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Abstract
We study traveling waves for a two-dimensional lattice dynamical system with

monostable nonlinearity. We prove that there is a minimal speed such that a traveling
wave exists if and only if its speed is above this minimal speed. Then we show the
uniqueness (up to translations) of wave profile for each given speed. Moreover, any
wave profile is strictly monotone.

1. Introduction

In this paper, we study the existence and uniqueness of traveling waves to the fol-
lowing two-dimensional (2-D) lattice dynamical system:

u̇i , j = ui +1, j + ui�1, j + ui , j +1 + ui , j�1 � 4ui , j + f (ui , j ), i , j 2 Z,(1.1)

where f is monostable: f (0) = f (1) = 0< f (u), 8u 2 (0, 1). The equation (1.1) is a
spatial discrete version of the following reaction-diffusion equation

(1.2) ut = 1u + f (u), x 2 RN , t 2 R,

for N = 2. When f (u) = u(1� u), the equation (1.2) is called Fisher’s equation [9]
or KPP equation [11] which arises in the study of gene development or population
dynamics.

A solution fui , j gi , j2Z is called a traveling wave with speedc, if there exists a� 2
[0, 2�) and a differentiable functionU : R ! [0, 1] such thatU (�1) = 1, U (+1) = 0,
andui , j (t) = U (i p+ jq�ct) for all i , j 2 Z, t 2 R, where p := cos� andq := sin� . The
parameter� represents the direction of movement of wave andU is called the wave
profile. Set� := i p + jq � ct. Then it is easy to see that (1.1) has a traveling wave
with speedc if and only if the equation

cU0(� ) + D2[U ](� ) + f (U (� )) = 0, � 2 R,(1.3)

2000 Mathematics Subject Classification. Primary 34K05, 34A34; Secondary 34K60, 34E05.
This work was partially supported by the National Science Council of the Republic of China under

the grant NSC 95-2115-M-003-001. We would like to thank the referee for some helpful comments.



328 J.-S. GUO AND C.-H. WU

has a solutionU defined onR with 0� U � 1, U (�1) = 1, andU (+1) = 0, where

D2[U ](� ) := U (� + q) + U (� + p) + U (� � q) + U (� � p)� 4U (� ).

In particular, if � = 0, then the problem (1.1) is reduced to a one-dimensional (1-D)
lattice dynamical system onZ.

The study of traveling wave for lattice dynamical systems has attracted a lot at-
tentions for past years. The main concerns are the existence, uniqueness, and stability
of traveling waves for the lattice dynamical system. For the1-D lattice dynamical sys-
tem, we refer the readers to, e.g., [3]–[7], [10, 12, 13], [15]–[18] and the references
cited therein. The nonlinearityf under consideration in the above references is either
monostable or bistable. Heref is called a bistable nonlinearity, if there isa 2 (0, 1)
such that f (0) = f (a) = f (1) = 0, f 0(0)< 0, and f 0(1)< 0.

On the other hand, Cahn, Mallet-Paret, and van Vleck [1] studied a two-dimensional
(2-D) lattice dynamical system with bistable nonlinearity. They obtained the existence
and non-existence (so-called propagation failure) of traveling waves for the studied lat-
tice dynamical system. The purpose of this paper is to study a2-D lattice dynamical
system with monostable nonlinearity.

We shall make the following assumptions.
(A) f 2 C1([0, 1]), f (0) = f (1)< f (u), 8u 2 (0, 1) and f 0(0)> 0.
(B) There existsM0 = M0( f ) > 0 and� 2 (0, 1] such that

(1.4) f 0(0)u� M0u1+� � f (u) � f 0(0)u, 8u 2 [0, 1].

(C) f 0(1)< 0 and f (u)� f 0(1)(u� 1) = O(ju� 1j1+�) as u ! 1�.
By the symmetry ofD2[U ], we may only consider� 2 [0, �=2). Since we are

dealing with a 2-D problem, we shall always assume that� 2 (0, �=2). Therefore, for
a given� 2 (0, �=2), our problem is to find (c, U ) 2 R� C1(R) such that

8<
:

cU0(� ) + D2[U ](� ) + f (U (� )) = 0, � 2 R,
U (+1) = 0, U (�1) = 1,
0� U (� ) � 1, 8� 2 R.

(1.5)

Note that, by integrating (1.3) from�1 to +1, we have

(1.6) c =
Z 1
�1 f (U (� )) d�

for any solution (c, U ) of (1.5). Hencec > 0 for any solution (c, U ) of (1.5).
We now state the main results of this paper as follows.



TRAVELING WAVE 329

Theorem 1. Assume(A) and (B). Then the following holds:
(i) The problem(1.5) admits a solution if and only if c� c�, where

c� := min�>0

�
e�q + e�p + e��q + e��p � 4 + f 0(0)�

�
.

(ii) Every solution(c, U ) of (1.5) satisfies0< U (� ) < 1, 8� 2 R.
(iii) For each c� c�, (1.5) admits a solution(c, U ) with U0 < 0 on R.

Theorem 2. Assume(A), (B), and (C). Then, for each c� c�, wave profiles
of (1.5) are unique up to translations.

To prove this uniqueness theorem, we need the following result on the monotonic-
ity of wave profiles.

Theorem 3. Assume(A), (B), and (C). Then all wave profiles of(1.5) are strictly
decreasing.

To prove the existence of traveling waves, we use the monotone iteration method
developed by Wu and Zou [15] (see also [4, 10]) with the help ofa pair of super-
sub-solutions. We shall define the notion of super-sub-solutions and prove a key lemma
for the existence of traveling wave in§2. Then, in§3, we prove Theorem 1.

To derive the uniqueness of wave profiles, we shall first applyIkehara’s theorem
(cf. [14, 8]) to study the asymptotic behavior of wave profiles. This idea is originated
from Carr and Chmaj [2] in studying the uniqueness of waves for a nonlocal mono-
stable equation. To derive the asymptotic behavior of wave profiles, another method
can be found in [5, 6] for 1-D case. Here we use a different method which can be
easily applied to any higher dimensional case. With this information on the asymptotic
behaviors of wave tails, we then apply a method developed in [5] to prove Theorem 2
in §4.

Finally, we remark that the existence and uniqueness results presented in this paper
for 2-D case can be extended to general higher dimensional case. But, the stability of
these traveling waves in the multi-dimensional case is muchmore complicated. We
leave here as an open problem for the future study.

2. Preliminaries

First, we define the notion of super-sub-solutions. Given a positive constantc. A
non-increasing continuous functionU+ is called asuper-solutionof (1.5), if U+(+1) =
0 andU+ is differentiable a.e. inR such that

�c(U+)0 � D2[U+] � f (U+) � 0 a.e. in R.
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A continuous functionU� is called asub-solutionof (1.5), if U�(+1) = 0, U� 6� 0,
and U� is differentiable a.e. inR such that

�c(U�)0 � D2[U�] � f (U�) � 0 a.e. in R.

Next, we introduce the operatorH� : C(R) ! C(R) by

H�(U )(� ) = �U (� ) +
1

c
D2[U ](� ) +

1

c
f (U (� ))

for any constant� > (4 + max0�u�1j f 0(u)j)=c. It is easy to see thatU satisfies (1.3)
and U (+1) = 0 if and only if U satisfies

(2.1) U (� ) = e�� Z 1
� e��sH�(U )(s) ds =

Z 1
� e��(s�� ) H�(U )(s) ds, � 2 R.

Here, by choosing� > (4 + max0�u�1j f 0(u)j)=c, we see that (2.1) is well-defined and
the following property holds:

(2.2) H�(U )(� ) � H�(V)(� ), 8� 2 R, if 0 � U � V � 1 in R.

Lemma 2.1. Assume(A). Then(1.5) has a solution U satisfying U0 � 0, if there
exists a super-solution U+ and a sub-solution U� of (1.5) such that0� U� � U+ � 1
in R.

Proof. Assume that there exist a super-solutionU+ and a sub-solutionU� of (1.5)
such that 0� U� � U+ � 1 in R. Define

U1(� ) = e�� Z 1
� e��sH�(U+)(s) ds, � 2 R.

ThenU1 is a well-definedC1 function. Form the definition of super-solution, we have

U+(� ) � e�� Z 1
� e��sH�(U+)(s) ds = U1(� ), 8� 2 R.

Also, by the definition of sub-solution and the property (2.2) of H�, we get

U�(� ) � e�� Z 1
� e��sH�(U�)(s) ds� e�� Z 1

� e��sH�(U+)(s) ds = U1(� ), 8� 2 R.

HenceU�(� ) � U1(� ) � U+(� ) for all � 2 R. Moreover, we have

U 0
1(� ) = �e�� Z 1

� e��sfH�(U+)(s)� H�(U+)(� )g ds� 0,
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sinceH�(U+)(s) � H�(U+)(� ) for all s� � , by using the fact thatU+ is non-increasing
and� > (4 + max0�u�1j f 0(u)j)=c.

Now, we define

Un+1(� ) = e�� Z 1
� e��sH�(Un)(s) ds, n = 1, 2,: : : .

By induction, it is easy to see that 0� U� � Un+1 � Un � U+ � 1 andU 0
n+1 � 0 in R

for all n � 1. Then the limitU (� ) := limn!+1 Un(� ) exists for all � 2 R and U (� ) is
non-increasing inR. By Lebesgue’s dominated convergence theorem,U satisfies (2.1).
HenceU satisfies (1.3).

Finally, we claim thatU (+1) = 0 andU (�1) = 1. SinceU is non-increasing and
bounded, bothU (+1) and U (�1) exist. From 0� U (� ) � U+(� ) and U+(+1) = 0,
it follows that U (+1) = 0. By L’Hospital’s rule, we have

lim�!�1 U (� ) = lim�!�1 e��� H�(U )(� )�e��� = lim�!�1 �U (� ) + D2[U (� )]=c + f (U (� ))=c� .

This implies that f (U (�1)) = 0. HenceU (�1) 2 f0, 1g. SinceU�(�0) > 0 for some�0 2 R, we haveU (�1) � U (�0) � U�(�0) > 0. ThusU (�1) = 1. The lemma fol-
lows.

Recall thatp := cos� and q := sin� for a given� 2 (0, �=2).

Lemma 2.2. Assume f0(0)> 0. Set

C(�) :=
e�q + e�p + e��q + e��p � 4 + f 0(0)� ,

9(c, �) := c�� [e�q + e�p + e��q + e��p � 4 + f 0(0)].

Then there exists a unique�� > 0 such that C(��) = min�>0 C(�) := c�. Moreover,
if c < c�, then 9(c, �) < 0, 8� 2 R; if c > c�, then there exist�2(c) > �1(c) > 0
such that9(c, �i (c)) = 0, i = 1, 2, 9(c, � ) > 0 in (�1(c), �2(c)), and 9(c, � ) < 0 in
R n [�1(c), �2(c)]; if c = c�, then there exists a unique�1(c) > 0 such that�1(c) is a
double root of9(c, � ) = 0 and 9(c, �) < 0 for all � 6= �1(c).

Proof. The lemma follows by noting thatC(�) is convex andC(0+) = C(+1) = +1.

3. Existence

In this section, we shall establish the existence of traveling waves by constructing
a suitable pair of super-sub-solutions.

First, we derive two properties of solutions of (1.5).
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Lemma 3.1. (i) Every solution(c, U ) of (1.5) satisfies0< U (� ) < 1, 8� 2 R.
(ii) Every solution(c, U ) of (1.5) satisfying U0 � 0 in R satisfies U0 < 0 in R.

Proof. Let (c, U ) be a solution of (1.5).
Suppose that there exists�0 2 R such thatU (�0) = 0. Without loss of general-

ity, we may assume�0 is the left-most point such thatU (�0) = 0, sinceU (�1) = 1.
By (1.3), usingU � 0 andU 0(�0) = 0 we haveU (�0� p) = U (�0�q) = U (�0) = 0. This
contradicts the definition of�0. HenceU > 0 in R. Similarly, U < 1 in R. Thus (i)
is proved.

To prove (ii), for a contradiction, we suppose that there exists�1 such thatU 0(�1) =
0. By differentiating (2.1) with respect to� , we obtain

0 =�e��1

Z 1
�1

e��s[H�(U )(s)� H�(U )(�1)] ds� 0,

since U 0 � 0. Hence we haveH�(U )(s) = H�(U )(�1), 8s � �1. Letting s ! +1,
we obtain thatH�(U )(�1) = 0. Then, from (1.3) and usingU 0(�1) = 0, it follows that�U (�1) = 0, a contradiction to (i). Hence the lemma is proved.

Hence Theorem 1 (ii) is proved.
We now construct a pair of super-sub-solution forc > c� as follows.

Lemma 3.2. Assume(A) and (B). For each c> c�, let 0< r <minf�1�,�2��1g,
where �i = �i (c), i = 1, 2, are defined inLemma 2.2. Then U�(� ) := maxf0, (1�
Me�r � )e��1� g is a sub-solution of(1.5), provided M� [M0=9(c, �1 + r )]r =(�1�).

Proof. For� < ln M=r , we haveU�(� ) = 0 and so

f�c(U�)0 � D2[U�] � f (U�)g(� ) = �[U�(� + p) + U�(� + q)] � 0.

For � > ln M=r , we have (U�)0(� ) = [(r +�1)Me�r � � �1]e��1� . Then, using (1.4), we
compute that, for� > ln M=r ,

f�c(U�)0 � D2[U�] � f (U�)g(� )

� f�c(U�)0 � D2[U�] � f 0(0)U� + M0(U�)1+�g(� )

� 9(c, �1)e��1� � M9(c, �1 + r )e�(�1+r )� + M0e��1(1+�)�
= �M9(c, �1 + r )e�(�1+r )� + M0e��1(1+�)�
� 0

as long asM � [M0=9(c, �1 + r )]r =(�1�). Also, note thatU� 6� 0 and U�(+1) = 0.
HenceU� is a sub-solution of (1.5) and the lemma follows.
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Lemma 3.3. Assume that(A) and (B). Then, for each c> c�, the function
U+(� ) := minf1, e��1(c)� g is a super-solution of(1.5).

Proof. For� < 0, we haveU+(� ) = 1 and so

f�c(U+)0 � D2[U+] � f (U+)g(� )

= �U+(� + p)�U+(� + q) + 2

� 0.

For � > 0, we haveU+(� ) = e��1(c)� and hence

f�c(U+)0 � D2[U+] � f (U+)g(� )

� c�1(c)e��1(c)� � [e��1(c)(�+p) + e��1(c)(��p)

+ e��1(c)(�+q) + e��1(c)(��q) � 4e��1(c)� ] � f 0(0)e��1(c)�
= 9(c, �1(c))e��1(c)�
= 0.

SinceU+ is non-increasing andU+(+1) = 0, U+ is a super-solution of (1.5) and the
lemma is proved.

Therefore, by applying Lemma 2.1, it follows from Lemmas 3.2and 3.3 that (1.5)
admits a solution (c, U ) with U 0 � 0 for any c > c�.

Next, we prove that (1.5) has a solution (c, U ) with U 0 � 0 for c = c�.
Lemma 3.4. Assume that(A) and (B). Then (1.5) admits a solution(c, U ) with

U 0 � 0 for c = c�.
Proof. Let fci , Ui g1i =1 be a sequence of solutions of (1.5) such thatci # c� as i !1 and U 0

i � 0 for all i . By appropriate translations, we may assumeUi (0) = 1=2 for
all i . From 0� Ui ( � ) � 1 in R for all i and (1.3), we know thatfU 0

i g is uniformly
bounded inR. It then follows thatfUi g is equicontinuous onR. By Arzela-Ascoli
theorem, there exists a subsequencefUikg of fUi g such thatUik ! U� on R ask !1,
uniformly on any compact subset ofR, for someU� 2 C(R! [0, 1]). Moreover, since
Uik satisfies (2.1), by takingk ! +1, we have

U�(� ) = e�� Z 1
� e��sH�(U�)(s) ds, 8� 2 R.

Thus U� satisfies (1.3) andU� 2 C1(R).
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Next, we claimU�(+1) = 0 and U�(�1) = 1. Note thatU 0� � 0. SinceU� is
bounded, we knowU�(�1) exists and 0� U (�1) � 1. Recall from (1.6) that

cik =
Z +1
�1 f (Uik (s)) ds, 8k.

Then, by applying Fatou’s Lemma, we obtain

Z +1
�1 f (U�(s)) ds =

Z +1
�1 lim inf

k!1 f (Uik (s)) ds� lim inf
k!1

Z +1
�1 f (Uik (s)) ds = c�.

It follows that f (U�(�1)) = 0. HenceU�(�1) 2 f0, 1g. On the other hand, sinceU�
satisfies (1.3) andU�(0) = 1=2, we have

c�[U�(�1)�U�(+1)] =
Z +1
�1 f (U�(s)) ds> 0.

It follows that U�(+1) = 0 andU�(�1) = 1. The lemma is proved.

Hence we have proved the necessary condition in Theorem 1 (i)and Theorem 1 (iii).
To prove the sufficient condition in Theorem 1 (i), we need thefollowing lemma.

Lemma 3.5. Assume(A). Suppose that(c, U ) is a solution of (1.5). Then
(i) U (� + s)=U (� ) is uniformly bounded for� 2 R, s 2 [�1, 1],
(ii) U 0(� )=U (� ) is bounded and uniformly continuous inR.

Proof. Since� > (4 + max0�u�1j f 0(u)j)=c, U 0(� ) � �U (� ) � 0, 8� 2 R. By an
integration from� to � + s, s > 0, we haveU (� + s) � U (� )e�s for � 2 R, s > 0. In
particular, for anys> 0, we have

U
�� � s

2

�
= U

�
y� s + � +

s

2
� y

� � e�(�+s=2�y)U (y� s) � e�s=2U (y� s)

for all y 2 [� , � + s=2]; and U (y) � e�sU (� ) for all y 2 [� , � + s].
Integrating (1.3) from� to +1 gives

cU(� ) =
Z 1
� D2[U ](y) dy +

Z 1
� f (U (y)) dy

� Z �+q

� U (y� q) dy� Z �+q

� U (y) dy +
Z �+p

� U (y� p) dy� Z �+p

� U (y) dy

� Z �+q=2
� U (y� q) dy� Z �+q

� U (y) dy� Z �+p

� U (y) dy

� e��q=2U�� � q

2

�q

2
�U (� )(qe�q + pe�p).
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It follows that

U (� � q=2)

U (� )
� 2(c + qe�q + pe�p)e�q=2

q
, 8� 2 R.

Hence, by a finite number of iterations, we can easily show that U (� + s)=U (� ) is
uniformly bounded for� 2 R for any s 2 [�1, 0]. Hence (i) follows. Moreover, (ii)
follows from (1.3) by applying (i). The lemma is proved.

Now, we are ready to prove the sufficient condition in Theorem1 (i).

Lemma 3.6. Assume(A). If (c, U ) is a solution of (1.5), then c� c�.
Proof. Let (c, U ) be a solution of (1.5) and" > 0 be given. Since

lim�!1
�

f (U (� ))

U (� )

�
= f 0(0),

we can choosex = x(") such that

f (U (� ))

U (� )
� f 0(0)� ", 8� > x.

Set

R(� ) :=
U (� + q)

U (� )
+

U (� + p)

U (� )
+

U (� � q)

U (� )
+

U (� � p)

U (� )
.

Dividing (1.3) by U and integrating it over [x, y], y > x, we have

c[ln U (x)� ln U (y)] =
Z y

x

�
R(� )� 4 +

f (U (� ))

U (� )

�
d�

� Z y

x
R(� ) d� + ( f 0(0)� 4� ")(y� x).

Hence

c�(x, y) � 1

y� x

Z y

x
R(� ) d� + ( f 0(0)� 4� "),

where

�(x, y) :=
ln U (x)� ln U (y)

y� x
=

ln[U (x)=U (y)]

y� x
.

We can write

R(� ) = exp

�
ln

U (� + q)

U (� )

�
+ exp

�
ln

U (� + p)

U (� )

�

+ exp

�
ln

U (� � q)

U (� )

�
+ exp

�
ln

U (� � p)

U (� )

�
.
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Then, by Jensen’s inequality, we obtain

1

y� x

Z y

x
R(� ) d�

� exp

�
1

y� x

Z y

x
ln

U (� + q)

U (� )
d�� + exp

�
1

y� x

Z y

x
ln

U (� + p)

U (� )
d��

+ exp

�
1

y� x

Z y

x
ln

U (� � q)

U (� )
d�� + exp

�
1

y� x

Z y

x
ln

U (� � p)

U (� )
d��

= e��(x,y)q+41 + e��(x,y)p+42 + e�(x,y)q+43 + e�(x,y)p+44,

where

41 = 41(x, y) :=
1

y� x

�Z y+q

y
ln

U (� )

U (y)
d� � Z x+q

x
ln

U (� )

U (x)
d��,

42 = 42(x, y) :=
1

y� x

�Z y+p

y
ln

U (� )

U (y)
d� � Z x+p

x
ln

U (� )

U (x)
d��,

43 = 43(x, y) :=
1

y� x

�Z x

x�q
ln

U (� )

U (x)
d� � Z y

y�q
ln

U (� )

U (y)
d��,

44 = 44(x, y) :=
1

y� x

�Z x

x�p
ln

U (� )

U (x)
d� � Z y

y�p
ln

U (� )

U (y)
d��.

Hence we get

(3.1) c�(x, y) � e��(x,y)q+41 + e��(x,y)p+42 + e�(x,y)q+43 + e�(x,y)p+44 + ( f 0(0)� 4� ").
Also, from Lemma 3.5 it follows that (y � x)4i (x, y) is bounded iny for eachi .

Hence there existsz > x large enough such thatj4i (x, y)j < ", 8y � z, i = 1, 2, 3, 4.
Now takingy large enough so that�(x, y) > 0 andy � z. Then it follows from (3.1) that

c � e��(x,y)q�" + e��(x,y)p�" + e�(x,y)q�" + e�(x,y)p�" + ( f 0(0)� 4� ")�(x, y)

� inf�>0

e��q�" + e��p�" + e�q�" + e�p�" + ( f 0(0)� 4� ")� .

Letting "! 0, we obtain that

c � inf�>0

e�q + e�p + e��q + e��p + f 0(0)� 4� = c�.
Hence the lemma follows.

Therefore, the proof of Theorem 1 is completed.
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4. Uniqueness

In this section, we always assume that (A), (B), and (C) hold.Let (c, U ) be a
solution of (1.5). We shall follow a method of Carr and Chmaj [2] to prove that for
each (c, U ) there exists� = �(U ) 2 R such that

(4.1) lim�!1 U (� + �)

e��1(c)� = 1 for c > c�; lim�!1 U (� + �)�e��1(c)� = 1 for c = c�,
where�1(c) is the smaller root of9(c, �) = 0. Hereafter we shall always assume that
c � c�.

Lemma 4.1. Let (c, U ) be a solution of(1.5). Then U(� ) = O(e��0� ) as � !1
for some�0 > 0.

Proof. Givens 2 R. Integrating (1.3) over [s, y], y > s, we obtain

(4.2) c[U (s)�U (y)] =
Z y

s
D2[U ](� ) d� +

Z y

s
f (U (� )) d� .

Introduce

a(s) := inf��s

f (U (� ))

U (� )
= inf

u2[0,Æ(s)]

f (u)

u
> 0, Æ(s) := sup��s

U (� ) 2 (0, 1).

Then (4.2) implies that

(4.3) c[U (s)�U (y)] � Z y

s
D2[U ](� ) d� + a(s)

Z y

s
U (� ) d� ,

Set

W(x) :=
Z x

x�q
U (� ) d� +

Z x

x�p
U (� ) d� � Z x+q

x
U (� ) d� � Z x+p

x
U (� ) d� .

Then Z y

s
D2[U ](� ) d� = W(s)� W(y).

Since U (� ) ! 0 as � ! 1, W(y) ! 0 as y ! 1. Letting y ! 1 in (4.3), we
see that

cU(s) � Z 1
s

D2[U ](� ) d� + a(s)
Z 1

s
U (� ) d�(4.4)
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and soU 2 L((s, +1)) for all s 2 R. Moreover, by (4.2),

(4.5) cU(s) =
Z 1

s
D2[U ](� ) d� +

Z 1
s

f (U (� )) d� .

Set V(s) :=
R1

s U (� ) d� . Then 0< V < +1 and V is decreasing. Note also that
a(s) is non-decreasing ins and a(+1) = f 0(0). Seta0 := a(0). Integrating (4.4) over
[x, 1) for x � 0, we obtain

(4.6) cV(x) � Z 1
x

D2[V ](s) ds+ a0

Z 1
x

V(s) ds.

Note thatZ 1
x

D2[V ](s) ds =
Z x

x�q
V(s) ds+

Z x

x�p
V(s) ds� Z x+q

x
V(s) ds� Z x+p

x
V(s) ds� 0,

since V is decreasing. Then form (4.6) it follows that

cV(x) � a0

Z x+z

x
V(s) ds� a0zV(x + z)

for all z> 0 and x � 0. This implies that

c

a0z
V(x) � V(x + z), 8z> 0, x � 0.

Choosez > 0 such thatc < a0z. Then there exists�0 > 0 such thate��0z = c=(a0z)
and so

e�0(x+z)V(x + z) � e�0xV(x), 8x � 0.

Set K := maxfe�0xV(x) j x 2 [0, z]g. Then K 2 (0,1) and e�0yV(y) � K for all y � 0.
HenceV(x) = O(e��0x) as x !1. From (4.5) and noting thatZ 1

s
D2[U ](� ) d� = V(s + q) + V(s + p) + V(s� q) + V(s� p)� 4V(s),Z 1

s
f (U (� )) d� � f 0(0)

Z 1
s

U (� ) d� = f 0(0)V(s),

the lemma follows.

To derive the asymptotic behavior of wave profileU , we first recall the following
theorem.
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Theorem (Ikehara’s theorem).For a positive non-increasing function U, we define

F(3) :=
Z +1

0
e�3�U (� ) d� .

If F can be written as F(3) = H (3)=(3 + 
 )k+1 for some constants k> �1, 
 > 0,
and some analytic function H in the strip�
 � Re3 < 0, then

lim�!+1 U (� )� ke�
 � =
H (�
 )0(
 + 1)

.

Here we only need the case whenk = 0 andk = 1. The proof of Ikehara’s theorem
can be found in, e.g., [14, 8].

Applying Lemma 4.1 and choosing3 2 C such that��0 < Re3 < 0, we can
define the bilateral Laplace transform ofU by

L(3) :=
Z +1
�1 e�3�U (� ) d� .

Note thatZ +1
�1 e�3� D2[U ](� ) d� = [e3q + e3p + e�3q + e�3p � 4]L(3).

Rewrite (1.3) ascU0 + D2[U ] + f 0(0)U = f 0(0)U � f (U ), we deduce that

c
Z +1
�1 e�3�U 0(� ) d� + [e3q + e3p + e�3q + e�3p � 4 + f 0(0)]L(3)

=
Z +1
�1 e�3� [ f 0(0)U (� )� f (U (� ))] d� .

An integration by parts gives

c
Z +1
�1 e�3�U 0(� ) d� = �c(�3)L(3),

so we have

(4.7) �9(c, �3)L(3) =
Z +1
�1 e�3� [ f 0(0)U (� )� f (U (� ))] d� .

It follows from (4.7) that

(4.8)
Z +1

0
e�3�U (� ) d� = �

R +1�1 e�3� [ f 0(0)U (� )� f (U (� ))] d�
9(c, �3)

� Z 0

�1 e�3�U (� ) d�
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wheneverL is well-defined.
In order to apply Ikehara’s theorem, we define

H (3) := �
R +1�1 e�3� [ f 0(0)U (� )� f (U (� ))] d�

9(c, �3)=[3 + �1(c)]k+1
� �Z 0

�1 e�3�U (� ) d��[3 + �1(c)]k+1,

wherek = 0 if c > c�; k = 1 if c = c�. We claim thatH is analytic in the strip

S := f3 2 C j ��1(c) � Re3 < 0g.
It is trivial that �Z 0

�1 e�3�U (� ) d��[3 + �1(c)]k+1

is analytic in fRe3 < 0g. Thus it suffices to show that the function

H(3) := �
R +1�1 e�3� [ f 0(0)U (� )� f (U (� ))] d�

[9(c, �3)=(3 + �1(c))k+1]

is analytic in S. First, we show thatL(3) is well-defined for��1(c) < Re3 < 0.
SinceU (+1) = 0 and, by the assumption (B),f 0(0)U � f (U ) = O(U1+�) as � ! +1,
the right-hand side of (4.7) is well-defined for�(1 + �)�0 < Re3 < 0. HenceL(3)
is well-defined until3 is a zero of9(c, �3). Recall a property of Laplace transform
(cf. Theorem 5b in p.58 of [14]):if L(3) is well-defined(convergent) in fRe3 > �sg
and diverges infRe3 < �sg, then necessarily3 = �s is a singularity ofL(3). It
follows from Lemma 2.2 thatL(3) is well-defined for��1(c) < Re3 < 0. Since
H(3) = L(3)[3 + �1(c)]k+1 in f��1(c) < Re3 < 0g, it follows that H(3) is analytic
in f��1(c) < Re3 < 0g.

Next, we claim thatH(3) is analytic on Re3 = ��1(c). For this, we first claim
that the only zero of9(c,�3) on Re3 =��1(c) is 3 =��1(c). Indeed, if9(c,�3) =
0 with Re(�3) = �1(c) and Im(�3) = � for some� 2 R, then we have� p = 2m� and�q = 2k� for some integersm and k, by using9(c, �1(c)) = 0 and Ref9(c,�3)g = 0.
Then, by considering the imaginary part of the equation9(c, �3) = 0, we conclude
that � = 0. Therefore, the only zero of9(c, �3) on Re3 = ��1(c) is 3 = ��1(c).
HenceH(3) is analytic on Re3 = ��1(c), since the zeroes of9(c, �3) are isolated.
We conclude thatH (3) is analytic in S.

Now, we are ready to derive the asymptotic behavior of wave profile U as follows.

Lemma 4.2. Let (c, U ) be a solution of (1.5). Then (4.1) holds for some� =�(U ) 2 R. Moreover,

(4.9) lim�!1 U 0(� )

U (� )
= ��1(c)
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for all c � c�.
Proof. Recall (4.8). IfU is non-increasing, then, by applying Ikehara’s theorem

with a suitable translation, we can easily deduce (4.1).
In general, by (1.3), we have

cU0(� ) = �D2[U ](� )� f (U (� )) � 4U (� ).

Hence the functionŪ (� ) := U (� )e�4�=c is non-increasing inR. Now, we define the
bilateral Laplace transform of̄U by

L̄(3) :=
Z +1
�1 e�3� Ū (� ) d� .

Note thatL̄(3) = L(3 + 4=c). Then, by Ikehara’s theorem again, we have

lim�!1 Ū (� + �̄)

e�(�1(c)+4=c)� = 1 for c > c�; lim�!1 Ū (� + �̄)�e�(�1(c)+4=c)� = 1 for c = c�
for some�̄ = �̄(Ū ) 2 R. Hence (4.1) follows for some� = �(U ) 2 R.

Finally, (4.9) follows from (1.3) and (4.1). This proves thelemma.

Next, for eachc � c�, we let � = �(c) be the unique positive root of

(4.10) c� + e� p + e�q + e�� p + e��q � 4 + f 0(1) = 0.

Set V = 1� U and F(s) = f (1� s). Then by a similar argument as above we can
derive the following lemma. Since the proof is very similar to that of deriving (4.1),
we omit its details here (see also Theorem 4.5 in [5]).

Lemma 4.3. Any solution(c, U ) of (1.5) satisfies

(4.11) lim�!�1 U 0(� )

U (� )� 1
= �(c),

where�(c) is the unique positive root of(4.10).

In order to prove the monotonicity result, we shall need the following strong com-
parison principle.

Lemma 4.4. Let (c, U1) and (c, U2) are solutions of(1.5) with U1 � U2 on R.
Then either U1 � U2 or U1 > U2 in R.
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Proof. Suppose that there exists�0 such thatU1(�0) = U2(�0). Then

0 = U1(�0)�U2(�0) = e��0

Z 1
�0

e��s[H�(U1)(s)� H�(U2)(s)] ds.

It follows that H�(U1)(s) = H�(U2)(s) for all s � �0, since U1 � U2 in R. By the
definitions of H� and D2, we have

0� [U1(s + q)�U2(s + q)] + [U1(s� q)�U2(s� q)]

+ [U1(s + p)�U2(s + p)] + [U1(s� p)�U2(s� p)]

= (�c� + 4)[U1(s)�U2(s)] � [ f (U1(s))� f (U2(s))]

� ��c�� 4� max
0�u�1

j f 0(u)j�[U1(s)�U2(s)]

� 0

for all s � �0. HenceU1(� ) = U2(� ) for all � 2 [�0 � r , 1), where r can be either
p = cos� or q = sin� . Note thatr is a positive constant. Repeating the above argument
with �0 replaced by�0�r (infinitely many times), we conclude thatU1 � U2 in R.

Proof of Theorem 3. Let (c, U ) be a solution of (1.5). Then it follows from (4.9)
and (4.11) that there existsx1 > 0 and x2 > 0 such thatU 0(� ) < 0 for all � � x1 and� � �x2.

Now, since 0< U < 1 andU (�1) = 1, we can define

�� := inff� > 0 j U (� + s) � U (� ), 8� 2 R, s� �g.
In particular, U (� + ��) � U (� ) for all � 2 R. We claim that�� = 0. Otherwise,�� > 0. By Lemma 4.4, we haveU (� + ��) < U (� ) for all � 2 R. Also, by the
continuity of U , there exists�0 2 (0, ��) such thatU (� + �0) < U (� ) for all � 2
[�x2 � 2�0, x1 + 2�0]. Since U 0 < 0 on � 2 R n [�x2, x1], we haveU (� + �0) � U (� )
for all � 2 R n [�x2 � �0, x1 + �0]. Hence U ( � + �0) � U ( � ) in R. But, �0 < ��, a
contradiction to the definition of��. This implies that�� = 0. Therefore,U 0 � 0 in
R. By Lemma 3.1 (ii), U 0 < 0 in R. Hence the theorem follows.

With this monotonicity result, we now apply a method developed in [5] to derive
the uniqueness of wave profiles.

Hereafter we shall always assume thatc � c�.
Lemma 4.5. Let (c, U ) be a solution of(1.5). Then there exists�0 = �0(c, f ) 2

(0, 1) such that for any� 2 (0, �0],

f ((1 +�)U (� ))� (1 +�) f (U (� )) < 0
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on f� j 1� �0 < U (� ) � 1=(1 +�)g.
Proof. Note thatf f ((1 + �)u) � (1 + �) f (u)gj�=0 = 0. Since f 0(1) < 0, we may

choose�0 > 0 small enough such thatu f 0(u)� f (u) < 0 for u 2 (1� �0, 1]. Also,

d

d� f f ((1 +�)u)� (1 +�) f (u)g �=0
= u f 0(u)� f (u) < 0

for u 2 (1��0, 1]. Then the lemma follows by choosing�0 > 0 smaller (if necessary).

For a given solution (c, U ) of (1.5), we define

� = �(U ) := sup

�
U (� )jU 0(� )j U (� ) � 1� �0

�
.

Note that 0< � < +1, since lim�!1 U 0(� )=U (� ) = ��1 and U 0 < 0 in R.

Lemma 4.6. Let (c, U1) and (c, U2) are two solutions of(1.5) and there exists� 2 (0, �0] such that(1 +�)U1( � + ��) � U2( � ) in R, where� = �(U1). Then U1( � ) �
U2( � ) in R.

Proof. First, we defineW(�, � ) := (1 +�)U1(� + ��)�U2(� ) and

�� := inff� > 0 j W(�, � ) � 0, 8� 2 Rg.
Then, by the continuity ofW, W(��, � ) � 0 for all � 2 R.

Now, we claim�� = 0. For a contradiction, we suppose that�� 2 (0, �0]. Then,
by the definition of�,

d

d�W(�, � ) = U1(� + ��) + �(1 +�)U 0
1(� + ��) < 0

on f� j U1(� + ��) � 1� �0g. Also note thatW(��, �1) = �� > 0. Hence there exists�0 with U1(�0 +���) > 1��0 such that 0 =W(��, �0) = W� (��, �0), W(��, �0� p) � 0,
and W(��, �0 � q) � 0. Then

(1 +��)U1(P0) = U2(�0), (1 +��)U 0
1(P0) = U 0

2(�0),

(1 +��)U1(P0 � p) � U2(�0 � p), (1 +��)U1(P0 � q) � U2(�0 � q),

where P0 := �0 + ���. So we have

0 = cU0
2(�0) + D2[U2](�0) + f (U2(�0))

� c(1+��)U 0
1(P0) + D2[(1+��)U1]( P0) + f ((1+��)U1(P0))
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= �(1+��)D2[U1]( P0)� (1+��) f (U1(P0)) + D2[(1+��)U1]( P0) + f ((1+��)U1(P0))

= f ((1+��)U1(P0))� (1+��) f (U1(P0)).

But, by Lemma 4.5, the last quantity is negative, a contradiction. Hence we must have�� = 0 and the lemma follows.

Proof of Theorem 2. Let (c, U1) and (c, U2) be two solutions of (1.5). By transla-
tion, we may assumeU1(0) = U2(0) = 1=2. From (4.1), we have lim�!1[U2(� )=U1(� )] =
e�1� for some� 2 R. Hence we may assume that lim�!1[U2(� )=U1(� )] � 1, by ex-
changingU1 and U2 if necessary. Then lim�!1[U2(� + z)=U1(� )] < 1 for all z> 0.

Fix z> 0, then there existsM > 0 such thatU1(� )>U2(�+z) for all � � M. Since
U1(�1) = 1, we can findz0 > 0 large enough such that (1+�0)U1(� +��0) � U2(� +z0)
for all � 2 R. Applying Lemma 4.6, we haveU1(� ) � U2(� + z0) for all � 2 R. Hence
we can define

z� := inffz> 0 j U1(� ) � U2(� + z), 8� 2 Rg.
We clam thatz� = 0.

For a contradiction, we assume thatz� > 0. From

lim�!1 U2(� + z�)
U1(� + z�=2)

< 1,

it follows that there existsM1 > 0 such that

(4.12) U1( � + z�=2)� U2( � + z�) on [M1, 1).

Next, sinceU1(�1) = 1 and U 0
1(�1) = 0, there existsM2 > 0 large enough

such that

d

d� f(1 +�)U1(� + 2��)g = U1(� + 2��) + 2�(1 +�)U 0
1(� + 2��) > 0

for all � 2 [0, 1] and � 2 (�1, �M2]. So we have

(4.13) (1 +�)U1(� + 2��) � U1(� ) � U2(� + z�)
for all � 2 [0, 1] and � 2 (�1, �M2].

Now, sinceU1( � ) � U2( � + z�) in R, by Lemma 4.4,U1( � ) > U2(� + z�) in R.
Also, U1 is uniformly continuous onR, we can choose 0< " <minfz�=(4�), �0g small
enough such that

U1(� + 2�") � U2(� + z�)(4.14)

for all � 2 [�M2, M1].
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Combining (4.12), (4.13), and (4.14), we have (1 +")U1( � + 2�") � U2( � + z�) in
R. By Lemma 4.6, we have

U1(� + �") � U2(� + z�), 8� 2 R.

This contradicts the definition ofz�. Hencez� = 0, i.e., U1( � ) � U2( � ) in R. Since
U1(0) = U2(0) = 1=2, by Lemma 4.4, the theorem follows.
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