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1. Introduction

The Schwartz reflection principle deals with a question about analytic continuation
of holomorphic functions across a hyperplane. The stronger version of the Schwarz
reflection principle is, so called, the edge of wedge theorem. The problems of these
kinds arose in physics, in connection with quantum field theory and dispersion relations
(see [2] and [7]).

A similar consideration has been given also on harmonic functions (see [1] and-
[9D.

We consider here the reflection principle for temperature functions. Here, a tem-
perature function in an open set {2 means an infinitely differentiable solution of the heat
equation (9; — A)u(z,t) =0 in Q.

In fact, temperature functions have similar properties, such as the maximum prin-
ciples, the Harnack type inequality, and so on, as holomorphic functions and harmonic
functions. Thus, it is interesting to consider the reflection principle for temperature
functions.

The reflection principle for temperature functions was considered in [10] for the
first time as far as the author knows.

It states that every temperature function in the right-hand side of the vertical line
(i.e. t-axis) in the z, t-plane, which vanishes on that line and is continuous up to bound-
ary, can be extended as a temperature function through the line to the left-hand side.
So it is desirable to weaken the assumption of continuity up to boundary. In fact, it will
turn out in this paper that the same conclusion can be obtained if it is only assumed
that a temperature function vanishes weakly on the boundary, that is to say, vanishes in
the sense of distributions. This will be done in perfectly elementary languages, which
is completely different method from those in [10], [2], [7], and so on.

Finally, as an application we give a uniqueness theorem for temperature functions
on a semi-infinite rod with the given initial temperature.
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2. Reflection principles for holomorphic functions and harmonic functions

It is known that the reflection principle was introduced, for the first time, by
H. A. Schwarz to solve some problems concerning the conformal mappings of polyg-
onal regions. After that, many variants and improved versions have been developed so
far.

The simplest version of the reflection principle for the holomorphic functions states
as follows :

Theorem A (continuous version). Let 2 be an open subset of the complex plane
which is symmetric with respect to the real axis and

O ={z € Cllmz >0}, Q ={ze€ Cllmz <0},
E = {z € QImz = 0}.
If f(2) is holomorphic in Q*, continuous up to E,and f(z) = f(z)on E then f(z)

can be holomorphically continued to a holomorphic function F'(z) in the whole domain
via the relation

2.1) F(2)=f(z), zeQ .

In the above theorem, the assumption for f(z) requires that f has continuous
boundary values on the part E of the boundary of QT. But this assumption can be
weakened as follows (see [7] and [9]):

Theorem A’ (distribution version). Let Q, QT, Q~ and E be the same as in Theo-
rem A. If f(z) is holomorphic in Q% and satisfies

22) Jim [ fe+ oo = im [ Fe=mss

for every infinitely differentiable function ¢ with compact support in E, then f has a holo-
morphic extension F'(z) in Q with (2.1).

The condition (2.2) implies that f(x + {y) has a real limit up to boundary F in the
sense of distributions, so that it improves the continuous version. In fact, there are, so
called, the edge of wedge theorems of which the reflection principle is only a special
case.

For harmonic functions, we can find also a similar reflection principle in [1], which
states as follows :



REFLECTION PRINCIPLES 577

Theorem B. Suppose ) is an open subset of R™ which is symmetric with respect to
the hyperplane t = 0 and

Qf ={(z,t) e Qz e Rt >0}, Q ={(z,t) €z e R*1,t <0}
E={(z,t) € Qz e Rt = 0}.

If u is harmonic in Q, continuous up to E, and u(x,0) = 0, then u extends harmon-
ically to v in the whole < via the relation

v(z,t) = —v(z,—t), (z,t)€ Q.

Of course, for harmonic functions there are also a distribution version.
The proofs of the theorems stated above rely on different methods of their own.
They usually involve quite amounts of rather sophisticated functional analysis.

3. Reflection principles for the temperature functions

We consider here the reflection principles for temperature functions, which will
be very similar to the cases of harmonic functions and analytic functions. It states,
for example, that if u(x,t) is a temperature function on the right-hand side of the
vertical line in the z, t-plane and vanishes in some sense on that line, then u(z,t) can
be extended as a temperature function through that line to the left-hand side. Of course,
this can be done in such a way that the extended temperature function has opposite
signs at pairs of points which are reflection of each other with respect to the vertical
line.

At first, we introduce the continuous version.

Theorem 3.1 ([10]). LetQ = {(x,t) e R} 0 <t < T,|z| < R} forT >0, R>0
and

Ot ={(z,t) € Qz >0}, Q ={(z,t) € Qz <0},
E = {(z,t) € Q|z = 0}.

Ifu(z, t) is a temperature function in Q* which is continuous up to E and u(0,t) = 0,
then u(z,t) can be extended in Q) as a temperature function by the relation

u(z,t) = —u(—z,t) on Q.

As in the cases of holomorphic functions or harmonic functions we give here a
distribution version of this reflection principle for temperature functions, which is the
main result of this paper. But in the proof we use quite a different method, which is, so
called, the heat kernel method. This method was initiated by Matsuzawa and improved
by Chung and Kim (see [8] and [4]).
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Theorem 3.2. Let Q, Q%, and E be as in Theorem 3.1. If u(x,t) is a temperature
function in Q* and li%1+ u(z,t) = 0 in the sense of distributions, i.e.
xr—

3.1) $£%1+ u(z,t)o(t)dt =0

for every infinitely differentiable function ¢(x) with support in E, then u(z,t) can be
extended in the whole of () as a temperature function by the relation

u(z,t) = —u(-=z,t) on Q.

Proof. The proof consists of several steps.
Step I. We show first that for any compact set K of E there exists an integer k£ such
that

lim [ u(z,t)e(t)dt=0

z—0+

for every k-times differentiable function ¢(¢) with compact support in (0,7") and that
there exists a constant C' > 0, not depending on z, such that

(32) | [ uta ettt < Csuploo)
K

for every k-times differentiable function ¢(t) with support in K.

For simplicity, by C§°(K) we denote the set of infinitely differentiable functions
in R with support in the set K.

Let I = [c1, c2] be a compact interval in (0,7') and for each z € (0, R) we define
a linear functional A, on C§°([) by

1.0) = [ ule,000d, € CE).
Then there exists a constant C(z) > 0, depending on z, such that

(3.3) [Az(9)| < C(x) sup lp(t)], ¢ e Cg°(I),

which implies that A, is a continuous linear functional on the Fréchet space C§°([).
It follows from (3.1) that for each ¢ € C§°(I) there exists § > 0 such that

[Az(¢)| <1 for every z € (0,4).
Moreover, if § < z < R then we get also

AI(¢) < C(Cl’ C2, 5) sup I¢(t)|
tel
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since we may assume in our context that u(z,t) is continuous on [4, R] x (0,T). There-
fore, it is true that for each ¢ € C§°(I)

sup |Az(9)| < oo.
0<z<R

Then by the uniform boundedness principle (see §6 in [9]) we can find an integer k > 0
and a constant C' > 0, not depending on z, such that

(34 Az(@)| < C > suplo®(t)], ¢€Ce(I), 0<z <R

lal<k !
Now let J = [a,b] be a compact interval in (0,T) and o) € C¥(J), where CE(J)

denote the set of k-times differentiable functions in R™ with compact support in J. We
choose x € C§°(—1,1) satisfying that

0<x(t)<1and /X(t)dt =1.
If we put x,(t) = jx(jt) and

() = (t) * x; (¢ / W(t - 5)x;(s)ds.

then <p] is an infinitely differentiable function whose support is contained in the interval

[@— =2 b + 1] Moreover it is easy to see that
(3.5 D sup [0%p;(t) — 0°y(t)| — 0
|k 0<I<T

as j — 00. If 0 <c; <a<b<cy<T, then we can see that ¢;(¢) belongs to C§°(I)
for sufficiently large j, where I = [c1,c2]. Thus we may assume that ,; € C§°(I) for
all 5.

On the other hand, it is clear from (3.4) and (3.5) that for each x € (0, R)

(3.6) lim [ u(z,t)p;(t)dt = /u(z,t)¢(t)dt.

J—o0

In view of (3.4) we have
| [ ulztiest)al < Y sup 0,0, 0<a<T, j=12....
tel
and it follows from (3.5) and (3.6) that as 7 — oo

3.7 I/ (z,t)(t)dt| < C Z sup |0%9(t)|, ¢ € CE(J), 0<z <R.

|| <k
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Here, C is a constant which is independent of z and .
Now let (x;) be any sequence in (0, R) which converges to zero. Then it follows
from (3.1) and (3.5) that for every € > 0 there exists N > 0 such that j > N implies

> sup 9(t) - 0% (8)| < 5

lal<k *€

and |Az, (on(t))| < €/2C, where C is the constant in (3.7). Therefore, applying (3.7)
we obtain that for given £ > 0

|Az; (¥)] < [Ag; (¥ — oN)| + [Ag; (n)]
<C Z sup |0%Y(t) — %N (t)| + g

la|<k *€
<e,

which implies that

(3.8) lim [ u(z, t)p(t)dt =0, € Cck,1).

Step II. In this step for any compact interval I = [a,b] in (0,T) and a compact subset
Kin[0,T)with ]+ K ={z+ylr€Iandye K} C (0,T), we show that

3.9) max | /u(x,t + 8)p(s)ds| — 0

as £ — 0+ for every ¢ € C¥(K).
To do this, let 7; be the translation given by

(1ed)(s) = ¢(s — ).
For a fixed ¢ € CF(K) we define the mapping P : I — C¥(I + K) by
P(t)=nd (=¢( —t)).
Then it is easy to see that P is continuous, since 0“¢ is uniformly continuous for each

la| < k.
Since I is compact, it is clear that

P(I)={n¢ € CE(I + K)|t € I}
={¢(- - )t € I}
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is a compact subset of C¥(I + K). Then for every ¢ > 0 there exist real numbers
ti,t2,... ,t,m € I such that for every t € I,

(3.10) 37 sup [999(- — t) — 8%6(- —t;)] < 56'0”

ol <k I+K

for at least one j, where C' is the constant in (3.2).
In view of the previous step we see that

Ap(1d) = /u(z,s)¢(s —t)ds
= /u(a:,t+ s)p(s)ds

converges to zero as £ — 0+4. Hence given € > 0 we can find § > 0 such that
0 < z < J implies

g .
G.11) Mo(r,8)l < 5, G=12...,m.

If we apply (3.2) in the previous step to the compact set I + K instead of I, it follows
from (3.10) and (3.11) that for all z in (0, 4),

Az(6(- — )] < [A(B(- — ) — ¢(- = 15)) + |Axd(- — 1))

<C 0%b(- — 1) — 9%b(- —t:)| +
< |£kfl+1§| (=) = 0%(- = tj)| + 5

<eg

for all t € I and ¢; as in (3.10). This implies
max| [ u(a,t+5)6(s)ds| = ma Ao (7:6)] — 0

as  — 0+ for each ¢ € C¥(K), which is the required.

Step III. Now we complete the proof in this step. To do this we choose real numbers a
and bwith0<a<b<T.
Consider the continuous function f on the real line defined by

tk+l
s =] B2
0, t<0

and an infinitely differentiable function 6(¢) on the real line satisfying

_ 1, !t‘ <a,
6 = { 0, It| > b.
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If we put v(t) = 6(t)f(t) and K = [0, b], then the function v(t) belongs to C§(K) and

d k+1
(3.12) <%) v(t) =4(t) + w(t)
for some infinitely differentiable function w(t) with support in I = [a,b] where § is
the Dirac measure on the real line and (%)kJrl v(t) means the weak derivative, i.e., the
derivative in the sense of distributions.
Now we define a couple of functions g(z,t) and h(z,t) on @ = {(z,t) € R%|0 <
<R, 0<t<T-—b}by

(3.13) g(z,t) = /u(x,t+ s)v(s)ds
and
(3.14) h(z,t) = /u(m,t + s)w(s)ds

Then it is easy to see that g(z,t) and h(z,t) are temperature functions in ;. More-
over, applying the result in the previous steps, we can see that for each compact interval
Iin (0,7),

max|g(z,t)| — 0
and

I{l&xlh(:ﬂ,tﬂ -0

as z — 0+, which implies that g(x,¢) and h(z,t) can be defined to be g(0,¢) = 0 and
h(0,t) = 0 for 0 < t < T — b so that they are continuous up to E, = {(0,t) € Q|0 <
t <T—b}.

Therefore, applying the continuous version of the reflection principle (Theorem
3.1) we can extend g(z,t) and h(z,t) to Q, = {(z,t)| —R<z <R, 0<t<T — b}
as temperature functions by the relation

(3.15) g(z,t) = —g(—=z,t), h(z,t) = —h(-z,t)

respectively on Q, = {(z,t) € Q|z < 0}.
On the other hand, the relation (3.12) gives

(3.16) (—%)kﬂg(x, t) = /u(x, t+s) (%)H1 v(s)ds
= u(z,t) + h(z,t).



REFLECTION PRINCIPLES 583

Thus we can get an extension of u(z,t) in Q, by

d k+1
uwt) = (=%)  oat) — (o,
Moreover, (3.15) gives
u(z,t) = —u(—z,t) on Q.

But since the real number b can be chosen arbitrarily in (0,7") we obtain an extension
of u(z,t) to the whole of 2, which completes the proof. O

For every ¢ € C§°(I), I = [a,b] C (0,T) it is true that
p() <C, 0<t<T

for some C > 0. Hence, modifying the above proof we actually can prove the follow-
ing, which looks easier in application :

Corollary 3.3. Let Q, Q%, and E be as in Theorem 3.1. If u(x,t) is a temperature
function in Qt and

lim |u(z,t)|dt =0,
z—0+ [0,T]

then u(z,t) can be extended in the whole of §) as a temperature function by the relations

u(z,t) = —u(—z,t) on Q™.

4. An application

Recently, Chung and Kim([3], [5]) gave somewhat improved results for the unique-
ness for the solution of the Cauchy problem of the heat equation in infinite rod. Ac-
tually they relaxed the growth condition in direction of time, which had originally re-
quired to be uniformly bounded in that direction. They can be stated in a simple form
as follows:

Theorem 4.1 ([3]). Let u(z,t) be a continuous function on R™ x [0, T satisfying
the heat equation in R™ x (0, T) and the followings:

(i) There exist constants a > 0, 0 < a < 1, and C > 0 such that

|u(z,t)] < Cexp [(%)a +a|x|2} , (z,t) eR™ x (0,T),
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(i) u(z,0) =0, z € R™
Then u(z,t) is identically zero in R™ x [0,T).

Now applying the main result of this paper and the above uniqueness theorem we
give the uniqueness theorem for temperature functions in a semi-infinite rod.

Theorem 4.2. Let u(z,t) be a continuous function on (0, 00) X [0, T'] satisfying the
heat equation in (0,00) X (0, T) and the followings:

(i) There exist constants a > 0,0 < a < 1, and C > 0 such that
[u(z, )| < Cexp () +aa®|, (2,8) € (0,00) x (0,),

(ii) u(x,0) = 0o0n (0,00),
(iii) zEra/u(x,t)qS(t)dt = 0 forevery ¢ € C§°(0,T).

Then u(z,t) is identically zero on [0, 00) % [0, T].

Proof. At first, in view of (iii) we can apply Theorem 3.2 to get a temperature
function %(z,t) on R x (0,7) as an extension of u(x,t). Then it is easy to see that

the relation @(z,t) = —a(—z,t) for < 0 and 0 < t < T makes @(z,t) satisfy
the conditions in Theorem 4.1. Therefore, @(z,t) is identically zero, which gives the
conclusion. O
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