

Title	Localization of differential operators and the uniqueness of the Cauchy problem
Author(s)	Tsuno, Yoshimichi
Citation	Osaka Journal of Mathematics. 1980, 17(3), p. 751–762
Version Type	VoR
URL	https://doi.org/10.18910/7931
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Tsuno, Y.
Osaka J. Math.
17 (1980), 751-762

LOCALIZATION OF DIFFERENTIAL OPERATORS AND THE UNIQUENESS OF THE CAUCHY PROBLEM

YOSHIMICHI TSUNO

(Received June 18, 1979)

1. Introduction

Let $P(x, \partial_x)$ be a differential operator of order m with analytic coefficients in an open set U in \mathbf{R}^n and Ω be an open subset of U with C^1 boundary $\partial\Omega$. Then the uniqueness theorem of Holmgren which is extended for distribution solutions ([3]) states that a distribution solution $u(x)$ of the equation $Pu=0$ in U vanishing in Ω must vanish in a neighborhood of $\partial\Omega$ if $\partial\Omega$ is non-characteristic. The extension of this theorem to the case near a characteristic point has been made by many authors relating to the problem of deciding the P -convexity domains. Among others Hörmander [3] showed that when the principal part is real the uniqueness theorem holds if $\partial\Omega \in C^2$ and the characteristic points are simple and some convexity conditions are satisfied at these points. The refinements of this Hörmander's result are made by Treves [8], Zachmanoglou [10], [11] and Hörmander [5]. Recently Bony [2] introduced the notion of strongly characteristic and proved the uniqueness theorem for degenerate equations. Bony's result is extended by Hörmander [6]. In this note we deal with a differential operator which is highly degenerated at some point p on $\partial\Omega$ and obtain the sufficient conditions to get the uniqueness theorem. Though the uniqueness theorem is invariant under the analytic change of coordinates, we here employ the weighted local coordinates at p such that the normal direction x_1 of $\partial\Omega$ at p is assigned the weight 2, while the tangential directions x_2, \dots, x_n are each assigned the weight 1. The motivation of this employment is that the boundary $\partial\Omega$ can be approximated by the quadratic hypersurface of the form

$$(1.1) \quad x_1 = \sum_{i, j \geq 2} a_{ij} x_i x_j .$$

The transformations of the coordinates in this note are limited to the ones which preserve the weights $(2, 1, \dots, 1)$ (see the section 2 for the precise definition). In the section 3, the basic theorem is proved under some fixed local coordinates. The idea of the proof is due to Hörmander [3] and extensively used by Treves [8], Zachmanoglou [10], [11] and others. That is to construct the family of surfaces

which are non-characteristic with respect to $P(x, \partial_x)$ and cover a neighborhood of p . This basic theorem is a generalization of Hörmander's theorem [3] of the simple characteristic case. In the last section, §4, we study the geometric conditions on $P(x, \partial_x)$ and $\partial\Omega$ to insure the existence of the local coordinates in the third section. The assumptions are made in relation to the localization of $P(x, \partial_x)$ at (p, N) , where N is the normal direction of $\partial\Omega$ at p . The localization of an operator is also due to Hörmander [4] to research the location of the singularities of the solutions of $Pu=0$. Our method in this note is also used to show the holomorphic continuation of the solutions of $P(z, \partial_z)u=f$ in the complex n dimensional space, which is to appear in [9].

2. Weighted coordinates

As in the introduction, we shall approximate $\partial\Omega$ by the quadratic hypersurface of the form (1.1). For this sake we here introduce the weighted coordinates. Weighted coordinates are also used by T. Bloom and I. Graham [1] to determine the type of the real submanifold in C^n which is firstly introduced by Kohn in relation to the boundary regularity for the $\bar{\partial}$ -Neumann problem. In this note we use the simplest weighted coordinates.

Let (x_1, \dots, x_n) be a local coordinates in U of R^n . Then we say that (x_1, \dots, x_n) is the weighted coordinates system of the weights $(2, 1, \dots, 1)$ if the coordinate function x_1 has the weight 2 and x_j ($j=2, \dots, n$) has the weight 1. The weight of a monomial x^α is determined by $2\alpha_1+\alpha_2+\dots+\alpha_n$. An analytic function $f(x)$ at 0 has the weight l if l is the lowest weight among the monomials in the Taylor expansion of $f(x)$ at 0. For convenience, the weight of $f=0$ is assigned $+\infty$. The weight of a differential operator is defined by the corresponding negative weight. For a differential monomial $(\partial/\partial x)^\alpha$, its weight is defined by $-2\alpha_1-\alpha_2-\dots-\alpha_n$. The weight of $a(x)(\partial/\partial x)^\alpha$ is equal to $\text{weight}(a(x))+\text{weight}((\partial/\partial x)^\alpha)$ and the weight of a linear partial differential operator $P(x, \partial_x)=\sum a_\alpha(x)(\partial/\partial x)^\alpha$ is determined by $\min \text{weight}(a_\alpha(x)(\partial/\partial x)^\alpha)$.

Let (x_1, \dots, x_n) and (u_1, \dots, u_n) be two local coordinates with the same origin. We say that these coordinates are equivalent as the weighted coordinates if u_j has the same weight as x_j as an analytic function of x_j , and the converse is also true. In this note the weights are always equal to $(2, 1, \dots, 1)$. Therefore (x_1, \dots, x_n) and (u_1, \dots, u_n) are equivalent if and only if

$$\frac{\partial(u_1, \dots, u_n)}{\partial(x_1, \dots, x_n)}(0) = \begin{vmatrix} c & 0 & \dots & 0 \\ a_2 & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & & \vdots \\ a_n & c_{n2} & \dots & c_{nn} \end{vmatrix} \neq 0.$$

It is easily derived that the weights of functions or differential operators are invariant under the equivalent transformation of the weighted coordinates.

We also remark that if the weights of covectors (ξ_1, \dots, ξ_n) are each assigned the $(-2, -1, \dots, -1)$, then the weight of $P_m(x, \xi)$, the principal part of P , is invariant.

3. The basic theorem

The differential operator studied in this section is the following one:

$$(3.1) \quad P(x, \partial_x) = \left(\frac{\partial}{\partial x_1} \right)^{m-1} \left(\frac{\partial}{\partial x_2} \right)^l + \sum a_\alpha(x) \left(\frac{\partial}{\partial x} \right)^\alpha$$

where $a_\alpha(x)$ are analytic in some neighborhood U of 0 and the summation is taken over the multi-indices α such that $|\alpha| \leq m$. The domain Ω is given by

$$(3.2) \quad \Omega = \{x \in U \mid \rho(x) < 0\}$$

where ρ is a real-valued C^2 function such that

$$(\Omega.1) \quad \rho(0) = 0, \quad \frac{\partial \rho}{\partial x_1}(0) = 1, \quad \frac{\partial \rho}{\partial x_j}(0) = 0 \quad j = 2, \dots, n.$$

We consider this local coordinates as the weighted coordinates with the weights $(2, 1, \dots, 1)$. Then we make the following conditions on the principal part $P_m(x, \partial_x)$ of the operator (3.1).

- (P.1) Every weight of $a_\alpha(x)(\partial/\partial x)^\alpha$ in $P_m(x, \partial_x)$ is larger than or equal to $l-2m$ —the weight of $(\partial/\partial x_1)^{m-1}(\partial/\partial x_2)^l$.
- (P.2) For the term in P_m with the weight $l-2m$, its coefficient does not vanish at 0, that is

$$\text{weight}[(a_\alpha(x) - a_\alpha(0))(\partial/\partial x)^\alpha] \geq l-2m+1,$$

when $|\alpha|=m$ and especially $a_\alpha(0)=0$ if $\alpha=(m-l, l, 0, \dots, 0)$ in the second terms of the right hand side of (3.1).

- (P.3) There exists an integer μ ($2 \leq \mu \leq n$) such that the term in P_m with the weight $l-2m$ is generated only by $\partial/\partial x_1, \dots, \partial/\partial x_\mu$.

REMARK 3.1 If P is simple characteristic at $(0, N)$ with $N=(1, 0, \dots, 0)$, then it is possible to choose the local coordinates such that P is in the form (3.1) with $l=1$ and $\alpha_1 < m-1$ in the sum of the second terms. In this case all conditions (P.1,2,3) with $\mu=2$ are automatically fulfilled.

REMARK 3.2 In P_m the condition (P.1) is only restrictive on the terms of the order larger than $m-l$ with respect to $\partial/\partial x_1$. Because by (P.1),

$$\text{weight}(a_\alpha(x)) \geq \max \{0, l-2m+2\alpha_1+\alpha_2+\dots+\alpha_n = l-m+\alpha_1\}.$$

REMARK 3.3 The conditions (P.1) and (P.2) imply that the term of the weight $l-2m$ in P_m is essentially of the form $a_\alpha(0)(\partial/\partial x)^\alpha$ with $\alpha_1=m-l$.

Concerning the boundary function $\rho(x)$ of $\partial\Omega$, we set

$$H = \left(\frac{\partial^2 \rho}{\partial x_i \partial x_j}(0) \right) \quad (2 \leq i, j \leq n),$$

which is the tangential Hessian of ρ at 0. Then the following conditions are made in addition to (Ω.1).

(Ω.2) H can be written as

$$H = \underbrace{\lambda}_{\mu-1} \left\{ \begin{array}{c|c|c} \mu-1 & & \\ \hline \lambda & & \\ \hline \begin{array}{c|c|c} A & 0 & * \\ \hline 0 & 0 & 0 \\ \hline * & 0 & * \end{array} & & \end{array} \right\}$$

where A is strictly negative definite ($0 < \lambda \leq \mu-1$).

We remark that if $\mu=2$ in (P.3), then (Ω.2) means only that $\partial^2 \rho / \partial x_2^2(0) < 0$. Such a case is happened when P is simple characteristic at $(0, N)$.

REMARK 3.4 It is easy to show that this condition (Ω.2) is independent of the choice of the defining function $\rho(x)$.

Now the basic theorem is as follows:

Theorem 3.1 *Let $P(x, \partial_x)$ be a differential operator of the form (3.1) which satisfies the conditions (P. 1, 2, 3), and Ω be an open set given by (3.2) with the conditions (Ω.1, 2). If $u(x)$ is a distribution solution of $Pu=0$ in U vanishing in Ω , then $u(x)$ must vanish in a neighborhood of 0.*

For the rest of this section, we devote ourselves to prove this theorem.

Lemma 3.1 *Let $\rho(x)$ be an defining function of Ω with the conditions (Ω.1, 2). Then by changing the defining function $\rho(x)$ if necessarily we may assume that*

$$(\Omega.3) \quad \frac{\partial^2 \rho}{\partial x_i \partial x_j}(0) = 0 \quad j = 1, 2, \dots, n.$$

in addition to (Ω.1, 2).

Proof. If we expand $\rho(x)$ to the second order, we have

$$\rho(x) = x_1 + \left(\sum_{j=1}^n a_j x_j \right) x_1 + \sum_{i, j \geq 2} a_{ij} x_i x_j + o(|x|^2)$$

where $(a_{ij}) = \frac{1}{2} H$. Then $r(x) = \rho(x) \exp \left[- \sum_{j=1}^n a_j x_j \right]$ becomes the desired boundary function, which completes the proof.

Lemma 3.2 *If a real-valued C^2 function ρ satisfies the conditions (Ω.1, 2 and 3), then there exist positive constants α and M such that for any $\varepsilon > 0$ the following inequality holds in a sufficiently small neighborhood V of 0.*

$$(3.3) \quad \rho(x) \leq x_1 - \alpha x_2^2 + \varepsilon(x_1^2 + x_3^2 + \cdots + x_\mu^2) + M(x_{\mu+1}^2 + \cdots + x_n^2).$$

Proof. We expand ρ in the Taylor series up to the second order. Then by (Ω.1 and 3),

$$\rho(x) = x_1 + \sum_{i, j \geq 2} a_{ij} x_i x_j + o(|x|^2)$$

where $(a_{ij}) = \frac{1}{2} H$ satisfies (Ω.2). From (Ω.2), it is easy to derive the inequality (3.3). The details are omitted.

Set $\psi(x)$ as

$$(3.4) \quad \psi(x) = x_1 - \alpha x_2^2 + \varepsilon(x_1^2 + x_3^2 + \cdots + x_\mu^2) + M(x_{\mu+1}^2 + \cdots + x_n^2).$$

Then the above lemma shows that in some neighborhood V of 0, the open set $\{\psi(x) < 0\}$ is contained in Ω . Thus it is sufficient for the proof of the theorem 3.1 to obtain the uniqueness theorem across the surface $\psi(x) = 0$. For this purpose we construct the family of surfaces. Define $\phi(x)$ as

$$(3.5) \quad \phi(x) = x_1 - \frac{1}{2} \alpha r x_2 + 2\varepsilon(x_1^2 + x_3^2 + \cdots + x_\mu^2) + 2M(x_{\mu+1}^2 + \cdots + x_n^2),$$

where $r > 0$ is a parameter and determined later.

Lemma 3.3 *If s is real and $s \leq \alpha r^2$, then the set $\{\psi(x) \geq 0\} \cap \{\phi(x) \leq s\}$ is compact and contained in $U(r)$, where*

$$\begin{aligned} U(r) = \{x \mid & |x_1| < 2\alpha r^2, |x_2| < 2r, \\ & |x_j| < (2\alpha/\varepsilon)^{1/2}r \quad j = 3, \dots, \mu \\ & |x_k| < (2\alpha/M)^{1/2}r \quad k = \mu+1, \dots, n\} \end{aligned}$$

Proof. Set $R_\mu^2 = x_1^2 + x_3^2 + \cdots + x_\mu^2$ and $R_n^2 = x_{\mu+1}^2 + \cdots + x_n^2$. For any $x \in \{\psi(x) \geq 0\} \cap \{\phi(x) \leq s\}$ we have

$$2\alpha x_2^2 - 2x_1 \leq 2\varepsilon R_\mu^2 + 2MR_n^2 \leq s + \frac{1}{2} \alpha r x_2 - x_1,$$

which imply the next two inequalities:

$$x_1 \geq 2\alpha x_2^2 - \frac{1}{2} \alpha r x_2 - s$$

$$s + \frac{1}{2} \alpha r x_2 - x_1 \geq 0.$$

Then it easily derived that $|x_1| < 2\alpha r^2$ and $|x_2| < 2r$ provided that $s \leq \alpha r^2$. Using these estimates we have

$$0 \leq \varepsilon R_\mu^2 + M R_n^2 < 2\alpha r^2.$$

Thus the lemma is proved.

Now we determine the parameters ε and r so that the surface $\phi(x) = s$ is non-characteristic with respect to $P(x, \partial_x)$ in some neighborhood of 0. Let $Q(\partial_x)$ be the sum of the terms in P_m with the weight exactly $l-2m$. By the remark 3.3 and the condition (P.3), $Q(\partial_x)$ is expressed as follows:

$$(3.6) \quad Q(\partial_x) = \left(\frac{\partial}{\partial x_1} \right)^{m-l} \left(\frac{\partial}{\partial x_2} \right)^l + \sum a_\alpha \left(\frac{\partial}{\partial x} \right)^\alpha$$

where the summation is taken over the multi-indices α such that $\alpha_1 = m-l$, $\alpha_2 + \dots + \alpha_\mu = l$, $\alpha_2 < l$ and $\alpha_{\mu+1} = \dots = \alpha_n = 0$. In (3.6) every a_α is a constant. If we set $\xi_j = \partial \phi / \partial x_j$ ($j = 1, \dots, n$), then we have

$$\begin{aligned} \xi_1 &= 1 + 4\varepsilon x_1 \\ \xi_2 &= -\frac{1}{2} \alpha r \\ \xi_j &= 4\varepsilon x_j \quad j = 3, \dots, \mu \\ \xi_k &= 4M x_k \quad k = \mu+1, \dots, n. \end{aligned}$$

Therefore we have the next estimates on $U(r)$:

$$(3.7) \quad \begin{cases} \frac{1}{2} \leq |\xi_1| \leq 2 & \text{if } \varepsilon \alpha r^2 \leq 4^{-2} \\ |\xi_2| = \frac{1}{2} \alpha r \\ |\xi_j| \leq 4(2\alpha\varepsilon)^{1/2} r \quad j = 3, \dots, \mu \\ |\xi_k| \leq 4(2\alpha M)^{1/2} r \quad k = \mu+1, \dots, n. \end{cases}$$

Lemma 3.4 *If we take ε sufficiently small ($\varepsilon \alpha r^2 \leq 4^{-2}$), then $Q(\xi)$ does not vanish on $U(r)$.*

Proof. We use the notation $C(\alpha)$ which is a different constant in each position depending only on α . By (3.7),

$$|\xi_1^{m-l} \xi_2^l| \geq \left(\frac{1}{2}\right)^m \alpha^l r^l$$

$$|a_\alpha \xi^\alpha| \leq C(\alpha) \varepsilon^{(1/2)(\alpha_3 + \dots + \alpha_\mu)} r^l,$$

for $|\alpha|=m$, $\alpha_1=m-l$ and $\alpha_{\mu+1}=\dots=\alpha_n=0$. If we put these estimates into the corresponding terms in (3,6), we have that

$$|Q(\xi)| \geq \left\{ \left(\frac{1}{2}\right)^m \alpha^l - C(\alpha) \varepsilon^{(1/2)(\alpha_3 + \dots + \alpha_\mu)} \right\} r^l.$$

Since $\alpha_3 + \dots + \alpha_\mu \neq 0$, $|Q(\xi)| \geq C(\alpha) r^l$ with $C(\alpha) > 0$ for a sufficiently small ε . This proves the lemma.

From now on, the constant ε is taken as in this lemma and always fixed. For the determination of the parameter r , we have the next lemma.

Lemma 3.5 *If we take r sufficiently small, then $P_m(x, \xi)$ does not vanish on $U(r)$.*

Proof. If the weight of an analytic function $a(x)$ is equal to k , then the inequality

$$\sup_{U(r)} |a(x)| \leq \text{const. } r^k$$

holds for a sufficiently small r . Thus for a term $a(x)(\partial/\partial x)^\alpha$ in P_m with the weight larger than $l-2m$, the inequality

$$\begin{aligned} \text{weight } a(x) &\geq l-2m+1+2\alpha_1+\alpha_2+\dots+\alpha_n \\ &= l-m+\alpha_1+1 \end{aligned}$$

implies

$$\begin{aligned} |a(x) \xi^\alpha| &\leq \text{const. } r^{l-m+\alpha_1+1} \text{const. } r^{\alpha_2+\dots+\alpha_n} \\ &= \text{const. } r^{l+1} \end{aligned}$$

While $|Q(\xi)| \geq C(\alpha) r^l$ on $U(r)$. Since P_m is the sum of Q and the terms of the weight larger than $l-2m$, we can choose r sufficiently small so that P_m does not vanish on $U(r)$. This proves the lemma.

Under these preparations we now prove the basic theorem. The key lemma of this proof is the following one which is due to Hörmander [3].

Lemma 3.6 *Suppose that there exist a real-valued C^1 function $\phi(x)$ and constants s_0, s_1 such that in some neighborhood V of 0,*

- (i) $P_m(x, \text{grad } \phi(x)) \neq 0$
- (ii) $s_0 < \phi(0) < s_1$
- (iii) $\{x \in V \mid \phi(x) \leq s_1\} \cap \overline{\Omega^c}$ is compact,
- (iv) $\{x \in V \mid \phi(x) \leq s_0\} \cap \overline{\Omega^c}$ is empty,
- (v) $\{x \in V \mid \phi(x) \leq s_0\}$ is not empty.

Then every distribution solution $u(x)$ in V of the equation $Pu=0$ vanishing in Ω must vanish in $\{x \in V \mid \phi(x) < s_1\}$.

Proof of the Theorem 3.1 By the lemma 3.2 we may take Ω as the set $\{x \in V \mid \psi(x) < 0\}$. Now take $U(r)$ in the lemma 3.5 as the neighborhood V of 0 in the lemma 3.6. Then the condition (i) is fulfilled. Set $s_0 = -\alpha r^2$ and $s_1 = \alpha r^2$. Then (ii) becomes trivial and (iii) is derived from the lemma 3.3. The other conditions (iv) and (v) are easily derived from the expression of $\phi(x)$ and $\psi(x)$, so we omitt their prooves. This ends the proof of the theorem 3.1.

4. Choice of the local coordinates in the basic theorem

Let (x_1, \dots, x_n) be the local coordinates such that the surface $x_1=0$ is tangent to $\partial\Omega$ at $x=0$. We consider this coordinates as the weighted coordinates with the weights $(2, 1, \dots, 1)$. The other local coordinates with the same property become equivalent to this coordinates as the weighted coordinates.

Let $P(x, \partial_x)$ be a linear differential operator of order m with analytic coefficients which is characteristic at 0 in the cotangential direction $N=(1, 0, \dots, 0)$. We set l the multiplicity of P at $(0, N)$. That is, for a cotangent vector $\zeta=(\zeta_1, \zeta_2, \dots, \zeta_n)$,

$$(4.1) \quad P_m(0, N+t\zeta) = L(\zeta)t^l + \text{higher order terms of } t$$

where P_m is the principal part of P and $L(\zeta)$ is a non-zero polynomial of ζ . This polynomial $L(\zeta)$ is called the localization of P_m at $(0, N)$, which is originally introduced by Hörmander [4]. When $N=(1, 0, \dots, 0)$, (4.1) means that in $P_m(0, \partial_x)$ there is none of the terms of order larger than $m-l$ with respect to $\partial/\partial x_1$ and the sum of the coefficients of $(\partial/\partial x_1)^{m-l}$ is equal to $L(\partial/\partial x_2, \dots, \partial/\partial x_n)$. Therefore $L(\zeta)$ is a homogeneous polynomial of degree l in the variables $(\zeta_2, \dots, \zeta_n)$. Since the weight of $L(\partial/\partial x_2, \dots, \partial/\partial x_n)(\partial/\partial x_1)^{m-l}$ is equal to $l-2m$, we make the assumption:

(P.I) *the weight of $P_m(x, \xi)$ is equal to $l-2m$, if the weight of ξ are assigned by $(-2, -1, \dots, -1)$.*

Relating to the localization $L(\zeta)$ of P_m , we introduce some linear spaces in the tangent space T_0 and the cotangent space T_0^* of the surface $\partial\Omega$ at 0. For the polynomial $L(\zeta)$, we set

$$(4.2) \quad \Lambda^*(L) = \{\eta \in T_0^* \mid L(\xi + \eta t) = L(\xi) \quad \text{for all } t \text{ and } \xi\},$$

which is a linear subspace, and we introduce the annihilator

$$(4.3) \quad \Lambda(L) = \{v \in T_0 \mid \langle v, \eta \rangle = 0 \quad \text{for any } \eta \in \Lambda^*(L)\},$$

where \langle , \rangle denotes the contraction between cotangent vectors and tangent

vectors. $\Lambda(L)$ is the smallest subspace along which $L(\partial/\partial x)$ operates and is called the bicharacteristic space of P at $(0, N)$. These subspaces are introduced by Hörmander [4].

DEFINITION 4.1 An analytic function $\phi(x)$ with $\text{grad } \phi(0)=N$ is said to be a weighted characteristic function of $P(x, \partial_x)$ if it satisfies the following condition:

$$(4.4) \quad \text{weight } P_m(x, t \text{ grad } \phi(x)) \geq l-2m+1,$$

where the parameter t is assigned the weight -2 .

To find such a weighted characteristic function $\phi(x)$, it is sufficient that ϕ is in the form

$$\phi(x) = x_1 + \sum_{i,j \geq 2} a_{ij} x_i x_j.$$

Assume that

(P.II) *there exists a weighted characteristic function $\phi(x)$.*

By the suitable equivalent change of the weighted coordinates we can assume that $\phi(x)=x_1$. Then the following proposition is easy to prove.

Proposition 4.1 *If $\phi(x)=x_1$, then (4.4) is equivalent to that there is none of the differential monomials of the weight $l-2m$ in $P_m(x, \partial_x)$ which is generated only by $\partial/\partial x_1$.*

We now fix some weighted characteristic function $\phi(x)$ and consider the local coordinates (x_1, \dots, x_n) as $\phi(x)=x_1$ (mod weight 3) and each x_j ($j=2, \dots, n$) has the weight 1. This means that the coordinates transformation considered from now on is in the following form:

$$(4.5) \quad \begin{cases} u_1 = x_1 + \text{an analytic function of the weight } \geq 3, \\ u_j = \sum_{k=2}^n c_{jk} x_k + \text{an analytic function of the weight } \geq 2 \\ \quad j = 2, \dots, n. \end{cases}$$

Then we make the last assumption on P_m such that

$$(P.III) \quad \text{weigh } [P_m(x, \xi) - P_m(0, \xi)] \geq l-2m+1.$$

Proposition 4.2 *This assumption (P.III) is invariant under the change of variables of form (4.5).*

Proof. If we remark that by (4.5),

$$\frac{\partial}{\partial x_1} = \frac{\partial}{\partial u_1} + \text{terms of the weight larger than } -2$$

$$\frac{\partial}{\partial x_j} = \sum_{k=1}^n c_{kj} \frac{\partial}{\partial u_k} + \text{terms of the weight larger than } -1, \\ j = 2, \dots, n$$

the invariance of (P.III) is easy to prove.

Assumption (P.III) means that the terms with the lowest weight in P_m do not degenerate at 0.

Now we proceed to examine the conditions on Ω under the assumptions (P. I, II, III).

If Ω is given by $\{\rho(x) < 0\}$ with a real-valued C^2 function ρ , we denote by H_ρ the tangential Hessian of ρ at 0. That is

$$H_\rho = \left(\frac{\partial^2 \rho}{\partial x_i \partial x_j} (0) \right) \quad 2 \leq i, j \leq n.$$

Then it easily derived that the symmetric bilinear form $\sum_{i,j \geq 2} \frac{\partial^2 \rho}{\partial x_i \partial x_j} (0) dx_i \otimes dx_j$ on $T_0 \times T_0$ is invariant under the transformation of the coordinates of the form (4.5). We set N_ρ as the kernel of the linear map $H_\rho: T_0 \rightarrow T_0^*$ defined by

$$H_\rho(v) = \sum \frac{\partial^2 \rho}{\partial x_i \partial x_j} (0) \langle dx_i, v \rangle dx_j.$$

Then H_ρ is derived to the bilinear form on the space $T_0/N_\rho \times T_0/N_\rho$. Similary if we set

$$\tilde{\Lambda}(L) = \Lambda(L)/N_\rho \cap \Lambda(L),$$

where $\Lambda(L)$ is the bicharacteristic space of P , H_ρ is also derived to the bilinear form on $\tilde{\Lambda}(L) \times \tilde{\Lambda}(L)$.

The first assumption on $\partial\Omega$ is as follows:

(Ω .I) $\tilde{\Lambda}(L) \neq 0$ and H_ρ is strictly negative definite on $\tilde{\Lambda}(L) \times \tilde{\Lambda}(L)$.

This condition means that Ω is concave in the direction of the bicharacteristic space at 0.

Lastly we demand that $L(\xi)$, the localization of P , is non-characteristic at some covector ξ_0 for which Ω is strictly concave at 0. For this sake we introduce N_ρ^* the annihilator of N_ρ ,

$$N_\rho^* = \{\xi \in T_0^* \mid \langle \xi, v \rangle = 0 \quad \forall v \in N_\rho\}.$$

Then we assume

(Ω .II) there exists a covector ξ_0 in N_ρ^* such that $L(\xi_0) \neq 0$.

Now we construct the local coordinates (x_1, \dots, x_n) so that the operator

$P(x, \partial_x)$ is reduced to the form (3.1) and all assumptions in the basic theorem are satisfied.

First we fix the weighted characteristic function $\phi(x)$ in (P.II) and set $\phi(x)=x_1$.

Secondly we choose the tangential coordinates (x_2, \dots, x_n) such that the vectors $\partial/\partial x_2, \dots, \partial/\partial x_\mu$ span the bicharacteristic space $\Lambda(L)$ at 0. Since $L(\zeta)$ does not vanish identically, the dimension of $\Lambda(L)$ is $\mu-1$ which becomes positive (i.e. $\mu \geq 2$).

Thirdly under the suitable linear change of variables (x_2, \dots, x_μ) , we may assume that for some λ ($2 < \lambda \leq \mu$), $\partial/\partial x_{\lambda+1}, \dots, \partial/\partial x_\mu$ span the subspace $N_p \cap \Lambda(L)$. At this moment, the condition (Ω.1) means that the matrix

$$\left(\frac{\partial^2 \rho}{\partial x_i \partial x_j} (0) \right) \quad 2 \leq i, j \leq \lambda$$

is strictly negative definite and

$$\frac{\partial^2 \rho}{\partial x_i \partial x_j} (0) = 0 \quad \text{if } \lambda+1 \leq i \text{ or } j \leq \mu.$$

Lastly we shall prove that $L(\zeta)$ can be non-characteristic at dx_2 by the linear change of variables (x_2, \dots, x_λ) .

Proposition 4.3 *By the suitable linear change of variables (x_2, \dots, x_λ) , $L(\zeta)$ is non-characteristic at the covector dx_2 .*

Proof. Let $\xi_0 \in T_x^*$ be the covector in the condition (Ω.II). Since $\langle \xi_0, \partial/\partial x_j \rangle = 0$ ($j = \lambda+1, \dots, \mu$), ξ_0 is written as

$$\begin{aligned} \xi_0 &= c_2 dx_2 + \dots + c_\lambda dx_\lambda + c_{\lambda+1} dx_{\lambda+1} + \dots + c_n dx_n \\ &= c_2 dx_2 + \dots + c_\lambda dx_\lambda + \xi'_0 \end{aligned}$$

where $\xi'_0 \in \Lambda^*(L)$ which is generated by $dx_{\lambda+1}, \dots, dx_n$. Then

$$\begin{aligned} 0 \neq L(\xi_0) &= L(c_2 dx_2 + \dots + c_\lambda dx_\lambda + \xi'_0) \\ &= L(c_2 dx_2 + \dots + c_\lambda dx_\lambda). \end{aligned}$$

Therefore this proposition is easily derived from this relation.

From this proposition, $L(\partial/\partial x)$ is written as

$$L(\partial_x) = a \left(\frac{\partial}{\partial x_2} \right)^l + \sum a_\alpha \left(\frac{\partial}{\partial x} \right)^\alpha$$

where $a \neq 0$ and the summation is taken over the multi-indices $|\alpha|=l$, $\alpha_2 < l$, $\alpha_1 = \alpha_{\lambda+1} = \dots = \alpha_n = 0$.

Thus the operator $P(x, \partial_x)$ is expressed in the form (3.1) under this coordi-

nates. Since (P.I) implies (P.1), (P.III) implies (P.2), (P.3) follows from the fact that $\partial/\partial x_2, \dots, \partial/\partial x_\mu$ span $\Lambda(L)$, ($\Omega.1$) is trivial from the choice of x_1 and ($\Omega.2$) is derived from ($\Omega.1$), all conditions in the theorem 3.1 are satisfied under this coordinates. Summing up these results we have the final theorem:

Theorem 4.1 *Let $P(x, \partial_x)$ be a differential operator of order m with analytic coefficients in a neighborhood V of p and Ω be an open set with C^2 boundary $\partial\Omega \in p$. We suppose that P and Ω satisfy the conditions (P. I, II, III) and ($\Omega.1, \Omega.2$). Then every distribution solution $u(x)$ of $Pu=0$ in V vanishing in Ω must vanish in a neighborhood of p .*

References

- [1] T. Bloom and I. Graham: *On 'Type' conditions for generic real submanifolds of C^n* , Invent. Math. **40** (1977), 217–243.
- [2] J.M. Bony: *Une extension du théorème de Holmgren sur l'unicité du problème de Cauchy*, C.R. Acad. Sci. Paris **268** (1969), 1103–1106.
- [3] L. Hörmander: *Linear partial differential operators*, Springer-Verlag, 1963.
- [4] L. Hörmander: *On the singularities of solutions of partial differential equations*, Comm. Pure Appl. Math. **23** (1970), 329–358.
- [5] L. Hörmander: *Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients*, Comm. Pure Appl. Math. **24** (1971), 671–704.
- [6] L. Hörmander: *A remark on Holmgren's uniqueness theorem*, J. Differential Geom. **6** (1971), 129–134.
- [7] J. Perrson: *On uniqueness cones, velocity cones and P -convexity*, Ann. Mat. Pura Appl. **96** (1973), 69–87.
- [8] F. Trèves: *Linear partial differential equations with constant coefficients*, Gordon and Breach, New York, 1966.
- [9] Y. Tsuno: *Localization of differential operators and holomorphic continuation of the solutions*, Hiroshima Math. J. **10** (1980), to appear.
- [10] E.C. Zachmanoglou: *Uniqueness of the Cauchy problem when the initial surface contains characteristic points*, Arch. Rational Mech. Anal. **23** (1966), 317–326.
- [11] E. C. Zachmanoglou: *Uniqueness of the Cauchy problem for linear partial differential equations with variable coefficients*, Trans. Amer. Math. Soc. **136** (1969), 517–526.

Department of Mathematics
Okayama University
Tsushima, Okayama, 700
Japan