, _7\')
CI)(E’ K 7\') B ((1)2(51 7, 7\') _(I)Z(Ea 7, —X))

Then the conditions (3.2) are written as
<:[>(g, 7, a.i)‘(l’ L‘_,-) =0, q)(f, 7, _a.i)l(ci: 1) =0, j:l, -, N.

As in Section 1, we can show that the function ®(&, 5, \) satisfies the
linear differential equations (0.4) in which the coefficients are given by

(34 Ug = 1 y1— P2 n-1, €Xp () = Py o[chs -

In this way, we have

Theorem 3.3. The function u=—ilog (pi/ps) is a solution of the sine-
Gordon equation (0.1).

Next we show that solutions we have constructed are identical with N-
soliton solutions of (0.1) obtained by the inverse scattering method. We denote
the coefficient matrices of the systems (3.3), by 4,. Using the Cramer’s for-
mula, we have

(det Ay = (—1)¥(IT)=1 ;) det Ay, (det Ap)pgy = (— 1)¥(IT-1 ;) det 4,

and consequently
¢10/¢20 = (det Az/det AI)Z .

As in Section 1, we can rewrite det 4, as
det 4, = exp {201-1 27 ;E+ar'n)} Mysessm (Aa—at) X

s det [8;+ (— 1)1 — S5 8 exp {21ik (o, + o)) — 27 Yim(ot7 i)} ]
a;tap (o)
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Using these expressions, we can identify our solutions with N-soliton solutions
obtained by the inverse scattering method.

Our solutions are complex-valued in general. Real-valued solutions are
obtained in the following way. We choose aj, ***, @y, ¢1, ***, ¢y so that for a
suitable permutation o of {1,--,N}, af=—a.;, ¢f=—cxp, j=1,, N
hold. Then using (3.3),, we have ¢f=(—1)"*/¢,;. In particular, we have
dp=(—1)"¢%. In view of (3.4), we have a real-valued solution of the sine-
Gordon equation.

3.2. The equation of Pohlmeyer-Lund-Regge.
In this case we consider (2X2)-matrix-valued functions ®(&, 5, \)=
(P;i(£, 7, \)) of the following forms

(€, 7, 1) = W2 $iy(E, MN) exp 27HAE+HA )
(35 DPul n, n) = (275 ¢u(E W) exp 27H(E+A ),

D&, p N) = —Du(E, 9, M*)*,  Dp(E, 7, \) = Pu(E, n, M¥)*
where N is an arbitrary positive integer and * denotes the complex-conjugation.
The choice of the form of ®(, », A) is based on the following observation: if
HDy(E, 7, N), Dy(E,7,\) is a solution of the equation with real u, v, then
H(—Dy(E, 9, A¥)*, Dy(E, 3, A¥)¥) is also a solution of (0.5).

Let a, +++, oy be mutually distinct complex numbers such that for all j Im«;

have the same signature and ¢; be arbitrary complex numbers.

Lemma 3.4. There exists a unique function ®(&, n, \) of the form (3.5) that
satisfies the conditions.
(3'6) (I)(E; i aj)t(l)cj): 0) ]:1’ "')N-

Proof. The conditions (3.6) are equivalent to the following system of
linear equations for unknowns ¢,;(§, 7), n=1, 2, j=0, ---, N—1:

af exp 27V aE a5 n)+ 200 af exp (27%(aE a7 ) pu(E, 1)
= —¢; 2% o exp (—27Y(eE o ) pu(E, 7)*
2050 aj exp (27Yi(eriE o ) pa(E, )
= ¢; aj exp (=27 aE+ai n)+¢; 2050 aj exp {—27"(a;E+ai ) pul€, 7))}
j=1 - N.

In matrix notations this system is written as

-1
[C*EliélA* Eg*j*] Hepros ***» Prw-1, P30y =+, PF v—1)

= —(aie(an), -+, ane(ay), cFa¥)Ve(at), -, ch(ak)e(ak)

where A is the (NXN)-matrix with (j, k)-elements af™', E, C are diagonal
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matrices of order NV with entries e(a;), ¢;, respectively and e(\)= exp (27}(\E+
A7'3)).  The coeflicient matrix of this system is similar to

[E—I—CE"‘AA*"E*”ZC*A*A'I CE-IAA*“]
0 —E*

We show that the matrix E--CE*4AA*'E**C*A*A™" is non-singular. First
we have

E+CE'AA* B*"C*A*A™ = E[I+(CEAA*7)(CEAA*)¥]
By direct calculations, we have
3.7) AA*" = GBH

where B is the (N X N)-matrix with (j, k)-elements (a;—a¥)™ and G, H are
diagonal matrices of order N with entries II7; (a;—a¥), IIT-1; +j(af—a¥)
respectively. On the other hand by using Lagrange’s interpolation formula, we
have

(3.8) (BG*H)™ = B*GH* .
Using these relations (3.7), (3.8), we have
E+CE'AA*E**C*4A*A™* = E{GBG*+CGE*B(CGE~?*} HB*H*

The matrix 4 (GBG*+4CGE *B(CGE?)*) is the Gram matrix of functions of
x

fi@) ="(1, ¢; exp (—i(af+a;™) exp (£ax), j=1,-+,N on [0, ),

Therefore under our assumption on «;, this Gram matrix is non-singular and
consequently our coefficient matrix is non-singular. Q.E.D.

By an argument similar to that in Section 1, we see that the function
D(&, 7, A) satisfies the following linear differential equations

el S Yo
(3.9)

: 1 [prol®— Izl ® 2¢109%0 _
D. D=0
Kot 20 (1wl *+ |¢zo|2)< 2¢Yopn  — |¢10|2+|¢20|2)

Comparing (0.5) with (3.9), we put
(3.10) cosu = (| i l*— b |*)/(1pnol*+ I$n]?) ,
exp (lw) sinu = —2¢Toa/(| Prol >+ | P20l?) -

Then we have

exp (2i) = lodn/bropo ,
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On the other hand, by comparing the coefficients of exp (27%(AE+Ar"'y)) of
(3.9), we see that the relations

(3.11) i(0[08)pro = —Fn-1, P> #D[OE)pm = —bz,n-16h10
hold. Using these relations, we have
(:12) o = 27 (Il ’— | b ) Upropo) " pFw-1+(pTocbao) "2 w1}
Combining (3.10) and (3.12), we have
20 cos’ (u[2)[cos u = ¢y v -1pro/ P+ PEn-19T0/ o -
Again using (3.11), we have
2eop cos? (u/2)/cos u —i(9)0F) log (— /) -

Similarly we have
20, cos? (u/2) = i(0/0r) log (—Ph/ba)

In view of (0.6), we have
Theorem 3.5. The pair of functions
w = arccos (| dul?— |l )/(| bl + | dnlD), © = 2arg ($a)+20, wER,
is a solution of (0.2).
ReMARK 3.6. For N=1, a,=d exp (i8), c;=r exp (i), we have

% = 2 arcsin [sin §/cosh {(d€—d™'p) sin §+log7}],
v = —(dé+d 'n)+v,.
In view of the relations
0 =2, N =27"vgtan®(u/2), N, = —27'v,tan’(u/2)

where 6, A are variables used in Lund [18], our solution is the same as the
one-soliton solution of (0.2) given by Lund [18]
Restricting the choice of «;, ¢; so that for a suitable permutation o of
{1, ---, N} the relations
a;!( = —Qg;) cjﬁ = —Cs(j) » ]=1} "t N
hold, we have

¢fi=bijr D= ;.

That is, we have a solution of the sine-Gordon equation

3.3. 'The equation of the massive Thirring model.
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This equation (0.9) is the integrability conditions of the linear differential
equations

. 0 a —10
@ Zx[ ]cp 2[ ]@:0,
P2 0PV o g

. 1 0 270 b 17—1 0
@y 2008 0 fP e 0Tl 10

(3.13)

where A is a parameter and a=exp (S:|u|2d§>u, b=exp <S:lu|2d§>v ([14],
[17]).

In this case, we consider (2X2)-matrix valued functions (&, n, \)=
((I)jk(é:’ 7 X)):
Du(E, 2, V) = (251 i€, m)N ) exp ((VE+N ")),
(3.14) Dp(E, n, M) = (1+22721 b2i(E, WAY) exp ((A°E+1 7)),
(I)u(‘f, 7y 7\') = (1)22(5’ 7 7\‘*)* ) (bZl(E’ My 7\') = _(1)12(";:’ D) 7\-*)*
where N is an arbitrary positive integer.
Let ay, -+, ay be mutually distinct complex inumbers such that for all j,

Im o; have the same signature and ¢,, -++, cy be arbitrary complex numbers.
As in the preceding subsection 3.2., we have

Lemma 3.7. There exists a unique function ®(&, 5, \) of the form (3.14)
that satisfies the conditions

@(5, B aj)'(l, (,‘j)'—_.—O’ j:l’ -..’N'

Further the function ®(&, n, ) satisfies the following linear differential

equations
z'¢g+2x[¢¥N?¢§‘N ¢1”(/)¢2”]®+7\2[_(1) (1)]613 =0,
(3.15)
aczinntly et Sl oo

Comparing (3.13) with (3.15), we put

(16)  exp (2 1218) = gulda, exp (24 [ luld)o = g,
On the other hand, by comparing the coefficients of A*¥ in (3.15), we have

(3.17) (0/0F)pon = 2i| puw |’/ i -
Using (3.16) and (3.17), we conclude
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Theorem 3.8. The pair of functions
w(E, 1) = dan(&, n)[Ppiw(,n),  v(E, 7) = Pun(E, Mpa(€, 7)lPin(oo, 1)

is a solution of the equation of the massive Thirring model (0.9).
RemMARK. 3.9. For N=1, a,=d exp (i8), ¢;=r exp (¢7), we have

u = —id sin (28) exp {—2i(d*t+d’y) cos (28)—iv}
X sech {2(d*6—d%y) sin (28)—log r+1i8} ,

v = id ' sin (28) exp {—2i(d*E+d %) cos 26—iv}
X sech {2(d°6—d %) cos 28—log r—id} ,

which is the same as the one-soliton solution of (0.9) given by Kuznetsov-
Mikhailov [17] and Kaup-Newell [14].

3.4. The equation of the Toda lattice.
The equation of the Tada lattice is the following:

(d/dt)Qn =P,, (d/dt)Pn = €xp (Qn~1_Qn)_ exp (Qn_Qn+l) , BEZ
or

(3.18) (d|dt)a, = 2a,(byri—b,), (d|dt)b, = 2a,(a,—a,_y)

where
a,=47"exp {47 (Qy-,—0,)}, b,=—27'P,,.

This equation is the compatibility conditions of the following linear equa-
tions

(3.19) Lo = (A0, M=(dd)®, ®= {0}
(Lq))n = q)n+1+bn®u+an-1q)n—l ’
(Mq))n = q)n-i-l—l_bn@n—an—lq)n—l

where A is a parameter ([13], [19]).

In this case we consider sequences of functions ®,(z,\), n€Z, A&C of
the following form:

(3.20) D,(2, A) = MO+ ¢ (0)N) exp (A —27Y)

where N is an arbitrary positive integer.
Let a, --*, ay be mutually distinct complex numbers such that a;=a;i’,
J, k=1, -+, N and ¢, -+, cy be arbitrary complex numbers.

Lemma. 3.10. For each nEZ, there exists a unique function ®,(t,\) of
the form (3.20) that satisfies the conditions
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(3‘21) (Pn(t: ai) = chI),,(t, a;I) ’ j=1: o, N.

Proof. The conditions (3.21) are equivalent to the following system of
linear equations for unknowns ¢,;(#), j=0, -+, N—1;

hoo {ait* exp (Ha;—a;")—c;a" " exp (—t(a;— a5 "))} pul?)
= —aj*" exp (Ha;—a;")+c;o5V " exp (—Ha;—ai)),
j=1, -, N.

The determinant of the coefficient matrix of this system is a linear combination
of exp {2).1+#(a;—a;')} and the coefficients of exp {3)}-1 t(a;—aj ')} is not
zero. Therefore the determinant does not vanish identically as a function of ¢.
Q.E.D.
By an analogous argument as in Section 1, we see that the sequence of
functions {®,(?)} satisfies the linear equations (3.19) with coefficients

a, = ¢n+1,o/§bn,o y b= bu,N-1— Put1,N-1
Thus we have

Theorem 3.11  The sequence of functions
4y = Purr,o/Pnos bn = bun-1— P, N1
is a solution of the equation of the Toda lattice (3.18).
We put
D,(t, x) = det [f,(¢, x), -**, forn-1(t, X)]
where  fi(t, ) = "(fu(t, 8), -, fual2, %)),
fir(t, ) = o exp (t(a;— o7 ")+aw)—cja5" exp (—Ha;—aj")+aj'x) .
Then by Cramer’s formula, we have

b0 = (—1)" ' Duss(t, 0)/D,(2, 0)
bun-1 = det ([fo, s farn-2 farn](8, 0)/Da(2, 0) = ((8/0x) log D,)(2, 0) .

On the other hand by direct calculations, we have
D,(t, x) = exp (X]1 t{a;— a7 )+xa;) Mnzasiz1 (ta—ts)Ea(t, )

—2n -1
E,(t, x) = det[8,,— %7 85) exp (—t(er;+oty—aj' —ai?)
aj' — oy glon)

— > (ata—ai —ai)]

where g\)=II}-1 Z—«;), g=dg/d\.
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Thus we have
a, = (EnEn+2/E3+l)(t) O) ’ bn = ((a/ax) log (En/En+1))(t) O) .

In this way, we see that our solutions are identical with N-soliton solutions
obtained by the inverse scattering method. :

Real-valued solutions are obtained by restricting the choices of &}, ¢; so that
for a suitable permutation o of {1, -+, N} the relations

a;!‘=aa-(j)) C?}‘:cd(j) ]:1) '")N
hold.

Part II. Quasi-periodic solutions

4. Construction of quasi-periodic solutions

In this section we construct quasi-periodic solutions of a class of nonlinear
differential equations of the integrability conditions of pairs of linear differential
equations

¢E == (2?—0 ijj(fy 77))‘1) )
D, = (27:0 7\._ij(§; 7))P

where @, M;, N; are (2 2)-matrix valued functions and A is a parameter, by
modifying the method of Kricheber for the Zakharov-Shabat systems [16].
A generalization of our method to the class of equations proposed by Zakharov-
Mikhailov [28] and Zakharov-Shabat [30] is straightforeward.

4.1. Construction of ®(&, 7, p).

Let R be the Riemann surface of hyperelliptic curve p*+a I1341* (A —2;)=0,
a =constant, \;%N,(j#Fk), A;j=*0 -of igenus g. Denote by p;(resp. g;) the
points on R whose projections on Riemann sphere CP' by A are oo(resp. 0). As
local parameters around p;(resp. ¢;), we take A 7'(resp. ). Let d=d;+---+
d;+1(d;ER) be an effective divisor on R such that [(§—p;)=1, j=1, 2, where
for a divisor 8’ on R (8") denotes the dimension of the vector space L(8’) of
meromorphic functions for which (f)-+8’ are effective divisors, (f)=the divisor
defined by f. Further let f;(&, A)=2r-of;(E)A* and g;(n, \)=2Tk-0 gis(1)A 7%,
j=1, 2 be smooth functions of &, » with f;(0, A)=g;(0, »)=0.

First, we have

Theorem 4.1. For given 8, f;, g;, there exist unique functions ®;(&,n, p),
j=1,2 on R with the following properties, parametrized by (§,7)E U where U is
a neighborhood of 0€ R? depending on § and f;, g;.

i) @; are meromorphic on R—{p,, ps, q1, ¢} and whose pole divisors are 3,

ii) around py(resp. q,), @, exp (—f,) (resp. ©; exp (—g,)) are holomorphic and
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(D; exp (—f))(Pe)="3 s

Proof. Oa R we take a canonical homology basis a;, b;, 1<j<g and let
0;1<j<g be the normalized basis of abelian differentials of the first kind on

R; S wy=0j. For distinct points p, g=R let w,, be the normalized differential

of the third kind that has single poles at p, g with residues 1, —1 respectively.
Further let w;(resp. w,,) be the normalized defferential of the second kind
with poles only at p;(resp. ¢;) of the forms (8/02)f;(£, 2)dz (2=A"") (resp.
(0/0n)g;(n, N)dn).

At first we assume that the functions ®; with the above properties exist.
Then d log ®; are abelian differentials on R. The location of their poles are
as follows: at d,(1<k<g-+1) poles of first order with residues —1, at p,(k=1, 2)
poles of the forms {(8/02)f (&, 2)+(1—38;)2'}dz (z=\7"), at g,(k=1, 2) poles
of the forms {(8/0\)g.(7, A)}dA, at zeros p; (&, 1) (1<I<g) of ®; poles of first
order with residues 1, and there are no other poles. Therefore dlog ®; are
written as

(4.1) dlog @; = 231 (“’f,‘l“mg,)‘l‘z?’ﬂ ij,(E,n),d,+8j2mbldg+l
+5i1wp2d,+,+2§=1 €10

with ¢;€C. Since ®; are single-valued functions on R, we must have
S dlog (DJ = Zﬂimj,, N Sb d].og ®I - Zﬂinjk ) kzl, "',g
G 3

with mj,, n,€Z. From the first relations we have cj=2zim;. From the
second relations and the reciprocity law for differentials of the first and the
third kind, we have

) . by Em) . (h
2ming, = 231 Xb (mf,—}—wg,)—l—an >, S w2718, Sdg w;,
k +1

4

b2 .
+2mid; (7 et 2 S myim
&+1
where 7;,= Sb_co,,. Thus the divisor p;(€, 7)+ -+ p;,(&, n) formed by the

J
zeroes of ®; are the solutions of the following Jacobi’s inversion problem on R:

pjy(E) 2;,(E:M)
(2‘1'=1 S ’ Wyt 2‘}21 S ’ a’g)
1) by
4 21 s d;
(4-2) = (Fl+2§:i S (01_81‘2 S w1—8j1 S Wy "t Fg+2§i§ S Wy
Yo b Do by

b

21
AR (mod. T)
by by
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where F,= —(2zi)* 2., Sb (of,+g,), po is a fixed point on R and T is the
k

lattice in C* generated by the columns of period matrix (I,, 7), T=(7}).
Now we proceed to the construction of ®;. Since under our assumptions
on 3, f;, g; the Jacobi’s inversion problems (4.2) are .uniquely solvable for
(€,7) in a 'neighborhood of 0= R? we determine the divisors pjy(&, 7)+--+
2§, ), /=1, 2 by solving (4.2). Next define abelian differentials +; by the
right hand sides of (4.1) with p;,(&, 7) determined as solutions of (4.2), then

the functions exp (r 1lrj>/exp (Spj 1#1-> have the properties 1), ii). Q.E.D.
1) »

Next we express the functions ®; in terms of theta functions and abelian
integrals on R. First by our assumption on § there exist unique functions
¢i(resp. ¢,) that belong to L(8—p,) (resp. L(8—p,)) and ¢;(p;)=1. We write
(¢p1)=35,+p.—38, and (¢,)=38,+p,—8, then §, and §, are effective general divisors
of degree g. We define the mapping w: R— J(R)=C*|T" (=the Jacobian variety

»

»
to the divisor group linearly. We denote this mapping by the same notation
w. By using this notation the above Jacobi’s inversion problems are written as

W(puE, 1)+ iglE M) = Fa(s), j=1,2
where F=(F,, -+, F,). Next we define

of R) by w(p)=(wy(p), **, w (p)), w;(p)= S ®; pER and extend this mapping

. 4 . »
wpy = Jim (o, ~fid2), g, = lim | (0, —gsan)

On the other hand, for effective general divisors of degree g 8,=7,+ 47,
8,=t;+++++1, on R, we have

410, = dlo 0 (w(p) —w(8,) — K)
2 ity d log O(w(p)— w(3;) —K)

where (), u=C* is the Riemann theta function on R defined by

O(u) = X),cz¢ exp 2riu'm-+nimr'm)

and K is the Riemann’s constant vector

#43) K=& K), K=" 0-300 | v

0 Gk
where 7; are the starting points of b;. Using this fact, we have the following
expressions of the functions ®;:

9 @Emp) = e (T || @4—m)+ T | (@u—wa)}o,0)

x () —F—w(8,)—K)0(w(p)—w(®;)—K) = ;4 5
O(w(p)—w(8;)—K)O(w(p;)— F—w(5,)—K)’
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4.2. Derivation of linear differential equations.
Here we derive a pair of linear differential equations with respect to £ and

7 which the function ®=/(®,, D,) satisfies.
Let the expansions of ®; around p,(resp. ¢,) be
®; = exp (ful&, M) o ain (&, MNT') s @jno = 8
(resp. @;=exp (gi(n, N\))(X7-0 Bjr. i, 7)N')). Then the expansions of (0/08)D;
around p, are
(0/08)®; = exp (fi) {220 (3/0E)fiN") (Xm0 atju, ™) 42070 (8/0E )t A~}
= exp (fi) 2 m—m 231=—1 ((OfOE)fus)otn 1esh ™"
+ 2371 {2070 ((B/0F)f4s)tjk 145+ (8/08 )t 3]

We want to determine the functions my (£, 7), j, k=1, 2, =0, -+, m so that
the expansions of (8/08)®;—>%.; (230 \'m;, )@, around p, have the forms
exp (fo)(X27-1 s (£, m)A7F). These requirements are equivalent to the follow-
ing system of linear equations for unknowns m;, ,(&, 7):

230 Z?z-l Mjp Qpp s—1 = > ((a/ag)fks)aﬂz,s—l , =0, m, j k=12

or in matrix notation

(45) 2;”‘1 Msas—l == SE==1 as—l((a/ag)fs) ) l:O; e, m

where M = (my ), a,=(a;,s) and f, are the diagonal matrices with entries
fier fos. Matrices M, are uniquely determined in decreasing order of s from
this system, since aj; ¢=0;. Consider the functions

{(0/08)@;— (2381 2270 My )P4} [D;

These functions belong to L(pj(E, 7)+---+p;,(§, 7)) and vanish at p;. Since
the divisors p;(&, 7)+ -+ +p;,(€, 7) are general for (£,7)€ U, the functions

(0/0E)D;— 251 2370 Ny, D

are identically zero for pER, (€, 7)€ U.
Next we consider (0/07)®;.

Proposition 4.2. The matrix (B3, ) is non-singular.

Proof. Suppose the contrary. Then there exists a number ¢(€, 7) such
that

Bzj o= Clelj,o , j=1,2.
Therefore the function ®,—c®, has zero at ¢, and ¢,. Consider the function

(P, — D) AD, .
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This function belongs to L(py(&, 7))+ -+ + pi(E, 7)—p1). Since the divisor
pu(E, 7)+-+-+p1,(8, m) is general, we must have
D, = Dy,
which is a contradiction. Q.E.D.
The system of linear equations corresponding to (4.5) is

2:-1 NsBs—I = 2?-1 Bs—l((alaﬂ)gs) ’ l:()) e,

where N,=(n;, ), B;=(BBj:;) and g, are the diagonal matrices with entries
g« &2 Since by Prop. 4.2, the matrix 3, is non-singular, this system is also
uniquely solvable.

Summarizing, we have

Theorem 4.3. There exist unique functions my, (€, ), 1, (€, n) independent
of pER such that the equations

D = oM M)®, D, = o AIN)®
hold for pER, (&, n) € U where My=(m;; 1), N;=(ti31).

5. The equation of Pohlmeyer-Lund-Regge

In this section we construct quasi-periodic solutions of the equation of
the system of Pohlmeyer-Lund-Regge by applying the result in the preceding
section.

We construct the function ®(&, %, p) by putting f,(&, A)=2""%AE, fo(E, \)=
—279%NE, gi(m, N)=2""\"Yn, g, N)=—2""A"Yy. 'Then this function ®(§, 5, p)
satisfies the following pair of linear differential equations

. 0 — 1 O
(5.1)
10,

1 l:leuﬁzz +:812:821 - 2/311:812 ] D=0
27\(:811:822— :812321) :821:322 - /811)822 - :812:821

where A= 1y Bik:Bﬂc,O'
Compairing (5.1) with (0.5), we put
cosu = (:8111822+/812:821)/(:311:822—:3121821) ,
€Xp (ico) sin u = “‘2:821:822/(1811:822_1812:821) ’

(5.2) L
exp (—iw) sin u = 2831181,/(Bulz—B1202) -

Thus we have

exp (2iw) = —Bul2n/Bubi -

On the other hand, by compairing the constant terms of (5.1) at ¢, we see that
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the relations
(5.3) 1(0/08)By = By, U0[0E)By = —aulu
hold. Using these relations we have

(5-4) ot = (BuBztBiBa)(aBufizt12BnB2) 2818108z -
Combining (5.2) and (5.4), we have
2w cos® (u[2)[cos u = aufu/But0uBanlBr -
Again using (5.3), we have
2wy cos? (u[2)/cos u = #(8/0F) log (B12/Ba) .
Similarly we have
2w, cos® (u/2) = #(8/07) log (B1/Bx) -
In view of (0.6), we have

Theorem 5.1.  The pair of functions

(5.5) u = arccos {(BuBrn+PBula)/(BuBz—FB1Bx)} ,
v = ilog (:812/:821)+7)a , 9EC
is a solution of (0.2).

RemArk. These solutions are expressed by Riemann theta functions, in
view of (4.4).

6. The sine-Gordon equation and fixed point free involutions

In this section we construct quasi-periodic solutions of the sine-Gordon
equation (0.1) by introducing fixed point free involutions of hyperelliptic curves.

First we describe the actions of fixed point free involutions of compact
Riemann surfaces on one-dimensional homology groups and period matrices,
following Rauch-Farkus [25] and Fay [12].

Let R, be a compact Riemann surface of genus g; with a fixed point free
involution T. Let R be the quotient of R, by 7. Then by the Riemann-
Hurwitz formula, we have g;=2g—1 where g is the genus of R.

Proposition 6.1. There exists a canonical basis a;b;, 1<j<g, of H(R, Z)
with the following property

Ta,=ay, Tb=b, Ta;=a; 1, Tbj=0b;,,, J=2, .

Let w; 1<j<g be the normalized basis of abelian differentials of the first
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kind with respect to the above basis a;, b; of H\(R,, Z); S @ =0 j4.
aj
Then we have

Proposition 6.2. T*w,=w,, T*0;=0;i;-1,j=2, **,g. where T*w denotes
the pullback of w by T.

Therefore we have the followiug relations for 7;,= Sb ;e
J

Proposition 6.3. 7., 1 =T, s1g-1, Tjtg-14+g-1=Tj
T1,i+g-1 = T1,5 D k=2) 8.

The involution T acts on the Jacobian variety of R, and this action is ex-
tended to the universal covering space C#1 of J(R));

T: (g, o0, Uy Ugry »o0y Uggoy) = (U, Ugir, o0, Upgoyy Usy **, Ug)
Defining the theta function associated to 7=(7},) by
O(u) = X,cz%1 exp Crim‘u+mimr'm), u = (u, -+, ug ) EC*,
we have the following “symmetry” of (u);
6.1) 0(Tu) = 0 (u) .

Now we turn to the construction of quasi-periodic solutions.

Let R, be the Riemann surface of the hyperelliptic curve p?+a IT372(A—2;)
X (M+2N;)=0, a=const., A;%+=N\,(j Fk), A;+0 of genus g=2g—1. This curve
admits a fixed point free involution T': (A, p#)—>(—\, —u). We take a canonical
basis of H(R,, Z) with the property stated in Prop. 6.1.. Let w,;(resp. o)),
7=1, 2 be the normalized abelian differentials of the second kind that have poles
only at p;(resp. ¢;) of the forms 27'27%dz, z=\"", (resp. 27'A"%d1). Then the
differentials w;;, @, in Section 4 for fi(§, N)=27"EN, fo(E, N)=—27HEN,
&1, M)=2""\"Yn, gi(n, N)=—2""\"liy are expressed as

mfl == —igwﬁl ) mfz = igwﬁz ) Cogl =_ianl ’ Cl)gz - i"]qu .
Lemma. 6.4. o,,=—T%w,, o,=—T"w,,.
Proof. Since Tp,=p,, T*w, is a normalized differential of the second
kind which has poles only at p, of the form —27'272dz, 2=A"". By the uni-

queness of normalized differentials of prescribed poles, we have T*w, = —ay,.

Q.E.D.
By putting U}, = (27i)* Sb wp;y Vip=(2mi)™ Sb wq;, j=1,2, k=1, -+, 2g—1
k k

Uj=Uj, *, Uj pg-1), Vi=Vj1, 5 V; 24-1), the vector F in (4.4) is ex-
pressed as
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F =(U,—U)+in(V,—V)).
Lemma 6.5. U,=—TU,, V,=—TV,.

Proof. By the above Lemma 6.5. and Prop. 6.1., we have
Uy = (2m)-lj w05, = —(Zn:i)“ls Ty, = — @iy | o,
by b ! o

—(Zni)“S 0, k=1

by

= —(Zﬂi)’lsb wpy k=2, g = —(TU,.
kt&=1

—@e| e, k=gt 21
e QE.D.
Denote by w,, wry, the mapping defined in Section 4 with base points

bo Tp, respectively. Further let K,, Kr,, be the Riemann’s constant vector

(4.3) with base points p,, Tp, respectively. Then by a similar calculation, we
have

Lemma 6.6. TK, =Kz,

We construct functions ®;(&, 5, p), j=1,2 as in the preceding section by
choosing & such that 76=35. Since Tp,=p,, we have ¢(p)=¢(Tp). Using
this fact and Lemmas 6.4., 6.5., we have the following expressions for the
functions ®;(&, , p):

b4 b4
Dy(&, n, p) = exp {1‘5 gﬁ (‘l’pl‘l‘ T*wpl_wﬁl+wpz)+in Slzo (wa—l— T*C"ql"wa‘l“qu)}

X ()
O(wp,—1E(U,+TU,)—ing(Vi+TV))—wp (8:) — K ) O (s (1) — W5 (81) — K,) ’
(205, () — %5, (81) — Ko )O(Wo(p1) —1E(Ur+ TU) —in(Vi+TV1) — w0y (8:) — K,)
Dy(, 7, p)= exp {lfs (wP1+T wpl“uﬁl+wp2)+l77$ (“’01+T wa—“wa—}“qu)}
(wT o(P) — (Ui +TU) —in(Vi+TV,) —wrp,(16,) —Krp,)
X(Tp) = O(@wr 1o (p)—wrr(T8)—Krp,)
O(wr py(P2) —Wrp(T61) —Krs,)
H(w”o(pz) (U +TU)—in(0,+TV,)—wrp(T8:))—Kryp,) *

Using these expressions, (6.1) and Lemma 6.6., we have the following
relations

q)l(‘gr 7 TP) = qDZ(E; 7 P) ’
ap=—0an, Bu=PLxr, Pu=Fu.
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Therefore we have v=const. in (5.5), that is, we have a solution of the
sine-Gordon equation.
In order to recover the linear differential equations (0.4), we put

V= t(\I’h \I’Z) , ¥ =0,+9P,, V,=P—,.

Then the function ¥ satisfies the following linear differential equations

il 0 Jee30 Pr=o,

0 c

ZT”+27~<¢“ ())T =0, ¢=(ButBu)/(Bu—Bu).

On the other hand the quotient of the Riemann surface R, by T is the Riemann
surface of the hyperelliptic curve w’+az [1%, (—2%)=0 and the projection
R,—R is given by (A, p)—(z,w)=(A% Ap). Since the function W (resp. ¥,)
is invariant (resp. anti-invariant) under T, W¥,(resp. ¥,) is single-valued (resp.
two-valued) on R. This fact together with the fact that A is two-valued on R
explain the appearance of two-valued functions in [15], [21].

7. Real-valued solutions and symmetric Riemann surfaces

In this section we construct real-valued quasi-periodic solutions of the
equations (0.1), (0.2) by using the theory of symmetric Riemann surfaces in-
troduced by Klein and developped by Weichold [26]. At first we describe
some of results in [26].

We call a pair (R, o) a symmetric Riemann surface when R is a compact
Riemann surface and ¢ is an anti-holomorphic involution on R.

For a symmetric Riemann surface (R, o), let R, be the fixed point set of R
by o. As for the set R—R,, we have

Proposition 7.1. Either the set R—R, is connected (in this case the quotient
of R by o is non-orientable) or it consists of exactly two connected components
(n this case the quotient cf R by o is orientable).

For the latter case we assign the invariant e=+ and for the former case
e=—. Further let » be the number of connected components of R, In
this way we assign for each symmetric Riemann surface the triple (g, 7, ¢) where
g is the genus of R.

We call a symmetric Riemann surface (R, o) of type (g,7,¢) when the
triple assigned to (R, o) is (g, 7, €).

Proposition 7.2. The range of r is as follows:
i) for type (g,7, +), g—r+1=even and 1<r<g--1,
ii) for type (g, 7, —), 0<r<g.
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The action of ¢ on Hy(R, Z) is described as follows.

Proposition 7.3. There exists a canonical basis a;, b;, 1< j<g of H|(R, Z)
with the following property.
1) for type (g,7, +)
ca;=—a;, j=1,-,g,
ob;=—b;, j=1,:,r—1,
0b,12j=by12; 12541, J=0, -+, (g—7+1)[2—1,
0b,12j1=by12j 1t 22, J=1, -, (g—7+1)/2,
where b;(j=1, +--,r—1) are connected components of R,,
ii) for type (g,7, —) (r>0)
ca;=—a;, j=1,--,g,
ob=by, =171,
obyij=byjata i1, j=1,,g—r+1
where b;(7=1, -+, r—1) are connected components of R,,
iii) for type (2,0, —)
ca;j=a;, j=1,-,g
U’bjz_bj+2§=l ki @y J=1,00 8
where a; have no real points (that is, without points cp=p).

Let w,, ***, , be the normalized basis of abelian differentials of the first kind
with respect to the above basis a;, b;. Then we have

Proposition 7.4.
i) For types (g,7, +), (g7, —) (r>0)

(O'*Cl)j)* = T®j, ]:17 8

ll) for type (g: 0, _)
(c¥w)* = w;, j=1,-.¢g.
where o*w denotes the pull back of » by o.
Let 75 :Sb,- w, and 7=(7;), then for each type Ret is given by the
following.
Proposition 7.5.
i) For type (g,7, +)

(1, (B (R f)=(r—142L r—2420), =1, e, (g—7+1)/2,
2Re 7y = { 0, (j, k)=otherwise.

ii) for type (g,7r, —) (r>0)

(1, (GR=@G), =1
2ReT;,= { 0, (j, k)=otheruise
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111) for type (g:O’ _)

1 , k l.v ’ l=1’ &
Rer,y— | GRFED, J
0, (J, kK)==otherwise.

By Prop. 7.5., the theta function @(x) associated to 7 satisfies the relation
(7.1) O(u)* = 0(u*) usC*

for symmetric Riemann surfaces of types (g,7, +), (g, 0, —).
On the other hand for symmetric Riemann surfaces of type (g, 0, —), Witt
[27] proved the following.

Theorem 7.6. On symmetric Riemann surfaces of type (g,0, —) there exist
meromorphic functions f with the property

fr=—1
where f°(p)=(flop))*.
Since we need functions f in Theorem 7.6. with additional properties in

the construction of quasi-periodic solutions, we reproduce the proof of this

theorem.
First we rephrase the above Prop. 7.3. as follows.

Proposition 7.7. For symmetric Riemann surfaces of type (g,0, —) there
exists a canonical basis c;, d;, 1<j<g of H\(R, Z) with the following property.
i) for g=even.
oc;=¢j, j=1,+, g
ody; = dpj—C35, odyjy=dpj1—C;, j=1,+,8/2
il) for g=odd.
gC; = ¢Cj, j:l’ Y 4
cdi=4d,, ody=dyj—Crj11, 0oyj11=dsj1—0;, j=1,,(g—1)2.

This is shown by using the fact that the matrix representations of the action
of & on H\(R, Z) given in Prop. 7.3. and Prop. 7.7. are equivalent by an el-
ement of Sp(2g, Z).

Let wj, 1<j<g be the normalized basis of abelian differential with respect
to the above basis ¢;, d; of H\(R, Z), then we have

oo =i, 1<j<g,

that is, wj are real abelian differentials of the first kind. Putting

i = S wi, 7' =(Ti),
j
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we have

Proposition 7.8.
i) for g=even
2Re 7l = { LG k), (.k,])=(21—1, 2, =1, -, 8[2.
0, otherwise,
il) for g=odd

Reryy (1 G Bh B N=@L2ED, =1, (D)2
ik 0, otherwise.

Namely the columns of the period matrix (I,, 7') (=a basis of periods of
real differentials of the first kind) of a symmetric Riemann .surface of type
(g, 0, —) has the following form

(7.2) €1,y €g , . e O, g=even
fl)'”)ftyft+1+2 €111y '"’fg+2 €g» 1, g:‘)dd

where e; are real vector and f; are purely imaginary vector.
Now we proceed to the proof of theorem.

Lemma 7.9. If ff"=—a=constant>0, then there exists a meromorphic
[function g which satisfies the relation

(f) = (8)—o(9).
Proof. If f=const., then we put g=1. In case of f3=const., we put
g=f+a”. Then
ffT+a?) = ff*+fa"* = a'/*(f+a'?) . Q.E.D.

Proof of Theorem 7.6. Let g be an arbitrary point on R. We denote
w'(¢—oq) = A+iB

where w’ is defined as in Section 4. by »?. Since w/} are real differentials, we
have

w'(cq—q) = A—iB.

and consequently, we see that 24 is a period.
Case i) g=even. By (7.2), A is congruent to a imaginary vector. There-
fore we have

w(q—aq) = iC = purely imaginary.

Determine an effective divosor § of odd degree >g by solving the following
Jacobi’s inversion problem

w'(8—(deg 8)q) = —27Y(deg S)w'(g—oq) = —27"(deg 8)C,
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then we have

w'(8—o8) = w'(8—deg 8)g)+w'((deg 8)oq—o8)+(deg S)w'(g—oq)
= —2-1i(deg 8)C—2""i(deg 8)C+i(deg 8)C = 0.

By Abel’s theorem there exists a meromorphic funtion f with the property

(f) = 8—c8,

then we have
ff° = constant.

Suppose that there exists a meromorphic function g with the property

8—ad = (g)—o(g) -
In that case we must have

8 = 8'+08'+(g)

for a suitéble divisor 8’. By counting the degrees of the both hand sides, we
have a contradiction. Therefore by Lemma 7.9., we conclude that ff<0.

Case ii) g=odd.
Determine a divosor 8 of even degree > g by solving the following Jacobi’s

inversion problem
w'(8—(deg 8)q) = 271 f;—27Y(deg 8)B

where f; is the purely imaginary vector in (7.2). Since deg 6=even, we have
w'(8—08) = w'(§—(deg 8)g)+w'((deg 8)ag—ad)-(deg S)w'(¢—aq)

= 271f,—27"(deg 8)B—(—27"f,4-27"{(deg 8)B)+(deg 8)A+i(deg §)B

=0.
Accordingly by Abel’s theorem, there exists a meromorphic function f with the
property

8—ad = (f).

We have

ff? = constant.

Suppose that there exists a meromorphic function with the property

d—ad =(g)—a(g)-
Then we must have

8 = 8'4a8"+(g)

for a suitable divisor &’. By Abel’s theorem, we have
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271f;—27%(deg 8)B = w'(8—(deg 8)q)
= w'(8'—27Y(deg 8)q)+w'(c8'—27Y(deg 8)oq)+27(deg 8)w'(cg—q)
— 2Re w'(5'—2"Y(deg 8)g) -2 Y(deg 8)A—2"(deg 8)B .

This implies that f; is congruent to a real vector, which is a contradiction. Again
by Lemma 7.9., we conclude that ff°<0. Q.E.D.

RemARk. In particular, we can take deg 6=g-1.

After these preliminaries, we construct real-valued quasi-periodic solutions.
Let R be the Riemann surface of the hyperelliptic curve

WIS =)= =0, NFENGFR), MEN, £+0.
This Riemann surface admits an anti-holomorphic involution o': (A, p)—>(A*, u*).
This symmetric Riemann surface (R, o) is of type (g, 0, —). We take a canonical

basis a;, b;, 1<j<g of H\(R, Z) with the property in Prop. 7.3.. Let w);, wy,
U;, V; be as in Section 5. Then we have

Lemma 7.10. o),=(c%w,)*, o,=(c%w,)*.

Proof. Since o(p))=pz, (6 ws,)* is an abelian differential of the second
kind with pole only at p, of the form 27'27%dz, z=n"". Further by Prop 7.3.,
we have

cga

ot = o= o =0, ot

that is, (6*w,)* is also a normalized differential. By the uniqueness of the
normalized differential of the second kind with prescribed poles, we have w,,=

((T*(Dpl)*. Q.E.D.
Lemma. 7.11. U,=U¥, V,=T%#.

Proof. By Prop. 7.3. and the above Lemma 7.10, we have
U= i)™ |, = @) ([ o¥ap)* = 2ei) ([ wp,)*
by by aby

— —(Zni)‘l(s wop)* = [(zm)-l(sbk wop)* = Up* . QE.D.

b

Denote by wy,, @sp,, Ky, Kop, the mapping defined in Section 4. and the
Riemann’s constant vector (4.3) with base points p,, op, respectively. Then
by a similar calculation, we have

Lemma 7.12. K% =K.

Let § be the pole divosir of a meromorphic function f on R with the pro-
perty in Theorem 7.6 of degree g+1. By examining the proof of Theorem
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7.6., we can choose 8 such that [(§—p;)=1, j=1,2.
Then we have the following expressions of the functions ®;(&, 5, p):

i, m.2) = exp [ || {on,—(o*on )V —wpFwi}+in || {o,—(o%an)*

_wq,+W* H
(f(P)_f(PZ))a(wi’o(P) #E(Uy— U¥)—in(Vi— V) —wy(81)—Ks,)
(f(B1)—1(02))0(203, () — w2, (81) — Kp,)
O (wpy(P1)—25,(81) —Kp,)
G(wpo(pl) iE(U,— UT)—in(Vi— V) —wy(81)— K,)’

q)Z(E: 7 P) = €xXp [lg Sa‘ﬁo {wﬁl—(a*wﬁl)*—wi;l_f_w:’;l}

)4
+in | Ao —(e* o) —woFui}]

(f(P)_f(Pl))e(wo'ﬁo(P) E(Uy—UF)—in(Vi— V)~ (081)—Kop,)
(f(B2)—1(81))0(Wopy(P) — Wepy(001) — K o,)

O(Wapy(P2) —Wapy(a81) —Kap,)
0(w,p0(p2) —iE(U,—UF)—in(Vi— V¥)—wWap,(081) —Kop,)

By using these expressions, (7.1) and Lemma 7.12,. we see that the coe-
flicients B}, have the following forms:

Bu(€, 7) = (f(p)—f(62) " (fl@)—Sf(p2))al&; m) »
Bi&s 1) = (f() —f(62) (@) —S ())& 7) »
Bu(&; 7) = (fp) =) (f@) —fB:))8(E )*
Buul&, 1) = () —A(0:)) (@) —f(B)a(E, n)* -

On the other hand by Th. 7.6., we have
SN PN = Fa)(fla)* = —

Using these relations, we conclude that the inequality

- 1 S (1811322‘}_612621)/(611622_BlZBZI) S 1
holds and that the function B,/ has the form

Brz/Ba = r(b(E, U)*)_lb(ga 7)

with a constant 7. Therefore the pair of function

©® — arccos {(:8111822+:812:821)/(1811:822—:822:821)}
V= ilog (1812/:321)’|‘vo

is a real-valued solution of (0.2) with a suitable constant o,
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In the same way real-valued solutions of the sine-Gordon equation are

obtained by starting with the hyperelliptic curve p?+ IT%.; (A—X\;)(A—2F)
XN AAAT)=0, Ai=E=nE, jk, ANiE=(AF)? A;+0, which admits a fixed
point free involution 7': (A, z)—>(—X\, —u) and an anti-holomorphic involution
a: (N, p)—(\*, p*). Since T and o commute, the constructions in Section 6
and the present section are compatible.
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