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1. Introduction

Let P(x, 0,) be a differential operator of order m with analytic coefficients
in an open set U in R" and Q be an open subset of U with C* boundary 99.
Then the uniqueness theorem of Holmgren which is extended for distribution
solutions ([3]) states that a distribution solution u(x) of the equation Pu=0 in U
vanishing in Q must vanish in a neiborhood of 3 if 6Q is non-characteristic.
The extension of this theorem to the case near a characteristic point has been
made by many authors relating to the problem of deciding the P-convexity
domains. Among others Hormander [3] showed that when the principal part
is real the uniquness theorem holds if 0Q&C? and the characteristic points
are simple and some convexity conditions are satisfied at these points. The
refinements of this Hérmander’s result are made by Treves [8], Zachmanoglou
[10], [11] and Hormander [5]. Recently Bony [2] introduced the notion of
strongly characteristic and proved the uniquness theorem for degenerate equa-
tions. Bony’s result is extended by Hoérmander [6]. In this note we deal
with a differential operator which is highly degenerated at some point p on
00 and obtain the suffcient conditions to get the uniquness theorem. Though
the uniquness theorem is invariant under the analytic change of coordinates,
we here employ the weighted local coordinates at p such that the normal direc-
tion x;, of 0Q at p is assigned the weight 2, while the tangential directions
Xy, +++, &, are each assigned the weight 1. The motivation of this employment
is that the boundary 9Q can be approximated by the quadratic hypersurface

of the form
(1.1) xl =i§2a,’jx,-xj .

The transformations of the coordinates in this note are limited to the ones which
preserve the weights (2,1, --+,1) (see the section 2 for the precise definition).
In the section 3, the basic theorem is proved under some fixed local coordinates.
'The idea of the proof is due to Hérmander [3] and extensively used by Treves [8],
Zachmanoglou [10], [11] and others. That is to construct the family of surfaces
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which are non-characteristic with respect to P(x, 9,) and cover a neighborhood
of p. This basic theorem is a generalization of Hormander’s theorem [3] of
the simple characteristic case. In the last section, §4, we study the geometric
conditions on P(x, 3,) and 0Q to insure the existence of the local coordinates
in the third section. The assumptions are made in relation to the localization
of P(x,d,) at (p, N), where N is the normal direction of 9Q at p. The locali-
zation of an operator is also due to Hormander [4] to research the location of
the singularities of the solutions of Pu=0. Our method in this note is also
used to show the holomorphic continuation of the solutions of P(2, 8,)u=f in
the complex 7 dimensional space, which is to appear in [9].

2. Weighted coordinates

As in the introduction, we shall approximate 0Q by the quadratic hy-
persurface of the form (1.1). For this sake we here introduce the weighted
coordinates. Weighted coordinates are also used by T. Bloom and I. Graham
[1] to determine the type of the real submanifold in C” which is firstly intro-
duced by Kohn in relation to the boundary regularity for the 9-Neumann
problem. In this note we use the simplest weighted coordinates.

Let (x,, -+, x,) be a local coordinates in U of R". Then we say that
(%1, +++, x,) is the weighted coordinates system of the weights (2, 1, ---, 1) if the
coordinate function x, has the weight 2 and «x; (j=2, -+, #) has the weight 1.
The weight of a monomial x® is determined by 2a,+a,++*+a,. An analytic
function f(x) at 0 has the weight / if / is the lowest weight among the monomials
in the Taylor expansion of f(x) at 0. For convenience, the weight of f=0 is
assigned +oco. The weight of a differential operator is defined by the corres-
ponding negative weight. For a differential monomial (0/0x)%, its weight is
defined by —2a,—a,— -+ —a,. The weight of a(x)(9/0x)* is equal to
weight (a(x))+ weight((0/0x)”) and the weight of a linear partial differential
operator P(x, 3,)=>) a,(x)(0/0x)* is determined by min weight(a.(x)(0/0x)").

Let (x,, -+, %,) and (u, **-, u,) be two local coordinates with the same origin.
We say that these coordinates are equivalent as the weighted coordinates if u;
has the same weight as x; as an analytic function of x;, and the converse is also
true. In this note the weights are always equal to (2, 1, ---, 1). Therefore
(%, +++, %,) and (u,, -+, u,) are equivalent if and only if

c 0.0
8(“1) "'7“») — |ay €y *** Cyy
el O
aﬂ c”z o c”ﬂ

It is easily derived that the weights of functions or differential operators are
invariant under the equivalent transformation of the weighted coordinates.
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We also remark that if the weights of covectors (&, --+, £,) are each assigned the
(—2, —1, -+, —1), then the weight of P,(x, £), the principal part of P, is invariant.

3. The basic theorem

The differential operator studied in this section is the following one:

o \" o\ 9\"
3.1 P(x, 8,) = _> 9 )2
(1) 0= (o) (55) +Zat(s)
where a,(x) are analytic in some neighborhood U of 0 and the summation is
taken over the multi-indices o such that |a|<m. The domain () is given by
(3.2) Q = {xeU|p(x)<0}

where p is a real-valued C? function such that
op dp .

(22.1) p0)=0, POy=1, LO)Y=0 =2, -,n.
0x, Ox;

We consider this local coordinates as the weighted coordinates with the
weights (2, 1, ++-,1). Then we make the following conditions on the principal
part P,(x, 9,) of the operator (3.1).

(P.1) Every weight of a,(x)(0/0x)® in P,(x,0,) is larger than or equal to
I—2m=the weight of (0/0x,)"*(0/0x,)".

(P.2) For the term in P, with the weight 1—2m, its coefficient does not vanish at
0, that is

weight [(a,(x) —a,(0))(0/0x)* ] =] —2m+1 ,

when |a|=m and especially a,(0)=0 if a=(m—1, 1,0, -+, 0) in the second
terms of the right hand side of (3.1).

(P.3) There exists an integerp (2= u=n) such that the term in P, with the weight
I—2m is generated only by 0/0x,, «+-, 0/0x.

Remark 3.1 If P is simple characteristic at (0, N) with N=(1, 0, ---, 0),
then it is possible to choose the local coordinates such that P is in the form
(3.1) with /=1 and a,<m—1 in the sum of the second terms. In this case
all conditions (P.1,2,3) with yp=2 are automatically fulfilled.

RemaRk 3.2 In P, the condition (P.1) is only restrictive on the terms of
the order larger than m—I with respect to 9/0x,. Because by (P.1),

weight (aq(x)) = max {0, I—2m+-2a, 4+ +a, = I—m+a,} .
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RemARK 3.3 The conditions (P.1) and (P.2) imply that the term of the
weight [—2m in P, is essentially of the form a,(0)(0/0x)* with a;=m—I.
Concerning the boundary function p(x) of 0Q, we set

0%p . .
H=(-2P (0 2<i, j<n),
(33, @)  @sij=n

which is the tangential Hessian of p at 0. Then the following conditions
are made in addition to (Q.1).

(2.2) H can be written as

w—1
——t—
N
7»{ Y| 0\ *
p—1
H — 0 0
* 0 %

where A is strictly negative definite (0<A=<p—1).

We remark that if x=2 in (P.3), then (Q.2) means only that 9p/0x3(0)<<0.
Such a case is happened when P is simple characteristic at (0, V).

ReMARK 3.4 It is easy to show that this condition (Q.2) is independent of
the choice of the defining function p(x).
Now the basic theorem is as follows:

Theorem 3.1 Let P(x, 0,) be a differential operator of the form (3.1) which
satisfies the conditions (P.1,2,3), and Q be an open set given by (3.2) with the
conditions (Q.1,2). If u(x) is a distribution solution of Pu=0 in U vanishing in
Q, then u(x) must vanish in a neiborhood of 0.

For the rest of this section, we devote ourselves to prove this theorem.

Lemma 3.1 Let p(x) be an defining function of Q with the conditions (Q.1, 2).
Then by changing the defining function p(x) if necessarily we may assume that

(Q.3) o 0)=0 j=1,2n
' 0x,0x; J S

in addition to (Q.1, 2).

Proof. If we expand p(x) to the second order, we have
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p(x) = xl‘f‘(j}; ajxj)xl"‘iézaijxixj‘*'o(,xfz)

where (a;;) =%H . Then r(x)=p(x)exp [— ‘f} a;x;] becomes the desired bounda-
j=1
ry function, which completes the proof.

Lemma 3.2 If a real-valued C? function p satisfies the conditions (Q.1, 2
and 3), then there exist positive constants oo and M such that for any €>0 the
following inequality holds in a sufficiently small netborhood V of 0.

(3.3) p(%) < 2, — auxf+-E(af a3+ - - xf) - M(af 4+ +-57) .

Proof. We expand p in the Taylor series up to the second order. Then
by (Q.1 and 3),

() = x+ 23 @i to(|x[7)
where (a;,):%H satisfies (Q.2). From (Q.2), it is easy to derive the inequality
(3.3). 'The details are omitted.
Set r(x) as
(3.4) Y(x) = x,— a3+ E(xF a3+ - +xf)+ M(xhsy+ o +%7) .

Then the above lemma showes that in some neiborhood ¥V of 0, the open set
{Y(x)<<0} is contained in Q. Thus it is sufficient for the proof of the theorem
3.1 to obtain the uniqueness theorem across the surface +r(x)=0. For this
purpose we construct the family of surfaces. Define ¢(x) as

(35 S = xl—%arxz—l—Ze(x?—{—x%—l----—l—xﬁ)+2M(xﬁ+1+---—i—xﬁ) ,

where 7>0 is a parameter and determined later.

Lemma 3.3 If s is real and s<ar? then the set {yr(x)=0} N {p(x)<s} s
compact and contained in U(r), where

Ulr) = {=| x| <2ar?, |x|<2r,
Ile<(2a/8)1/27 i = 3, e
1%, <Qa/M)2r k= pt1, -, n}

Proof. Set Ri=uxi+x5+-++x5 and Ri=«x.,+--+xi For any x&
{¥(x)=0} N {p(x)=<s} we have

20— 2%, < 26R%+ 2MR és-{--%—arxz—xl ,

which imply the next two inequalities:



756 Y. Tsuno

xIZZaxﬁ—% orX,—S
1
s+ > arx,—x; =0 .

Then it easily derived that |x,|<<2ar? and |x,|<2r provided that s<ar’
Using these estimates we have

0<é&R:+MR:<2ar®.

Thus the lemma is proved.

Now we determine the parameters & and r so that the surface ¢(x)=s
is non-characteristic with respect to P(x, 0,) in some neiborhood of 0. Let
0O(9,) be the sum of the terms in P, with the weight exactly /—2m. By the
remark 3.3 and the condition (P.3), O(9,) is expressed as followes:

(3.6) 00y =(2)" (2 )+ ()

0x; 0x,

where the summation is taken over the multi-indices a such that a,=m—I,
aytrap=1 a,<l and au,,==a,=0. In (3.6) every a, is a constant.
If we set £;=0¢/0x; (j=1, -+, n), then we have

& = 1+4¢&x,

EZ = _%ar

E—dgx,  j=3n
Ek:4Mxk :“—{—1’ ST N

Therefore we have the next estimates on U(r):

IA

% | 1=2 if Eart<47?
(3.7) 16| = Lar
) 2

|E; | =4(2a8)r j=3,n
|E| <4QaM)r k= p+1, 7.

Lemma 3.4 If we take € sufficiently small (Ear*<47?), then Q(¥) does not
vanish on U(r).

Proof. We use the notation C(a) which is a different constant in each
position depending only on «. By (3.7),
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m
et () et
|auE* | < Cla)etmes 120yt

for |a|=m, ay=m—I and au,=:=a,=0. If we put these estimates into
the corresponding terms in (3,6), we have that

10(8)| = {(%)"’az_C(a)ea/zxwﬁ...wp)},z .

Since a3+ +au+0, |QE)| =C(a)’ with C(a)>0 for a sufficiently small €.
This proves the lemma.

From now on, the constant & is taken as in this lemma and always fixed.
For the determination of the parameter 7, we have the next lemma.

Lemma 3.5 If we take r sufficiently small, then P, (x, ) does not vanish on
U(r).

Proof. If the weight of an analytic function a(x) is equal to k, then the
inequality

sup | a(x)| =< const. r*
U(rl:))' ()I— st.7

holds for a sufficiently small . Thus for a term a(x)(3/0x)* in P, with the
weight larger than [ —2m, the inequality

weight a(®) Z1—2m+ 1420+ ot +-a
=l—m+a,+1
implies
|a(x)E® | < const. 7' """ *1const, %2t

=const. 7'}

While |Q(¢)| =C(a)?’ on U(r). Since P, is the sum of Q and the terms of
the weight larger than /—2m, we can choose 7 sufficiently small so that P,, does not
vanish on U(r). This proves the lemma.

Under these preparations we now prove the basic theorem. The key
lemma of this proof is the following one which is due to Hérmander [3].

Lemma 3.6 Suppose that there exist a real-valued C* function ¢(x) and
constants s,, s, such that in some neighborhood V of 0,

(i)  P,(x, grad ¢(x))==0

(i)  s<¢p(0)<s

(iii) {xEV|p(x)<s} NQ° is compact,

(iv) &€V |px)<s} NQ° is empty,

(v) {xeV|px)<s} is not empty.
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Then every distribution solution u(x) in V of the equation Pu=Q vanishing in Q
must vanish in xSV | p(x)<<s;}.

Proof of the Theorem 3.1 By the lemma 3.2 we may take  as the set
{xeV |y(x)<0}. Now take U(r) in the lemma 3.5 as the neighborhood V
of 0 in the lemma 3.6. Then the condition (i) is fulfilled. Set s,=—ar* and
s;=ar’. Then (ii) becomes trivial and (iii) is derived from the lemma 3.3.
The other conditions (iv) and (v) are easily derived from the expression of ¢(x)
and +(x), so we omitt their prooves. This ends the proof of the theorem 3.1.

4. Choice of the local coordinates in the basic theorem

Let (x,, +-+, x,) be the local coordinates such that the surface x,=0 is tangent
to 8Q at x=0. We consider this coordinates as the weighted coordinates
with the weights (2, 1, --+,1). The other local coordinates with the same pro-
perty become equivalent to this coordinates as the weighted coordinates.

Let P(x, 0,) be a linear differential operator of order m with analytic
coefficients which is characteristic at 0 in the cotangential direction N=
(1,0, :+,0). We set [ the multiplicity of P at (0, N). That is, for a cotangent
vector §=(§19 ;2; ) En)»

4.1) P, (0, N+t) = L(£)t'+higher order terms of ¢

where P,, is the principal part of P and L({) is a non-zero polynomial of {.
This polynomial L({) is called the localization of P,, at (0, N), which is originally
introduced by Hoérmander [4]. When N=(1, 0, --+,0), (4.1) means that in
P,(0, 9,) there is none of the terms of order larger than m—I[ with respect to
0/0x, and the sum of the coefficients of (3/0x,)""! is equal to L(3/0x,, +--, 0/0x,).
Therefore L({) is a homogeneous polynomial of degree ! in the variables
(€2 *++» &,). Since the weight of L(0/0x,, -+, 0/0x,)(0/0x,)"~* is equal to [—2m,
we make the assumption:

(P.I)  the weight of P,(x, &) is equal to I—2m, if the weight of £ are assigned by
(—2, —1, -, —1).

Relating to the localization L({) of P,, we introduce some linear spaces
in the tangent space T', and the cotangent space T'§ of the surface 0Q at 0.
For the polynomial L(£), we set

4.2) A¥(L)= {(neT¥|L(E+nt) = L) foralltand £},
which is a linear subspace, and we introduce the annihilator
4.3) A(L) = {v€To|<v,7> =0  for any n€A*(L)},

where < , > denotes the contraction between cotangent vectors and tangent
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vectors. A(L) is the smallest subspace along which L(0/0x) operates and is
called the bicharacteristic space of P at (0, N). These subspaces are introduced
by Hormander [4].

DErFINITION 4.1 An analytic function ¢(x) with grad ¢(0)=N is said to
be a weighted characteristic function of P(x, d,) if it satisfies the following
condition:

(44) weight P, (x, t gradg(x))=]—2m—-1,

where the parameter ¢ is assigned the weight —2.
To find such a weighted characteristic function ¢(x), it is sufficient that
¢ is in the form

(i)(x) - x1+ Z a,-jx,-xj .
i,j=2
Assume that
(P.II) there exists a weighted characteristic function ¢(x).

By the suitable equivalent change of the weighted coordinates we can
assume that ¢(x)=x,. Then the following proposition is easy to prove.

Proposition 4.1 If ¢p(x)==x,, then (4.4) is equivalent to that there is none of
the differential monomials of the weight 1—2m in P,(x, 0,) which is generated
only by 0/0x,.

We now fix some weighted characteristic function ¢(x) and consider
the local coordinates (x;, -+-, x,) as ¢(x)=x, (mod weight 3) and each x; (=2,
.-, m) has the weight 1. This means that the coordinates transformation con-
sidered from now on is in the following form:

w, = %,-+an analytic function of the weight =3,
(+3) u; = g ¢;jx¥;+an analytic function of the weight =2
Jj=2,..,n.
Then we make the last assumption on P, such that
(P.III) weigh [P,(x, £)—P,(0, £)]=1—2m-+1.

Proposition 4.2 This assumption (P.I1I1) is invariant under the change of
variables of form (4.5).

Proof. If we remark that by (4.5),

o _ i—}— terms of the weight larger than —2

Ox, Ou
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58; = g Cij %—i—terms of the weight larger than —1,
i k

j=2,m

the invariance of (P.III) is easy to prove.

Assumption (P.III) means that the terms with the lowest weight in P,, do
not degenerate at 0.

Now we proceed to examine the conditions on Q under the assumptions
(P. I, II, III).

If O is given by {p(x¥)<<0} with a real-valued C? function p, we denote by
H, the tangential Hessian of p at 0. That is

_( 9 ;i
H, = (ax,-ax,-(o)) 2=t j=n.

Then it casily derived that the symmetric bilinear form >3 6626p (0) dx; Q@ dx;
i,7220x,;0x;

on Ty X T, is invariant under the transformation of the coordinates of the form
(4.5). We set N, as the kernel of the linear map H,: Ty—T§ defined by

Hiv) =3 fZ’x (0)dx,, v dx, .

i

Then H, is derived to the bilinear form on the space T'(/N,X T,/N,. Similary
if we set

A(L) = ML)IN,N ML),

where A(L) is the bicharacteristic space of P, H, is also derived to the bilinear
form on A(L)x A(L).

The first assumption on 9 is as follows:
(Q.I) A(L)#0 and H, is strictly negative definite on A(L)x A(L).

This condition means that  is concave in the direction of the bicharac-
teristic space at 0.

Lastly we demand that L(¢), the localization of P, is non-characteristic at

some covector &, for which Q is strictly concave at 0. For this sake we in-
troduce N¥ the annihilator of N,

N¥={E€T§|<E, v =0 VoeEN} .
Then we assume
(Q.II) there exists a covector &, in N¥ such that L(,)=0.

Now we construct the local coordinates (xy, +:+, x,) so that the operator
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P(x, 9,) is reduced to the form (3.1) and all assumptions in the basic theorem
are satisfied.

First we fix the weighted characteristic function ¢(x) in (P.II) and set
H(x)=x,.

Secondly we choose the tangential coordinates (x,, +--, x,) such that the
vectors 0/0x;, -+, 0/0x, span the bicharacteristic space A(L)at 0. Since L(})
does not vanish identically, the dimension of A(L) is p—1 which becomes
positive (i.e. p=2).

Thirdly under the suitable linear change of variables (x,, «+-, x.), we may
assume that for some A (2<A=p), 0/0x,y, -, 0/0x. span the subspace
N,NA(L). At this moment, the condition (£2.1) means that the matrix

Qfgx,.(")) 2i, jx

is strictly negative definite and

9%p . .
0)=0 ifrt+l<iorj<p.
a0, ) Hrtlstory=p

Lastly we shall prove that L({) can be non-characteristic at dx, by the
linear change of variables (xy, -, ,).

Proposition 4.3 By the suitable linear change of wvariables (xy, -+, x,),
L(§) is non-characteristic at the covector dx,.

Proof. Let £,&T§ be the covector in the condition (Q.II). Since
&y, 0[0x,5>=0 (j=A+1, «+-, p), &, is written as

&, = eyt +crdrnt-Cusidxu s+ o+ cdx,
= Cpdxy-+++ F-crdnr+-E§

where E{= A*(L) which is generated by dx,,,, -, dx,. Then

O*L(Eo) = L(CdeZ—I""'_l'ckdxA"[“El,))
= L(c,dx,+-++-4-c)dx)) .

Therefore this proposition is easily derived from this relation.
From this proposition, L(0/0x) is written as

A\ 0\*
=) el 2)
() =a 6xz) 24, 0x.
where a=0 and the summation is taken over the multi-indices |a|=I, a,</,

a=aupy="=a,=0.
Thus the operator P(x, 9,) is expressed in the form (3.1) under this coordi-
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nates. Since (P.I) implies (P.1), (P.III) implies (P.2), (P.3) follows from the
fact that 0/0x,, -++, 0/0x, span A(L), (Q.1) is trivial from the choice of x, and
(€.2) is derived from (Q.I), all conditions in the theorem 3.1 are satisfied under
this coordinates. Summing up these results we have the final theorem:

Theorem 4.1 Let P(x, 0,) be a differential operator of order m with an-
alytic coefficients in a neighborhood V of p and Q be an open set with C* boundary
00 p. We suppose that P and Q satisfy the conditions (P.1I,1I,11I) and
(Q.1,1II). Then every distribution solution u(x) of Pu=0 in V vanishing in
must vanish in a neighborhood of p.
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