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Abstract
We develop a method to compute the genera and slopes of essential surfaces in 2-bridge link
exteriors with one longitudinal boundary component. The tools we use are those developed by
Floyd and Hatcher in [4]. Such computations allow us to compute the genera of satellite tunnel
number one knots and torti-rational knots.

1. Introduction

A family of knots widely studied is the one known as (1, 1)-knots, these are knots which
can be put in 1-bridge position with respect to a standard torus in S*. This family contains
all 2-bridge knots, all satellite tunnel number one knots, and it is contained in the family
of tunnel number one knots. Genus one and genus two (1, 1)-knots have been classified
in [9] and [2], respectively. It is natural to ask for a classification of (1, 1)-knots of any
genus g. Such knots are divided into the satellite and the non-satellite cases. For the non-
satellite case we expect to have a description similar to that in [2], as special banding of
two (1, I)-knots of smaller genus. In the case that the knot is satellite, we need to determine
the 4-tuple «, B, p, g of the Morimoto-Sakuma construction that produces satellite genus ¢
tunnel number one knots [10]. The parameters «, 8 describe a 2-bridge link Lg/, and p,q a
companion torus knot. These knots are denoted by K(a, 8; p, q). For genus g > 3 a minimal
genus Seifert surface F may intersect the companion torus in a non-empty collection of
longitudes, hence the surface is broken into two pieces, one piece consists of Seifert surfaces
for the companion torus, the other piece is a surface F' contained in the neighborhood of the
torus knot with one boundary parallel to the satellite knot and boundary components which
are slopes on the companion torus. Such a surface defines an essential surface F’ for the
link Lg,,, with one boundary parallel to a component of the link and a number of boundary
components on the other component. Floyd and Hatcher [4] classified essential surfaces
for 2-bridge links. Later Hoste and Shanahan [7] described an algorithm for computing the
slopes of such surfaces. However the calculation of genera of the surfaces is not given there.
Furthermore Goda, Hayashi, and Song computed the Euler characteristic of a certain family
of such surfaces, see [5].

We were able to determine that an essential surface F’ for a 2-bridge link with one bound-
ary on one component of the link and a number of boundary slopes on the other component
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of the link arises from at most two minimal edge-paths of the Floyd-Hatcher construction
by means of continued fraction expansions for 8/a. This gives a constructive description of
the surfaces and allows us to compute genus and slope of the surface as well as to determine
whether or not the surface is a fiber of a fibering over the circle for the link.

Applying these ideas to satellite tunnel number one knots we obtain the following result:

Theorem 1. Let Ly, = Ky U K, be the 2-bridge link given by the tunnel number one
satellite knot K(a, B; p, q). And let F’ be the essential surface for Lg,, that arises from F, a
minimal genus Seifert surface for K(a, B, p, q). Suppose lk(K;, K;) # 0. Then

(1) If0 < B <@ pg 2 0and [0;2ny, ..., 2n;] is the unique continued fraction for B/a
with j odd, the genus of F’ is:

1

2

[—1 + Z [”k|) (k(Ky1, K2)pgl = 1) + (j + 1) = (Ilk(Ky, Kp)[ + 1)
k:odd

where k € {1, ..., J}
) If0<B <@ pg <0and|1;2my,...,2m;] is the unique continued fraction for B/«
with i odd, the genus of F’ is:

1
> (—1 + Z Iml] (k(Ky1, K2)pgl = 1) + (i + 1) = (IIk(Ky, K2)| + 1)
h:odd

where h € {1, ...,1}.

Corollary 2. Let K = K(a,B, p,q) be a tunnel number one satellite knot such that
Ik(K1, K>) # 0. Then the genus of K is:

, bl = Dllgl = 1)
g(K) = g(F') + Ik(K, K2>|%
Where F’ is as in Theorem 1.

It is worth mentioning that Hirasawa and Murasugi [6] obtained similar results using the
Alexander polynomial.

We can also apply our technique to compute the genus of torti-rational knots, which are
obtained from a 2-bridge link as follows: Let Lg/, = K; U K; be a 2-bridge link in § 3. Since
K is a trivial knot in S3, K, can be considered as a knot in an unknotted solid torus V, the
exterior of K;. A copy of K| can be considered as a meridian of V. Then by applying Dehn
twists along a meridian disk of V in an arbitrary number of times, say r, we obtain a new
knot K from K,. We call this knot a torti-rational knot and it is denoted by K(B/a; r).

Theorem 3. Let K(B/a; r) be a torti-rational knot and F a minimal genus Seifert surface
for it. Suppose that lk(K,, K>) # 0. Then:

(1) Suppose that r > 1 and [1;2my,...,2m;] is the unique continued fraction for B/«
with i odd, the genus of F is:

l[(_l n Z |m,1|) (Tk(Ky, K2)rl = 1) + (i + 1) = (JIk(K1, K2)| + 1)

2 h:odd
where h € {1, ..., i}
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(2) Suppose that r < —1 and [0;2ny, ...,2n;] is the unique continued fraction for /a
with j odd, the genus of F is:

1
(—1 + Z I”lk|) (Ik(Ky, Ko)rl = 1) + (j + 1) = (Ilk(K7, K2)| + 1)

2 k:odd

where k € {1, ..., J}

(3) Suppose that |r| = 1 and |Ik(K;,K>)| > 1. Let [s;2ry,...,2r¢] be the continued
fraction expansion for B/a with s = 0 or 1 such that k > 3 and |r;| = 2 for all t. The
genus of F is:

k(K 1, K>)| + D)(k - 3)

4

(4) Suppose that |r| = 1 and |IK(K,, K>)| = 1 and [0;2n4,...,2n;] and [1;2my, ..., 2m;]

are the continued fraction for B/a with j,i odd. The genus of F is:

Cfi-1 j-1
mln{T,T}

In case that lk(K,, K>) = 0 we prove:

1+(

Theorem 4. IfIk(K,, K>) = 0, the genus of a satellite tunnel number one knot K(«, B; p, q)
is one half the wrapping number of K, in E(Ky). Moreover, if [ s;2r1, ..., 2r] is the continued
fraction expansion for B/a with s = 0 or 1 such that k odd, the genus of K(a,p, p,q) is
Yioddltil. The same is true for a torti-rational knot.

Theorems 1 and 3 required a description of 8/« as a continued fraction and some compu-
tations. We have written an algorithm that receives as inputs «, 5, p, ¢, r and outputs genus,
slopes and number of boundary components for the surface, in some cases it can be deter-
mined the fiberedness of the knot.

Our algorithm is based on that given by Hoste and Shanahan in [7] . We found a fault for
rationals B/a > 1/2, thus it was necessary to reprogram this algorithm to compute the paths
and to incorporate computations of genus, slopes and number of boundary components. Our
modification of their algorithm can be found at https://github.com/viorato/compute_rational -
links_genus.

In Section 2 we review the concepts from the paper [4] of Floyd and Hatcher which are
necessary to develop our techniques. In Section 3 we state the basic results that allow to
describe the specific type of edge-paths associated to the surfaces of our interest. Using
continued fraction expansions for §/a we compute the genera and slopes for the surfaces
in Section 3.1. We revisit [4] to give their criteria for a surface to be a fiber of a fibering
for a 2-bridge link and give a criteria in terms of the continued fraction expansions for our
surfaces to be fibers in Section 4. Finally in Section 5 we compute the genus for satellite
tunnel one knots and for torti-rational knots.

2. Preliminaries
2.1. The diagram of slope system in the four puncture sphere. For the sake of helping

the reader, in this section we quote literally parts of Section 1 in [4]. Let Lg/, be a 2-bridge
link in S, it is represented by a rational number 3/a. We may suppose 0 < 8 < @, @ even,
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and ged(a,B) = 1. Let n(Lg,,) be a regular neighborhood of Lg/, in S3. The exterior of
Lgja is E(Lgje) = S — n(Lgy,). We say that a surface S properly embedded in E(Lg,) is
essential if it is incompressible, d-incompressible and not boundary parallel. The main idea
of Floyd and Hatcher’s construction given in [4] is to associate to an essential surface S in
E(Lg/,) an edge-path from 1/0 to B/ in the Diagram D,, t € [0, co], shown in Figure 1.
Observe that Dy = D.

The diagram D) is an embedded graph on the upper half plane H with the real line R and
the point at infinity 1/0. Its vertices are the rational points in R U {1/0} and its edges are
hyperbolic lines in the upper half model of H joining two vertices a/c, b/d, (a, b, c,d € Z) if
and only if ad —bc = 1. These lines are the edges of ideal triangles in H and PSL,(Z) is the
group of orientation-preserving symmetries of this ideal triangulation. The diagram D; is

1+

transformed onto the Poincaré disk model by —j:—z_:, see Figure 1. Let G ¢ PSL,(Z) be the
subgroup of Mdbius transformations (az + b)/(cz er d) with ¢ even. Its fundamental domain
is the triangle (1/0,0/1, 1/1). Consider the ideal quadrilateral Q = (1/0,0/1,1/2,1/1). The
G-images of this quadrilateral tessellate H. We form the diagram Dy from D; by deleting
the G-orbit of the diagonal (0/1,1/1) of (1/0,0/1,1/2,1/1) and adding the G-orbit of the
opposite diagonal (1/0,1/2). The diagram D,, 0 < t < oo, t # 1, is obtained from D, by
deleting the diagonal (0/1, 1/1) in each quadrilateral Q and adding a small rectangle having
a vertex in the interior of each edge of Q so that g(D,) = D, for g € G. The edges of D, fall

into four G-orbits, labelled A, B, C, D.

REMARK 5. As t approaches to 0 and 1, the inscribed rectangle collapses to the diagonals
(1/0,1/2) and to the diagonal (0/1, 1/1), respectively. See Figure 2.

For a given reduced rational number /a, let y denote an oriented edge-path from 1/0 to
B/ain D, with 0 < 1 < co.

DeriniTion 6. An edge-path vy is called minimal if no two consecutive edges in y lie on
the boundary of the same triangle face or rectangle face in D,.

Then for every minimal edge-path vy in D,, Floyd-Hatcher construct a corresponding
branched surface X,. Four basic branched surfaces, 4, Xp, Xc, and X are assigned to
the labelled edges. See Figure 3.

We regard S* as the two point compactification of S? x R and we place the link Lgo C
S2 x I so that it meets S x {0} and S2 x {1} each in two arcs and each intermediate level
in four points. We think of each level S2 x {r} as the quotient R?/I", where I is the group
generated by 180° rotations of R? about the integer lattice points Z>. The four points of the
link at each intermediate level are precisely the four points of Z?/I". The two arcs at level
r = 1 have slope 8/a and those arcs at level r = 0 have slope 1/0. PSL,(Z) acts linearly on
the level sphere S? x {r} = R?/I, leaving Z*/I" invariant.

The vertices of the diagrams Dy, Dy = Do, D, correspond to the slopes of arcs in the level
spheres.

Let ey, ..., e be the sequence of edges of a minimal edge-path y. An edge ¢; is the
image of one edge ey € {Ag, By, Co, Dy} (see Figure 1(c)) under a unique g; € G. Each
e; determines a branched surface X, in § 2 % [(i = k)/k,i/k] and the desired 2, is the union
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(c) Diagram Dy, t #0,1,00
Fig.1.

of these Z,,’s. If the orientations of e; and g;(ep) match, then X, = (g; X ¢)(Z,.,) where
@ [0,1] = [(i — D/k,i/k] is @(t) = % If the orientations do not match, we reflect Z,,
upsidedown. See [5].

Finally, a surface carried by one of the branched surfaces X, is determined by u and p,
the numbers of sheets of the surface along dn(K;) and dn(K>), respectively, and by how the
surface branches in each segment X4, X, ¢, or Xp of X,. We set 1 = u/p, which is the
subscript of D, .

Theorem 3.1(a) of [4] implies that every orientable essential surface in E(Lg,,) with u, p #
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171

|

1/Q e : 1 e 1/2

0/1

Fig.2. Collapsing a D, diagram.

Fig.3. Branched pieces for edges A, B, C and D

0 is carried by some branched surface corresponding to a minimal edge-path from 1/0 to 5/«
in D,. Conversely, an orientable surface carried by such a branched surface is essential.
A branched surface may carry non-orientable surfaces. Moreover, as noted in [5] there
may be an essential non-orientable surface which is not carried by any branched surface.
There is a unique finite sequence of quadrilaterals Qg such that the first one contains the
vertex 1/0, the last one contains the vertex 8/a and every pair of consecutive ones intersects
in a single edge.

Remark 7. Ina D, diagram with ¢ # 0, oo, the first and the last edges in any edge-path are
of type A.

2.2. Edge-paths and essential saddles. Let S C E(Lg,,) be a compact orientable essen-
tial surface with boundary on dE(Lg/,) € S? X1 C S3.
We may isotope S so that:
(1) Each component of 45 is either a meridian of E(Lg),) in S 2%(0, 1), or is transverse
to all meridians of 0E(Lgq).
(2) S is transverse to S X 01 and lies in S? X I near E(Lg/q) N (S? x 9I).
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(3) The projection S N (S? x I) — I is a Morse function with all its critical points in the
interior of S.

Let S2 denote S? x {r} for 0 < r < 1. A transverse intersection S N S2 can contain no arcs
which are peripheral in S — n(Lg/,) in view of (1) and the d-incompressibility of S. As
r varies from O to 1, the point A, € D, can change only at critical levels of the projection
S N (S?x 1) — I, in fact, only at saddles. A saddle where A, changes is called an essential
saddle. So we obtain a finite sequence of As, say Ao, ..., Ak, With 4.1 # 4; for all i. By (2)
Ao is the vertex 1/0 of D, and Ay is the vertex 5/a.

We can isotope S to lie in S 2 x I and have all its critical points lying on essential saddles,
and also still satisfy (1) — (3) above, see Section 7 of [4].

The possibilities, up to level-preserving isotopy, for an essential saddle corresponding to
a segment (4;, A;;1) on an A—, B—, C— or D—type edge of D, are shown in Figure 4. The two
leftmost vertices depict dn(K) N S f and the rightmost vertices depict dn(K;) NS f

- M@H

(a) A-type saddle

(b) B-type saddle

) C-type saddle

(d) D-type saddle

Fig.4. Saddle types: The two leftmost vertices depict dn(K>) N S2 and the
rightmost vertices depict dn(K;) N S2.

The corresponding saddle to an A—, B—,C— or D—type edge of D,, will be called an
A—, B—, C— or D-type saddle, respectively.

3. General results

Let Lg/, = Ky UK, be a 2-bridge link in § 3andlet S c E(Lg,,) be a connected, compact,
essential and orientable surface, both as in Section 2.2. Assume that S has n boundary
components in dn(K;), which are non-meridional and n # 0, i.e., g is a multiple of n, and
has one boundary component in dn(K,) parallel to K, i.e, p = 1. Let us denote by ;S the
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set of boundary components of dn(K;) N S, fori = 1,2. Observe that 9,5 consists only of
one curve whose slope is an integer and 0,5 of n parallel curves with slope p/g, with respect
to a meridian and preferred longitude in each component of the link. We denote the linking
number of Lg,, = K| U K; by lk(Ky, K>).

In the following lemmas we will determine the saddle types corresponding to a minimal
edge-path associated to S. Since there is a bijective correspondence between edges, saddles
and pieces of branched surfaces, the results can be applied to the three concepts.

Since u/p # 0, c0 and by Remark 7 the first and last saddles are of type A. By Lemma 7.1
and Figure 7.2 of [4], we have the following statement:

Lemma 8. Suppose that u # 1.

(1) B—type saddles come in groups of (u — 1)/2 saddles.
(2) D—type saddles come in groups of (u — 1) saddles.

Next we will prove that only edges of type A, B and D can occur. Choosing an orientation
for S will induce an orientation on the boundary components of § and on the arcs of S N S?
for € before the first A—type saddle; choose one. When two arcs are being fused by a saddle,
in a small neighborhood before the fusion occurs, we see two small arcs with opposite
orientations.

Lemma 9. There are no C-type saddles.

Proof. At the first level S2, there is only one arc of S N S2 connecting the vertices
of dn(K,) N S2. This implies that in a small neighborhood around one of the vertices of
dn(Ky) N S2, we see only one arc pointing out and around the other vertex we see only one
arc pointing in; we see opposite orientations around these vertices. This property must be
preserved for all the different levels S 2.

If a C-type saddle exists then after a G-transformation, it looks like in Figure 4(c) . But
that will imply that the orientations around the vertices K, N S?2, at some r, are no longer
opposite. O

One crucial object that we used on the proof of Lemma 9 and that we will use is the
orientation of § N $2 around a small neighborhood of a vertex. Once that we orientate S,
it induces an orientation on the arcs § N S? around a vertex, we can assign a +1 to each
arc pointing out and a —1 to an arc pointing in. We can then compute the sum of the signs
around a vertex v, we denote it by ¥,. Observe that ¥, is independent of the level S2 and it
reverses its sign if we change the orientation of §. Thus [X,| is a constant that is independent
of the level S2 and the orientation of ..

Lemma 10. If the boundary slope of 1S is of the form p/q with p,q € Z — {0}. Then
((p/Z| = llk(Ky, Ky)| for each vertex v in 0n(K;) N Sg

Proof. Let m; and /; be a meridian and preferred longitude of dn(K;), respectevely, for
i = 1,2. By definition we can calculate [X,| around m;, computing the intersections with
signs of 31§ and m,. As the slope of 0,5 is p/q, each boundary component of ;S intersects
m; exactly g times. Let n, be the number of the components intersecting positively m and
n_ the number of components which intersect m negatively, then X, = g(n, — n_).

Now, we only need to prove that p(n, — n.) = [k(K,, K>). This can easily be done by
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observing that S represents an equivalence between 0,S = kmy + [, and 0,5 = (n; —
n_)(pmi + gly) on H{(E(Lg),)). Combining these with the relations /; = lk(K;, K>)m; and
I = lk(K1, K>)m; we obtain the required equality. O

From the previous proof, it seems that we could get rid of the absolute values from the
statement. But the problem is that our definition of X, has an ambiguity on its sign. It is
possible to avoid it by being more specific on its definition, but we wouldn’t win much it is
more convenient to use and compute |Z,|.

Lemma 11. Suppose that u > 1, and let S be a surface given by an edge-path in D,.

(1) If there is a B—type saddle, then |Z,| = 1 for all v in dn(K;) N S2. Moreover, each
boundary component of S on 0n(K) is longitudinal and u = n.

(2) If there is a D—type saddle, then |S,| = p for all v in On(Ky) N S2. Moreover, all the
boundary components of S have the same orientation on the boundary on(Ky).

Proof. (1) By Lemma 8 the number of arcs in S NS 2 joining the components of dn(K{)NS 2
is odd. Before a B—type saddle appears, there must be an A—type saddle. After passing it,
we see an even number of arcs joining the components of dn(K;) NS 2. In order to perform a
B—type saddle, two arcs of the same slope must be joined, thus their orientation are opposite.
Then all the arcs joining the components of dn(K;) N S2 can be paired together on opposite
orientation pairs. This implies that |, = 1 for each vertex v € dn(K;) N S E

By Lemma 10 we have that the slope 0,5 = p/q is equal to lk(K, K3), hence 0,5 is an
integer (its components are longitudinal).

(2) After a G transformation, a D—type saddle looks like in Figure 4(d). When performing
a D—type saddle, the configuration of arcs that we obtain contains two arcs of slope zero
whose orientations coincide with the one on the previous arcs of slope zero. This occurs
every time we perform a D—type saddle and by Lemma 8 this happens ¢ — 1 times, thus the
arcs S NS ? joining the components of K; NS 2 have the same orientation. Therefore [Z,| = u.

O

An immediate consequence of Lemmas 11 and 10 is the following.

Corollary 12. Ifthere is a B—type saddle and if the boundary slope of S N on(K) equals
L/r then |Ik(K\,K>)| =1 and r = 1.

Summarizing we have:

Corollary 13. Let Lg,, = K U K, be a 2-bridge link in S3andlet S c E(Lg/q) be a
properly embedded, connected, compact, essential and orientable surface. Assume that S
has n boundary components on on(K,), which are non-meridional and n # 0, i.e., puis a
multiple of n, and has one boundary component on 0n(K») parallel to K5, i.e., p = 1. We
have the following:

(1) If u > 1 then the sequence of saddles corresponding to a minimal edge-path as-
sociated to S consists only of A— and B—type saddles, or only of A— and D—type
saddles.

(2) If u = 1 then the sequence of saddles corresponding to a minimal edge-path associ-
ated to S consists only of A—type saddles.
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Proof. If u > 1, by Lemma 11 we have part (1). In the case that u = 1, then the
corresponding path associate to the surface S lies in the D; diagram and there are no C—types
saddles by Lemma 9, therefore the sequence of saddles are only of type A. O

Derinition 14. We will use the notation A B—edge-path to refer to an edge-path consisting
of only A— and B—type saddles. Similarly we use the notation AD- and A—edge-path.

By Corollary 13 the only orientable surfaces considered in this article come from AD—,
AB- or A— edge-paths. Nevertheless not all such edge-paths correspond to an orientable
surface.

For instance, consider the edge-path (1/0,0/1), (0/1,1/2), (1/2,1/3), (1/3,3/8), the
corresponding sequence of saddles is ADAADA, see Figure 5. In Figure 6 we show the first
part of the saddle sequence (recall that we are using u — 1 type D saddle). Observe that
passing to the third saddle of type A gives rise a nonorientable surface.

=
(&[] 8]

Ol
oolw

AA

VY

Fig.5. An edge-path from é to %

Fig.6. A-type saddles for the edge-path from % to %

The same observation is valid for AB— or A—edges-paths, namely there are such edge-
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paths that correspond to non-orientable surfaces. The next lemma rules out edge-paths corre-
sponding to non-orientable surfaces. In order to state the result we introduce some notation.

Each reduced fraction p/¢q in Q can be identified with O/1, 1/0 or 1/1 by reducing p and
g mod 2. An A-type edge in D, is contained in an edge {pi/q1, p2/q2)- If {p1/q1, p2/qz2} is
identified with {0/1, 1/0} mod 2, we say that such an edge is of type Ap. On the other hand
if {p1/q1, p2/q>} is identified with {1/1, 1/0} mod 2 the edge is said to be of type A;.

By an A;X—edge-path we will mean an AX—edge-path in D, that consists only of edges
of type X and A; withi = 0,1 and X = B, D. Similarly we use the notation A;—edge-path for
an edge-path in D, that contains only A;—type edges with i = 0, 1.

Lemma 15. Let S be an orientable surface and y be an edge-path in D, associated to
S. Suppose that vy is an AX—edge-path with X = B,D. Then vy is an A;X—edge-path with
i =0, 1. The same result is valid for A—edge-paths.

Proof. Assume that y contains edges of type Ap and A;. We are going to find a contradic-
tion.

Case 1: vy is an A-edge-path in D;. Asy is made of only A type saddles, there must be
two consecutive saddles of type Ay and A;. Without loss of generality, we can assume that
A, follows Ag. We draw the sequence of pictures mod 2 for these two saddles in Figure 7.
Notice that this is impossible due to orientability of S.

&———o

AO AN BN

[y
[
N
.—l_. . 1
'
.~

Fig.7. No orientability of A-edge-path containing both Ay and A edges.

Case 2: vy is an AD-edge-path in D,. Again, in this case we will have two consecutive
saddles of type Ap and A;, because the edge-path comes in blocks of the form AD... A
where the two A’s are of the same type. The sequence of levels mod 2 is similar to the
previous one, see Figure 8, but with some extra u — 1 parallel arcs.

By Lemma 11(1) those u — 1 parallel arcs must have all the same orientation; moreover,
around the vertices in dn(K;) N S, all the arcs are oriented in the same direction. It is not
hard to see from Figure 8 that it is impossible to give a coherent orientation to all the arcs
with the condition that all the u parallel arcs have the same orientation, contradicting the
orientability of §.

Case 3: y is an AB-edge-path in D,. A similar phenomenon to the previous case happens
here. In fact, we get the same picture as in Figure 8. The reason is that the AB—edge-paths
come in blocks of the form ABBA where the two A’s are of the same type. So, if we have
two A’s of a different type on vy, there must be two consecutive blocks with different A-types.

As consequence of Lemma 11(2), all the ¢ — 1 arcs in the first and last level in Figure 8
need to be cancelled in pairs. And it is impossible to give a coherent orientation satisfying
these conditions. O
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v 1 w

Fig.8. No orientability of AD-edge-path containing both Ay and A, edges.

RemMArk 16. When an AB—edge-path happens it must be of the form ABBA ... ABBA,
where the A— and B—type edges lie in different polygons, see Figure 1(c). Since the surfaces

considered in this work are connected, an AB—edge-path consists of at least two ABBA
blocks.

RemARK 17. In the case that § C E(Lg/,) has meridional boundary components on on(K)
and one boundary component on dn(K,) parallel to K5, then the edge-path corresponding to
the branched surface that carries S belongs to the diagram Dy. Thus it is an BD—edge-path.
For B—type edges to exist and to obtain an orientable surface it must happen that p is greater
than 1. See Figures 9(a) and 9(b) of B— and D- type saddle for r = 0. We conclude that in
this case, the edge-path consists only of D—type edges.

»
o

(b) D-type saddle in Dy

Fig.9.

3.1. Continued fractions and genus of surfaces. An edge-path from 1/0 to 8/« in the
diagram D, corresponds uniquely to a continued fraction expansion S/a = [r; by, ..., b],
where the partial sums S;/a; = [r; by, ..., b;] are the successive vertices of the edge-path.
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.._I_b_k

RemMARk 18. At the vertex f;/a; the path turns left or right across |b;| triangles. For i—odd,
right if b; > 0 and left if b; < 0. For i—even left if b; > 0 and right if b; < 0. The number of
C diagonals is |b;|/2

By Remark 5, in D, the diagonals C of the diagram D, are changed by inscribed rectan-
gles. So for each diagonal C we obtain a D—edge around the vertex S;/«;, see Figure 1(a).
Thus the number of D—edges around S;/a; is |b;|/2.

In this paper we use two special types of continued fraction expansions: S/a = [0;2n,,
2ny,...,2n;] and B/a = [1;2my,2my,...,2m;]. These are the unique continued fraction
where each entry is an even number and j, i are odd.

We will describe the edge-path in D, associated to these continued fractions, such that the
branched surface associated carries a connected, compact, essential and orientable surface S
properly embedded in E(Lg,,) with one boundary component on dn(K>) parallel to K, and
n-boundary components on dn(K), which are non-meridional and n # 0; i.e, p = 1 and u is
a multiple of n. For now on we assume that ¢ # 0, co.

For short we will say that the surface S is associated to the edge-path. We will compute
the genus of S as well.

For both continued fraction expansions, the vertices ;/a;, given by the partial sums,
satisfy that @y, is even and ay; is odd.

In the diagram Dy, the edge-path for [0; 2n, 2na, . . ., 2n;] passes by 0/1 and the edge-path
for [1;2my,2m,,...,2m;] passes by 1/1. These are A—edge-paths.

The edge-path corresponding to the continued fraction [0; 2n,2n,,...,2n;] is an Ag—
edge-path, and the corresponding to the continued fraction [1; 2m,2m,, ..., 2m;] is an A|—
edge-path.

If 4 = 1, the edge-path just obtained is the one that corresponds to S. Hence we obtain an

edge-path of length j+1 (ori+1), where each edge lies in different triangles by construction.
For each A—type edge we have an A—type saddle, thus we can compute the genus of S using
Euler characteristic.

Proposition 19. Let [r;2ry, ..., 21| be one of the two continued fraction expansions for
Bla. If u = 1, the associated A—edge-path consisting of k + 1 edges corresponds to a
connected, compact, essential and orientable surface S C E(Lg,,) with one boundary com-
ponent on On(K;) parallel to K; for i = 1,2. Then the genus of S is

1
Sk=1

]

If 4 # 1, we pass to the D, diagram with ¢+ # 1. Each edge A in D, is changed into
an A—edge and a B—edge. The edge path in D; is transformed into an AB-edge-path in
a diagram D,. Around a vertex with even denominator there are only A—type edges, and
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around a vertex with odd denominator there are only B—type edges. Thus the pattern ABBA
is repeated -;-(i + 1)-times or %(j + 1)-times.

Observe that an AB—edge-path obtained as above may not correspond to a minimal edge-
path in D,, nevertheless a minimal AB—edge-path associated to a connected, compact, es-
sential and orientable surface is in correspondence with an A;—edge-path with i = 0,1. A
condition on the continued fraction expansion [r; 2r1, ..., 2r¢] for B/a for an AB—edge-path
to be minimal is that |r;| > 1 for all j.

If an orientable surface S is carried by this kind of path, Lemma 11 implies u = n and by
Remark 16 we have %(i +1)>2or %( j+1) > 2, since we require a connected surface, where
i, j are the lengths of the continued fraction expansions for 5/a. Hence an AB-edge-path
that passes trough the vertices 0/1 or 1/1 associated to an orientable surfaces must contain
at least two blocks of the pattern ABBA, thus the continued fraction expansion contains at
least three even terms, after the O or 1 entries.

In order to compute the genus of S, the associated surface to this edge-path, we count
the number of saddles corresponding to the edge-path. Observe that each A—type edge
corresponds to one saddle and each B—type edge to %(n — 1)-saddles. Each block of ABBA
contributes with (n + 1) saddles. Again, using Euler characteristic we find:

Proposition 20. Let [r;2ry, ..., 2r¢] be one of the two continued fraction expansions for
Bla, with k > 3 and |r,| > 2 for all t. If u = n and the associated AB-edge-path consisting
of %(k — 1) ABBA blocks corresponds to a connected, compact, essential and orientable
surface S C E(Lg;,) with one boundary component on On(K») parallel to K> and n boundary
components on 0n(Ky) parallel to K,. Then the genus of S is:

L+ (n+1)k-3)
4
O
If § is oriented and p # n then the edge-path for S is an AD-edge-path. In this case, we
substitute each pair BB in the above edge-path by a sequence DD...D, where the number
of D’s is given by the number of diagonals C in the diagram D, around the corresponding
vertex. For instance, if Sy /a = [0; 2n1, 2n,, . . ., 2no;], the number of D’s is [noge1].
Summarizing, the AD—edge-type in D, associated to the continued fraction expansion
[0;2n1,2n,,...,2n;]1isADD...DAADD...D AA...AADD...D A. Notice that the two consec-
: L AR Seagiind

[y [n3] [

utive A—type edges belong to different triangles, and the D—type edges belong to different
quadrilaterals by construction. Thus we obtain a minimal edge-path. Analogously, for the
continued fraction expansion [1; 2my, 2mo, . .., 2m;] we associate an AD—edge-path.

Next we compute the genus of such §'.

Proposition 21. Let [r;2ry, ..., 21| be one of the two continued fraction expansions for
Bla. If u # n and the associated path A DD...D AADD...D AA..AADD...D A corresponds
S—— S—— S——

Ir1l |73 Il
to a connected, compact, essential and orientable surface S C E(Lg,) with one boundary

component on 0n(K,) parallel to K, and n non-meridional boundary components on on(Ky).
Then the genus of S is:
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1
(-1 + > |rh|] (el =D +GE+D=m+1)

2 h:odd

where h € {1, ..., k}

Proof. Use Euler characteristic, considering that each A—type edge corresponds to one
saddle and each D—type edge corresponds to u — 1 saddles. O

3.2. Boundary slopes. The boundary of a branched surface derived from the Floyd-
Hatcher construction defines a train track on the boundary of the regular neighborhood of
the link. Thus the boundary of any essential surface S carried by the branched surface is car-
ried by this train track. Lash, [8], calculated the space of boundary slopes for the Whitehead
link.

In the following paragraph we explain Lash algorithm. We base the explanation on the
article [5]:

To compute the boundary slopes of the surfaces the frame used consists of the meridian
u; and a non-standard longitude A; of on(K;). In S? = R?/T, we take the arc s of slope 0
connecting I'(0,0) and I'(0, 1). A; is the union of the arc (s X [0, 1]) N dn(K;) and an arc in
(S2x[1, 00))NAn(K;). A, is oriented toward increasing r € [0, 1] along the axis I'(0, 0)x[0, 1].
The meridian y; is oriented as a right-handed circle around the axis I'(0, 0) x [0, 1] oriented
upward. We obtain A, i, from Ay, u; by rotating by 180° about the axis I'(1/2,1/2) x [0, 1].

Let i; be the algebraic intersection number dS -4 in 0n(K ;). Let ¢ be the map such that for
s €[0,1], o(s) = (i+s—1)/k € [(i—1)/k,i/k]. Recall that in Section 2 a surface S C E(Lg/q)
corresponds to a minimal edge-path y with edges e, ..., ¢, each one is the image of an edge
eo € {Ao, Bo, Co, Do} under a unique g € G, and it is associated to a branched surface X, .
a

d
Table 1, if the orientations of e; and g(e() agree. If they disagree, we change the signs of the
number in Table 1.

We calculate the boundary slope of a surface S C E(Lg/,) corresponding to an AD-edge-
path.

Taking the sum of the entries of the row of i; and i, of Table 1, we can see that the
slope on dn(Ky) is (u, (u — p) + sp) and that on dn(K>) is (p,v(u — p) + sp), where the
first coordinate is the longitudinal entry, the second coordinate is the meridional entry with
respect to the unusual longitude A;. The parameters r, s, v are integer numbers and r is the
total contribution of (u — p) given by D-edges in column i;, v is the total contribution of
(1 —p) given by D-edges in column i, and s is the total contribution of p given by A-edges in
each column. To obtain the real slope, we need to know the slope of the preferred longitude,
which is obtained by substituting 1 for x and O for p in dn(K;) and turns out to be (1, r). The
preferred longitude of K; is of slope (1, s — v), which is obtained by substituting p = 1 and
i = 0indn(K,). But the preferred longitude of K is the same for K, recall that we take A, as
the image of A; by rotating 180° about the axis I'(1/2,1/2) x [0, 1]. Thus, (1,7r) = (1,5 —-v)
and s — r = v. The slopes with respect to the preferred longitude can be obtained from
(, r(u—p)+sp—ru) = (, (s—r)p) = (u, vo) on on(K,), and (p, v(u—p)+sp—(s—v)p) = (p, V)
on on(K>).

Recall that we are considering two types of continued fraction expansions for 5/a, namely

For0 <t <1, 0%, = 0(g X p)(Z¢,). g = € G contributes to the number i; as in
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Table 1.
Label | condition on —d/c i i
d
—c0<-2<0 I P
A 0< —i-f < o0 —p -
~4 =0, %00 0 0
—o<-4<0 |-(u-p)| O
B 0< —f—{ < o u—p 0
—4 =0, 00 0 0
d
0<-2<1 -2p 0
C d _
otherwise 0 2p
3<-4<o0 p—p |p-p
b —d =1 400 0 |u-p
otherwise -u-p) | u—p

Fo =10;2n1,2n,,...,2n;]and Fy = [1,2my,2m,, ..., 2m;]. As discussed in Section 3.1, for
each continued fraction there is an AD-edge-path corresponding to an essential surface. We

will determine the contribution of v.
The edge path for Fyis ADD..DAADD...D AA...AADD...D A, the orientations of the
S~—— S—— S——

[m1] 3] nj]
edges A and D need to be determined in order to compute v. If the orientation of ¢; € {A, D}

and g(ep) with ey € {Ag, Do} agree we denote the edge by ?;, if they disagree we denote it by
<_
€;.

By the construction of the edge path it is not hard to see, as shown in Figure 10, that:

(1) The first A—type edge is of type A

(2) The first |n;| D—type edges are of type B

(3) Each intermediate pair AA is of the form ZX
(4) The last A—type edge is of type A

For the remaining D—type edges we have:

Proposition 22. For the continued fraction expansion Fy and i odd.
(1) Ifn; > O then the sequence of D—type edges are of type D.
(2) If n; < O then the sequence of D—type edges are of type D.

Proof. For both cases we need to verify the agreement or disagreement of the D—types
edges with g(Dy) at the i—th position for i odd. Since we are considering the continued frac-
tion F all the vertices 8;/«;, for i odd, are congruent with 0/1 mod 2, up to transformations
of elements of PSL(2,7Z). Thus the D—type edge at such vertex 3;/a; is of type D as shown
in Figure 10. From Remark 18 the quadrilateral turns right if n; > 0 and left if n; < 0.
Hence, if n; > 0 the sequence of D—type edges are are of type D and if n; < 0 the sequence
of D—type edges of type B See Figures 10 and 11 for the turns around §;/a; mod 2. O
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1
1 1
od y LYY
A\ b |2
0
1 ”mmm"”m
/D
~_ "1
1
2r1

ey
Fig.11. Path DD ---D

The value of v for the edge path corresponding to the continued fraction expansion Fj is
v = —(n; +n3 + ... + nj) because when n; > 0 we see B—type edges, so the contribution in
the Table 1 is —n;, and if n; < 0 we see B—type edges, so they contribute with —n; in Table
1. Since lk(Ky, K>) = ny + n3 + ... + nj, we conclude the following:

Corollary 23. Let S C E(Lgq) be a surface associated to the edge path
ADD..DAADD..DAA..AADD...DA, arising from [0;2ny,2n,,...,2n;]. The boundary
e’ e’ e —’ p

[ny] 3] I

slopes of S with respect to the preferred longitude on on(K,) is (u, —lk(K;, Ky)p) and on
In(Ky) is (p, —lk(K,, K>)p).

On the other hand, for the continued fraction expansion Fy = [1;2m,,2m;,...,2m;] the
corresponding edge path in the diagram D, is A DD..DAADD...D AA..AADD...D A. This
S— S— S——

[y ) ||
path lies in the same sequence of quadrilaterals as the corresponding path for the continued

fraction expansion Fy, but it is made of the A— and D—type edges which do not belong to
the path for Fy. Reasoning as before, we have that for the AD—edge-path corresponding to
F 1.
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(1) The first A—type edge is of type A
_)
(2) The first |n;| D—type edges are of type D.
L

(3) Each intermediate pair AA is of the form A A.
(_
(4) The last A-type edge is of type A

Proposition 24. For the continued fraction expansion F and i odd.

(1) If n; > O then the sequence of D—type edges are of type?) .
(_
(2) If n; < O then the sequence of D—type edges are of type D.

Corollary 25. Let S C E(Lg,q) be a surface associated to the edge path
ADD..DAADD...DAA..AADD...D A, arising from [1;2m;,2ma,...,2m;]. The boundary
N N’ S——

[y 3] [y

slopes of S with respect to the preferred longitude on ON(K,) is (u, lk(Ky, K>)p) and on
ON(K3) is (o, k(K 1, K2)u).

Analogously, we can compute the boundary slopes for A-edge-path and A B-edge-path, in
both cases the resulting boundary slopes are equal to zero.

4. Fiberings

Floyd and Hatcher give a criterion to determine when a surface S in E(Lg/,) is a fiber of
a fibering E(Lg/y) — St

DeriniTioN 26. Let y be a path in D,, with ¢ € [0, co]. A maximal sequence of consecutive
A—- and D—type edges in y each separated from the next by only one edge in D,, is called a
string.

Figure 12(a) shows an example of a string and Figure 12(b) depicts a path which is not a
string.
Proposition 6.1 of [4] states sufficient and necessary conditions for fibering:

Proposition 27. A surface S C E(Lg,q) is a fiber of a fibering E(Lg1o) — S if and only
if it is isotopic to a surface carried by a branched surface ¥, whose associated edge-path y
Jrom 1/0 to B/, in a determined D,, consists of a single string of A— and D— type edges.

The following theorem tells us conditions on the continued fraction expansion, considered
in this work, for a surface S to correspond to a fiber of a fibering E(Lg/,) — S I

Theorem 28. Let Lg,, be a 2-bridge link and S a connected, compact, essential and
orientable surface in E(Lg;q) with one boundary component on 0n(K») parallel to K, and
n-boundary components on on(K,), which are non-meridional and n # 0.

(1) Suppose S is associated to an AD-edge-path. S is a fiber of a fibering E(Lgso) — S
if and only if the continued fraction expansion for B/a has the form [r;2r, 26,
2r3, ..., 26,1, 2r, | with r = 0,1 and |g| = 1.

(2) Suppose S is associated to an A-edge-path. S is a fiber of a fibering E(Lg;,) — S Lif
and only if the continued fraction expansion for B/« has the form |r; 2€1, 26, ..., 2€,]
withr =0,1 and || = 1 forall i.

(3) Suppose S is associated to a D-edge-path. S is a fiber of a fibering E(Lg;) — S if
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(b) not a string

Fig.12.

and only if the continued fraction expansion for B/« has the form [0; 2ry, =2, 2r>, ...—
2,2r,] with 2r; positive for all i. Thus the fraction starting with 1 is of the form
[1;2n4,2,2n,,...,2,2n;] with 2n; negative for all k.

Proof. In each case we need to verify that the corresponding path in the adequate diagram
D, is a string.

(1) Lety = ADD..DAADD...DAA..AADD...D A be the edge-path arising from the
S—— S—— S——

1l r3] 7l
continued fraction expansions [r; 2r;,2rs, ..., 2r;]. Observe that any two consecu-

tive A and D are separated by exactly one C—type edge in D,, with ¢ # 0, 1, c0. And
any two consecutive D—type edges are separated by exactly one A— or B—type edge
as in Figures 12(a) and 12(b). To guarantee that y is a single string, it is necessary
to check when two consecutive A—type edges are separated by only one edge. By
inspecting Figure 12(b), it is easy to observe that two A—type edges are separated by
only one edge if 2r, = 2, —2. This pattern is extended to the whole path . Thus, the
condition is that r; = 2e with € = —1, 1 for / even in the continued fraction expansion
[7:2r1,2r,...,21].

(2) Consider the continued fraction expansion [r; 2r1, ..., 2r;], since S is associated an A-
edge-path vy in the D, diagram, y goes through all the vertices 1/0,8y/aq,B1 /a1, ...,
Bj/a; = B/a. For y to be a string, every two consecutive A-type edges must be
separated by exactly one C-type edge or by exactly one A-type edge. There are two
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3

possibilities depicted in Figures 13(a) and 13(b), we see that |2r;| = 2 for all i. Thus,
the continued fraction expansion has the form [r; 2¢€, 263, ..., 2€,] with ¢ = *1.

Let us consider the continued fraction expansion [0;2ry, ..., 2r;], in this case the
surface S is in correspondence with a D-edge-path y in the Dy diagram. The first
r edges of type D pass through vertices 1/0,1/2,1/4,...1/2r; = B;/a;. Each two
consecutive D-type edges are separated by exactly one B-type edge. Thus, that piece
of y satisfies the condition to be a string. See Figure 14(a). A similar phenomenon
occurs around a vertex f;/a; with i even. It is necessary to determine when two
consecutive D-edges with common vertex §;/a; with i odd are separated by exactly
one B-edge.

Next we will determine conditions for r;, r3 in order to keep y being a string, up
to PSL,(Z) transformation, we will be able to argue that the conditions for r,, 73 can
be extended to the following r7s.

First let us consider 2r,, 2r3 both positive. The B-edge connecting 0/1 and 1/2r,
has to turn left 2r, edges to reach the vertex 5, /a». Then the edge connecting 1/2r
and B>/, has to turn right 2r; edges to reach vertex 83/a3. Recall that the turns
at each vertex were described in Remark 18. For this case see Figure 14(a). The
two consecutive D-edges with common vertex 1/2r; are separated by (2r, +2r;— 1)
B-edges, since 2r;, 2r3 > 2, there are at least three B-edges in between. Hence, this
situation will not give a string.

Secondly consider 2r, positive and 2r3 negative. In this case, the B-edge connect-
ing 0/1 and 1/2r; has to turn left 2r, edges to reach the vertex 8,/a,. Then the edge
connecting 1/2r; and B> /a; has to turn left 2r; edges to reach vertex 53/a3. The
two consecutive D-edges with common vertex 1/2r; are separated by 2r, B-edges,
since 2r, > 2, there are at least two B-edges in between. Hence, this situation will
not give a string. See Figure 14(b).

Thirdly suppose 2r, and 2r; are negative. The B-edge connecting 0/1 and 1/2r,
has to turn right 2r, edges to reach the vertex 5, /a». Then the edge connecting 1/2r;
and B,/ a; has to turn left 2r; edges to reach vertex 83/as. See Figure 14(c). The two
consecutive D-edges with common vertex 1/2r; are separated by (|12r;| + [2r3] — 1)
B-edges, since 2rp,2r; > -2, there are at least three B-edges in between. Thus, this
case will not give a string.

Finally, if 2r, is negative and 2r3 is positive. The B-edge connecting 0/1 and
1/2r; has to turn right 2r, edges to reach the vertex 8, /a». Then the edge connecting
1/2r; and B, /a;, has to turn right 2r3 edges to reach vertex 83 /3. See Figure 14(d).
In this case the edges with common vertex 1/2r; are separated by (|12r,|—1) B-edges,
so to obtain a string it is necessary that 2r, = =2.

At this point we have that the continued fraction expansion looks like [0; 27}, =2,
213, X4y oeey Xp .

Using a transformation in PSL,(Z), we can put in correspondence §8;/a; — 1/0,
Ba/ary — 0/1 and Bs3/a3 — B/a;. Analysing as above we are able to conclude
that 2r, = —2 and 2rs is positive. Thus, if we keep doing the correspondence for
the remaining vertices, we conclude that the continued fraction expansion has the
form [0; 2r, =2, 2r3, =2, ..., =2, 2r,] with 2r; positive for all i odd. A similar analysis
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shows that the other continued fraction expansion must be [1;2ny,2, 2no, ..., 2,2n;]
with 2n; negative for all k. O

(b) 272 positive and 2r3 negative

Fig.13. Possibilities for A-edges in D, to belong to a string.

Corollary 29. Let Lg;, = K; U K, be a 2-bridge link with Ik(K,,K>) = 0. A surface
S C E(Lga) associated to a D-edge-path is not a fiber of a fibering E(Lg;,) — S .

Proof. The third part of Theorem 28 implies that if the the surface S is carried by a D-
edge-path, then the continued fraction expansion for 8/« is of the form [0; 2r(, =2, 2r>, ... —
2,2r,] with 2r; positive for all i. Thus the linking number is not equal to zero, a contradiction.

O

5. Applications

In this section we compute the genus of tunnel number one satellite knots, as well as
torti-rational knots. Hirasawa and Murasugi, [6] have computed the genus of such knots
using algebraic techniques, namely the Alexander polynomial. We give criteria to determine
fiberedness of satellite tunnel number one knots only when lk(K, K») # 0.

5.1. Tunnel number one satellites knots. Morimoto and Sakuma [10] determined the
knot types of satellite tunnel number one knots in S 3. These knots are constructed as follows.
Let Ky be a (p, g)-torus knot in S$* with p # 1 and ¢ # 1, and let Ly, = K; U K, be a 2-
bridge link in S 3 with @ > 4. Note that K is a non-trivial knot, and Lg,, is neither a
trivial link nor a Hopf link. Since K is the trivial knot in S3, there is a an orientation
preserving homeomorphism f : E(K;) — N(Kj) which takes a meridian m; c dE(K;) of K
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(d) 2r2 negative and 2r3 positive

Fig.14. Analyse of D-edge-path in Dy to belong to a string.
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to a fiber 7 € IN(Ky) = JE(Ky) of the unique Seifert fibration of E(Ky). The knot f(K;) C
N(Ky) c S? is denoted by the symbol K(a, 8; p, ). Every satellite knot of tunnel number one
has the form K(a,; p, q) for some integers a, 3, p, g. Eudave-Muifoz [3] obtained another
description of these knots.

Let [ and m be a preferred longitude and a meridian for dN(K)), respectively. Notice that
A(l,h) = pg and then A(f~'(I), m>) = pq, where A stands for the geometric intersection of
two curves.

The next lemma is a variation of Lemma 2.11 in [1], applied to our context.

Lemma 30. Let K = K(a,f; p,q) be a satellite tunnel number one knot. Let F be a
minimal genus Seifert surface for K. The surface F can be isotoped in such a way that
F N ON(Ky) consists of |lk(Ky, K»)| preferred longitudes and F N (S3 — N(Kp)) is made of
|lk(K,, K»)| components which are Seifert surfaces for K.

First we consider the case when [k(K;, K>) = 0.

Suppose the 2-bridge presentation of Lg, is given relative to some 2-sphere S in S3
bounding 3-balls Wy, W such that Lg/, intersects S transversely and Lg,, N W; is a disjoint
union of two arcs. Consider S x I be a product regular neighborhood of § in S3, and let
h : S xI — I be the height function. We denote the level surfaces hlir) = 8§ x{r by
S, foreach 0 < r < 1. §¢ bounds a 3-ball Hy, and S, bounds a 3-ball H;, such that
§3=HyU (S xI)U H,. Assume that S¢ ¢ W;, S; ¢ W, and that A|(S x I) N Lg,q has no
critical points (so (S X 1) N Lg/, consists of monotone arcs).

Let F' be an essential surface properly embedded in the exterior E(Lg,).

By general position, an essential surface can always be isotoped in E(Lg,,) so that:

(M1): F intersects So U S transversely. We denote the surfaces F N Hy, F N Hy,
F N (S xI)by Fy, Fy, F, respectively;
(M2): each component of dF is either a level meridian circle of 0E(Lg/,) lying in some
level set S, or it is transverse to all the level meridians circles of E(Lg,) in § X I;
(M3): fori = 0,1, any component of F; containing parts of Lg,, is a cancelling disk
for some arc of Lg/, N H;. In particular such cancelling disks are disjoint from any
arc of Lg,, N H; other than the one they cancel;
(M4): h|F is a Morse function with a finite set Y(F) of critical points in the interior of
F, located at different levels. In particular F' intersects each noncritical level surface
transversely.
We define the complexity of any surface satistying (M1)—(M4) as the number
c(F) = 10Fo| +10F 1| + [Y(F)I,
where |Z] stands for the number of elements in the finite set Z, or the number of components
of the topological space Z.
We say that F is meridionally incompressible if whenever F compresses in S 3 via a disk
D with 4D = D N F and D intersects Lg/, in one point interior to D, then 0D is parallel in
F to some boundary component of F' which is a meridian circle in 0E(Lg,,). Otherwise F’
is meridionally compressible. Observe that if F' is essential and meridionally compressible
then a meridional surgery on F produces a new essential surface in E(Lg/,).
The following is Lemma 3.2 of [11].
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Lemma 31. Let F be a surface in S> spanned by K, (orientable or not) and transverse
to Ky, such that F' = F N E(Lg,,) is essential and meridionally incompressible in E(Lg/q).
If F’ is isotoped so as to satisfy (M1)—(M4) with minimal complexity c(F), then |Y(F')| =
2 — (Y(F") + |0F’]) and

(1) each critical point of h|F is a saddle,
(2) for 0 < r < 1any circle of S, N F is nontrivial in S, — E(Lg;,) and F, and
(3) Fy and Fy each consists of one cancelling disk.

When lk(K;, K>) = 0, Lemma 30 implies that F’ = f“(F) c E(K;). Moreover F’ is an
incompressible genus g Seifert surface for Kj.

Lemma 32. The surface F' can be meridionally compressed g-times to obtain a disk X
that satisfies the conditions of Lemma 31. And g is one half the wrapping number of K, with
respect to E(Ky). Moreover, if [s;2r1,...,2r;] is the continued fraction expansion for B/a
with s = 0 or 1 such that k odd, the genus of K(a,f, p, q) is X|r;|.

Proof. We will proceed by induction on the pair (g(F”),|Y(F’)|). By Lemma 21 of [2]
we know that a surface S with (g(5),|Y(S)|) < (2,4) meridionally compresses g(S )-times
to a disk satifiying Lemma 31. Let us assume that the result is true for any surface S with
(g(S), 1Y(SHD) < (g(F"), [Y(F")]). Suppose that F’ is meridionally incompressible, we can
apply Lemma 31, and using the same arguements in Lemma 21 of [2], we obtain a con-
tradiction and thus F” must be meridionally compressible. Moreover after performing the
meridional compression a connected surface F? is obtained, and g(F?) = g(F’) — 1 and
|Y(F?)| = |Y(F")| — 2. By induction hypothesis F? compresses meridionally g(F?) times to
a disk satisfying Lemma 31. But F? was obtained by compressing F’ once, thus F’ com-
presses meridionally g(F”) times to the required disk X. Thus K, spans X which intersects
meridionally K; in 2¢g(F’) points, this implies that the wrapping number of K, in the solid
torus E(K)) is equal to 2g(F’). Now, to recover F’ from X we must attached g(F"’) tubes,
therefore the last part of the statement is true. O

Theorem 33. If [k(K|, Ky) = 0, the genus of a satellite tunnel number one knot is one
half the wrapping number of K, in E(K)).

Proof. Since lk(K;, K») = 0 a minimal genus Seifert surface F for K(a,; p, g) of genus g
determines a minimal genus Seifert surface F’ = f~!(F) of genus ¢ for K, in E(K,). Lemma
32 implies that genus of F” is one half the wrapping number of of K, with respect to E(K}).
And the genus of F equals the genus of F”’. O

Next we consider the case when lk(K;, K») # O.

Let F be a minimal genus Seifert surface for K = K(a,; p, ¢). By Lemma 30 the surface
F can be isotoped in such a way that /"N dN(Kj) consists of |lk(K,, K»)| preferred longitudes
and F N (S? - N(Kp)) is made of |Ik(K{, K,)| components which are Seifert surfaces for Kj.
Let F = F N N(K)y), notice that once we determine the genus of F the genus of F is obtained
by adding |lk(K, K»)| times (|p| — 1)(|g| — 1)/2, which is the genus of the torus knot Kj.

The surface F” = f~'(F) is an incompressible surface spanned by Lg/, = K| U K> whose
boundary consists of one component on dn(K») and |lk(K,, K»)| boundary components on
on(Ky).
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Lemma 34. The boundary slope of surface F’ on on(K,) equals —Ik(K,, K>)? pq and the
boundary slope of F’ on 0n(K) equals —1/pq.

Proof. Let [; and m; be the standard longitude and meridian of dn(K;) (chose any
orientation of K;) and let 4 and u the longitude and meridian of dn(Kj), the morphism
[ OE(Ky) — 0n(Kp) sends m; to pgu + A (which is the fiber of the Seifert fibration of
E(Ky)) and [; to u so, the longitude A is identified with —pgl; + m; this means that the slope
of F” on 0n(K)) is equals to %

Let 0>F’ be the boundary of F’ on dn(K>) and d;F’ be the one on dn(K;). It follows
that 0, F’ is homologous to d,F” on E(Lg,). Observe that the inclusion dN(K>) — E(Lg,a)
induces an injection between the first homology groups, so d; F” would be equivalent to only
one class on H{(ON(K>)) that has to be 0> F".

Now, let [, and m» be the standard longitude and meridian of 0n(K>) and lk = k(K| K>).
In E(Lg,y), [ is homologous to [k - m; (consider the disk bounded by /) and also /; is
homologous to lk - my. Then, 0,F" ~ 01 F' ~ lk-(—pgly +my) = —pg - lk- 1y +lk-m; =
—pq-1k? - my + 15, this implies that the boundary of F” in K, is homologous to —pq- k> -my +1,
so its slope is —pq - Ik o

In order to find the minimal genus of K = K(«a, 8; p, q), first we need to determine the min-
imal genus of the surface F’ for the 2-bridge link Lg,, = K; U K, with the above character-
istics. That is to say, a surface F* with one boundary component on dN(K>) and |lk(K1, K>)|
boundary components on dN(K), with boundary slopes as in Lemma 34, i.e, p = 1 and
u = |(p)lk(Ky, K>)|. Since p,q # 1, then u # 1 even if |[[k(K,, K;)| = 1. Observe that if
pq = 0 then the boundary slopes turned out to be negative, and if pg < O they are posi-
tive. In both cases, the path associated to the continued fraction expansion [r; 2ry, ..., 2r¢]
for B/a, with r = O or 1 and k odd, consists only of A and D—type edges by Lemma 11. By
Proposition 21 it is possible to compute the genus of the orientable surface carried by such
path. Moreover, when r = O the corresponding continued fraction is the one that gives rise
to the surface with negative boundary slopes in both components of E(Lg,,), by Corollary
23. When r = 1 we obtain a surface with positive boundary slopes on both components of
E(Lg/q), by Corollary 25. Summarizing we have the following result.

Theorem 35. Let L), = K| U K, be the 2-bridge link given by the tunnel number one
satellite knot K(a,B; p,q). And let F’ be the essential surface for Lg,, that arises from a
minimal genus Seifert surface F for K(a,B; p, q). Suppose lk(K, Ky) # 0. Then

(1) If0 < B <@ pg 2 0and [0;2ny, ..., 2n;] is the unique continued fraction for B/a
with j odd, the genus of F’ is:

1 [—1 £y lnkl] k(K 1, Ka)pgl = 1) + (+ 1) = (k(Ky, Ko)l + 1)}

2 k:odd

where k € {1, ..., j}
) If0<B < a, pg £0and[1;2my,...,2m;] is the unique continued fraction for B/a
with i odd, the genus of F’ is:

1
—[[—1 + Z Imhl) (Ik(Ky, K2)pgl = 1) + (i + 1) = (|k(Ky, K>)| + 1)}

2 h:odd
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where h € {1, ..., 1}

Corollary 36. Let K = K(a,; p, q) be a tunnel number one satellite knot, the genus of
K is:
y (Ipl = Ddgl - 1)
9(K) = g(F') + Ik(Ky, Ky~ —
Where F’ is as in Theorem 35.

We can also determine if a satellite tunnel number one knot K = K(a, 3; p, ¢) is fibered in
the case that [k(K,, K;) # 0. Recall that the (p, g)-torus knot K is fibered. A Seifert surface
F for E(K) is broken into pieces: F = F N 0n(Ky) and |lk(K,, K>)| components which are
Seifert surfaces for E(Kj). These pieces are glued along a fiber of the Seifert fibration of the
knot K. Thus, if F’ = f~!(F) is a fiber of a fibering of E(Lge) — S then F will be a fiber
of a fibering E(K) — S'. Theorem 28 part (1) gives us the condition to recognize when F”’
is a fiber for E(Lgq).

Proposition 37. A tunnel number one satellite knot K(«, 8; p, q), with lk(K, K>) # 0, is
fibered if and only if B/a has a continued fraction expansion of type [r; 2r1, 2€1, 2r3, ..., 26,
2rel, withr=0or 1, |gl =1 =1,...,k) and k odd.

5.2. Torti-rational knots. Let Lg,, = K; U K be a 2-bridge link in S 3. Since K| is a
trivial knot in S3, K can be considered as a knot in an unknotted solid torus V, the exterior
of K;. A copy of K, can be considered a meridian of V. Then by applying Dehn twists
along a meridian disk of V in an arbitrary number of times, say r, we obtain a new knot K
from K,. We call this knot a torti-rational knot and it is denoted by K(8/a; r). In particular
K(B/a;r)is contained in V. Let F be a minimal genus Seifert surface for K(8/a; r) of genus
g. Consider the case when lk(K, K;) = 0 if we can prove that F' C V, this will let us compute
the genus of F as in the case of satellite tunnel number one knots.

Lemma 38. Let F be a minimal genus Seifert surface for the torti-rational knot K(B/a; r).
Suppose lk(Ky,Ky) =0, then F C V.

Proof. Assume that F N 9V # 0, F can be isotoped to intersect dV in n longitudes and
F N (83 - V) consisting of n disjoint disks. Let F = F N V, after undoing the r Dehn twists
along K, an essential spanning surface F” for E(Lg,,) is obtained. The surface F’ has one
boundary component d,F" parallel to K, and n boundary components 0, F” of slope 1/r.
Lemma 10 states that |(1/r)Z,| = [lk(K, K>)|, then we have that [X,| = 0. In particular the
boundary components of F along dn(K;) have different orientations. Lemma 11 implies that
if u > 1 and if a B-type saddle occurs then |X,| = 1, which is a contradiction. Or if a D-type
saddle appears then all boundary components of F’ have the same orientation, which is not
true. If 4 = 1 then |[Z,| = 1, but it equals zero. Thus u = 0 implies that F” does not have
boundary components on dn(K), applying the » Dehn twist we recover F' which is contained
inV. |

Similarly to Lemma 32, the surface F’ can be compressed meridionally ¢ times to obtain
a disk satisfying the conditions of Lemma 31. Thus we have the following result.
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Proposition 39. Let F be minimal Seifert genus surface for the torti-rational knot
K(B/a;r) such that lk(K;, K>) = 0. The genus g of F is equal to one half the wrapping
number of K, with respect to E(K).

Now consider the case lk(K;, K>) # 0, then F N 9V # (. We will determine the genus of
F in terms of the parameters S, @, r and lk(K, K>).

Theorem 40. Let K(B/a; r) be a torti-rational knot and F a minimal genus Seifert surface
for it. Suppose that lk(K,, K>) # 0. Then:
(D) If r> 1 and [1;2my, ..., 2m;] is the unique continued fraction for 3/« with i odd, the
genus of F is:
1

2

(—1 + Z Irnhl] (Ik(K, Ko)rl = 1) + (i + 1) = ({k(K1, K2)| + 1)

h:odd

where h € {1, ..., i}
(2) If r < =1 and [0;2ny, ..., 2n;] is the unique continued fraction for B/a with j odd,
the genus of F is:

1

2

[—1 + Z Ink[) (Ik(Ky, Ko)rl = 1) + (j + 1) = (lk(K7, K2)| + 1)

k:odd

where k € {1, ..., J}
) If|rl = 1 and |Ik(K1, K>)| > 1. Let [s;2r1, ..., 21¢] be the continued fraction expansion
Jor Bla with s = 0 or 1 such that k > 3 and |r;| > 2 for all t. The genus of F is:

1+ (Ik(K, Ko)| + 1)(k - 3)
4
@) If Irl = 1 and |Ik(Ky, K>)| = 1 and [0;2n4, ..., 2n;] and [1;2my, ..., 2m;] are the con-
tinued fraction for B/a with j,i odd. The genus of F is:

Cfi-1 j-1
mm{T,T}

Proof. The surface F can be isotoped to intersect AV in n longitudes and F N (S® — V)
consisting of n disjoint disks. Let £ = F N V, after undoing the r Dehn twists along K,
an essential spanning surface F” for E(Lg,,) is obtained. The surface I’ has one boundary
component 0, F’ parallel to K, and n boundary components 9, F’ of slope 1/r. If we deter-
mine the genus of F” it will be the genus of F. By performing the corresponding » Dehn
twists along K; we recover F, after capping of the n boundary components of 7 we have F,
thus F" and F’ have the same genus.

For the essential surface F’, p = 1 and u = |rjn. By the formula of Lemma 10 we get
n = |lk(K,, K;)|. The surface F’ corresponds to some edge-path y on a D, diagram. Since
(K1, K>),p,n # Othent # 0, co. If u > 1 Corollary 13 implies that y is either an AD-edge-
path or an AB-edge-path.

Suppose r > 1, the boundary components 0, F’ have positive slope 1/r, thus the slope
is in correspondence with the slope given by the surface defined by the continued fraction
expansion [1; 2my, ..., 2m;] for B/a, by Corollary 25. Applying Proposition 21 we obtain the
result claimed in (1) .
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Similarly, if » < —1 the boundary slopes of d;F’ are negative and by Corollary 23, F’ is
in correspondence with the path given by the continued fraction expansion [0; 2n1, ..., 2n;].
The genus of F” is given by Proposition 21 and hence we have proof (2).

If|r] = 1, then u = n. If |lk(K;,K)| > 1 then y is a minimal AB-edge-path. Let
[s;2r1, ..., 2r¢] be the continued fraction expansion for S/« with s = 0 or 1 and such that
k > 3 and r, > 2 for all t. The genus of F’ is computed using Proposition 20. We have
proved (3).

In the case that |r| = 1 and |lk(K;, K3)| = 1, the path y is an A-edge-path. Let [0; 2ny, ...,
2n;] and [1;2my, ..., 2m;] be the continued fraction for 8/a with j,i odd. Using Proposition
19, we can compute the genus of the two surfaces corresponding to both continued fractions.
We pick the minimum between them, and we get part (4) of the Theorem. |
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