

Title	On the degrees of irreducible representations of finite groups
Author(s)	Watanabe, Atumi
Citation	Osaka Journal of Mathematics. 1981, 18(2), p. 403-406
Version Type	VoR
URL	https://doi.org/10.18910/7939
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Watanabe, A. Osaka J. Math. 18 (1981), 403-406

ON THE DEGREES OF IRREDUCIBLE REPRESENTATIONS **OF FINITE GROUPS**

ATUMI WATANABE

(Received November 29, 1979)

1. Introduction

Let G be a finite group of order |G| and F be an algebraically closed field of characteristic 0. Let T be an irreducible representation of G over F and d_{τ} be the degree of T. As is well know, d_T divides |G|. Furthermore there exists a sharper result due to Ito [2], namely, d_T divides the index in G of every abelian normal subgroup of G. Let s_T be the order of det T, that is, s_T is the smallest natural number such that $|T(x)|^{s_{T}}=1$ for all $x \in G$, where |T(x)| is the determinant of T(x). In Lemma of [4] we showed the first part of the following

Theorem 1. Let T be an irreducible representation of G over F. Then we have

(i) $d_T s_T |2|G|$, (ii) if d_T or s_T is odd then $d_T s_T ||G|$.

The second part follows from (i) by considering the 2-part of $d_T s_T$, since both d_T and s_T divide |G|.

The purpose of the present paper is to prove the following theorems.

Theorem 2. If G has an irreducible representation T over F with $d_{\tau}s_{\tau} \not\mid G \mid$, then the following holds.

(i) A 2-Sylow subgroup P of G is cyclic and $P \neq 1$. Hence G has the normal 2-complement K.

(ii) $C_{P}(K) = 1$.

(iii) T is induced from a representation of K.

The converse of Theorem 2 is also true:

Theorem 3. If G satisfies (i) and (ii) in Theorem 2, then G has an irreducible representation T with $d_T s_T \not\ge |G|$.

We also have the following

Theorem 4. Let T be an irreducible representation of G over F. Then we have

$$d_T s_T \leq |G|.$$

If $d_T s_T = G$, then G is cyclic.

I express my thanks to Professor H. Nagao for his valuable advice.

2. Proofs of the theorems

To prove our theorems we need the following Lemma.

Lemma. Let T be an irreducible representation of G over F, H a normal subgroup of G of index n and T_0 be an irreducible component of T_H , T_H the restriction of T to H. Then we have the following.

(i) If $T_H = T_0$, then $d_T = d_{T_0}$ and $s_T | ns_{T_0}$.

(ii) If $T=T_0^c$, then $d_T=nd_{T_0}$ and $s_T|_{2s_{T_0}}$. Furthermore if $2|_{d_{T_0}s_{T_0}}$ or s_T is odd, then $s_T|_{s_{T_0}}$.

Proof. (i) is clear. We prove (ii). Clearly $d_T = nd_{T_0}$. We set $s_T = s$, $d_{T_0} = d_0$ and $s_{T_0} = s_0$. Let x_1, \dots, x_n be a complete set of coset representatives of H in G. We extend T_0 to all elements of G by setting $T_0(x) = 0$ for all $x \notin H$. We may assume that T(x) is a $n \times n$ matrix of blocks whose (i, j)-th entry is the $d_0 \times d_0$ matrix $T_0(x_i^{-1}xx_i)$:

$$T(x) = \begin{pmatrix} T_0(x_1^{-1}xx_1)\cdots\cdots T_0(x_1^{-1}xx_n) \\ \cdots\cdots\cdots T_0(x_n^{-1}xx_1)\cdots\cdots T_0(x_n^{-1}xx_n) \end{pmatrix} \quad (x \in G) .$$

Hence for each $x \in G$, we have $|T(x)| = (-1)^{d_0 m} |T_0(y_1)| \cdots |T_0(y_n)|$, where $y_i \in H$, $i=1, \dots, n$, and m is an integer. Therefore, for each $x \in G$, $|T(x)|^{2s_0}=1$ and hence $s |2s_0$. If s is odd then $s |s_0$, and if d_0 or s_0 is even then $|T(x)|^{s_0}=1$ for each $x \in G$ and hence $s |s_0$.

Proof of Theorem 2. We prove (i) by induction on |G|. Put $d_T = d$ and $s_T = s$. Since $ds \not| |G|$, by Theorem 1, (ii) 2 | d and 2 | s. In particular $P \neq 1$ and 2 | |G: G'|, where G' is the commutator subgroup of G. Let H be a normal subgroup of G of index 2 and T_0 be an irreducible component of T_H . By Clifford's theorem, $T_H = T_0$ or $T = T_0^G$. Put $d_{T_0} = d_0$ and $s_{T_0} = s_0$.

(a) Suppose $T_H = T_0$. Since $ds \not| |G|$, by Lemma, (i) $d_0s_0 \not| |H|$ and hence both d_0 and s_0 are even. Therefore by the induction hypothesis, $P \cap H$ is cyclic. Suppose P is not cyclic. For each $x \in P$, $\langle x^2 \rangle \neq P \cap H$ and $|T(x)|^2 = |T_0(x^2)|$. Hence $|T_0(x^2)|^{s_0/2} = 1$ and $|T(x)|^{s_0} = 1$. On the other hand, for each 2-regular element $x \in G$, $|T(x)|^{s_0} = 1$, because $s |2s_0$. Therefore for each $x \in G$, $|T(x)|^{s_0} = 1$ and hence $s |s_0$. Thus $ds |d_0s_0| 2|H| = |G|$, which is a contradiction. Therefore P is cyclic.

(b) Suppose $T = T_0^{\mathcal{G}}$. We may assume 4 |G|. Suppose d_0s_0 is odd.

404

Then since $d=2d_0$, s is even and $s | 2s_0$ we have ds=4r with r odd. By Theorem 1, (i) r | G | and hence ds | |G|, which is a contradiction. Thus $2 | d_0s_0$ and by Lemma, (ii) $s | s_0$. Then $ds | 2d_0s_0$ and hence $d_0s_0 \not/ |H|$. By the induction hypothesis, $P \cap H$ is cyclic. Suppose P is not cyclic. For each $x \in P \cap H$, $|T(x)| = |T_0(x)| |T_0(y^{-1}xy)| = |T_0(xy^{-1}xy)|$, where y is an element of P which does not belong to $P \cap H$. Since $P \cap H$ is a cyclic 2-group and x and $y^{-1}xy$ are of the same order, $xy^{-1}xy$ does not generate $P \cap H$. Hence $|T_0(xy^{-1}xy)|^{s_0/2}=1$ and $|T(x)|^{s_0/2}=1$. For each $x \in P$ which does not belong to $P \cap H$, $|T(x)| = |T_0(x^2)|$, because d_0 is even. Since P is not cyclic, $|T_0(x^2)|^{s_0/2}=1$, hence $|T(x)|^{s_0/2}=1$. Therefore for each $x \in P$, $|T_0(x)|^{s_0/2}=1$. On the other hand, for each 2-regular element $x \in G$, $|T_0(x)|^{s_0/2}=1$ because $s | s_0$. Hence $s | s_0/2$ and $ds | 2d_0 \cdot s_0/2 = d_0 s_0$. By Theorem 1, (i) we have ds | |G|. This is a contradiction. Therefore P is cyclic. By Burnside's theorem G has the normal 2-complement K. Thus (i) is proved.

Now we show (iii). Let T_1 be an irreducible component of T_K , \tilde{K} the inertial group of T_1 in G and let \tilde{T} be an irreducible representation of \tilde{K} such that $T = \tilde{T}^G$ and that T_1 is an irreducible component of \tilde{T}_K . Put $d_{T_1} = d_1$, $s_{T_1} = s_1$, $d_{\tilde{T}} = \tilde{d}$ and $s_{\tilde{T}} = \tilde{s}$. Since \tilde{K}/K is cyclic, $\tilde{T}_K = T_1$ and $\tilde{d} = d_1$ (see the proof of [1, (9.12)]). As \tilde{d} is odd, $\tilde{ds} | |\tilde{K}|$ by Theorem 1, (ii). If $2 | \tilde{ds}$, then $s | \tilde{s}$ by Lemma, (ii). Hence $ds | |G: \tilde{K}| \tilde{ds} | |G: \tilde{K}| |\tilde{K}| = |G|$. This yields a contradiction. Hence $2 \not\not| \tilde{ds}$. Since $|\tilde{K}: K|$ is a power of 2, by Theorem 1, (i) $\tilde{ds} | |K|$. Therefore $ds | 2 | G: \tilde{K} | \tilde{ds} | 2 | G: \tilde{K} | |K|$. Thus we see $\tilde{K} = K$. This completes the proof of (iii).

Finally we prove (ii). From (iii), |P| | d. From (i), $C_P(K)$ is a central subgroup of G. Hence $d | |G: C_P(K)|$. Therefore $C_P(K)=1$. This completes the proof of the theorem.

Proof of Theorem 3. We set $|P|=2^a$, $P=\langle x\rangle$ and $y=x^{2^{a-1}}$. Since $C_P(K)$ =1, y induces a non-identity automorphism of K. By [3, Satz 108], there is a conjugate class of K which is not fixed by y. Hence y does not fix some irreducible representation of K over F, say T_0 . Since $\langle yK \rangle$ is the unique minimal subgroup of G/K, K is the inertial group of T_0 in G. Hence T_0^G is an irreducible representation of G. We set $T=T_0^G$. Then $2^a|d_T$ and we see |T(x)|=-1. Hence $d_Ts_T \not| |G|$.

Proof of Theorem 4. We prove by induction on |G|. If G is abelian, then the theorem is trivial. We assume that the theorem is true for any proper subgroup of G. First we prove $ds \leq |G|$. Suppose ds > |G|. By Theorem 1, (i) ds=2|G|. Since d||G|, s is even and 2||G:G'|. Let H be a normal subgroup of G of index 2 and T_0 be an irreducible component of T_H . By the induction hypothesis and Lemma, $T=T_0^G$ and $d_{T_0}s_{T_0}=|H|$. By the induction hypothesis, H is cyclic, d=2 and s=|G|. Hence G is abelian, which conA. WATANABE

tradicts d=2. Thus we have proved $ds \leq |G|$. Next we prove the remaining part of the theorem. Suppose ds = |G|. We may assume $G \neq 1$. Since d < |G|, $s \neq 1$ and hence $G \neq G'$. Let L be a normal subgroup of G of prime index p and T_1 be an irreducible component of T_L . We prove L is cyclic. By the induction hypothesis and Lemma, if $T_L = T_1$ or if $T = T_1^G$ and $d_{T_1}s_{T_1}$ is even, we see easily L is cyclic. Put $d_{T_1} = d_1$ and $s_{T_1} = s_1$. If $T = T_1^G$ and d_1s_1 is odd, then we see $|L| = d_1 s_1$ or $|L| = 2d_1 s_1$. By the induction hypothesis, $|L| = d_1 s_1$ implies L is cyclic. In the case $|L| = 2d_1s_1$, let U be the normal 2-complement of L. As d_1s_1 is odd, by Clifford's theorem and Lemma, (ii) we see that $(T_1)_U$ is irreducible and s_1 is the order of det $(T_1)_U$ and that $d_1s_1 = |U|$. Hence by the induction hypothesis, U is cyclic. Hence $d_1=1$ and $s_1=|U|$ and hence |L'||2. On the other hand $L' \subset U$. Therefore L'=1 and L is cyclic. Thus we have proved that L is cyclic. If $T_L = T_1$, then d = 1 and s = |G|, hence G is cyclic. Suppose $T=T_1^G$, then d=p, |G'|=p and s=|G:G'|. Let M be any normal subgroup of G of prime index. By the argument applied to L and by d=p, |G: M| = p. Hence G/G' is a p-group and hence G is a p-group. Since |G'| = p, G' is a central subgroup of G. By s = |G:G'|, G/G' is cyclic. Therefore G is abelian. This contradicts d=p, and this completes the proof.

References

- [1] W. Feit: Characters of finite groups, Benjamin, New York, 1967.
- [2] N. Ito: On the degrees of irreducible representations of a finite group, Nagoya Math. J. 3 (1951), 5-6.
- [3] A. Speiser: Die Theorie der Gruppen von endlicher Ordnung, 3rd., Berlin.
- [4] A. Watanabe: On Fong's reductions, Kumamoto J. Sci. (Math.) 13 (1979), 48-54.

Department of Mathematics Faculty of Science Kumamoto University (860) Kurokami 2–39–1, Kumamoto, Japan