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1. Introduction and results

One of the techniques used to prove the algebraic independence of numbers is
Mahler’s method, which deals with the values of so-called Mahler functions satisfy-
ing a certain type of functional equation. In order to apply the method, one must con-
firm the algebraic independence of the Mahler functions themselves. This can be re-
duced, in many cases, to their linear independence modulo the rational function field,
that is, the problem of determining whether a nonzero linear combination of them is a
rational function or not. In the case of one variable, this can be treated by arguments
involving poles of rational functions. However, in the case of several variables, this
method is not available. In this paper we shall overcome this difficulty by consider-
ing a generic point of an irreducible algebraic variety. Theorems 1 and 2 in this paper
assert that certain types of functional equations in several variables have no nontrivial
rational function solutions. As applications, we shall prove the algebraic independence
of various kinds of reciprocal sums of linear recurrences in Theorems 3 and 4, and
that of the values at algebraic numbers of power series, Lambert series, and infinite
products generated by linear recurrences in Theorem 5.

Let @ = (w;;) be an n x n matrix with nonnegative integer entries. If z =
(21,...,2,) is a point of C™ with C the set of complex numbers, we define a trans-
formation 2 : C™ — C™ by

@)) Oz = ( ijlj,...,Hij"j).

Let {ax}r>0 be a linear recurrence of nonnegative integers satisfying
?) Qktn = C1Qk4n—1 + -+ cpar (k=0,1,2,...),

where ay,...,a,—1 are not all zero and cy,...,c, are nonnegative integers with ¢, #
0. We define a polynomial associated with (2) by

3) X)=X"—c X" - —cp.
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Our results assume that ®(+1) # 0 and the ratio of any pair of distinct roots of ®(X)
is not a root of unity and that {aj}r>o is not a geometric progression. We define a
monomial

“ P(z) = 2% 1. 2,%,

which is denoted similarly to (1) by

5) P(z) = (an-1,.-.,00)2.
Let
cag 1 0 ... 0
c; 0 ' :
(6) 0= 0
N -1
c, 0 ... ... 0

It follows from (1), (2), and (5) that
P(QFz) = z%+n-1... 7.9 (k> 0).

In what follows, C' and C denote a field of characteristic 0 and its algebraic closure,
respectively. Let F'(21,...,2,) and F([[z1,...,z2,]] denote the field of rational func-
tions and the ring of formal power series in variables zy,...,z, with coefficients in a
field F, respectively, and F'* the multiplicative group of nonzero elements of F'. The
following are the main theorems of the present paper.

Theorem 1.  Suppose that G(z) € C|[z1,...,2,]| satisfies the functional equa-
tion of the form

pt+q—1

©) G(2z) =aG(W2) + Y Qu(P(0*2)),
k=q

where o # 0 is an element of C, Q is defined by (6), p > 0, ¢ > 0 are integers, and
Qr(X)eC(X) (g<k<p+q—1) are defined at X = 0. If G(z) € C(z1,...,2n),
then G(z) € C and Qi(X) €C (¢<k<p+q-—1).

Theorem 2. Suppose that G(z) is an element of the quotient field of C[[z,. ..
zn]] satisfying the functional equation of the form

p+q—1

® 6 = (I @ulr(e=))c@r)

k=q
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where 0, p, q, and Q(X) are as in Theorem 1. Assume that Q,(0) # 0. If G(z) €
C(21,...,2n), then G(z) € C and Qx(X) € c* (g<k<p+q-1).

First we shall state our results on algebraic independence of reciprocal sums of
linear recurrences, Theorems 3 and 4, obtained as applications of Theorem 1. We pre-
pare some notations.

Let {Ri}x>o be a linear recurrence expressed as

9 Rp =bipf + - +bpf (k20),

where by, ...,b, are nonzero algebraic numbers and p,,...,p, are nonzero distinct al-
gebraic numbers satisfying

(10) lp1| > max{1,|ps|, ..., |ps[}-

Typical examples of such {Ry};>o are the Fibonacci numbers {F}}r>o defined by
Fo=0, Fi=1, Fryo=Fr1+F. (k>0

and the Lucas numbers {L;}«>o defined by
Lo=2, Li=1, Lgy2=Liy1+Lx (k20),

since

and

k k
Lk=<1+2‘/5) +(1"2‘/3) (k > 0).

We shall prove the algebraic independence of reciprocal sums of linear recurrences
such as

' bk

11 —_—
(b Raesn)™

k>0

where {bx}r>0 is a linear recurrence of algebraic numbers not identically zero,
{ar}r>0 is as above, and m > 1, h are integers. Here and in what follows, the sum
Z;OO is taken over those k which satisfy ax + h > 0 and R,, +» # 0. For example,
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the algebraic independence of the numbers

ZIF_].*_m‘ (hGZ,mEN)
iso (Fretn)

can be deduced from Theorem 4 below. Here Z and N denote the sets of rational and
positive integers, respectively.

It is interesting to compare our results to those obtained by various authors in the
case where {ax}r>0 is a geometric progression. Lucas [7] showed that

}:1 7-V5

Fpe 2

k>0

Let {pi}x>0 be a periodic sequence of algebraic numbers not identically zero. Bund-
schuh and Pethé [1] proved by Mahler’s method that

P

k>0 F2k

is transcendental if {pi}r>o is not a constant sequence and that

Dk
Lok

k>0

is transcendental for any {pi}r>0. Let a > 1 and d be integers. Recently, Nishioka,
Tanaka, and Toshimitsu [12] proved that if {Pk}kzo is not a constant sequence, the
numbers

! Pk
(12) —_ d>2,heZ,meN
,§) (Foarsn)™ ( )

are algebraically independent, and if {py}r>0 is a constant sequence, the numbers (12)
excepting the algebraic number 2;00 Dr/F,or are algebraically independent; and also
the numbers

P (@>2,heZmeN)
k>0 (Lad"+h)

are algebraically independent for any {py}+>o. These results depend on the fact that
the recurrences {Fj}r>o and {Lk}kzo are binary, namely these can be expressed as
(9) with r = 2. In the case of m = 1, the transcendence of each of these numbers has
already been proved by Becker and Topfer [1]. For a general {Ry}r>o not necessarily
binary, only the transcendency result has been obtained also by Becker and Topfer [1]:
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If p1,...,p, are multiplicatively independent, then the number

I Dk
R4+

k>0

is transcendental (cf. Remark 2 below).

Our results are concerned with the algebraic independence of the numbers (11)
with {a}}x>0 not a geometric progression. It is not necessary in our results to assume
that p;,...,p, are multiplicatively independent. In what follows, Ny denotes the set
of nonnegative integers and Q the field of algebraic numbers.

Theorem 3.  Let {Ry}i>0 be a linear recurrence represented as (9) with (10).
Then the numbers

/ k’ak —X
(13) Y —~ (2€Q",le No,meN)
o (Bar)

are algebraically independent.

Theorem 3 implies the algebraic independence of the numbers

Y ks (men),

kzo (Rak )m

since a linear recurrence {by }x>o of algebraic numbers not identically zero can be ex-
pressed as the linear combination of the sequences {k'a*}i>0 (@ € @ ,1 € No) with
algebraic coefficients.

Remark 1. It is proved in Tanaka [13, Remark 4] that
ar = cv* + o(7F),
where v > 1 and ¢ > 0, so that by (10) each sum in (13) converges.
ReMARk 2. It still remains unsolved to prove the algebraic independence of the
numbers (13) with {ai}x>0 a geometric progression and without the assumption that

p1,...,pr are multiplicatively independent.

Corollary 1. [In addition to the assumptions on ®(X), suppose that ®(X) has
only simple roots. Then the numbers

!k
Z'k—a (a € Q”,l€ Nog,m € N)
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are algebraically independent.

Proof.  Since ®(X) has only simple roots, a; in place of R; can be expressed
as (9) with distinct roots py,...,p, of ®(X). And (10) is also satisfied by the condi-
tion on ®(X) (see Nishioka [10, Theorem 2.8.1]). Thus we can take aj as Ry. OJ

ExampLe. Let {Tx}r>o be so-called “Tribonacci” numbers defined by
Tits = Thqo + Th1 + T (K=0,1,2,...)

with the initial values Tp = 0, T; = 1, and T, = 2 and let {br}x>0 be a linear
recurrence of algebraic numbers not identically zero. Then the numbers

3 b (m € N)

k>1 (TTk)m

are algebraically independent. We remark that T} can be expressed as (9) with r = 3
and p,, pg, p3 satisfying p;psps = 1, so that pp, p2, and ps3 are multiplicatively depen-
dent.

If {Ri}x>0 is binary, we can deduce from Theorem 1 the algebraic independence
of the numbers (11) for various h, as in the case where {ax}r>0 is a geometric pro-
gression stated above.

Theorem 4. Let {Ri}ir>0 be a binary recurrence represented as
Ry = bip¥ +bopk (kK >0),

where by, be, p1, and p, are nonzero algebraic numbers satisfying |p1| > max{1, |p2|}.
Then the numbers

!k
(14) SR e@*leNymeN he2)

are algebraically independent.

Corollary 2. Let {Ry}r>0 be a binary recurrence defined by
Rk+2 = Ale+1 + Ao Ry, (k > 0),

where Ay and Ay are real algebraic numbers satisfying Ay # 0, |A2| > 1, and
A = A} + 44, > 0. Suppose that {Ri}r>o is not a geometric progression. Then
the numbers (14) are algebraically independent.
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ExampLE. Let {Fi}r>0 be the Fibonacci numbers and let {bi}x>o be a linear
recurrence of algebraic numbers not identically zero. Then the numbers

Z’% (hGZ,mEN)
1o (FFetn)

are algebraically independent.

RemARk 3. In the case where {ax}r>o is a geometric progression, a similar re-
sult to Corollary 2 is obtained by Nishioka [11] under the assumption that Ry, R;, A,
and A, are rational integers and m = 1.

Next we state an application of Theorem 1 as well as Theorem 2. For the se-
quence {ax}r>0, the author obtained the necessary and sufficient condition for the
numbers >, ., 07%,...,) 1500k to be algebraically dependent, where aj,...,a,
are algebraic numbers with 0 < |a;| < 1 (1 < i < r). From Theorems 1 and 2 with
Lemmas 1, 3, and 5, we can prove the following:

Theorem 5. Suppose that the initial values aq,...,an—_1 of {ar}r>0 are posi-
tive. Let ay,...,0, be algebraic numbers with 0 < |a;| < 1 (1 < 4 < r) such that
none of a;/a; (1 <i< j<r)isa root of unity. Then

ask* .
Za?k, ZT:'aT,,» H(l—a:‘lk) (1<i<r)
k>0 k>0 i k>0

are algebraically independent.

ReMARk 4. The assumption that none of a;/a; (1 < i < j < r) is a root of
unity cannot be removed even in the case where ag,...,a,_; have no common factor
as the following example shows: Let {a},>0 be a linear recurrence defined by

ag = 2,a; = 3,042 = 6ags1 +ar, (k=0,1,2,...).

We put

M@= 9@ =Y 1o )= [[-2).

k>0 k>0 k>0

Let a be an algebraic number with 0 < |a| < 1 and ¢ = e™V~1/3 = (1 4+ /=3)/2.
Then

2f(a) + f(Ca) — f(Pa) = 2f(¢Pa) — f(C*a) + f(¢°a) =0,
29(a) + g(Ca) — g(Ca) — 29(a) — g(¢*a) + g(¢Pa) =0,
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and
h(a)*h(¢a)h(¢*a) " h(CPa) *h(¢ ) T A(Pa) = 1,
since agr =2 (mod 6) and asky; =3 (mod 6) for any k& > 0.

ReMARK 5. If {ax}k>o is a geometric progression, namely aj, = ad* (k > 0) for
some integers a > 1 and d > 2, each of the numbers in Theorem 5 is transcendental
by the theorem of Mahler [8] ; however Theorem 5 is not valid in this case, since
there exist the following relations over Q: Let

ad*

f(z) = Zzad", 9(2) = Z liW’ h(z) = H(l _ z"dk),

k>0 k>0 k>0
and let o be an algebraic number with 0 < |a| < 1. Then

a® h(a)

fl@) - f@®) =a®, g(a)-g(a?) = T-a" hiad) 1-a?,

where a/a? is not a root of unity.

Remark 6. The power series expansions of some of infinite products in Theorem
5 have interesting property. Beresin, Levine, and Lubell [2] proved that if

[1a- 2" = 3 e(k)2*,

k>0 k>0

where {F}}i>o is the Fibonacci numbers, then e(k) = 0 or *1 for any k > 0.

2. Proofs of Theorems 3-5

In this section we derive Theorems 3, 4, and 5 from Theorems 1 and 2 by us-
ing Lemmas 1-5 below. Let = (w;;) be an n x n matrix with nonnegative integer
entries. Then the maximum p of the absolute values of the eigenvalues of ) is itself
an eigenvalue (cf. Gantmacher [4, p. 66, Theorem 3]). We suppose that Q2 and a point

a = (a1,...,a,), where a; are nonzero algebraic numbers, have the following four

properties:

(I Q is non-singular and none of its eigenvalues is a root of unity, so that in par-
ticular p > 1.

(I) Every entry of the matrix QF is O(p*) as k tends to infinity.
am If we put @k = (7., o), then

logla{®| < —cp* (1<i<n)
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for all sufficiently large k, where c is a positive constant.

(IV) For any nonzero power series f(z) in n variables with complex coefficients
which converges in some neighborhood of the origin, there are infinitely many
positive integers k such that f(Q*a) # 0.

We note that the property (II) is satisfied if every eigenvalue of 2 of absolute val-

ue p is a simple root of the minimal polynomial of (2.

Lemma 1 (Tanaka [13, Lemma 4, Proof of Theorem 2]). Suppose that ®(+1)
# 0 and the ratio of any pair of distinct roots of ®(X) is not a root of unity,
where ®(X) is the polynomial defined by (3). Let Q) be the matrix defined by (6) and
B, -, Bs multiplicatively independent algebraic numbers with 0 < |8;] <1 (1 <j <
s). Let p be a positive integer and put

Q' = diag(Q?,...,Q7).
|
Then the matrix Q' and the point
B=(Q1,...,1,6,...... ,1,...,1,8s)
ey s’ \_T/

n—1 n—

have the properties (I)-(IV).
Lemma 2 (Nishioka [9]). Let K be an algebraic number field. Suppose that

fi(2),..., fm(2) € K|[z,...,2,]] converge in an n-polydisc U around the origin
and satisfy the functional equation of the form

fi(2) f1(Qz) b1(2)
(15) : =A : + : )
fm(2) fm(Q22) bm (2)
where A is an m x m matrix with entries in K and b;(z) € K(z1,...,2,). Assume

that the n x n matrix Q and a point o € U whose components are nonzero algebraic
numbers have the properties ()-(IV). If fi(z),..., fm(2) are algebraically indepen-
dent over K(z1,...,2y,), then fi(a),..., fm(a) are algebraically independent.

Lemma 3 (Kubota [5], see also Nishioka [10]). Let K be an algebraic number
field. Suppose that f1(2),...,fm(2) € K|[z1,...,2,]] converge in an n-polydisc U
around the origin and satisfy the functional equations

fi(Qz) = ai(2) fi(2) + bi(z) (1 <i<m),

where a;(2), b;(z) € K(z1,...,2,) with a;(0) # 0. Assume that the n x n matrix
Q and a point a € U whose components are nonzero algebraic numbers have



212 T. TANAKA

the properties ()-(IV) and that a;(z) are defined and nonzero at QFa for all
k > 0. If fi(2),...,fm(2) are algebraically independent over K(z,...,z2,), then
fi(a), ..., fm(a) are algebraically independent.

Lemma 3 is essentially due to Kubota [5] and improved by Nishioka [10].

Let L = C(21,...,2,) and let M be the quotient field of C[[z1,...,2,]]. Let Q
be an n X n matrix with nonnegative integer entries having the property (I). We define
an endomorphism 7: M — M by

(16) f(z) =f(Q2) (f(2) € M)
and a subgroup H of L* by
H={g'g"'lg e L*}.

Lemma 4 (Nishioka [9]). Suppose that f;j € M (i =1,...,k,j =1,...,n(3))
satisfy the functional equation of the form

fi 1 a; O e 0 szl bi 1
: _ ag? a; B : : + : ,
' 6w 0 '
fingi) Uiy - Onyn(iy—r G Fing) bin(i)

where a,-,ag? € C,a; # O,af},_l #0,and bj; € L. If fij 1 = 1,...,k,j =
1,...,n(2)) are algebraically dependent over L, then there exist a non-empty subset
{i1,-..,ir} of {1,...,k} and nonzero elements cy,...,c, of C such that

aiy, =---=a;,c1fi1+-+cefio1 €L

Lemma 5 (Kubota [5], see also Nishioka [10]). Ler f;e M (i =1,...,h) satisfy
fi=afi+b;,
where a € L* and b; € L (1 <i<h), and let f; € M* (i =h+1,...,m) satisfy
[l =aifs,

where a; € L* (h+ 1 < i < m). Suppose that a, a;, and b; have the following
propetrties:
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(i) Ifc;eC (1 <i<h)are not all zero, there is no element g of L such that

3
ag—g” =y cibi.
i=1

(i) apt1,...,am are multiplicatively independent modulo H.
Then the functions f; (1 <i < m) are algebraically independent over L.

Proof of Theorem 3. Let p;,...,p, be the algebraic numbers in (9). There exist
multiplicatively independent algebraic numbers i, ...,8, with 0 < |G| <1 (1< j <
s) such that

8 §
a7 ot =GB et =GB (@<i<r),
j=1 j=1
where (1,...,¢, are roots of unity and e;; (1 < ¢ < r,1 < j < s) are nonnegative

integers (cf. Loxton and van der Poorten [6], Nishioka [10]). Take a positive integer
N such that ¢;N = 1 for any i (1 < i < r). We can choose a positive integer p
and a nonnegative integer ko such that axyp, = ar (mod N) for any k > ko. By
Remark 1, there exists a nonnegative integer k; such that apy; > ax for all k& > k;.
Therefore by (9) and (10), there exists a nonnegative integer ¢ > max{ko, k1} such
that R,, # 0 for all k > ¢. Let y;» (1 < j < 5,1 < A < n) be variables and let

Y; = (yj17"'ayjn) (1 SJ < S), Y= (yla"'ays)' Define

fm(z,y) = sz
k>q
<(G TTP@4)™ [ (b + St T P@))) " (2,
where P(z), z = (21,...,2n), is the monomial given by (4) and (2 is the matrix given
by (6). Letting
D=x$,a€§x, and B=(1,...,1,8;,...... J1,...,1,8),
n—1 n—1
we see that
l Lk~ - 1 " ko
D puta )= S 7 (4 om0 =5 AL
k>q i=2 qu( )
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Hence

! l —_X
> e~ D@8 €Q (@@ € NoymeN),
k>0 Ra,

and so it suffices to prove the algebraic independence of the values
D'fm(,B) (2€Q",l€ Noyme N).
Let

Q' = diag(Q?,...,QF).
N, s

8

Then f,,(x,y) satisfies the functional equation

(18) fm(z,9)

= 2P f(z,Vy)
pt+g-1 s
+ Y x’“( o [T Py /(b + Zb G HP(Q’c e-’)) ;
k=q j=1 1=2

where 'y = (QPy,,...,0Py,), and so D'f,.(z,y) (I > 1) satisfy

(19)  D'fm(z,y)

= Z( > =k zP D fo(z, V'y)

pn=0

ptg-1 m
+ 3 Kz k( “"HP(Q" )eu/(b1+2b ("”HP j)e«j))

k=q 1=1 =2

We assume that the values D'f,(a,,8) (0 <1 < L1 <m< M1<o<t)
are algebraically dependent, where a;,...,a; are nonzero distinct algebraic numbers.
It follows from (18) and (19) that D' f,(as,y) (0<I<L,1<m<M,1<0<t)
satisfy the functional equation of the form (15), so that they are algebraically depen-
dent over Q(y) by Lemmas 1 and 2. Hence we see by Lemma 4 that

(20) a’f:...:aﬁ

and f(a.,y) (1 < m < M,1 < o < v) are linearly dependent over Q modulo
Q(y), changing the indices o (1 < o < t) if necessary. Thus there are algebraic num-
bers cme (1 <m < M,1 <0 <), not all zero, such that

M

F(y) = Z Ecma.ﬂn(amy) € Q(y).

m=1o=1
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Since F(y) € Q[[y]] N Q(y), there are A(y), B(y) € Q[y] such that
F(y) = A(y)/B(y), B(0)#0

(see Nishioka [9, Lemma 4]). Letting y, =--- =y, = 2 = (z1,..., 2,), We have

M v r m
=y Y (Zcmaa§> (C{”‘P(ka)El / (b1 + Ebigf"P(ﬂkz)E‘»
k>gm=1 o=1 =2
€ 6(217 ,Zn),
where E; = Z;=1 e;j € N (1 <i<r),since e;1,...,e;s are not all zero for each i.

Letting >/ _| cmoak = dn(k)a¥ (1 <m < M), we find
dm(k +p) = dm(k) (k>0)
by (20). Then G(z) satisfies the functional equation
G(z) = fG(OP2)

p+q—-1 M . ~
+ Z Z d'n(k)af( f"P(ka)El/(b1 + Z bz'Cf”“P(ka)E‘)> ’
1

k=q m= =2

so that by Theorem 1,

M
Qu(X) = Y dm(k)af
m=1
x (ckaEl/(bl + ibic;‘*XE‘))m €Q (g<k<p+q-1).
=2

Hence

since ordx=o (({* X5 /(by + i, bi¢* X B )™ = mE; (1 < m < M). Letting
Ne = as/on (1 < o < v), we see that 7,,---,7, are distinct p-th roots of unity by
(20) and that d,,(k) = Y._, ¢mon® =0 (¢ < k < p+ g — 1), which holds only if
Cm1 = '+ = ¢my = 0. This is a contradiction, since ¢, (1 <M <M, 1 <0 <)
are not all zero, and the proof of the theorem is completed. O
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Proof of Theorem 4. We assume that

kl k
2% (1<0<t,0<I<L, H<h<H, 1<m<M)
k>0 (Rak+h)
are algebraically dependent, where a4, ...,a; are nonzero distinct algebraic numbers.

Since |p;| > max{1,|p2|}, there exists a nonnegative integer ¢ > max{ko, k1} such
that R,, 4+ # 0 for any h (—H < h < H) and for all k¥ > q. Define

frm(z,y) = Z:E

k>q

( H P(2*y,) [ (1+ 67 b (o1 )G [T P(OFy,) > ))
j=1

where P(z),() are given by (4), (6), respectively, and the roots of unity (3, {2 and the
nonnegative integers e;; (i = 1,2,1 < j < s) are determined by (17). Letting D and
B be as in the proof of Theorem 1, we see that

(bl lpl_h)lefh m(aaaﬁ)

= Kak (b7 o7 e /(1 + b7 ba (7 p2)" (07 p2) ™))"
k>q

klak

k>q (Rak+h)m .

Hence
1 klak
£>0 (Rak+h)

— (b7 pr")™ D frm (a0, B) € Q

and so D'fym(0s,8) (0 < I <L, H< h< H1<m<M1<o<t)are
algebraically dependent. By the same way as in the proof of Theorem 1, we see that

(21 al=---=ab

and fp m(as,y) (H <h<H, 1<m< M, 1< o0 <v) are linearly dependent
over @ modulo Q(y), changing the indices o (1 < o < t) if necessary. Thus there
are algebraic numbers ¢y (—H < h < H,1 <m < M,1 <o < V), not all zero,
such that

H

=) Z Echm,,fhmm,,,y) € Q).

h=—H m=1o0=1



ALGEBRAIC INDEPENDENCE RESULTS 217

Letting y, = --- =y, = 2z = (21,...,2n), We have

x (¢EP(QF2)B1 /(1 4 b7 bg (7 p2) " (5% P(0F 2)P2))™
€ 6(21, ey Zn),

where E; = ZJ le,] € N (1 = 1,2), since e;;,...,e;s are not all zero for each i.
Letting >/ _, chmo 0k = dpm(k)of (-H < h < H,1 <m < M), we find

dpm(k + p) = dpm(k) (k> 0)
by (21). Then G(z) satisfies the functional equation

G(z)
PG(Q”z)
p+g—1

»> 5 3 dunibla

k=q h=—H m=1
X (G P(Q*2) P /(1 + b7 ba(p7 ' p2) "G5+ P(Q*2)P2)) ™
so that by Theorem 1,

H M

Qr(X) = > Y dum(k)af (P X /(1 + b7 ba (o7 p2)" 5+ X F2)) ™

h=—H m=1
€Q (¢g<k<p+q-1).

Hence
dpm(k) =0 (-H<h<H,1<m<M,q<k<p+q-1),

since Qr(X) has some poles if dpm(k) (—H < h < H,1 <m < M) are not all zero.
The rest of the proof is similar to that of the proof of Theorem 3. O

Proof of Theorem 5. There exist multiplicatively independent algebraic numbers
B1,...,8s with 0 < |B;] <1 (1 <j<s) such that

(22) a=G[[8 a<i<r),

i=1
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where (;,...,(, are roots of unity and e;; (1 < i < r,1 < j < s) are nonnega-
tive integers. Take a positive integer N such that GN =1 for any i 1<i<r).
We can choose a positive integer p and a nonnegative integer g such that axi, = ai
(mod N) for any £ > q. Let yj» (1 < j < s, 1 < A < n) be variables and let
Y; = Wj1,--»¥in) (1<5<8), y=(y1,-.-,9,). Define

- Ser TP,

k>q
Z Calc H] - P(Qk )e,-j
Cak H] 1P Qk )e,] )

gi(y) =
k>q

and
hily) = H(1~<“kHP ) asisn,
k>q

where P(z) and ) are defined by (4) and (6), respectively. Letting

B=(1,...,1,8,...... ,1,...,1,08,),
WI_J \_\,1_/
we see that
£:(B) =) _ad*, g(B)= Zl a ha(B) = [T -ag),
k>q k>q k>q

and so it suffices to prove the algebraic independence of the values f;(3), g:(3), h:(8)
(1<i<r). Let

Q' = diag(Q7,...,07).
S S

s

Then f;(y),9:(y), hi(y) (1 <i < r) satisfy the functional equations

fiy) = 1@y + Y ¢+ [ P(@Fy;)s,
k

p+q-—1 ak P Qk €ij
%(y) = () + Y . Cal:[ﬁ; lip(nk) ye

k=q

and

pt+q—1

m) = (11 (1- ¢ IT P@tu)) Juow),
j=1

k=gq
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where Q'y = (QPy,,...,NPy,). We assume that the values f;(8),9:(8),h:(8) (1 <

i < r) are algebraically dependem Then the functions f;(y),g:(y),hi(y) 1 <i <)

are algebraically dependent over Q(y) by Lemmas 1 and 3. Hence by Lemma 5 at

least one of the following two cases arises:

(i)  There are algebraic numbers b;,c; (1 < i < r), not all zero, and F(y) € Q(y)
such that

(23) F(y) = F(y)

ptg—1 r clcak 1—[ P Qk )e.,
+ b [ POy + = o )
kzq ;( H ’ -G* Hj:l P(Qky]) Y

(i) There are rational integers d; (1 < i < r), not all zero, and G(y) € Q(y) \ {0}
such that

ptg-1 r d;

e ow=( I (- HP vyw)" 6@y
k:q 1=1 =

Let M be a positive integer and let

y]=(yj11""yjn)=(szjv-'azrl;uj) (13.753))

where M is so large that the following two properties are both satisfied:
M I (esr,---,€is) # (€ir1,...,€irs), then Z] e MI# Z; L e M.
) F*(z)=F@M,....2M, . M 2MYeQ(z,. .., 2),
G*(2) =G(M,....2M ... 2M . 2MY e Q(z,. .., 20) \ {0}
Then by (23) and (24), at least one of the following two functional equations holds:

. . . ptq—-1 r . . i;lkp Ok 2)Ei
) F*(z) = F*(Q%z) + kz=q ; (bigikp(ﬂkz)E' + lc_ccgklg(nfi)&)
ptg—1 r
@ &@=( 11 I1(1-cretar )" e
k=q 1i=1

Here E; = E;=1 e;jMJ (1 <1i <r) are distinct positive integers by the property (I),
since none of a;/a; (1 <1i < j <) is aroot of unity. By Theorems 1, 2, and the
property (II), at least one of the following two properties are satisfied:

(i) Forany k (g<k<p+q-1),

r

(% Y E: r o —
@) Y (bic,f’kXE-‘ + l—c_-cc—%) =Y (bic,f‘*XE* +eiy (X E‘)’) €Q.

i=1 =1 =1

(i) Forany k (g<k<p+g-1),



220 T. TANAKA

r

(26) [T - xPy% =y e Q™.

=1

Suppose first that (i) is satisfied. Then we show that ¢; = 0 (1 < ¢ < r). Assume
contrary that ¢;,...,c, are not all zero. Let S = {i € {1,...,7}|c; # 0} and let ' €
S be the index such that E; < E; for any i € S\ {i'}. Since (E; ---E,+1)E; is not
divided by any E; with i € S\ {i'}, the term c; ((j* X Bi")F1E-+1 does not cancel
in (25), which is a contradiction. Hence ¢; =0 (1 < ¢ <r) and so by,...,b, are not
all zero, which is also a contradiction, since Ej,..., E, are distinct. Next suppose that
(ii) is satisfied. Taking the logarithmic derivative of (26), we get

r _diEilelkXE.-—l
Z Mihetindh N

l_cflkXEi :O (qsksp+q—1)

=1

This is a contradiction, since ordx—oE;({* XFi~1/(1-¢* XP) = E;-1 (1<i<r),
and the proof of the theorem is completed. O

3. Proofs of Theorems 1 and 2

We need several lemmas to prove Theorems 1 and 2. Use the same notations as
in the preceding section, define an endomorphism 7 : M — M by (16), and adopt
the usual vector notation, that is, if I = (iy,...,i,) € Z", we write 2/ = zi* ... zin,
We denote by C[z,..., 2,] the ring of polynomials in variables zy,..., 2z, with coef-

ficients in C.

Lemma 6 (Nishioka [10]). If A,B € C|z,...,2,] are coprime, then (A™,BT")
= z!, where I € N}.

Lemma 7 (Nishioka [10]). Let Q be an n X n matrix with nonnegative integer
entries which has the property (1). Let R(z) be a nonzero polynomial in C[zy, ..., 2,)
and x = (z1,...,T,) an element of C" with z; # 0 for any i (1 <i <n). We put

R(z) = Z crz! (er #0).

I=(i1,...,in)EA

If R(Q*x) = 0 for infinitely many positive integers k, then there exist distinct elements
I, J € A and positive integers a, b such that

z(I—J)Q“(Q""—E) -1

for all k > 0, where E is the identity matrix.
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Lemma 8 (Nishioka [9]). If g € M satisfies
g =cg+d (c,deC),

then g € C.

Lemma 9. Let {ar}r>0 be a linear recurrence satisfying (2). Suppose that
{ak}r>0 is not a geometric progression. Assume that the ratio of any pair of distinct
roots of ®(X) is not a root of unity. Then the sequence {ay}r>o does not satisfy the
linear recurrence relation of the form

apt1 =car  (k>0),

where | is a positive integer and c is a nonzero rational number.

Proof. Ifl = 1, then a; = aoc® (k > 0), which contradicts the assumption
in the lemma. If [ > 2, then at least two of the roots of ¥(X) = X' — ¢ are those
of ®(X). This also contradicts the assumption, since the ratio of any pair of distinct
roots of ¥(X) is a root of unity. O

Lemma 10. Let u = (uy,...,u,) satisfy trans.dego C(u) =n—1. Iful,u’ €
C*, where I, J € Z™\ {0}, then I and J are proportional, i.e., there exists a nonzero
rational number r such that I =rJ.

Proof.  Suppose contrary there are I = (i1,...,in),d = (J1,...,dn) €
Z™ \ {0} such that u/,u/ € C* and I, J are not proportional. Assume that
jx # 0. Then uy is algebraic over the field C(u1,...,ux—1,Uxrt1,---,Un). Since
(ul)?*(u?)= = wr1-HJ € C* and j\I —iyJ is a nonzero vector whose A-th com-
ponent is zero, uy,...,Ux—1,Uxt1,-- -, U, are algebraically dependent over C. Hence
trans. deg, C(u) < n — 2, which is a contradiction. O

Lemma 11. If ky,ky € Ng are distinct, then P(Q*12) — v, and P(Q%22) — v,
are coprime, where P(z) is the monomial defined by (4), Q is the matrix defined by
(6)) and 7,72 € cx.

Proof.  Suppose contrary there exists an irreducible T'(z) € C[z1,...,2,] \ C
which divides both P(Q*12) — 4, and P(Q*22) — v,. We may assume that k; > k.
Let w = (uy,...,u,) be a generic point of the algebraic variety defined by T'(z) over

C. Then T(u) =0 and trans.deg, C(u) =n — 1. Since T'(u) =0,
P(Qu) = w7 un =y

and
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a n— a
P(%u) = uf*" ™ gt =
By Lemma 10, there exists a nonzero rational number ¢ such that (ax,4+n—1,--.,0k )
= ¢(@ky4n—1,---,0k,). Hence by (2), {ar}r>o satisfies the linear recurrence relation
Qktk,—k, = car (k=0,1,2,...), which contradicts Lemma 9. O

Lemma 12. Let ) be an nxn matrix with nonnegative integer entries which has
the property (I). Let R(z) be a nonzero polynomial in C|z1,...,z,). If R(Qz) divides
R(z)z!, where I € Ny, then R(z) is a monomial in zy,...,2p.

Proof. 'We can put

2) = 2 [[a:(2)°
i=1

where J € Ng, e; (1 <i < v) are positive integers, and g; (2
irreducible polynomials and not monomials. For each i (1
written as

)---,9y(2) are distinct
i

(2
< i <), g:(02) can be

9:(02) = hi(2)2™,

where h;(z) € Clz1,...,2,] \ C is not divided by z;,...,2,, and H; € Ny. Since
2T ( h,(z)z” )es dlvides 2T gi(2)%,

[Toi(2)=.
i=1

Hence hy(2),...,h,(z) are irreducible, otherwise we can deduce a contradiction,
comparing the numbers of prime factors in (27); thereby

[Thi(2) =¢]] 9:(2)%,
=1

=1

@7 I hi(2)=
=1

where ¢ is a nonzero element of C. Therefore
R(Qz) =€R(2)zH ,H=JQ - E) + Ee,H A

Let D = |det(2 — E)|. Then D is a positive integer, since the matrix ( has no roots
of unity as its eigenvalues. We extend the endomorphism 7 : M — M to the quotient
field M’ of formal power senes ring C[[zl/ b . 2/ D]] by the usual way. Since the

monomial S(z) = zH(- E)™" ¢ M’ satisfies S"(z) S(z)zH, we see that F(z) =
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R(2)/S(z) € M' satisfies F™(2) = (F(z) and so F(z) € C by Lemma 8, which
means that R(z) is a monomial in zy,...,2y,. O

Proof of Theorem 1. Let ~4,...,7: be the distinct roots of the least common
denominator of Qr(X) (g <k <p+q—1). Then 7,,...,~: are nonzero elements of
C. There exists a positive integer M such that

p+q—1 t pt+q—1
R = (1 IICP@*2)-2)") 3 uP@*2) €Tl
k=q j=1 k=gq

Letting G(z) = A(z)/B(z), where A(z) and B(z) are coprime polynomials in
Clz1,. .., 2], we have

pt+g—1 t
Az)B(@2) [[ [IP@*2) -v)™
k=q j=1
ptq—1 t
= aA(@z)B(z) [[ [I(P(Q*z) - )™ + R(z)B(2)B(2z)
k=q j=1

by (7). We can put (A(0Pz), B(%z)) = 2!, where I € N§, by Lemma 6. Then

p+q—1 t
28) B(@2)|B(x)z" [[ [[P@*2) )™
k=q j=1
and
ptq—1 t
(29) B(x)B(@z) [[ [I®P@*2) )™
k=q j=1

First we prove that G(z) € C|z1,.. ., 2,]. For this purpose, we show that B(0Pz)
divides B(z)z!. Otherwise, by (28), there exists a prime factor T(z) € C|z1, ..., 2]
of B(2*z) such that

(30) T(2)|(P(2*2) — ;)

for some ko (¢ < ko < p+¢g—1) and for some Jo (1<jo<t)Letu=(us,...,un)
be a generic point of the algebraic variety defined by T'(z) over C. Then T'(u) = 0
and

trans.degz C(u) =n — 1.
Letting z = u in (30), we see that

31) P(QFou) = yfto+n=t . ytko = Vio-
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Since T'(z) divides B(2z) and B(QPz) divides B(02?z) iig_l H;=1(P(Qk+”z)—
7)™ by (29),

+q— t
T(z)|B(Q%Pz) H H P(QkPz) — 4,)M.

Therefore T'(z) divides B(Q2??z) by Lemma 11 with (30). Continuing this process, we
see that T'(z) divides B(2P*z) and so B(QP*u) = 0 for all positive integers k. Since
uy #0 (1 <X <n), by Lemmas 1 and 7, there exist a nonzero n-dimensional vector
v with rational integer components and positive integers d, e such that V(@ -E) =
1 for all £ > 0, where E is the identity matrix. Then

d_ dk+e
u V(@ -E)Q -1

for all k > 0. Letting v(Q¢ — E)Q° = (bn_1,...,bp) and letting {bx}x>0 be a linear
recurrence defined by (2) with the initial values by, ...,b,_;, we have

(32) updk =L ybae =

for all k£ > 0. Therefore by Lemma 10, together with (2), {b}r>o satisfies the linear
recurrence relation

(33) biya =cbe  (k>0),

where ¢ is a nonzero rational number. On the other hand, there exists a nonzero ra-
tional number ¢' such that (ax,+n—1,---,ak) = ¢ (bn-1,--.,b0) by (31), (32), and
Lemma 10. Hence by (2), we have

(34) Ak pky = c'by (k > 0).

By (33) and (34), ag+q = cay for all k > ko. Then by (2), ag4q = car, (k > 0), which
contradicts Lemma 9, and so we can conclude that B(QPz) divides B(z)z!. Therefore
B(z) is a monomial in 23,...,2, by Lemmas 1 and 12. Hence we can conclude that
G(z) € Clz1, ..., 2,), since G(z) = A(z)/B(z) € C[[z1,. .-, zn])-

Secondly we show that Qx(X) € C[X] (g < k < p+q—1). For each k (¢ <
k<p+q-1),let Qr(X) = Up(X)/Vi(X), where U(X) and V;(X) are coprime
polynomials in C[X] with Vi (0) # 0. Then Ux(P(Q*2)) and Vi(P(2*z)) are co-
prime polynomials in Clz1,..., 2,] with Vi (0) ;é 0. By Lemma 11, Vi, (P(92*2)) and
Vi (P(Q* 2)) are coprime if k # k'. Since G(z) € Clz,...,zn] and so G(QPz) €
Clz1y- -+ 2n)s

p+q— 1 ) _
Z Vk(P )GC[zl,...,zn]
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by (7). Hence Vi (P(Q*2)) divides Ui (P(Q2*z)) and so Vi(P(Q*2)) € C for any
k (g < k < p+ q—1). Therefore Vi (X) € C” and so Qr(X) e C[X] (g <k <
p+q-—1). . _

Finally we prove that Qr(X) € C (¢ < k < p+¢-—1), which implies G(z) € C by
Lemma 8. To the contrary we assume that Q(X) ¢ C for some k (¢ < k < p+q—1).
Let g be the number of terms appearing in G(z). Iterating (7), we get

2g p+q—1

G(2) - @ HGQPIHIPZ) = N "0l Y Qu(P(2*HP2)).

Then the number of terms appearing in the right-hand side is at least 2g + 1, since
(@ktn-1: --. : @k) # (@k'4n—1 : ... : ax) in P"~1(Q) for any distinct nonnegative
integers k and k' by Lemma 9 and so the nonconstant terms appearing in the right-
hand side never cancel one another. This is a contradiction, since the number of terms
appearing in the left-hand side is at most 2g, and the proof of the theorem is complet-
ed. O

Proof of Theorem 2. Letting G(2) = A(z)/B(z), where A(z) and B(z) are
coprime polynomials in Cl[z1,...,2,), and letting for each k (g < k < p+¢q—1),
Qi(X) = Ur(X)/Vi(X), where Ug(X) and V;(X) are coprime polynomials in C[X],
we have

ptg-1 p+q 1
(35)  A(z)B(02) [[ Vi(P(2*2)) =4 H Ur(P(QF2))

k=q
by (8). We can put (A(QPz),B(QPz)) = =z!, where I € N7, by Lemma
6. Let Up(X) = ¢ H;’;l(X — 7kj)¢*, where c; is a nonzero element of C,
Y1s---,Ykt, are the distinct roots of Uk(X), and eg,...,ekt, are positive inte-
gers, and let Vi(X) = dy H (X = Ok;)f*i, where di is a nonzero element of C,
Ok1,---,0ky, are the distinct roots of Vi (X), and fiy,..., fry, are positive integers.

Then Vi1, ..., YhtrsOkls--->0kux (@ < k < p+q— 1) are nonzero elements of C and

p+a—1 ui

AP2) | A(2)2" ] JI(P©F2) - 6k;),
k=q j=1
pt+q—1 ti

A(2) | A@2) T] TI(P@*2) — ),
k=q j=1
p+g—1 t;

B(z) | B(2)z" [ [[(P(@*2) - )™,

k=q j=1
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and

p+q—1 ui

B(z) | B(@z) [] [[(P©*2) - di;)™.

k=q j=1

Hence by the same way as in the proof of Theorem 1, we see that A(Q2Pz) divides
A(z)z! and that B(Q2) divides B(z)z!. Therefore A(z) and B(z) are monomials
in z,...,2, by Lemmas 1 and 12. Then by (35) and the fact that Uy (0) # 0, Vi (0) #
0(g<k<p+g-1)

ptg-1 p+g-1

II vP@*z)) / [ wP@*2)eC™.

k=q k=q

Here, Uy (P(2%2)) and V. (P(Q*'2)) (k # k') are coprime polynomials in Clzy, .. .,
2,] by Lemma 11, and Uy(P(92*2)), Vi(P(2*2)) are coprime polynomials in Cl[z;,
... 2] for each k (¢ < k < p+ q — 1), since Ur(X) and Vi(X) are coprime in
C[X]. Therefore U(X),Vi(X) €C” (¢<k<p+q—1)and so Qx(X)eC " (¢<

k < p+q—1). Hence G(z) € C by Lemma 8, and the proof of the theorem is
completed. O
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