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Abstract
Let D be a closed unit disk in dimension two and Gy the group of symplectomorphisms on D
preserving the origin and the boundary dD pointwise. We consider the flux homomorphism on
G,e and construct a central R-extension called the flux extension. We determine the Euler class
of this extension and investigate the relation among the extension, the group 2-cocycle defined
by Ismagilov, Losik, and Michor, and the Calabi invariant of D.

1. Introduction

Let D = {(x,y) € R? | x> + y* < 1} be a closed unit disk with a symplectic form
w =dxAdy. Puto = (0,0) € D. Let us denote by a? the pullback of a differential form « by
a diffeomorphism g. Denote by G = {g € Diff(D) | w9 = w, g(0) = o} the group consisting
of symplectomorphisms on D that preserve the origin and set G.; = {g € G | glgp = idgp}.
Then there is the following exact sequence:

1 — Gy — G — Diff, (S — 1,

where Diff,(S!) is the group of orientation preserving diffeomorphisms on the unit circle
S =9D. On the group Gy, there is an R-valued homomorphism

FIUXR:Grel_)R;ngng_n
4

called the flux homomorphism, where y is a path from the origin to the boundary of D and
n is a 1-form satisfying w = dn. If we take 1 as in (3.3), the homomorphism Fluxg seems to
be the pairing of the ordinary flux homomorphism Flux : Gy — H '(D,0D U {0};R); g —
[77 — n] and the generator of the singular homology H;(D,dD U {o}; Z). Although, for an
arbitrary n, the closed form 7Y — n is not necessary to define the relative cohomology class
(and thus the ordinary flux homomorphism is not well-defined in this case), the integral
fy n?Y — n remains meaningful. Moreover, the integral is also independent of the choice of 7.

Dividing the above exact sequence by the kernel K = Ker Fluxg, we obtain the following
central R-extension:

0 — R — G/K — Diff,(S)) — 1,

which we call the flux extension. Denote by ¢(G/K) the Euler class of the flux extension,
namely the cohomology class in H*(Diff,(S!); R) corresponding to the given extension.
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There is another cohomology class er in H*(Diff (S '); R), which is the class corresponding
to a universal covering space of Diff,(S'). The following theorem clarifies the relation
between e¢(G/K) and eR:

Theorem A (Theorem 3.10). The class e(G/K) is equal to mep.

For a symplectic manifold M endowed with an exact symplectic form w, there is a 2-
cocycle C, ,, on Symp(M) for some 7 satisfying w = dn and xo € M defined by Ismagilov,
Losik, and Michor [4], which we call the ILM cocycle. Let us consider the ILM cocycle
Cy.x, on H = Symp(D) for n = (xdy — ydx)/2 and xo = (1,0) € dD. It turns out that the ILM
cocycle is related to the flux homomorphism. Let 7 : G — R be the map defined in the same
way as for the flux homomorphism, that is, 7(g) = fy n? —n, where vy is defined as (3.3) in
section 3. Then the ILM cocycle is equal to the coboundary —o7 on G.

The ILM cocycle also relates to the Calabi invariant. Set H.; = {g € H | glspp = id}. The
Calabi invariant Cal : H — R is defined as

Cal(g) = f nudn(g) = f n? A .
D D

Let 7o : H — R be the function defined by the same formula of Cal. Then it turns out that
the ILM cocycle coincides with 7. From this, we have

Theorem B (Theorem 5.7). Take 1 and xo as above. The ILM cocycle C, ,, is basic,
that is, there exists a cocycle y on Diff,(S') such that Cyxy, = P*x with the restriction
p: H — Diff (S"). Furthermore, the cohomology class [x] is equal to meg.

Furthermore, we can generalize Theorem B for arbitrary choices of xy € dD and 7 satisfying
w=dn.

The present paper is organized as follows. In Section 2, we briefly recall the Euler class
of a central extension. We describe a cocycle representing the Euler class in terms of a
connection cochain and its curvature. In Section 3, we construct the flux extension and we
prove Theorem A. In Section 4, we introduce the ILM cocycle. Finally, in Section 5, we
discuss the relation between the Calabi extension and the ILM cocycle, and prove Theorem
B.

2. Central extensions and the Euler class

Let I" be a group and A a right I'-module. We denote the action by a? fora € A,g € T
For a non-negative integer p, a p-cochain is an arbitrary map c¢ : I'” — A, where I'? denotes
the p-fold product group of I'. Set C’(I'; A) = {c : [? — A | p-cochain} and define the
coboundary map 6 : CP(I'; A) — CP*1(T'; A) by

0c(gis- - gps1) = (g2, .-, Gps1)
P
+ ) (=1c(@rs- s GiGists - Gpr1) + D e(gr, o gp)P
i=1
for c € CP(I';A) and g1,...,9,+1 € I'. These cochains and cobundary maps give rise to a
cochain complex (C*(I', A), 6) and its cohomology H*(I'; A) is called the group cohomology

(see [1] for more details).
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If A is a trivial [-module, the group cohomology H?(T'; A) has a description in terms of
central extensions of groups. Recall that a central A-extension of T is an exact sequence of
groups

0—bA-SEST 1

such that the image i(A) is contained in the center of E. It is known that each equivalence
class of central A-extensions corresponds to a second cohomology class in H*(T"; A) (see
[1]). For a central A-extension E, the corresponding cohomology class e(E) € H*(T; A) is
called the Euler class of the central A-extension E.

To investigate the Euler class at the cochain level, we introduce the notions called a con-
nection cochain and its curvature. This is similar to the Chern-Weil theory defining charac-
teristic classes of principal bundles.

DeriNtTION 2.1. Let E be a central A-extension of I'. A 1-cochain 7 € C1(E; A) is called a
connection cochain of E if T satisfies

T(ea) = 1(e) +a
for any e € E,a € A. The coboundary 6t € C*(E; A) is called a curvature of 7.

A curvature is basic, that is, there exists a unique 2-cocycle o € C 2(T'; A) such that the
pullback of o to E coincides with 6. We call this cocycle o a basic cocycle of 67. Then the
cohomology class [—o] is equal to the Euler class e(E) (see [7] for more details).

Let B be an abelian group and ¢ : A — B a homomorphism. A 1-cochain 73 € C'(E; B)
is called a (B-valued) connection cochain if Tp satisfies Tg(ea) = tg(e) + t(a) for every
e € E,a € A. The curvature d7p is basic and we denote by o € C2(T’; B) the basic cocycle.
Then the class [0 ] corresponds to the image of Euler class e(E) with respect to a natural
homomorphism H*(T'; A) — H*(T; B).

ExampLE 2.2. Let us consider the real Euler class ex € H*(Diff.(S');R), which is the
image of the Euler class of a central extension 0 — Z — Diﬁ?(f? 1) = Diff,(S') — 1 under
the homomorphism H*(Diff,(S'); Z) — H*(Diff.(S'); R). For any real number ¢ € R, a 1-
cochain 7 on Dim 1) is defined by 7(¢) = ¢(c)/2n € R, where an element ¢ in Dim D)
is considered as a diffeomorphism on R satisfying ¢(x +2m) = ¢(x) + 27 for any x € R. This
cochain 7 is a (R-valued) connection cochain and minus the basic cocycle is

@i(c) — p(c) — Y(c)

2.1 X, v) = =67(p, ) = o

where ¢, € Diff?(f?l) are lifts of u, v € Diff (S ') respectively. This cochain y is a cocycle
representing the real Euler class eg.

3. The flux extension

Next we introduce another central R-extension of Diff (S '). Let G be the group of sym-
plectomorphisms on D preserving the origin o = (0,0) € D:

G ={g € Diff(D) | 0’ = w, g(0) = 0},
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where w7 is the pullback of w by g. We denote by G the subgroup of G consisting of
symplectomorphisms which are the identity on boundary. Then there is the following exact
sequence:

1 — G — G — Diff, (S — 1.

DeriNtTioN 3.1. The flux homomorphism Fluxg € C'(Gre; R) is defined as

(3.1) Fluxg(g) = - f on(g) = f n’-n
Y Y
for g € G-

Remark 3.2. The flux homomorphism Fluxy is independent of the choice of 7 because of
the equality L a? —a = 0 for any closed 1-form a on D. It is also independent of the choice
of path y connecting the origin o and a point on boundary because nY — 17 is exact and the
pullback of 9 — i to dD is equal to 0.

Proposition 3.3. The flux homomorphism Fluxy is surjective.

Proof. Let @ : [0,1] — R be a non-negative C* function such that a(x) = 0 on a
neighborhood of {0, 1} and a(1/2) = 1. For s € R, define the symplectomorphism &, by
hy(r,0) = (r, 0+ sa(r)) where (r,0) € D is the polar coordinates. Then we have Fluxg(/#;) > 0
and Fluxg(h,) = s Fluxg (), and the surjectivity follows. O

The right-hand side of formula (3.1) also defines a 1-cochain 7 : G — R:

(3.2) 7(9) = — f on(g).
Y

Unlike Fluxg, the map 7 does depend on the choice of 17 and 7 at the outside of G.;. From
now on, we fix n and y as

(3.3) n = (xdy — ydx)/2 andy : [0,1] = D;y(t) = (¢,0).

RemMARk 3.4. We can generalize all the discussions after here for arbitrary choices of
satisfying w = dn and vy connecting the origin and the boundary.

Proposition 3.5. For g, h € G, the following holds:
1
(3.4) —07(g. 1) = 5 (Y (0) = ¢(0) - Y(0)),

where @, € Diffj(-:? 1) are lifts of the restrictions glsp, hlap € Diff .(S") respectively.

Proof. Minus the coboundary of 7 is
(35) ~srigm= [ ong).
y=hy

By the Stokes formula and the exactness of 67(g), the integration (3.5) depends only on the
endpoints of y — hy. So we have
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X0 h(x0)
(3.6) _sr(g.h) = fh on(g) = - f 51(9).

(x0) Xo

where xy = y(1) = (1,0). Using the polar coordinates (r, §), we put

g(r’ 9) = (gl (r’ 0)’ gZ(r’ 0)) € D

Then the restriction of the integrand 67n(g) to the boundary 0D becomes %(d@ —dg,). Since
@ is a lift of glap(0) = g2(1,6) € Diff (S), we obtain

1 o) 1 (*O P
~otlg.h) =~ f 40— dg, = ‘zf dx - 222 dx
X0 0

1
= 5p(0) = ¢(0) — Y(0)).

RemaArk 3.6. The equality (3.4) implies that the cochain 7 is a quasi-morphism, that is,
ot is a bounded function. In fact, the absolute value %lgo:,b(O) — ¢(0) — ¥(0)] is bounded by 7
(see [3] for more details).

Next we show the formulas which are similar to Kotschick-Morita[5, Lemma 6].

Corollary 3.7. For g € G, h € Gy, the following hold:

i) 7(gh) = 7(g) + Fluxg(h) and t(hg) = 1(g) + Fluxg(h).
i1) The map Fluxg : Gy — R is a homomorphism satisfying

Fluxg (ghg™") = Fluxg(h).
iii) The kernel of the flux homomorphism K = Ker Fluxy is a normal subgroup of G.

Proof. As in the Proposition 3.5, we take lifts ¢ and ¢ in Dim]) of glgp and hlgp
respectively. Since i € Gy, we have y = T" for some integer n € Z, where T : R — R is
the translation 7 (x) = x + 2z. Thus, we obtain

5709, 1) = 56(0) = 6T (0) + T"(0)) = 3@(0) - p(0) = 27+ 2nm) = 0
and
51l g) = 5("(0) = T"9(0) + (0)) = 520~ ¢(0) - 2 + 9(0)) =
On the other hand, we have
07(g, h) = Fluxg(h) — 7(gh) + 7(9) and d7(h,g) = 1(g) — T(hg) + Fluxg(h),

which proves i). The equalities in 1) prove ii) and the equality in ii) proves iii). m|

According to Corollary 3.7, we have the exact sequence
0 — R — G/K — Diff,(S!) — 1,
where R is identified with G, /K.
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Proposition 3.8. The sequence
(3.7) 0 — R— G/K — Diff ,(S}) — 1
is a central R-extension.

Proof. Note that the equality 71 K = hyK is equivalent to Fluxg (/) = Fluxg(h;) for every
hi, hy € Gre. Since Fluxg(ghg™") = Fluxg(h) for g € G and h € Gy, we obtain

ghK = ghg™'gK = ghg™'K - gK = hK - gK = hgK.

The above equality implies that the sequence (3.7) is a central extension. |

DerinTioN 3.9. The central R-extension
0 — R — G/K — Diff,(S)) — 1

is called the flux extension.

The 1-cochain 7 of (3.2) induces a connection cochain T € C'(G/K;R) of the flux ex-
tension because of the Corollary 3.7 i). Thus the formula (3.4) gives the following Euler
cocycle of flux extension

1
—0T(gK. hK) = Z(p(0) = ¢(0) = ¥ (0)),

where ¢, ¥ are defined as in Proposition 3.5 for g, h € G. Using the formula (2.1) with ¢ = 0,
we obtain

-07(gK, hK) = my(u, v),
where ¢ = glgp and v = h|yp. Consequently we have the following:

Theorem 3.10. The class e(G/K) is equal to e up to constant multiple. More precisely,
the following holds:

e(G/K) = neg.

4. Ismagilov-Losik-Michor’s cocycle

Let M be a connected symplectic manifold with exact symplectic form w. Assume that the
first Betti number of M is 0. Then, there is a 2-cocycle C;, ,, in C?(Symp(M); R) introduced
by Ismagilov, Losik, and Michor [4], which we call the ILM cocycle. For xo € M and
n € Q1(M) satisfying dn = w, the ILM cocycle is defined as

h(xo) h(xo)
@.1) Cyalgoh) = — f 5n(g) = f -1

X0 Xo

for g,h € Symp(M). They proved that the cohomology class [C, ,,] is independent of the
choice of xy € M and the potential n € Q'(M).

ReMARK 4.1. Let H = {(x,y) € R? | y > 0} be the upper half-plane with the symplectic
(area) form dx A dy/y*. Then the group PSL(2,R) is considered as a subgroup of Symp(H)
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and the restriction of the ILM cocycle to PSL(2,R) is cohomologous to the area 2-cocycle
which is defined as the area of geodesic triangles (see [4]).

The ILM cocycle corresponds to the symplectic form w in the double complex
(C*(Symp(M); Q*(M)), 6,d) as follows: Considering a real number as a constant function
on M, there is an inclusion

i : C*(Symp(M); R) < C*(Symp(M); Q°(M)).
There exists a function K, (g) satisfying

dK?],X()(g) = 677(9) and KT],X()(g)(XO) = O

because of H'(M;R) = 0. Since the manifold M is connected, this function Kyx0(9)
is uniquely determined for each g € Symp(M). Then we obtain the 1-cochain K, ,, €
C'(Symp(M); Q°(M)). A straightforward calculation shows that 0K, = —i(Cpx,) (see
Proposition 2.3 of [2]). Then these cochains w,n, K, », and C, ., are connected via the fol-
lowing diagram:

|

S bB——
a
(=%
|—>0|—>& @)
S

4.2)

_C’I,Xo

Remark 4.2. We consider the differential forms Q°(M) as a right Symp(M)-module by
pullback.

RemARK 4.3. In terms of &, ,,, the flux homomorphism Flux is expressed by
Fluxg(g) = K.+,(9)(0).

Let us return to the disk case. Take n and y as (3.3) and put xo = y(1) = (1,0). We
consider the ILM cocycle C,, ,, on H = Symp(D). Leti : G — H be the inclusion. By the
equality (3.6), the pullback of C, ,, by i is a coboundary, that is,

(4.3) —61 = i*Cyy, € CH(G; R).
So we have proved
Theorem 4.4. Take 1, xo as above. On the sequence
1 — G — G — Diff,(S!) — 1,

the pullback i*C,, y, of the ILM cocycle is basic and its basic cocycle represents meg.
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ReMARK 4.5. For arbitrary 7 and xo € 0D, we can prove Theorem 4.4 (and also Theorem
5.7 below) by taking the path y from the origin to xj.

Corollary 4.6. The pullback i*C), ., is a bounded cocycle.

Proof. Since 7 is a quasi-morphism, the boundedness follows. |

5. The Calabi invariant and extension

In this section, we investigate the relation between the ILM cocycle and the Calabi invari-
ant. First we summarize the results in [7], which are needed to us. Let us recall the Calabi
invariant and the Calabi extension. Denote by H, the group consisting of the relative sym-
plectomorphisms on D, that is, of the symplectomorphisms on D whose restrictions to the
boundary dD are equal to the identity idgp:

Hie = {9 € H | glop = 1d}.
Then there is an exact sequence
1 — H,q — H — Diff,(S") — 1.

On the group H,|, the homomorphism Cal : H, — R is defined by

(5.1) Cal(g) = fDn Uon(g) = fD n? A @m—-n7),

where the symbol U is the cup product of group cochains defined as follows: for a €
CP(G;Q'(D)),B € CUG; Q' (D)) and g1, ..., gp+g € G,
@ Uﬁ(gl’ crt gp+q) = a(gle cec gp)gp+1...gp+q Aﬁ(gp+l7 cec gp+q)-

This homomorphism is called the Calabi invariant (see [6] for details). It is known that the
Calabi invariant is a surjective homomorphism and L = Ker Cal is a normal subgroup of H.
Dividing the above exact sequence by L, we have the following central extension

0 — R — H/L — Diff,(S') — 1
called the Calabi extension.

ReMARK 5.1. There are no inclusion relation between L N G and K = Ker Fluxp.

Next we consider the resulting class e(H/L) of the Calabi extension. The right-hand side
of the formula (5.1) also defines the 1-cochain 7y : H — R. The 1-cochain 7y € C'(H;R)
induces a connection cochain

7o € C'(H/L;R)

of the Calabi extension. The curvature 67 is basic and this basic cocycle, denoted by the
same letter 67, coincides with —7%y—m?/2. Thus we have e(H/L) = n’ex (see Moriyoshi [7,
Theorem 2]).

For 17, xo in Theorem 4.4, the ILM cocycle C), ., gives a curvature of the Calabi extension.
Define a 1-cochain k € C'(H;R) by
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K= f Ky U
oD

Remark 5.2. This 1-cochain « is a non-zero function.

Proposition 5.3. Set 7' = 79 + k € C'(H;R). The following holds:
-67 =nC, .

Proof. For g € H, we have

m(g)—f A= - fén(g)m— f(dlcnm(g))m
(5.2) f Ko@) - f K9] = ( f Ky U )(g)

where the fourth equality follows from the Stokes formula. Recalling that 6K, ;) = —C,, .,
we get

0Ty = f(—C,],xo) Uw =0k = —rC, , — OK.
D

This proves —o07" = nC, . |

REMARK 5.4. Combining equality (4.3) and Proposition 5.3, we have 6(n7 —7’|g) = 0. So
the function 77 — 7’| : G — R is a homomorphism. Furthermore, this homomorphism is
surjective.

Next, we show 7’ also gives rise to a connection cochain.

Lemma 5.5. For g € H,h € Hy, we have the following:
1) k(h) =0, and
i) k(gh) = k(g) = k(hg).

Proof. i) The 1-cochain &, ,, satisfies
(5.3) dK, «,(h) = on(h) and K, (h)(xo) =0

by the definition of K, . The restriction of closed form o6n(h) to dD is equal to 0 because
the restriction hlsp is the identity. There exists a O-form f : D — R such that

(54 on(h) =df and flop =0
because of H'(D, 0D;R) = 0. From the equalities in (5.3) and (5.4), we deduce
KT],XO (h) - f =

where c is a constant in R. Evaluating KC,,  (h) — f at xo, we have ¢ = 0. So we obtain

= [ Koty = [ fn=o
oD oD

d(Ky,(gh) = Ky (9)) = " = diC,s 1, (h)

i1) Note that
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and (K0, x,(gh)—KC;) ,(9))(x0) = 0 = Ky, (h)(x0). By the same argument in 1), the restriction
Ko x,(Wlap s equal to 0. So we have

Kr],xo(gh)lﬁD = Kr],xo(g)bD
and this equality induces x(gh) = k(g). Applying the similar argument for
d(ICTIJCO(hg) - ]Cn,xo(g)) = Ug - Uhg = d(lcﬂ,xo(h)g),

we obtain «x(hg) = «(g). O

Lemma 5.6. For g € H,h € Hy, the following hold:
(5.5) 7'(gh) = 7'(g) + Cal(h) = 7'(hg).
Proof. The 1-cochain 7 satisfies
70(gh) = 70(9) + Cal(h) = 10(hg),

where g € H and h € Hy (see [7, Proposition 4]). Combining the above equalities and
Lemma 5.5, we obtain the equalities (5.5). O

From Lemma 5.6, the cochain 7’ induces the connection cochain 7 € C'(H/L;R) of
the Calabi extension. So —67’ gives the Euler class e(H/L) € H*(Diff .(S'); R). Recalling
e(H/L) = n’eg, we obtain

Theorem 5.7. For n, xy in Theorem 4.4, The ILM cocycle C, ,, is basic with respect to
the exact sequence

1 — H,q — H — Diff,(§') — 1

and the cohomology class of basic cocycle is equal to meg.

Remark 5.8. The integration in definition of ILM cocycle depends only on the restrictions
of g, h to D. Hence, from Corollary 4.6, the ILM cocycle C, ,, is also a bounded cocycle.
Since 07’ is equal to —nC,, ,, the cochain 7’ gives rise to a quasi-morphism on H. In [7], itis
proved that the cochain 7 is a quasi-morphism. Thus the cochain « is also a quasi-morphism
on H because of 7/ = 1 + «.
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