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1. Introduction

Let P(x> dx) be a differential operator of order m with analytic coefficients
in an open set U in Rn and Ω be an open subset of U with C1 boundary 9Ω.
Then the uniqueness theorem of Holmgren which is extended for distribution
solutions ([3]) states that a distribution solution u(x) of the equation Ptι=0 in U
vanishing in Ω must vanish in a neiborhood of 9Ω if 9Ω is non-characteristic.
The extension of this theorem to the case near a characteristic point has been
made by many authors relating to the problem of deciding the P-convexity
domains. Among others Hϋrmander [3] showed that when the principal part
is real the uniquness theorem holds if 3 Ω e C 2 and the characteristic points
are simple and some convexity conditions are satisfied at these points. The
refinements of this Hϋrmander Js result are made by Treves [8], Zachmanoglou
[10], [11] and Hϋrmander [5]. Recently Bony [2] introduced the notion of
strongly characteristic and proved the uniquness theorem for degenerate equa-
tions. Bony's result is extended by Hϋrmander [6]. In this note we deal
with a differential operator which is highly degenerated at some point p on
3Ω and obtain the suffcient conditions to get the uniquness theorem. Though
the uniquness theorem is invariant under the analytic change of coordinates,
we here employ the weighted local coordinates at p such that the normal direc-
tion xx of 9Ω at p is assigned the weight 2, while the tangential directions
#2, •••,#« are each assigned the weight 1. The motivation of this employment
is that the boundary 9Ω can be approximated by the quadratic hypersurface
of the form

(1.1) xι = nΣauxiXj.

The transformations of the coordinates in this note are limited to the ones which
preserve the weights (2, 1, •••, 1) (see the section 2 for the precise definition).
In the section 3, the basic theorem is proved under some fixed local coordinates.
The idea of the proof is due to Hϋrmander [3] and extensively used by Treves [8],
Zachmanoglou [10], [11] and others. That is to construct the family of surfaces
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which are non-characteristic with respect to P(x, dx) and cover a neighborhood
of p. This basic theorem is a generalization of Hϋrmander's theorem [3] of
the simple characteristic case. In the last section, §4, we study the geometric
conditions on P(x, dx) and 9Ω to insure the existence of the local coordinates
in the third section. The assumptions are made in relation to the localization
of P(x, dx) at (p, N), where N is the normal direction of 3Ω at p. The locali-
zation of an operator is also due to Hormander [4] to research the location of
the singularities of the solutions of Pw=0. Our method in this note is also
used to show the holomorphic continuation of the solutions of P(z, Qz)u=f in
the complex n dimensional space, which is to appear in [9].

2. Weighted coordinates

As in the introduction, we shall approximate 3Ω by the quadratic hy-
persurface of the form (1.1). For this sake we here introduce the weighted
coordinates. Weighted coordinates are also used by T. Bloom and I. Graham
[1] to determine the type of the real submanifold in Cn which is firstly intro-
duced by Kohn in relation to the boundary regularity for the 5-Neumann
problem. In this note we use the simplest weighted coordinates.

Let (xu -"yXn) be a local coordinates in U of Rn. Then we say that
(xu •••, xn) is the weighted coordinates system of the weights (2, 1, •••, 1) if the
coordinate function x1 has the weight 2 and Xj (j=2, •••, ή) has the weight 1.
The weight of a monomial x" is determined by 2 α 1 + α 2 + # ί +tfn An analytic
function f(x) at 0 has the weight / if / is the lowest weight among the monomials
in the Taylor expansion of f(x) at 0. For convenience, the weight of f=0 is
assigned + oo. The weight of a differential operator is defined by the corres-
ponding negative weight. For a differential monomial (3/3x)α, its weight is
defined by — 2aλ~a2 an. The weight of a(x)(p\dx)* is equal to
weight (α(#))+ weight ((3/3#)Λ) and the weight of a linear partial differential
operator P(x, dx)=^aa(x)(dldx)a is determined by min weight(aΛ{x){pldxf).

Let (xly •••, xn) and (uu •••, un) be two local coordinates with the same origin.
We say that these coordinates are equivalent as the weighted coordinates if Uj
has the same weight as Xj as an analytic function of xjΊ and the converse is also
true. In this note the weights are always equal to (2, 1, •••, 1). Therefore
(#!, •••, xn) and (uly •••, un) are equivalent if and only if

c 0 - 0

# 2 C22 •** C2n Φ 0 ,

It is easily derived that the weights of functions or differential operators are
invariant under the equivalent transformation of the weighted coordinates.
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We also remark that if the weights of covectors (ξu •••, ξn) are each assigned the
(—2, — 1 , •••, —1), then the weight of Pm(xy ξ), the principal part of P, is invariant.

3. The basic theorem

The differential operator studied in this section is the following one:

where ajjc) are analytic in some neighborhood U of 0 and the summation is
taken over the multi-indices a such that \a\^tn. The domain Ω is given by

(3.2) Ω= {x<EΞU\p{x)<0}

where p is a real-valued C2 function such that

(Ω.l) p(0) = 0, | £ - ( 0 ) = l , |£-(0) = 0 j = 2,.. ,n.
OX1 OXj

We consider this local coordinates as the weighted coordinates with the
weights (2, 1, •••, 1). Then we make the following conditions on the principal
part Pm(x, dx) of the operator (3.1).

(P.I) Every weight of ajx){djdxf in Pm(x, dx) is larger than or equal to
l-2m=the weight of

(P.2) For the term in Pm with the weight I—2m, its coefficient does not vanish at
0, that is

weight [(aa(x)-aΛ(0))(dldx)*] ^ / -2m+1 ,

when \a\=m and especially ^Λ(0)=0 if a=(m—l, /, 0, •••, 0) in the second
terms of the right hand side of (3.1).

(P.3) There exists an integerμ (2^μ^ή) such that the term in Pm with the weight
I—2m is generated only by d/dxly •••, d/dx^.

REMARK 3.1 If P is simple characteristic at (0, N) with iV=(l, 0, •••, 0),
then it is possible to choose the local coordinates such that P is in the form
(3.1) with 1=1 and ax<.m—\ in the sum of the second terms. In this case
all conditions (P.1,2,3) with μ=2 are automatically fulfilled.

REMARK 3.2 In Pm the condition (P.I) is only restrictive on the terms of
the order larger than m—l with respect to 3/9^. Because by (P.I),

weight(aΛ(x))^max{0, l—2m+2aί+a2

Jί \-att = l—
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REMARK 3.3 The conditions (P.I) and (P.2) imply that the term of the
weight I—2m in Pm is essentially of the form aa(0)(dldx)* with ax=m—l.

Concerning the boundary function ρ(x) of 9Ω, we set

which is the tangential Hessian of p at 0. Then the following conditions
are made in addition to (Ω.l).

(Ω.2) H can be written as

μ-1

H =

χ{ I A

0

\ *

0

0

0

Λ
0

* /

where A is strictly negative definite (0<λ5^μ— 1).

We remark that if μ=2 in (P.3), then (Ω.2) means only that 92p/9.*i(0)<0.
Such a case is happened when P is simple characteristic at (0, N).

REMARK 3.4 It is easy to show that this condition (Ω.2) is independent of
the choice of the defining function ρ(x).

Now the basic theorem is as follows:

Theorem 3.1 Let P(xy dx) be a differential operator of the form (3.1) which
satisfies the conditions (P. 1, 2, 3), and Ω be an open set given by (3.2) with the
conditions (Ω.l, 2). If u(x) is a distribution solution of Pu=0 in U vanishing in
Ω, then u(x) must vanish in a neiborhood of 0.

For the rest of this section, we devote ourselves to prove this theorem.

Lemma 3.1 Let ρ(x) be an defining function of Ω with the conditions (Ω.l, 2).
Then by changing the defining function ρ(x) if necessarily we may assume that

/•NO

(Ω.3)

in addition to (Ω.l, 2).

Proof. If we expand p(x) to the second order, we have
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n

p(X) = ^ + ( Σ ̂ Λ K + Σ tf^tfy+oCM2)

1 n

where (#,7) =—H. Then r(x)=p(x) exp [—Σ #Λ\] becomes the desired bounda-
2 i=1

ry function, which completes the proof.
Lemma 3.2 7/ a real-valued C2 function p satisfies the conditions (Ω.l, 2

and 3), ίλeft ίλere ms£ positive constants a and M such that for any £>0 the
following inequality holds in a sufficiently small neϊborhood V of 0.

(3.3) p(x)^x1-axl+e(xl+xl+ -+xϊ)+M(xl+1+- +x2

n).

Proof. We expand p in the Taylor series up to the second order. Then
by (Ω.l and 3),

p(x) = # 1 + ^ 2 aijxixj+o{\x\2)

where («/; ) = — H satisfies (Ω.2). From (Ω.2), it is easy to derive the inequality

(3.3). The details are omitted.

Set ψ(x) as

(3.4) ψ(x) = Xl-

Then the above lemma showes that in some neiborhood V of 0, the open set
{ψ{x)<Q} is contained in Ω. Thus it is sufficient for the proof of the theorem
3.1 to obtain the uniqueness theorem across the surface ψ(x)=0. For this
purpose we construct the family of surfaces. Define φ(x) as

(3.5) φ(x) = Xl-λarχ2+2e(xl+xl+-'+xl)+2M{x^+1+-'+x2

n),

where r > 0 is a parameter and determined later.

Lemma 3.3 If s is real and s^ar2, then the set {yJr(x)^0} Π {φ(x)^s} is
compact and contained in U(r)> where

U{r)={x\\xλ\<2ar\ \x2\<2r,

\xk\<(2alMf2r k=μ+l,~.tn}

Proof. Set R^=x^+xl-\ \-xl and /?5=^i+H h#2 For any
x)^0} Π {φ(x)^s} we have

which imply the next two inequalities:
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arx2—s

Then it easily derived that \x1\<2ar2 and \x2\<2r provided that
Using these estimates we have

Thus the lemma is proved.
Now we determine the parameters £ and r so that the surface φ(x)=s

is non-characteristic with respect to P(x, dx) in some neiborhood of 0. Let
Q{dx) be the sum of the terms in Pm with the weight exactly I—2m. By the
remark 3.3 and the condition (P.3), Q(dx) is expressed as followes:

where the summation is taken over the multi-indices a such that a1=m—l,
ct2-\—αμ=-7> (*2<l and aμ.+1= --=an=0. In (3.6) every aΛ is a constant.
If we set ξj—dφldxj (7 = 1, •••,«), then we have

Therefore we have the next estimates on U(r):

^ 1 ^ 1 ^ 2

(3.7)

Lemma 3.4 If we take S sufficiently small (£ar2^4 ~2), then Q(ξ) does not
vanish on U(r).

Proof. We use the notation C{a) which is a different constant in each
position depending only on a. By (3.7),
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\aΛξ*\ ^

for \a\=my a1=m—I and aμ.+i=~-=an=0. If we put these estimates into

the corresponding terms in (3,6), we have that

Since a3-\ \-aμφ0y \Q(ξ)\^C(a)rι with C(a)>0 for a sufficiently small £.

This proves the lemma.

From now on, the constant £ is taken as in this lemma and always fixed.

For the determination of the parameter r, we have the next lemma.

Lemma 3.5 If we take r sufficiently small, then Pm(xy ξ) does not vanish on
U(r).

Proof. If the weight of an analytic function a(x) is equal to k, then the

inequality

sup \a(x)\ ̂  const. rk

holds for a sufficiently small r. Thus for a term a{x){djdx)* in Pm with the

weight larger than I —2m, the inequality

weight a{x)^l-2m+\+2aι+a2-\ \-an

= l—m+a1+ί

implies

\a(x)ξ*\ ^ const. r

ι~m+aι+1 const. r"2+'~+«»

= const. r!+1

While \Q(ξ)\^C(a)rι on U(r). Since Pm is the sum of Q and the terms of

the weight larger than l—2my we can choose r sufficiently small so that Pm does not

vanish on U(f). This proves the lemma.

Under these preparations we now prove the basic theorem. The key

lemma of this proof is the following one which is due to Hϋrmander [3].

Lemma 3.6 Suppose that there exist a real-valued C1 function φ(x) and

constants s0, sλ such that in some neighborhood V of 0,

(i)

(ii) _

(iii) {x e VI φ(x) ̂  j j Π Ω* is compact,

(iv) {x G V I φ(x) ̂  s0} ΓΊ Ω* ώ «wf ίy,

(v) {XGLV \ φ(x)^s0} is not empty.
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Then every distribution solution u(x) in V of the equation Pu=0 vanishing in Ω
must vanish in {x£ V \ φ{x)<Sι}.

Proof of the Theorem 3.1 By the lemma 3.2 we may take Ω as the set
{x^V\y}r(x)<0i}. Now take U(r) in the lemma 3.5 as the neighborhood V
of 0 in the lemma 3.6. Then the condition (i) is fulfilled. Set so=—ar2 and
s1=ar2. Then (ii) becomes trivial and (iii) is derived from the lemma 3.3.
The other conditions (iv) and (v) are easily derived from the expression of φ(x)
and ψ(x), so we omitt their prooves. This ends the proof of the theorem 3.1.

4. Choice of the local coordinates in the basic theorem

Let (xly •••, xn) be the local coordinates such that the surface xλ=0 is tangent
to 3Ω at x=0. We consider this coordinates as the weighted coordinates
with the weights (2, 1, •••, 1). The other local coordinates with the same pro-
perty become equivalent to this coordinates as the weighted coordinates.

Let P(x> dx) be a linear differential operator of order m with analytic
coefficients which is characteristic at 0 in the cotangential direction N—
(1, 0, •••, 0). We set / the multiplicity of P at (0, N). That is, for a cotangent
vector ζ=(ζl9 ξ2y —>ζn),

(4.1) PM(0, N+tζ) = L ( ξ y + h i g h e r order terms of t

where Pm is the principal part of P and L(ζ) is a non-zero polynomial of ζ.
This polynomial L(ζ) is called the localization of Pm at (0, N), which is originally
introduced by Hϋrmander [4]. When iV=(l, 0, •••, 0), (4.1) means that in
Pm(09 dx) there is none of the terms of order larger than m—l with respect to
3/3*! and the sum of the coefficients of {djdx^m~ι is equal to L(d/dx2, •••, 3/3#Λ).
Therefore L(ζ) is a homogeneous polynomial of degree / in the variables
(?2> "•> £«)• Since the weight of L(3/3*2, ••-, djdxn){djdx^m-1 is equal to I—2m,
we make the assumption:

(P.I) the weight of Pm(x, ξ) is equal to l—2my if the weight of ξ are assigned by
(-2, -1,.. ,-1).

Relating to the localization L(ζ) of Pm9 we introduce some linear spaces
in the tangent space TQ and the cotangent space T% of the surface 3Ω at 0.
For the polynomial L(f), we set

(4.2) Λ*(L) = fre Tf IL(ξ+vt) = L(ξ) for all t and ξ} ,

which is a linear subspace, and we introduce the annihilator

(4.3) Λ(L) = {ϋ6Γ f l |<v, v> = 0 for any-i?€ΞΛ*(L)} ,

where < , > denotes the contraction between cotangent vectors and tangent
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vectors. Λ(L) is the smallest subspace along which L(d/dx) operates and is
called the bicharacteristic space of P at (0, N). These subspaces are introduced
by Hϋrmander [4].

DEFINITION 4.1 An analytic function φ(x) with gradφ(0)=iV is said to
be a weighted characteristic function of P(x, dx) if it satisfies the following
condition:

(4.4) weight Pm(x, t gmdφ(x))^l—2tn+1 ,

where the parameter t is assigned the weight —2.
To find such a weighted characteristic function φ(x), it is sufficient that

φ is in the form

φ(x) =

Assume that

(P.II) there exists a weighted characteristic junction φ(x).

By the suitable equivalent change of the weighted coordinates we can
assume that φ(x)=xv Then the following proposition is easy to prove.

Proposition 4.1 If φ(x)=xly then (4.4) is equivalent to that there is none of
the differential monomials of the weight l~2m in Pm(x, dx) which is generated

only by d/dx^

We now fix some weighted characteristic function φ(x) and consider
the local coordinates (xu ••-,#„) as φ(x)=x1 (mod weight 3) and each x} (j=2>
•• ,n) has the weight 1. This means that the coordinates transformation con-
sidered from now on is in the following form:

j analytic function of the weight ^ 3 ,
(4.5) I

uj — Σ 0A~r-an analytic function of the weight 2̂

Then we make the last assumption on Pm such that

(P.III) weigh [Pm(xy ξ)-Pm(Oy ξ)]^l-

Proposition 4.2 This assumption (P.ΠI) is invariant under the change of
variables of form (4.5).

Proof. If we remark that by (4.5),

— = f- terms of the weight larger than —2
dx du
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d n 3
—— = Σ cki +terms of the weight larger than — 1 ,
dxj *=i duk

the invariance of (P.III) is easy to prove.
Assumption (P.III) means that the terms with the lowest weight in Pm do

not degenerate at 0.
Now we proceed to examine the conditions on Ω under the assumptions

(P. I, II, III).
If Ω is given by {p(x)<0} with a real-valued C 2 function p, we denote by

Hp the tangential Hessian of p at 0. That is

Then it easily derived that the symmetric bilinear form 2 — ^2 {Q^d

on To X To is invariant under the transformation of the coordinates of the form
(4.5). We set Np as the kernel of the linear map Hp: T0-*T$ defined by

Then Hp is derived to the bilinear form on the space TojNpX TJNP. Similary
if we set

where Λ(L) is the bicharacteristic space of P, Hp is also derived to the bilinear
form on A(L) X A.(L).

The first assumption on 3Ω is as follows:
(Ω.I) Λ(L)Φ0 and Hp is strictly negative definite on A(L)χA(L).

This condition means that Ω is concave in the direction of the bicharac-
teristic space at 0.

Lastly we demand that L(ζ), the localization of P, is non-characteristic at
some covector ξ0 for which Ω is strictly concave at 0. For this sake we in-
troduce N* the annihilator of Npy

N*= {ξ

Then we assume

(Ω.II) there exists a covector ξ0 in Nf such that L(£ 0)Φ0.

Now we construct the local coordinates (xl9 ••-,#„) so that the operator
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P(x, dx) is reduced to the form (3.1) and all assumptions in the basic theorem
are satisfied.

First we fix the weighted characteristic function φ(x) in (P.II) and set
φ(x)=xι.

Secondly we choose the tangential coordinates (x2,-~,xn)
 s u c h that the

vectors 3/3#2, •••, djdxμ. span the bicharacteristic space Λ(L) at 0. Since L(ζ)
does not vanish identically, the dimension of Λ(L) is μ— 1 which becomes
positive (i.e. μ^2).

Thirdly under the suitable linear change of variables (x2, •••,#/*), we may
assume that for some λ (2<λΞjμ), 9/3xλ+1, , djdxμ. span the subspace

). At this moment, the condition (Ω.l) means that the matrix

is strictly negative definite and

Lastly we shall prove that L(ζ) can be non-characteristic at dx2 by the
linear change of variables (x2y •••, xλ).

Proposition 4.3 By the suitable linear change of variables (x2, ",X\),
L(ζ) is non-characteristic at the covector dx2.

Proof. Let ^ G Γ f be the covector in the condition (Ω.II). Since
<£o> 9/3^ >=0 ( i = λ + l , .-, μ), ξ0 is written as

ξ0 = c2dx2-\ h^λώCλ+^μ+iώffμ+iH Ycndxn

= c2dx2-\ hcjxλ+ξί

where ξό^Λ*(L) which is generated by dxμ+u •••, dxn. T h e n

0ΦL(?0) = L(c2dx2+-+cλdxλ+ξ'o)

= L{c2dx2-\ \-cλdxλ).

Therefore this proposition is easily derived from this relation.
From this proposition, L(d/dx) is written as

where aΦO and the summation is taken over the multi-indices \a\=l, a2<ly

Thus the operator P(x, dx) is expressed in the form (3.1) under this coordi-
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nates. Since (P.I) implies (P.I), (P.IΠ) implies (P.2), (P.3) follows from the
fact that 3/3̂ 2, •••, 3/3ΛV span Λ(L), (Ω.l) is trivial from the choice of xx and
(Ω.2) is derived from (Ω.l), all conditions in the theorem 3.1 are satisfied under
this coordinates. Summing up these results we have the final theorem:

Theorem 4.1 Let P(x, dx) be a differential operator of order m with an-
alytic coefficients in a neighborhood V of p and Ω be an open set with C2 boundary
3Ωe/>. We suppose that P and Ω satisfy the conditions (P. I, II, III) and
(Ω. / , / / ) . Then every distribution solution u(x) of Pu=0 in V vanishing in Ω
must vanish in a neighborhood of p.
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