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Abstract
In this paper, we re-compute the cohomology of the Morava stabilizer algebra S (3) [12, 16].

As an application, we show that for p ≥ 7, if s � 0,±1 mod (p), n � 1 mod 3, n > 1, then ζnγs

is a nontrivial product in π∗(S ) by Adams-Novikov spectral sequence, where ζn is created by R.
Cohen [1], γs is a third periodic homotopy elements.

1. Introduction

1. Introduction
In this paper we adapt the well-known framework of classical Adams spectral sequence,

Adams-Novikov spectral sequence and chromatic spectral sequence, as described in [11].
Fix p an odd prime. Consider the corresponding Brown-Peterson spectrum BP, of which
the coefficient ring π∗(BP) is denoted by BP∗, and the BP-homology of the spectrum BP
is denoted by BP∗BP. There is a well-known Hopf algebroid structure over the pair (BP∗,
BP∗BP).

Let K(n)∗ be the coefficient ring of the n-th Morava K-theory, Σ(n) =

K(n)∗ ⊗BP∗ BP∗BP ⊗BP∗ K(n)∗, and S (n) = Σ(n) ⊗K(n)∗ Z/p be the n-th Morava stabilizer
algebra. Σ(n) and S (n) have obvious coproducts induced by that of BP∗BP, making them
Hopf algebras.

At an odd prime p � 5, the cohomology of Hopf algebra S (3) has been studied by
Ravenel in [12], where he gave the Poincare series of H∗S (3) and listed the generators
bellow dimensional 5. It is also studied by Yamaguchi in [16], where he shown the ring
structure, though there may be some misprints.

In this paper, we redetermine the Z/p-algebra structure of H∗S (3), i.e., the Z/p-algebra

ExtS (3)(Z/p,Z/p)

for p ≥ 7 in another way, and apply this result to detect a nontrivial product in the stable
homotopy groups of spheres. It will become clear that the algebra structure, rather than the
underlying Z/p-module structure of H∗S (3), is essential to our application.

We define a May-type filtration upon S (3) in such a way that E∗,∗(3) =⊕
M�0 F∗,MS (3)/F∗,M−1S (3) becomes a primitive generated Hopf algebra. This filtration

gives rise to a May spectral sequence {Es,t,M
r , dr} that converges to H∗S (3). A simple argu-
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ment in homological algebra then determines E∗,∗,∗1 and d1. Hence, E∗,∗,∗2 for H∗S (3) can be
obtained by direct computation. Finally, a comparison of E∗,∗,∗2 and the cobar complex of
S (3) gives us the desired result. The structure of H∗S (3) is rather complicated and therefore
postponed to Section 3.

We apply the result above to detect a family of nontrivial elements in the homotopy group
of the sphere spectrum, each of which is the product of following two well-known elements.
To describe the first one, recall

BP∗ = BP∗S = Z(p)[v1, v2, · · · ],
where vi is the i-th Hazewinkel generator with degree 2(pi − 1)([2, 3][11]). We recall the
Greek letter elements in the Adams-Novikov E2 page H∗(BP∗BP) = ExtBP∗BP(BP∗, BP∗).

Consider the short exact sequence of graded Z(p)-modules

0→ BP∗/In
vn−→ BP∗/In → BP∗/In+1 → 0,

where In+1 = (p, v1, · · · , vn), the ideal generated by p, v1, . . . , vn. By convention, we also set
v0 = p and I−1 = 0. Furthermore, we let

δn : Exts(BP∗/In+1)→ Exts+1(BP∗/In)

denote the connecting homomorphism corresponding to the short exact sequence above, and
for t, n > 0, let

α(n)
t = δ0δ1 · · · δn−1(vtn) ∈ Extn(BP∗).

Conventionally we denote α(n)
t for n = 1, 2, 3 by αt, βt, γt, respectively. Toda([14], [11])

proved the following

Theorem 1.1 ([11], Theorem 1.3.18 (b)). For p ≥ 7, each γt is represented by a nontrivial
element of order p in πtq(p2+p+1)−q(p+2)−3(S 0), where q = 2p − 2.

From now on we consider γt also as the element in π∗(S 0) that it represents. This is the
first factor of the product that concerns us.

The other factor is first detected with the classical Adams spectral sequence by Cohen
([1]), which he denotes by ζn, a permanant cocycly of bi-degree (3, 2(p − 1)(1 + pn+1)).

Our structure theorem of H∗S (3) leads to the following

Theorem 1.2. For p ≥ 7, s � 0,±1 mod (p), if n � 1 mod (3), n > 1 then 0 � ζnγs ∈
π∗(S ).

We briefly explain the idea of the proof of Theorem 1.2. Let ∗ be the dual of the mod p
Steenrod algebra and consider the mod p Thom map

Φ : BP −→ K(Z/p),

where the latter is the Eilenberg-Maclane Spectrum associated to Z/p. This map induces a
homomorphism

Φ : ExtBP∗BP(BP∗, BP∗) −→ Ext∗(Z/p,Z/p).

Cohen [1] detected that h0bn ∈ Ext∗(Z/p,Z/p), n > 0, is a permanent cycle in the classical
Adams spectral sequence and it converges to ζn in π∗S 0. From the Thom map we find that it
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was α1(βpn/pn + x) ∈ ExtBP∗BP(BP∗, BP∗) that converges to ζn in the Adams-Novikov spectral
sequence, where x =

∑
s,k, j

as,k, jβspk/ j and 0 ≤ as,k, j ≤ p − 1, a1,n,pn = 0.

Consider the canonical homomorphism BP∗ −→ v−1
3 BP∗/I3, which induces homomor-

phism

Ext∗,∗BP∗BP(BP∗, BP∗) −→ Ext∗,∗BP∗BP(BP∗, v−1
3 BP∗/I3).

On the other hand, consider the map BP∗ → K(3)∗, where K(3) is the 3-rd Morava K-theory.
By the change of ring theroem in Chapter 5 of [11], we have

ExtBP∗BP(BP∗, v−1
3 BP∗/I3) � ExtK(3)∗K(3)(K(3)∗,K(3)∗) = H∗S (3) ⊗ Z/p[v3, v−1

3 ]

and ϕ is the composition

ϕ : Ext∗,∗BP∗BP(BP∗, BP∗) −→ Ext∗,∗BP∗BP(BP∗, v−1
3 BP∗/I3) � H∗S (3) ⊗ Z/p[v3, v−1

3 ].

We find the images of the representation of α1(βpn/pn+x) and γs under ϕ and show that the
product of their images reduction in H∗S (3) is nontrivial. This implies that α1(βpn/pn + x)γs

is nontrivial in ExtBP∗BP(BP∗, BP∗) and then ζnγs is nontrivial in π∗(S ). This is why the
algebra structure of H∗S (3) is essential.

This paper is organized as follows. In section 2, we define a May-type filtration upon the
Hopf algebra S (3) and consider the corresponding spectral sequence {Es,t,M

r , dr} =⇒ H∗S (3).
In section 3, we recompute the cohomology ring of the Morava stabilizer algebra S (3) with
the spectral sequence constructed in section 2. In section 4, we prove that the product
ζnγs ∈ π∗(S 0) is nontrivial.

2. The May Spectral Sequence for H∗(S(3))

2. The May Spectral Sequence for H∗(S(3))2.1. The May spectral sequence.
2.1. The May spectral sequence. Let p be a prime, BP∗ = Z(p)[v1, v2, · · · ] and BP∗BP =

BP∗[t1, t2, · · · ]. For the Hazewinkel’s generators described inductively by vs = pms −
s−1∑
i=1
v

pi

s−imi (cf [2, 9, 11]). The coproduct map Δ : BP∗BP→ BP∗BP ⊗BP∗ BP∗BP is given by

∑
i+ j=s

mi(Δt j)pi
=

∑
i+ j+k=s

mit
pi

j ⊗ tpi+ j

k

and the right unit ηR : BP∗ → BP∗BP is given by

ηR(mn) =
∑

i+ j=n

mit
pi

j .

One can easily prove that

Δ(t1) = t1 ⊗ 1 + 1 ⊗ t1(2.1)

and

Δ(t2) =
∑

i+ j=2

ti ⊗ tpi

j − v1b1,0(2.2)

where p · b1,0 = Δ(tp
1 ) − tp

1 ⊗ 1 − 1 ⊗ tp
1 . Inductively define
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p · bs,k−1 = Δ(tpk

s ) −
∑

i+ j=s

tpk

i ⊗ tpi+k

j +
∑

0<i<s

v
pk

i bs−i,k+i−1,

one has

Δ(ts+1) =
∑

i+ j=s+1

ti ⊗ tpi

j −
s∑

i=1

vibs+1−i,i−1.

It is convenient to give some specific examples, which can be found in [4, 5] :

ηR(v1) = v1 + pt1(2.3)

ηR(v2) ≡ v2 + v1tp
1 + pt2 − vp1 t1 mod (p2, v

p2

1 )

ηR(v3) ≡ v3 + v2tp2

1 + v1tp
2 + pt3 − vp2 t1 − v21vp−1

2 tp
1 mod (p2, pv1, v31)

Δ(t5) ≡ t5 ⊗ 1 + 1 ⊗ t5 + t4 ⊗ tp4

1 + t3 ⊗ tp3

2 + t2 ⊗ tp2

3 + t1 ⊗ tp
4 − v3b2,2 − v4b1,3

mod (p, v1, v2)

where

b1,k =
pk+1−1∑

i=1

(
pk+1

i

)
/p ti

1 ⊗ tpk+1−i
1 , b2,k =

1
p

(
Δ(tpk+1

2 ) − ∑
i+ j=2

tpk+1

i ⊗ tpi+k+1

j + v
pk+1

1 b1,k+1

)
.

Thus, for the Morava K-theory K(3)∗ = Z/p[v3, v−1
3 ], the Hopf algebra Σ(3) = K(3)∗ ⊗BP∗

BP∗BP ⊗BP∗ K(3)∗ is isomorphic to

Σ(3) = K(3)∗[t1, t2, ...]/(v3tp3

i − vp
i

3 ti), f or i ≥ 1.

And S (3) = Z/p ⊗K(3)∗ Σ(3) ⊗K(3)∗ Z/p is isomorphic to

S (3) = Z/p[t1, t2, ...]/(t
p3

i − ti), f or i ≥ 1.

The inner degree of ts in S (3) is

|ts| ≡ 2(ps − 1) mod 2(p3 − 1),

because v3 is sent to 1. The structure map Δ : S (3)→ S (3) ⊗ S (3) acts on ts as follows

(2.4) Δ(ts) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ts ⊗ 1 + 1 ⊗ ts +

∑
1≤k≤s−1

tk ⊗ tpk

s−k if s ≤ 3 ,

ts ⊗ 1 + 1 ⊗ ts +
∑

1≤k≤s−1
tk ⊗ tpk

s−k − bs−3,2 if s > 3.

Here b1,0 =
1
p (Δ(tp

1 ) − tp
1 ⊗ 1 − 1 ⊗ tp

1 ) and

bs,k−1 =
1
p

⎛⎜⎜⎜⎜⎜⎜⎝Δ(tpk

s ) −
∑

i+ j=s

tpk

i ⊗ tpi+k

j + bs−3,k+2

⎞⎟⎟⎟⎟⎟⎟⎠ .
Definition 2.1. In the Hopf algebra S (3), we define May filtration M as follows:

1. For s = 1, 2, 3, set the May filtration of tp j

s as M(tp j

s ) = 2s − 1.
2. For s > 3 and j ∈ Z/3, from M(bs−3, j) = p ·M(tp j

s−3), inductively set the May filtration

of tp j

s as

M(tp j

s ) = max
{
M(tp j

k ) + M(tp j+k

s−k ), p · M(tp j+2

s−3 )|0 < k < s
}
+ 1.
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Let F∗,MS (3) be the sub-module of S (3) generated by the elements with May filtration no
larger than M. Set E∗,M(3) = F∗,MS (3)/F∗,M−1S (3). From (2.4), we get the coproduct in

E∗,∗(3) =
⊕
M�0

F∗,MS (3)/F∗,M−1S (3),

that is, Δ(ts) = ts ⊗ 1 + 1 ⊗ ts. Thus

(2.5) E∗,∗(3) �
⊗
s�1

T [tp j

s | j ∈ Z/3],

is a primitively generated Hopf algebra, where T [ ] denote the truncated polynomial algebra
of height p on the indicated generators, and each tp j

s is a primitive element.
Let Cs,∗S (3) = S (3)⊗s denote the cobar construction of S (3). The differential d : Cs,tS (3)

→ Cs+1,tS (3) is given on generators as

d(α1 ⊗ · · · ⊗ αs) =
s∑

i=1

(−1)iα1 ⊗ · · · ⊗ αi−1 ⊗ Δ(αi) ⊗ αi+1 · · · ⊗ αs(2.6)

+1 ⊗ α1 ⊗ · · · ⊗ αs + (−1)s+1α1 ⊗ · · · ⊗ αs ⊗ 1.

In general, the generator α1⊗· · ·⊗αs of Cs,tS (3) is denoted by [α1| · · · |αs]. For the generator
[α1| · · · |αs], define its May filtration as

M([α1| · · · |αs]) = M(α1) + · · · + M(αs).

Let F∗,∗,M denote the sub-complex of C∗,∗S (3) generated by the elements with May filtra-
tion not greater than M. Then we obtain a short exact sequence

(2.7) 0→ F∗,∗,M−1 → F∗,∗,M → E∗,∗,M0 → 0

of cochain complexes, where E∗,∗,M0 denote F∗,∗,M/F∗,∗,M−1. The cochain complex E∗,∗,∗0 is
isomorphic to the cobar complex of E∗,∗(3) given in (2.5). Let Es,∗,M

1 be the homology of
(E∗,∗,M0 , d0). Then (2.7) gives rise to the May spectral sequence {Es,t,M

r S (3), dr} that converges

to Hs,tS (3) Δ= Hs,t(C∗,tS (3), d) = Exts,t
S (3)(Z/p,Z/p) as Z/p-algebras.

Theorem 2.2. The Hopf algebra S (3) can be given an increasing filtration as in definition
2.1. The associated spectral sequence, so called May spectral sequence (MSS) converges to
H∗S (3). The E1-term Es,t,M

1 is isomorphic to

E[hi, j|i ≥ 1, j ∈ Z/3] ⊗ P[bi, j|i ≥ 1, j ∈ Z/3].

The homological dimension of each element is given by s(hi, j) = 1,s(bi, j) = 2 and the degree
is given by

hi, j ∈ E1,2(pi−1)p j,∗
1 S (3), bi, j ∈ E2,2(pi−1)p j+1,∗

1 S (3),

here hi, j corresponds to tp j

i and bi, j corresponds to
p−1∑
k=1

(
p
k

)
/p [tkp j

i | t(p−k)p j

i ]. One has dr :

Es,t,M
r S (3)→ Es+1,t,M−r

r S (3). If x ∈ Es,t,M
r , then

dr(xy) = d(x) · y + (−1)sx · dr(y).

In the E1-term of this spectral sequence, we have the following relations:
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hi, j · hi1, j1 = −hi1, j1 · hi, j, hi, j · bi1, j1 = bi1, j1 · hi, j, bi, j · bi1, j1 = bi1, j1 · bi, j .

Proof. From [11], we can see that for the truncated polynomial algebra T [x] with |x| ≡ 0
mod 2 and x primitive,

ExtT [x](Z/p,Z/p) = E(h) ⊗ P(b)

where h ∈ Ext1 is represented by [x] in the cobar complex and b ∈ Ext2 by
p−1∑
i=1

(
p
i

)
/p[xi|xp−i].

Notice that the E0-term of the spectral sequence is isomorphic to the cobar complex of
E∗,∗(3) given by (2.5), we see that

Hs,∗,M(E∗,t,M0 , d0) = Exts,t
E∗,∗(3)(Z/p,Z/p) =

⊗
s�1

Ext∗,∗
T [tp j

s | j∈Z/3]
(Z/p,Z/p).

Thus, the May’s E1-term

Es,t,M
1 = E[hi, j|i ≥ 1, j ∈ Z/3] ⊗ P[bi, j|i ≥ 1, j ∈ Z/3].

Notice that d0(tp j

i · tp j1

i1
) = −tp j

i ⊗ tp j1

i1
− tp j1

i1
⊗ tp j

i , we get hi, j · hi1, j1 = −hi1, j1 · hi, j. In a similar
way, one can prove that hi, j · bi1, j1 = bi1, j1 · hi, j and bi, j · bi1, j1 = bi1, j1 · bi, j . �

2.2. The first May differential.
2.2. The first May differential. From now on we fix p � 7 being an odd prime. From

Definition 2.1, we see that the May filtration is given by

M(tp j

1 ) =1, M(tp j

2 ) =3, M(tp j

3 ) =5,

M(tp j

4 ) =p + 1, M(tp j

5 ) =3p + 1, M(tp j

6 ) =5p + 1.

By induction we see that for s = 1, 2, 3

M(tp j

3r+s) = p · M(tp j+2

3r+s−3) + 1 = (2s − 1)pr + pr−1 + · · · + 1 > M(tp j

k ) + M(tp j+k

3r+s−k) + 1,

here 0 < k < 3r + s. Thus from (2.4) one has the first May differential d1 : Es,∗,M
1 S (3) −→

Es+1,∗,M−1
1 S (3)

(2.8) d1(hs, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− s−1∑

i=1
hi, j hs−i, j+i if s ≤ 3,

bs−3, j+2 if s > 3.

Each bs, j is the boundary of the first May differentials.

Theorem 2.3. The E2-term of the May spectral sequence is isomorphic to the cohomology
of

E[h3, j, h2, j, h1, j| j ∈ Z/3].

The first May differential is given by

d1(hs, j) = −
s−1∑
i=1

hi, j hs−i, j+i for s ≤ 3.

Proof. From the May’s E1-term we define a filtration, for each n � 1
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(2.9) F(n) =

⎧⎪⎪⎨⎪⎪⎩E[hi, j|1 ≤ i ≤ n, j ∈ Z/3] for 1 ≤ n ≤ 3,

E[hi, j|1 ≤ i ≤ n, j ∈ Z/3] ⊗ P[bi, j|1 ≤ i ≤ n − 3, j ∈ Z/3] for n > 3.

The filtration gives rise to a spectral sequence and thus gives the theorem. �

To compute the E2-page of the May spectral sequence

Es,∗,M
2 = Hs,∗,M(E[h3, j, h2, j, h1, j| j ∈ Z/3]),

we will give a filtration on the exterior algebra F(n) = E[hi, j|1 � i � n, j ∈ Z/3] for
n = 2, 3. This filtration gives rise to a spectral sequence and the spectral sequences allow us
to compute H∗(F(2)) from H∗(F(1)) and then compute H∗(F(3)) from H∗(F(2)) (cf [12]).

Let Ei(n) = Z/p[hn, j1 · · · hn, ji], the sub-module generated by elements of homological
dimension i, and hn, jk � hn, jl if jk � jl. Then in F(n) for n = 2, 3, let

(2.10) Fk(n) =
⊕

i≤k

Ei(n) ⊗ E[hi, j|1 ≤ i ≤ n − 1, j ∈ Z/3],

then we have the following statement.

Theorem 2.4 ([12], (1.10) Theorem). The spectral sequence induced by the filtration
(2.8) converges to the cohomology of F(n) = E[hi, j|1 ≤ i ≤ n, j ∈ Z/3], and its E1-term can
be described as

Ẽ1
∗,∗,∗,∗

(n) = E[hn, j| j ∈ Z/3] ⊗ H∗E[hi, j|1 ≤ i ≤ n − 1, j ∈ Z/3].

The differential is given by

δr : Ẽs,t,M,k
r (n) −→ Ẽs+1,t,M−1,k−r

r (n),

and the first differential is expressed as

δ1(hn, j1hn, j2 · · · hn, jk x) =
k∑

i=1

(−1)i−1hn, j1hn, j2 · · · d(hn, ji) · · · hn, jk x,

where x is a cohomology class in H∗E[hi, j|1 ≤ i ≤ n − 1, j ∈ Z/3].

3. The cohomology ring of Morava stabilizer algebra S(3)

3. The cohomology ring of Morava stabilizer algebra S(3)
In this section we recompute the cohomology of S (3) at prime p ≥ 7, with the add of the

May filtration given in definition 2.1. First we consider the differential graded algebra

F(3) = E[hi, j|1 ≤ i ≤ 3, j ∈ Z/3],

whose differentials defined by

(3.1) d1(hi, j) = −
∑

1≤k≤i

hk, jhi−k, j+k

and

d1(xy) = d1(x)y + (−1)sxd1(y)

for any monomials x, y and s denotes the homological dimension of x. To calculate the coho-
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mology of F(3) = E[hi, j|1 ≤ i ≤ 3, j ∈ Z/3], we will inductively calculate the cohomology
of F(n) for n = 1, 2, 3 as it is indicated by Theorem 2.4.

First notice that H∗E[h1,i|i ∈ Z/3] = E[h1,i|i ∈ Z/3] and we have the spectral sequence

Ẽ∗,∗,∗,∗1 (2) = E[h2,i|i ∈ Z/3] ⊗ H∗E[h1,i]⇒ H∗E[h2,i, h1,i|i ∈ Z/3].

From this spectral sequence one can easily get the generators of H∗E[h2,i, h1,i|i ∈ Z/3],
they are listed as follows:
dim 0: 1;
dim 1: h1,i;
dim 2: gi � h2,ih1,i, ki � h2,ih1,i+1, e3,i � h1,ih2,i+1 + h2,ih1,i+2,

(∑
i e3,i = 0

)
;

dim 3: ci � h2,ih2,i+1h1,i + h2,i+2h2,ih1,i+1, h2,ih2,i+1h1,i+1, gih1,i+1, e3,ih1,i;
dim 4: e3,i+1gi, e3,iki, e2

3,i,
(∑

i e2
3,i 
 0

)
;

dim 5: e3,ici;
dim 6: e2

3,ie3,i+1 = −2h2,ih2,i+1h2,i+2h1,ih1,i+1h1,i+2 (e2
3,ie3,i+1 = e2

3,i+1e3,i+2).
where i ∈ Z/3. We also list the product relations with e3,i in H∗E[h2,i, h1,i|i ∈ Z/3] which will
be used in computing H∗E[h3,i, h2,i, h1,i|i ∈ Z/3] by the spectral sequence given in Theorem
2.4:

Table 3. 1. Product relations with e3,i

dimension relations
dim 3: e3,i+1 · h1,i 
 e3,ih1,i, e3,i+2 · h1,i 
 −2e3,ih1,i;

dim 4: e3,i · e3,i+1 
 e2
3,i+2, e3,i · gi = 0, e3,i+2 · gi = −e3,i+1gi,

e3,i+1 · ki = −e3,iki, e3,i+2 · ki = 0;

dim 5: e3,i · e3,ih1,i = 0, e3,i+1 · e3,ih1,i 
 0, e3,i+2 · e3,ih1,i = 0,
e3,i · gih1,i+1 = 0, e3,i+1 · gih1,i+1 = 0, e3,i+2 · gih1,i+1 = 0,
e3,i · h2,ih2,i+1h1,i+1 = 0, e3,i+1 · h2,ih2,i+1h1,i+1 = 0, e3,i+2 · h2,ih2,i+1h1,i+1 = 0,
e3,i+1 · ci = −2e3,ici, e3,i+2 · ci = e3,ici;

dim 6: e3,i · e2
3,i = 0, e3,i · e2

3,i+1 = −e2
3,i+1e3,i+2, e3,i · e3,i+1gi = 0,

e3,i+1 · e3,i+1gi = 0, e3,i+2 · e3,i+1gi = 0, e3,i · e3,iki = 0,
e3,i+1 · e3,iki = 0, e3,i+2 · e3,iki = 0.

Now we calculate H∗E[h3,i, h2,i, h1,i|i ∈ Z/3]. From Theorem 2.4 we have the spectral
sequence

Ẽ∗,∗,∗,∗1 (3) = E[h3,i|i ∈ Z/3] ⊗ H∗E[h2,i, h1,i]⇒ H∗E[h3,i, h2,i, h1,i|i ∈ Z/3],

with the first differential

δ1 : Ẽs,t,M,k
1 (3) −→ Ẽs+1,t,M−1,k−1

1 (3).

To calculate the E2-term, we denote the generators h3,ih3, j ∈ E2[h3,i|i ∈ Z/3] by h3,ih3,i+1,
i ∈ Z/3 and denote h3,0h3,1h3,2 ∈ E3[h3,i|i ∈ Z/3] by h3,ih3,i+1h3,i+2, h3,ih3,i+1h3,i+2 =

h3,i+1h3,i+2h3,i+3. Then

δ1(h3,i) = − e3,i,
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δ1(h3,ih3,i+1) = − h3,ie3,i − (h3,i+1e3,i + h3,ie3,i+2),(3.2)

δ1(h3,ih3,i+1h3,i+2) = −
∑

i

h3,ih3,i+1e3,i+2,

and the generators in E1-term can be written as one of forms x, h3,ix, h3,i+1x, h3,i+2x,
h3,ih3,i+1x, h3,i+1h3,i+2x, h3,i+2h3,ix and h3,ih3,i+1h3,i+2x, where x is some generator of
H∗E[h1,i, h2,i].

By (3.2) and the product relations with e3,i in Table 3.1 we can compute the first differen-
tials then get the generators of the E2-term. And each generator is the lead term of a cocycle
in E[h3,i, h2,i, h1,i|i ∈ Z/3]. All of the cocycles determined by the generators of the E2-term
are the generators of the complex. With isomorphic classes and base change we get the
generators of H∗E[h3,i, h2,i, h1,i|i ∈ Z/3] as follows.

dim 0: 1,

dim 1: ρ ∈ E1,0,5
2 , h1,i ∈ E1,qpi,1

2 ,

dim 2: ρh1,i, e4,i ∈ E2,qpi,6
2 , gi ∈ E2,q(pi+1+2pi),4

2 ,

ki ∈ E2,q(2pi+1+pi),4
2 ,

dim 3: ρe4,i ∈ E3,qpi,11
2 , ρgi, μi ∈ E3,q(pi+1+2pi),9

2 ,

ρki+1, νi ∈ E3,q(2pi+2+pi+1),9
2 , ξ ∈ E3,0,9

2 ,

e4,ih1,i ∈ E3,2qpi,7
2 , e4,ih1,i+1 ∈ E3,q(pi+1+pi),7

2 ,

gih1,i+1 ∈ E3,2q(pi+1+pi),5
2 ;

dim 4: ρμi ∈ E4,q(pi+1+2pi),14
2 , ρνi ∈ E4,q(2pi+2+pi+1),14

2 ,

ρξ ∈ E4,0,14
2 , ρe4,ih1,i+1, e4,ie4,i+1 ∈ E4,q(pi+1+pi),12

2 ,

ρe4,ih1,i, e2
4,i, θi ∈ E4,2qpi,12

2 , ρgih1,i+1, e4,iki, e4,i+1gi ∈ E4,2q(pi+1+pi),10
2 ,

e4,igi+1 ∈ E4,qpi+1,10
2 ;

dim 5: ρe4,ie4,i+1 ∈ E5,q(pi+1+pi),17
2 , ρθi, ρe2

4,i, ηi ∈ E5,2qpi,17
2 ,

e4,i+1μi, ρe4,i+1gi, ρe4,iki ∈ E5,2q(pi+1+pi),15
2 , e4,iνi, ρe4,i+1gi+2 ∈ E5,qpi+2,15

2 ,

e2
4,ih1,i+1 ∈ E5,q(pi+1+2pi),13

2 , e2
4,ih1,i+2 ∈ E5,q(2pi+pi+2),13

2 ,

e4,ie4,i+1h1,i+2 = e4,0e4,1h1,2 ∈ E5,0,13
2 ;

dim 6: ρηi ∈ E6,2qpi,22
2 , ρe4,iμi+2 ∈ E6,2q(pi+pi+2),20

2 ,

ρe4,iνi ∈ E6,qpi,20
2 , ρe4,ie4,i+1h1,i+2 ∈ E6,0,18

2 ,

ρe2
4,ih1,i+1, e2

4,ie4,i+1 ∈ E6,q(pi+1+2pi),18
2 , e2

4,ie4,i+2, ρe2
4,ih1,i+2 ∈ E6,q(2pi+pi+2),18

2 ,

e4,ie4,i+1gi+2 ∈ E6,q(pi+pi+2),16
2 ;

dim 7: ρe2
4,ie4,i+2 ∈ E7,q(2pi+pi+2),23

2 , ρe2
4,ie4,i+1 ∈ E7,q(pi+1+2pi),23

2 ,

e4,i+1e4,i+2μi, ρe4,ie4,i+1gi+2 ∈ E7,q(pi+1+pi),21
2 ;
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dim 8: ρe4,ie4,i+1μi+2 ∈ E8,q(pi+pi+2),26
2 , e2

4,ie4,i+2gi+1 = e2
4,0e4,2g1 ∈ E8,0,22

2 ;

dim 9: ρe2
4,ie4,i+2gi+1 ∈ E9,0,27

2 ,

where ρ :=
∑

h3,i, e4,i = h3,ih1,i + h2,ih2,i+2 + h1,ih3,i+1, ξ =
∑

h3,i+1e3,i +
∑

h2,ih2,i+1h2,i+2,
μi = h3,ih2,ih1,i, νi = h3,ih2,i+1h1,i+2, θi = h3,ih2,i+2h2,ih1,i, ηi = h3,ih3,i+1h2,i+2h2,ih1,i.

From the May filtration of the generators in E∗,∗,∗2 = H∗E[h3,i, h2,i, h1,i], one can easily see
that the May spectral sequence {Es,t,M

r , dr} ⇒ H∗S (3) collapses at E2-term for each generator

h ∈ Es,∗,M
2

dr−→ Es+1,∗,M−r
2 = 0. Thus we get the Z/p-module H∗S (3).

Proposition 3.1 ([16] Theorem 4.2). H∗S (3) is isomorphic to E[ρ] ⊗ M, where M is a
Z/p-module generated by the following listed elements:

dim 0: 1;

dim 1: h1,i;

dim 2: e4,i, gi, ki;

dim 3: e4,ih1,i, e4,ih1,i+1, gih1,i+1, μi, νi, ξ;

dim 4: e2
4,i, e4,ie4,i+1, e4,igi+1, e4,igi+2, e4,iki, θi;

dim 5: e2
4,ih1,i+1, e2

4,ih1,i+2, e4,ie4,i+1h1,i+2, e4,iμi+2, e4,iνi, ηi, (e4,ie4,i+1h1,i+2 =

e4,i+1e4,i+2h1,i);

dim 6: e2
4,ie4,i+1, e2

4,ie4,i+2, e4,ie4,i+1gi+2;

dim 7: e4,ie4,i+1μi+2;

dim 8: e2
4,ie4,i+2gi+1, (e2

4,ie4,i+2gi+1 = e2
4,i+1e4,igi+2).

Also by the relation among cohomology degrees, inner degrees and May filtrations, we
know that as a ring, H∗S (3) � H∗E[h3,i, h2,i, h1,i]. Therefore, we are able to determine the
ring structure of H∗S (3).

Summarizing the results above, we have the following

Theorem 3.2 ([16] Proposition 4.3, Theorem 4.4). The Z/p-algebra H∗S (3) is generated
by the elements {h1,i, gi, ki, e4,i, μi, νi, ξ, θi, ηi, ρ|i ∈ Z/3} satisfying the product relations given
in the appendix. Its Poincaré series is (1 + t)3(1 + t + 6t2 + 3t3 + 6t4 + t5 + t6).

4. A nontrivial product in stable homotopy groups on spheres

4. A nontrivial product in stable homotopy groups on spheresIn this section, we turn to the nontrivial products in stable homotopy groups on spheres as
an application of the algebraic structure of the cohomology of the Morava stabilizer algebra
S (3) in the Adams-Novikov spectral sequence.
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The canonical homomorphism BP∗ → v−1
3 BP∗/I3 induces a homomorphism

ϕ : ExtBP∗BP(BP∗, BP∗)→ Ext∗,∗BP∗BP(BP∗, v−1
3 BP∗/I3) � ExtΣ(3)(K(3)∗,K(3)∗).

Specifically, by [10], ϕ is induced by the reduction map from cobar complex C∗BP∗BPBP∗ to

complex CΣ(3), where Cs
BP∗BPBP∗ = BP∗BP

⊗s ⊗
BP∗ BP∗, BP∗BP = kerε, and ε is the counit

of Hopf algebroid (BP∗, BP∗BP).
In the cobar complex CΣ(3), we have d(v3) = 0. In other words, the differential d is

v3-linear. Furthermore, since we have

Ext*Σ(3)(K(3)∗,K(3)∗) = H∗S (3) ⊗Z/p K(3)∗.(4.1)

we may set v3 = 1 for the sake of simplicity, if we allow ourselves to consider non-
homogeneous elements. The v3-linear property of d ensures that the computation won’t
be any different.

Recall

ϕ(α1) = h1,0 and ϕ(β1) = −b1,0,

which are shown by Ryo Kato and Katsumi Shimomura ([4]). Following their work we have
the following:

Lemma 4.1. Let p ≥ 7 be a prime number.
1. For any integers n ≥ 0 and s = p(2i−1)+1

p+1 , i ≥ 1, we have

(4.2) ϕ(βspn/pn) =

⎧⎪⎪⎨⎪⎪⎩−b1,n, i = 1,

0, i > 1

where βspk/ j is defined as in [11].
2. For any integer s > 0,

ϕ(γs) = s(s2 − 1)ν0 − s(s − 1)ρk1.

Proof. Part 1 is immediate from the Lemma 6.42 of [11]. Part 2 has been appeared in [4],
but we want make it more clear.

In the cobar complex C∗BP∗BPBP∗, by (2.1), (2.2) and (2.3), we get

d(vs3) ≡ sv2vs−1
3 tp2

1 +

(
s
2

)
v22v

s−2
3 t2p2

1 +

(
s
3

)
v32v

s−3
3 t3p2

1 mod (p, v1, v42),

which imply

δ2(vs3) ≡ svs−1
3 tp2

1 +

(
s
2

)
v2v

s−2
3 t2p2

1 +

(
s
3

)
v22v

s−3
3 t3p2

1 mod v32.

Recall d(tpn+1

1 ) = −pb1,n, and we obtain

δ1δ2(vs3) ≡ s(s − 1)vs−2
3 tp

2 ⊗ tp2

1 +

(
s
2

)
vs−2

3 tp
1 ⊗ t2p2

1 + s(s − 1)(s − 2)vs−3
3 v2tp2

1 tp
1 ⊗ tp2

1

+s
(
s − 1

2

)
vs−3

3 v1t2p2

1 ⊗ tp2

1 + s
(
s − 1

2

)
vs−3

3 v2tp2

1 tp
1 ⊗ t2p2

1 + s
(
s − 1

2

)
vs−3

3 v2tp
2 ⊗ t2p2

1
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+s
(
s − 1

2

)
vs−3

3 v1tp
2 tp

1 ⊗ t2p2

1 mod (v1, v2)2.

Notice that d(v2) ≡ pt2 mod (p2, v1), d(v3) ≡ pt3 mod (p2, v1, v2), and d(tp
2 ) = −tp

1 ⊗ tp2

1 +

v
p
1b1,1 − pb2,0, in the complex C∗BP∗BPBP∗, then we have

δ0δ1δ2(vs3) ≡s(s − 1)vs−2
3 (−b2,0tp2

1 + tp
2 b1,1)

+
s(s − 1)

2
vs−2

3 (−b1,0 ⊗ t2p2

1 + 2tp
1 ⊗ b1,1(1 ⊗ tp2

1 + tp2

1 ⊗ 1))

+ s(s − 1)(s − 2)vs−3
3 t3 ⊗ tp

2 ⊗ tp2

1 + · · · mod (p, v1, v2).

So

ϕ(γs) = −s(s − 1)b2,0tp2

1 8
+ s(s − 1)tp

2 ⊗ b1,1
9
− 1

2
s(s − 1)b1,0 ⊗ t2p2

1
6

+s(s − 1)tp
1 ⊗ b1,1(1 ⊗ tp2

1 + tp2

1 ⊗ 1)
2
+ s(s − 1)(s − 2)t3 ⊗ tp

2 ⊗ tp2

1 + · · ·
But in the cobar complex C∗k(3)∗K(3)K(3) we have:

d(tp
5 ⊗ tp2

1 ) = −tp
1 ⊗ tp2

4 ⊗ tp2

1 1
− tp

2 ⊗ t3 ⊗ tp2

1 5
− tp

3 ⊗ tp
2 ⊗ tp2

1 − tp
4 ⊗ tp2

1 ⊗ tp2

1 4
+ b2,0 ⊗ tp2

1 8
.

d(tp
2 ⊗ tp2

4 ) = −tp
1 ⊗ tp2

1 ⊗ tp2

4 1
+ tp

2 ⊗ tp2

1 ⊗ t3
3
+ tp

2 ⊗ tp2

2 ⊗ tp
2 + tp

2 ⊗ tp2

3 ⊗ tp2

1 7
− tp

2 ⊗ b1,1
9
.

d(tp
1 ⊗ tp2

1 tp2

4 ) = tp
1 ⊗ tp2

4 ⊗ tp2

1 1
− tp

1 ⊗ b1,1(1 ⊗ tp2

1 + tp2

1 ⊗ 1)
2
+ tp

1 ⊗ tp2

1 ⊗ tp2

4 1
+ · · ·

−d(tp
2 ⊗ tp2

1 t3) = −tp
2 ⊗ tp2

1 ⊗ t3
3
− tp

2 ⊗ t3 ⊗ tp2

1 5
+ · · ·

−2d(tp
2 t3 ⊗ tp2

1 ) = +2t3 ⊗ tp
2 ⊗ tp2

1 + 2tp
2 ⊗ t3 ⊗ tp2

1 5
+ · · ·

1
2

d(tp
4 ⊗ t2p2

1 ) =
1
2

b1,0 ⊗ t2p2

1 6
+ tp

4 ⊗ tp2

1 ⊗ tp2

1 4
+ · · ·

d(t2tp2

3 ⊗ tp
1 ) = −tp2

3 ⊗ tp
2 ⊗ tp

1 − tp
2 ⊗ tp2

3 ⊗ tp
1 7
+ · · ·

Thus ϕ(γs) = s(s2 − 1)t3 ⊗ tp
2 ⊗ tp2

1 − s(s − 1)ρ ⊗ tp
2 ⊗ tp2

1 + s(s − 1)tp
2 ⊗ tp2

2 ⊗ tp
2 + · · · =

s(s2 − 1)ν0 − s(s − 1)ρk1, for the monomials with same tabs will disappear. �

Now we can prove our main result. Proof of Theorem 1.2. By Cohen [1], ζn is repre-
sented by α1βpn/pn+α1x ∈ Ext∗,∗BP∗BP(BP∗, BP∗), which is the E2-term of the Adams-Novikov
spectral sequence, where x =

∑
s,k, j

as,k, jβspk/ j and a1,n,pn = 0. Comparing the inner degrees,

we get

2(p2 − 1)spk − 2(p − 1) j = 2(p2 − 1)pn − 2(p − 1)pn.

That is, pk(sp+ s) = pn+1 + j. And by the theorem 2.6 of [9], j ≤ pk + pk−1 −1, we get k ≤ n
and j = pk. Thus

x =
∑

n+1−k odd

as,k,pkβspk/pk ,

where s = pn−k+1+1
p+1 > 1.

For (α1βpn/pn + α1x) · γs ∈ E6,∗
2 , by the Lemma 4.1 ,we have
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ϕ(α1(βpn/pn + x) · γs) = −s(s2 − 1)h1,0 · b1,n · ν0 + s(s − 1)h1,0 · b1,n · ρk1

= −s(s2 − 1)h1,0 · e4,n+1 · ν0

≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
s(s2−1)

3 e4,2e4,0g1 � 0 if n ≡ 0, s � 0, ±1 mod (p),

0 if n ≡ 1 mod (p),
s(s2−1)

3 e4,0e4,1g2 � 0 if n ≡ 2, s � 0, ±1 mod (p),

here, n is mod (3) reduction of n. Thus (α1βpn/pn + α1x) · γs � 0 under the conditions in the
theorem.

Notice that the inner degrees of elements in Ext∗BP∗BP(BP∗, BP∗) are divisible by q, where
q = 2(p−1). This means that the first nontrivial differential may be dq+1, so α1(βpn/pn+x)·γs ∈
E6,∗

2 may not be killed be any differentials, and we conclude. �

Appendix A The list of product relations of any two generators of H∗S(3)

Appendix A. The list of product relations of any two generators of H∗S(3)
Here we lose the products that equal to zero and the proof which is trivial but tedious.

dim 3:

e4,i · h1,i+2 = e4,i+2h1,i, ki · h1,i = −gih1,i+1,

dim 4:

e4,i · ki+1 = e4,i+1gi+2, μi · h1,i+2 = −1
3

e4,i+2gi,

μi · h1,i+1 =
1
3

e4,i+1gi − 2
3

e4,iki +
1
3
ρgih1,i+1, νi · h1,i =

1
3

e4,i+1gi+2,

νi · h1,i+1 =
2
3

e4,i+2gi+1 − 1
3

e4,i+1ki+1 − 1
3
ρgi+1h1,i+2, ξ · h1,i = −e4,i+2gi,

dim 5:

e4,ie4,i+1 · h1,i = e2
4,ih1,i+1, e4,ie4,i+1 · h1,i+1 = e2

4,i+1h1,i,

θi · h1,i+2 = −1
2

e2
4,ih1,i+2, e4,ih1,i · e4,i+1 = e2

4,ih1,i+1,

e4,ih1,i · e4,i+2 = e2
4,ih1,i+2, e4,ih1,i+1 · e4,i+1 = e2

4,i+1h1,i,

e4,ih1,i+1 · e4,i+2 = e4,i+2e4,ih1,i+1, e4,i · μi+1 =
2
3
ρe4,igi+1 − e4,i+2vi+2,

μi · gi+1 =
1
2

e2
4,i+1h1,i, μi · gi+2 = −1

2
e2

4,ih1,i+2,

μi · ki+1 =
1
6

e4,ie4,+1h1,i+2, νi · e4,i+1 = −e4,i+2μi+1 +
1
3
ρe4,i+2gi+1 +

1
3
ρe4,i+1ki+1,

νi · gi =
1
6

e4,ie4,+1h1,i+2, νi · ki =
1
2

e2
4,i+1h1,i+2,

νiki+2 = −1
2

e2
4,i+2h1,i, ξ · e4,i = ρe4,i+2gi − 3e4,i+1vi+1,
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ξ · gi = −1
2

e2
4,ih1,i+1, ξ · ki =

1
2

e2
4,i+1h1,i,

dim 6:

e4,ih1,i · μi+1 =
1
3

e4,i+1e4,i+2gi, e4,ih1,i · νi = −1
3

e4,ie4,i+1gi+2,

e4,ih1,i+1 · μi+2 =
1
3

e4,i+1e4,igi+2, e4,ih1,i+1 · νi = −1
3

e4,i+2e4,igi+1,

μi · μi+1 = −1
3
ρe2

4,i+1h1,i − 1
6

e2
4,i+1e4,i, μi · ξ = 1

6
ρe2

4,ih1,i+1 +
1
6

e2
4,ie4,i+1,

νi · νi+1 =
1
3
ρe2

4,i+2h1,i − 1
6

e2
4,i+2e4,i, νi · ξ = 1

6
e2

4,i+2e4,i+1 − 1
6
ρe2

4,i+2h1,i+1,

e4,iki · e4,i+2 = e4,i+1e4,i+2gi, e2
4,i · gi+1 = e4,i+1e4,i+2gi,

e2
4,i · ki+1 = e4,ie4,i+1gi+2, e4,ie4,i+1 · ki+1 = e4,i+2e4,igi+1,

e4,igi+1 · e4,i = e4,i+1e4,i+2gi, θi · e4,i+1 =
1
3
ρe2

4,ih1,i+1 +
1
3

e2
4,ie4,i+1,

θi · e4,i+2 = −1
3
ρe2

4,ih1,i+2 − 1
6

e2
4,ie4,i+2, θi · gi+1 = −1

6
e4,i+1e4,i+2gi,

θi · ki+1 =
1
3

e4,ie4,i+1gi+2, e4,iμi+2 · h1,i+1 = −1
3

e4,ie4,i+1gi+2,

e4,iνi · h1,i =
1
3

e4,ie4,i+1gi+2, e4,iνi · h1,i+1 =
1
3

e4,i+2e4,igi+1,

ηi · h1,i+1 =
1
6
ρe2

4,ih1,i+1 +
1
6

e2
4,ie4,i+1, ηi · h1,i+2 =

1
6
ρe2

4,ih1,i+2 − 1
6

e2
4,ie4,i+2,

dim 7:

e2
4,i · μi+1 = e4,i+1e4,i+2μi, e2

4,i · νi =
2
3
ρe4,ie4,i+1gi+2 − e4,ie4,i+1μi+2,

e4,ie4,i+1 · νi = −e4,ie4,i+1μi+2 +
2
3
ρe4,i+2e4,igi+1, e4,ie4,i+1 · ξ = −ρe4,i+1e4,i+2gi + 3e4,i+1e4,i+2μi,

θi · μi+1 =
1
2

e4,i+1e4,i+2μi, e4,iνi · e4,i =
2
3
ρe4,ie4,i+1gi+2 − e4,ie4,i+1μi+2,

e4,iνi · e4,i+1 = −e4,i+2e4,iμi+1 +
2
3
ρe4,i+2e4,igi+2, ηi · e4,i+1 =

1
6
ρe2

4,ie4,i+1,

ηi · e4,i+2 =
1
6
ρe2

4,i+1e4,i, ηi · gi+1 =
1
2

e4,i+1e4,i+2μi,

ηi · ki+1 = −1
2

e4,ie4,i+1μi+2 +
1
3
ρe4,ie4,i+1gi+2,

dim 8:

e2
4,i · e4,i+1ki+1 = e2

4,ie4,i+2gi+1, e2
4,ih1,i+1 · νi = −1

3
e2

4,ie4,i+2gi+1,

e4,ie4,i+1h1,i+2 · ξ = e2
4,i+1e4,igi+2, e4,iμi+2 · e4,i+1h1,i+1 = −1

3
e2

4,ie4,i+2gi+1,
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e4,iνi · e4,ih1,i+1 =
1
3

e2
4,ie4,i+2gi+1, ηi · gi+1h1,i+2 = −1

6
e2

4,ie4,i+2gi+1,

e2
4,ie4,i+1 · ki+1 = e2

4,ie4,i+2gi+1, e4,ie4,i+1μi+2 · h1,i+1 = −1
3

e2
4,i+1e4,igi+2,

dim 9:

e4,iμi+2 · e2
4,i+1 =

1
3
ρe2

4,ie4,i+2gi+1, e4,iμi+2 · θi+1 =
1
6
ρe2

4,ie4,i+2gi+1,

e4,iνi · e4,ie4,i+1 =
1
3
ρe4,i+2e2

4,igi+1, ηi · e4,i+2gi+1 =
1
6
ρe2

4,ie4,i+2gi+1,

ηi · e4,i+1ki+1 =
1
6
ρe2

4,ie4,i+2gi+1, e2
4,ie4,i+1 · νi = 1

6
ρe2

4,ie4,i+2gi+1,

e2
4,ie4,i+2 · μi+1 =

1
3
ρe2

4,ie4,i+2gi+1, e4,ie4,i+1μi+2 · e4,i+1 =
1
3
ρe2

4,ie4,i+2gi+1.

Remark A.1. The multiplications in [16] are corresponded with above, except a0g
′
0 =

h0b′0 − h1b0. From our calculations, it should be a0g
′
0 = h0b′0 − 2h1b0.
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