|

) <

The University of Osaka
Institutional Knowledge Archive

Title HOMOGENEOUS CONFORMAL C-SPACES IN DIMENSION FOUR

Author (s) Calvino-louzao, E.; Garcia-rio, E.; Gutiérrez-
rodriguez, I. et al.

Osaka Journal of Mathematics. 2021, 58(2), bp.

Citation 413-433

Version Type|VoR

URL https://doi.org/10.18910/79432

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Calvifio-Louzao, E., Garcia-Rio, E., Gutiérrez-Rodriguez, 1. and Vazquez-Lorenzo, R.
Osaka J. Math.
58 (2021), 413-433

HOMOGENEOUS CONFORMAL C-SPACES IN
DIMENSION FOUR

E. CALVINO-LOUZAO, E. GARCIA-RIO, I. GUTIERREZ-RODRIGUEZ and R.
VAZQUEZ-LORENZO

(Received January 9, 2020)

Abstract
We classify four-dimensional homogeneous conformal C-spaces and show that they are con-
formally Cotton-flat.

1. Introduction

A metric is said to be Einstein if its Ricci curvature is proportional to the metric. Einstein
metrics, being critical for the Hilbert-Einstein functional, are central not only in Mathe-
matics but also in Physics. Three-dimensional Einstein manifolds are of constant curvature
but non-trivial examples exist in dimension four, where some topological obstructions to
their existence are known to exist. The Einstein condition is known to be very rigid under
some assumptions like homogeneity (see [11]). Various generalizations of Einstein metrics
are important and have been extensively investigated. From a conformal point of view, the
existence of Einstein, or more generally Cotton-flat, representatives of a given conformal
class motivated some conformal generalizations of the Einstein condition (see for example
(8,9, 13]).

Let (M, g) be a Riemannian manifold and denote by p and 7 = tr,p the Ricci tensor
and the scalar curvature, respectively. Let S = p — ﬁ g denote the Schouten tensor
of (M,g) and let C;jp = (ViS)jx — (V;S)i be the Cotton tensor. The Schouten tensor of
any Einstein manifold is a scalar multiple of the metric and thus parallel. Hence Cotton-
flatness (equivalently harmonic Weyl tensor) is a necessary condition to be Einstein since
divy W = —% C. It follows from the work in [15] that homogeneous Cotton-flat manifolds
are symmetric in dimension four.

The necessary and sufficient conditions for a metric to be conformally Einstein were
established by Brinkmann [4] in terms of the existence of positive solutions to the differential

equation
1
(1) (n—2)Hes, +¢p - ;{(H—Z)AQDHOT}Q =0,

where Hes, = Vdy is the Hessian tensor and Ag = tr, Hes, denotes the Laplacian. Any
four-dimensional conformally Einstein manifold satisfies (see, for example [13])
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() iH B=0, @) CC,-)-W(¢,-,,Vo)=0

where the conformal Einstein metric is given by g = ¢*”¢, o = —2log ¢, and B = div; div,
W+ %W[p] is the Bach tensor. Moreover, it was shown in [12] that conditions in Equation (2)
are also sufficient to be conformally Einstein if (M, g) is weakly-generic (i.e., the Weyl tensor
viewed as amap TM — ®3 T M is injective).

Four-dimensional Bach-flat homogeneous manifolds are either symmetric (and hence
Einstein or locally conformally flat) or homothetic to one of the Lie groups determined
by the following Lie algebras, where {e;} is an orthonormal basis (see [5]):

(a) The Lie algebra g, = Rey 3 given by
1
les,er] =e1, [es,e2] = 76 taes, le4, e3] = —aes + 763

(b) The Lie algebra g, = Rey x H’ given by
ler,e2] = ez [es,e1] = €1 — ez, [es,e2] = aer + e, [es,e3] =2es.
(c) The Lie algebra g, = Re, = 1 given by
lesei] = el [esex] = (@+ 1)?ey, [es,e3] = a’es, a>1.
(d) The Lie algebra g = Rey =< e(1, 1) given by
[e2, €3] = ey, [er,e31 = 2+ V3)e,

[64,61] = \[64— 3\/§€1, [64,82] = \[6+3\/§€2.

(e) The Lie algebra g = Rey < b given by

[e1,e2] = e, les, e1] = 34/7 - 3V5e,
[ex,eal = 347 +3V5es,  [esea] = % es

It follows from the work in [5] that Lie groups corresponding to cases (a), (b) and (c) are
conformally Einstein, while the Lie gropus determined by (d) and (e) fail to satisfy condition
(i1) in Equation (2) (see [1]).

A Riemannian manifold (M, g) is said to be conformally Cotton if there is a Cotton-flat
representative of the conformal class [g]. This is achieved if there is a smooth function
such that Equation (2)-(ii) is satisfied since the Weyl tensor of the conformal metric satisfies
divi = div W + (n — 3)tyoW. More generally, (M, g) is said to be a conformal C-space if
there is a (not necessarily gradient) vector field & on M so that C —i:W = 0 (see [9] for more
information on conformal C-spaces). It was shown in [9, Theorem 1.2] that any compact
conformal C-space is conformally Einstein if and only if it is Bach-flat, independently of any
weakly-genericity assumption. It follows from the work in [1, 5] that a conformal C-space
is conformally Einstein if and only if it is Bach-flat in the homogeneous setting as well.

Our main purpose in this work is to prove Theorem 1.1 below, which provides a complete
description of homogeneous conformal C-spaces in dimension four. Since any symmetric
space is Cotton-flat, we exclude these trivial cases (which corresponds to Einstein metrics
and products of the form R X N(c) or Ni(c) X Na(c2) where N(c) denotes a space of constant
curvature). Furthermore, observe that two conformally related homogeneous spaces are
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either locally conformally flat or homothetic. Hence we work modulo homotheties to show
the existence of a one-parameter family of homothetical classes of homogeneous conformal
C-spaces which are not conformally Einstein.

Theorem 1.1. Let (M, g) be a four-dimensional complete and simply connected homoge-
neous manifold which is a conformal C-space. Then (M, g) is Bach-flat or otherwise it is
homothetic to a Lie group determined by the solvable Lie algebra g, = Rey w 1> given by

[er,es] =e1, [er,eq]l = €2, [e3,e4] = aes,

where a ¢ {0, 1,4} and {ey, ..., e4} is an orthonormal basis. Here, ¢ = —6e4 and thus (M, g)
is indeed conformally Cotton-flat.

It was shown in [9, Theorem 1.1] that any compact conformal C-space is indeed confor-
mally Cotton. It immediately follows from Theorem 1.1 that the same result holds true in
the homogeneous case.

By a result of Bérard-Bergery [3], a complete and simply connected homogeneous four-
manifold is either symmetric or a Lie group. In particular, either (M, g) is isometric to
one of the groups SL(2,R) x R, SU(2) X R or it is a solvable Lie group whose Lie algebra
is an extension of the three-dimensional unimodular Lie algebras: the abelian Lie algebra
13, the Heisenberg algebra b®, the Poincaré algebra ¢(1, 1) and the Euclidean algebra e(2).
Since symmetric spaces are Cotton-flat, the analysis of the conformal C-space condition
is considered separately for the different four-dimensional Lie groups through Sections 2—
5. Determining the left-invariant conformal C-space metrics on Lie groups equals to solve
some rather complicated polynomial systems. We make use of Grobner bases theory [6, 7]
to achive the results. Finally, the proof of Theorem 1.1 and some remarks are given in
Section 6.

2. Left-invariant metrics on Re4 =< R3

Let g = R = r* be a semi-direct extension of the Abelian Lie algebra r>. Let {-,-) be an
inner product on g and (-, -) its restriction to r>. The algebra of all derivations D of 13 is
gl(3,R). If we fix D € gl(3, R), there exists a (-, -}3-orthonormal basis {v;, v, v3} of 1> where
D decomposes as a sum of a diagonal matrix and a skew-symmetric matrix. Hence

a -b -c
der® =< b f —h |;ab,c,f,h,peRy.
c h p

Now, the corresponding semi-direct product g = R x 13 is given by

[vi,v2] =0, [vi,v3] =0, [va2,v3] =0,
[V4,vi] = avy + bv, + cvs, [V4, V2] = =bVy + fvy + hvs,
[V4, V3] = —cvi — hvy + pvs,
with respect to some basis {vy, V2, V3, v4} so that g = Rv, @ span{vy, v, v3}. Since Rv, needs

not to be orthogonal to 3, we set k; = (v, va), fori = 1,2,3. Let &, = v4 — Y., k;v; and
normalize it to get an orthonormal basis {e},...,e4} of g =R & 1 so that
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3)

1
les, e1] = glaer + bea + ces},

les, e3] = %{—Cel — hey + pes}, R>0.
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[e4, €2] = #{—be1 + fes + hes},

Lemma 2.1. The group Res < R* admits a non-Bach-flat left-invariant conformal C-
space metric if and only if it corresponds to a Lie group determined by one of the following
solvable Lie algebras:

() [er.es]l = —%ei — Les, [er,ea] = Loy — Ses,  [e3,e4] = —Les,
where p ¢ {0,a,4a} and a # 0. Here, & = %164-

(i) [e1,e4] = —ge1 — zes, [ez,eq4] = —%ez, le3, ea] = je1 = Res,
where f ¢ {0,a,4a} and a # 0. Here, £ = %“64-

(iii) [e},eq] = —%eb [ea, e4] = —%ez - %63, [es,eq4] = %ez - £€3,
where a ¢ {0, f,4f}and f # 0. Here, & = %64'

Proof. Let € = C—i:W. Along but straightforward calculation shows that the components
Cijk = Cijk — 2o €aWijka, considering the structure constants in Equation (3), are given by

4

G = gePBan G = gePons Gz = g Pais.
G = zmPai1. G312 = 52 PBa12. Capz = g Baus,
€1 = 7P, G = gzPBan,  Caoz = g PBas,
Gt = goPBarr, Canz = 55 PBaz, Capz = 3P,
Cit = 5 PBazt, Cuzo = o Pa, Cao3 = 3P,
Cu31 = 5 PBast, Cuzz = 75 PBazz, Cazz = g PBass,

where the polynomials ;s correspond to:

PBoi1 = ((a—f)* =2p* + (a+ )p)ér = 3(f — p)hé&s,

PBoiz = —((a = f)* =2p* + (a+ fHp)é1 + 3(a — p)cés,

Poiz = (f —phé&1 —(a—p)cé,

PBo1s = —(a - )*b,

PBair = =3(f = phéy + (@ =2f* + p* + (f =2p)a+ fp)és,

Paip = (f —ph& —(a— )Hb&s,

PBaiz = —(@® = 21> + p* + (f = 2p)a + fp)é1 +3(a— fHb &,
B34 = —(a - p)’c,

P32 =(a-p)cé& —(a— fbés,

PBa = =3(a— p)cé — 2a* - (f = p)* = (f + pla)és,
PBaoz = 3(a— Nbé + 2a> = (f = p)* = (f + pa)éy,
B = —(f = p)*h,

Ba = —2a> = (f = p)* = (f + p)a)R &,

Co1s = 7 Baus,
G314 = - PB3ia,
G304 = 1 B3s,
Cq14 = 6—,1;,21"414,
Cuos = 22 Baos,
Cuzs = 22 Basa,
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—6((2b* + 2% + f2 + pHa— (f + p)a* = 2(B*f + c*p)),
PBaiz = (@~ HIRbE —22a°b — (f + p)bf + (f = 2p)ch + (ch — (f — p)b)a),
P13 = (@ = p)Rcéy = 2Q2a>c + (2f = p)bh — (f + p)ep — (bh — (f = p))a),
PBaa = 2a> = (f = p)* = (f + pa)é1 = 3(a - fHb& = 3(a— p)eés,
PBaoi = (@~ IRbEy —2a*b — (2f + p)bf + (f = 2p)ch + (ch + (f + p)b)a),
PBazy = (@ = 2f* + p> + (f = 2p)a+ fp)RE,

= 6(a>f + 20 f = (20% + fRa+ (f = p)2h* = fp)),
Paoz = (f = PRhEs + 2(2bc - (f — p)Wa — (f + p)bc = (f — p)2f + p)h),
PBaos = =3(a— b & — (@ + (f =2p)a— (f = p)2f + p)é = 3(f - phés,
P31 = (@ = p)Rcéy — 2(a*c = 2¢p® — abh — cfp + (f + p)ac + 2f = p)bh),
Pazz = (f = PRhEs + 2(2bc - (f — p)ha — (f + p)be = (f — p)(f + 2p)h),
PBazz = (a - f)* = 2p* + (a+ [HP)RE,

+6(a+ Hp? —6(a® +2c + f2 +2h%)p + 12(ac® + fh?),
Bazs = =3(a— p)céy = 3(f = phés = (a— f)* =2p* + (a + fHp)és.

Hence, Re, < R? admits a left-invariant conformal C-space metric if and only if the struc-
ture constants in Equation (3) satisfy the equations {;;x = 0}. Since

Pors = ~(a= b, PBaig = ~(@—ple. P =~(f - p)h,
we are led to the following cases:

D f=ap=a, @D f+ab=0,p+ac=0,p=Ff,
2 f=a,p#+a,c=h=0, S f+a,b=0,p#+ac=0,p+ f,h=0,
B f+a,b=0,p=a,h=0,.
Case (1): f=a, p=a.If f = p=athen adirect calculation shows that the correspond-
ing Lie group given by Equation (3) is locally conformally flat and therefore a symmetric

manifold [16] and trivially Bach-flat.
Case (2): f=a, p# a,c=h=0. In this case, from Equation (4) we get

Boiz =-2(a-ppé1, Pon=2a-ppé&, P =—-(a-ppé&.

If p = 0 then a direct calculation shows that the corresponding Lie group given by Equa-
tion (3) is locally conformally flat and therefore a symmetric manifold [16] and trivially
Bach-flat. If p # O then necessarily & = & = &; = 0 and Equation (4) implies that

Ba11 = (a — p)p(6a — R&y)
6a

and therefore & = . Now, a direct calculation shows that the manifold is a conformal

C-space which is Bach-flat if and only if p = 4a, thus corresponding to Assertion (i) in
Lemma 2.1.
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Case (3): f#a,b=0, p=a, h=0. We use Equation (4) to get
Poo=(@-Nf&E, Pon=—-(a—-NHfé, B =2a-Nfé.

If f = 0 then a direct calculation shows that the corresponding Lie group given by Equa-
tion (3) is locally conformally flat and therefore a symmetric manifold [16] and trivially
Bach-flat. If f # O then & = & = & = 0 and Equation (4) implies that

Pa1 = (a - f)f(6a—R&s)

and hence &; = %. A direct calculation shows that the manifold is a conformal C-space
which is Bach-flat if and only if f = 4a, thus corresponding to Assertion (ii) in Lemma 2.1.
Case d): f#a,b=0,p+#a,c=0, p=f.In this case, Equation (4) implies
Poia =—(a—fla&, Pan=(a-fla&, Pau=(@-fads.

If a = 0 then a direct calculation shows that the corresponding Lie group given by Equa-
tion (3) is locally conformally flat and therefore a symmetric manifold [16] and trivially
Bach-flat. If @ # 0 then necessarily &) = & = & = 0 and from Equation (4) we get

Pain =2(a— fla6f —REs)

and therefore &4 = %. Now, a direct calculation shows that the manifold is a conformal
C-space which is Bach-flat if and only if a = 4f, thus corresponding to Assertion (iii) in
Lemma 2.1.
Case (5): f#a,b=0,p#a,c=0,p# f,h =0. With these conditions, we use
Equation (4) to get
PBaiz = —((a = f)* =2p* + (a + fHp)é,
Pai3 = =@ = 2f* + p* + fp + (f = 2p)a)é,
PBoii = (a = f)* =2p* + (a + [Hp)éa,
PBazz = 2a” = (f = p)* = (f + pa)éy,
Baiy = (@® =27+ p> + fp + (f = 2p)a)és,
PBazy = (=2a° + (f = p)* + (f + pla)és.
A direct calculation shows that
Poo— Paiz = 3(f - p)a-f-pké,
Paip +2PBa13 = -3(a - fla+ f - p)éi,
Poi+ Paz = 3(a-p)a-f+pé,
Por1 = 2P33 = =3(a— fla + f - pé2,
Pan— Pan = 3a-fNHa+f-pés,
Pair +2%30 = =3(a—-p)a—f+p)s.

Since f # a, p # a and p # f, it follows that necessarily & = & = & = 0. Now,
Equation (4) reduces to
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Pair = 6((f + p)a* = (f* + pHa) = 2a* = (f = p)* = (f + p)R &,
(&) Pazz = 6((a + fHp* = (@ + fp) = 2p* — (@~ )* = (a+ IP)R&,,
Paza = —Bar1 — Pass,
and we compute

Parr +2Bazz Pan — Puss
6(f - p) 6(a - p)
Note that p = 0 is not possible since f # a. Then,

_—a=fy+3a+fp
&4 =
PR

=(@-f)>*-3a+f)p+pRé&=0.

and hence Equation (5) transforms into

Bar1 %(a—f)(261+f—3p)(l72—2(a+f)P+(a—f)2),
Bz —%(a - *P*=2a(a+ f)+(a— )7,
Baoz = = Par1 — Pazz .

Thus

p*=2a+flp+@-f)>=0,

so we finally conclude that the manifold is a conformal C-space if and only if

2(a+ f ++/a
p=a+f+2Jaf and & = %
and, in such a case, a straightforward calculation shows that the manifold is Bach-flat. This
finishes the proof. o

3. Left-invariant metrics on Reg =< H?

Let g = R < b be a semi-direct extension of the Heisenberg algebra . Let (-,-) be an
inner product on g and (-, -)3 its restriction to h>. Then, there exists an orthonormal basis
{V1, V2, v3} of b* such that (see [14])

(6) [v3,v2] =0, [v3,vi] =0, [Vi, V2] = A3v3,

where A3 # 0 is a real number. The algebra of all derivations of h? is given with respect to
the basis {vy, vo, v3} by

ayy a2 0
der(b3) = a1 A 0 5 a’,'j,f, heR;.
h fooantaxn
We rotate the basis elements {vy, v,} so that the matrix A = (a;;) decomposes as the sum of
a diagonal matrix and a skew-symmetric matrix. Hence

a c 0
der®) =1{| ¢ d 0 |iacd fheR},
h f a+d
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and consider the Lie algebra g = Rv, & H’ given by

[v3,v2] =0, [v3,vi] =0, [vi, V2] = yvs,
[Va, Vil = avi —cva + hvs, [V, Vo] = cvi +dvy + fv3, [V4,V3] = (a + d)vs.

Since Rv4 needs not to be orthogonal to H, we set k; = (vi,v4), fori = 1,2,3. Let &4 =
vy — 2 k;v; and normalize it to get an orthonormal basis {e},...,es} of g =R & H? so that

- [e1, e2] = ves, les, e1] = wlae) — cex + (h + kyy)es},

les, e3] = g(a+d)es, [es,e] = §lcer +dex + (f —kiy)es), R>0.

Lemma 3.1. The group Rey =< H? does not admit any non-Bach-flat left-invariant confor-
mal C-space metric.

Proof. In order to simplify the expressions we use the notation F = f — k;y and H =

h + kyy. Moreover, since the structure constant of b satisfies y # 0, one may work with a

homothetic basis ¢, = %ek so that we may assume y = 1. Let € = C — (,W. A long but
straightforward calculation shows that the components €;jx = C;jx — 2., £oWijke, considering

the structure constants in Equation (7), are given by

1 1 1 1
G = P, G = gEPaz, €z = Bz, Couu = 5 Pas,
_ 1 _ 1 _ 1 _ 1
G = 5B G = mPBiin, G = 5P, G = 55 P,

1 1 1 1
®) G321 = 7@Pa21, Ca2 = pEPa2, Gz = 5 Paas, Caoa = 55 Paos,

_ 1 _ 1 _ 1 _ 1
Gt = e Ba, G = 5 PBaz, Cuiz = 35Pa13. Cus = 5 Paias
_ 1 _ 1 _ _ 1
Cu1 = 15Pa21, Cun = 5Panz, Qs = 75Pas,  Cuns = 5 Panas

Ciz1 = 75 PBast, Cuzo = 7 PBasz, Cuzz = e Pass, Cuzs = 1o Basa,
where the polynomials ;s correspond to:
Po1y = 2(F% + H? — 4ad - 2R*)é) + 3((a + 2d)F + cH)é; + 6RH &4 + 9¢F — 3(4a + 9d)H,
Poir = —(2(F? + H?) — 8ad — 4R*)é, + (3¢cF - 3(2a + d)H)é3 + 6RF &4 — 3((9a + 4d)F + 3cH),
P13 = —((a + 2d)F + cH)é| — (cF — Qa + d)H)é; + 2(a + d)R &4 + 4(F? + H? — (a + d)> + R?),
Poig = 2R*HE —2RPF & — 2(a + A)R?E3 + cF? + cH? + 3(a — A)FH + 4(a — d)’c,
P11 = 3((a + 2d)F + cH)é> — 2(2F? — H? - 2ad — R*)é; — 6(a — d)c,
P32 = —((a + 2d)F + cH)é + 2(FH + (a — d)c)és + 2dR &, + 2(F? + H?> — 2(a + d)d + R?),
P33 = 22F? — H?> = 2ad — R*)é) — 6(FH + (a — d)c)é> — 6RF &y + 3((5a + 4d)F + cH),
P31y = —dR*E, + RPF & — (a — 2d)cF — (F? + H*> + d* + RY)H,
Py = (cF — Qa + d)H)é, + 2(FH + (a — d)c)é3 — 2aRéy — 2(F? + H> + R*) + 4(a + d)a,
P3x = —(3cF - 3Qa + d)H)&| + 2(F? — 2H? + 2ad + R*)&; + 6(a — d)c,
Pax3 = —6(FH + (a — d)c)é| — 2(F? — 2H? + 2ad + R*)&; + 6RH &, + 3(cF — (4a + 5d)H),
Py = aR?&) — RPH & — a>F — 2a — d)cH — (F* + H> + R?)F,
Pa11 = 6R?H & + 2(F? — 2H? + 2ad + R*)R &,

+3(9dH? — TcFH — 2(F? = 3H? + 4¢% + 4d* — R®)a + 8c%d),

PBaiz = —2R°H &, = 2aR*é3 = 2(FH + (a — d)o)R &,
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+4cH? + (10a + 7d)FH — (3F? — 4(a — d)(3a + 2d))c,
PBai3 = 2aR*E + (cF — (2a + d)H)R &,
+4a*H — 2(5¢F — TdH)a - 2(cdF + ¢*H + 2(F? + H*> — d* + R)H),
Pyig = —2(F% = 2H? + 2ad + RHé, + 6(FH + (a — d)c)é, — (3¢F = 32a + d)H)é3 + 6(2aF + cH),
PBuo1 = 2R2F & + 2dR%&3 — 2(FH + (a — d)c)R &,
+3cH? + (7Ta + 10d)FH — 4(F?* = 2a* + 3d* — ad)c,
PByrp = —6R*F &, —2Q2F* — H> — 2ad — R)R &,
+3(7cFH + (9F? + 8¢?)a + 2(3F? — H? + R*)d — 8(a* + ¢*)d),
PBaoz = —2dR*é) — (@ + 2d)F + cH)R &4
+22a* = *)F + 10cdH + 2(7dF + cH)a — 4(F*> + H> — d*> + R>)F,
Paos = 6(FH + (a — d)c)é| + 2Q2F? — H? — 2ad — R*)é; + 3((a + 2d)F + cH)és + 6(cF — 2dH),
Pa31 = 2(a + d)R?E, — 2R*F &3 + (cF — 2a + d)H)R &,
+4a*H — 2a(4cF — 1dH) — 2(3cdF + ¢*H + (F? + H*> = 3d*> + R®)H),
Pazr = —2(a + d)R?E, + 2R’H &3 — ((a + 2d)F + cH)R &,
+ (6a*> — 2¢* + 14ad + 4d>)F + 2(3a + 4d)cH — 2(F? + H? + R*)F,
Puzz = 6RZF & — 6RPH &) + 2(F? + H? — 4ad — 2R*)R &,
—3((7a + 6d)F? + (6a + Td)H? — 8(a + d)ad + 2(a + d)R?),
Bazs = 3(Qa + d)H — cF)é) + 3((a + 2d)F + cH)éy — 2(F? + H? — 4ad — 2R*)é5 .

Hence, Re, =< H? admits a left-invariant conformal C-space metric if and only if the struc-

ture constants in Equation (7) satisfy the equations {*;;x = 0}. We consider separately the
following cases:

(1)d =0, (2)d+#0,H =0, 3)d+0,H+0.

Case (1): d = 0. Let I} c Rla,c,d,F,H,R,&1,&,,83,&4] be the ideal generated by
the polynomials {*B;;} U {d}. We compute a Grobner basis G; of I; with respect to the
lexicographical order and a detailed analysis of the Grobner basis shows that the polynomial

g = (F* + H> + R)R?

belongs to G;. Since the zero sets of {P;x = 0,d = 0} and I = (B, d) = (G;) coincide,
and R > 0, we conclude that there is no solution in this case.

Case (2): d #0, H = 0. Let I, c R[&4, F,H,d,a,c,R, &1, &, &3] be the ideal generated
by the polynomials {*B;;} U {H}. We compute a Grobner basis G, of I, with respect to the
lexicographical order and a detailed analysis of the Grobner basis shows that the polynomials

g =(F*+RHF, g =E+&)dR?, g =Fd+(d-aR
belong to G,. As a consequence, F' = & = & = 0 and d = a. Now, Equation (8) implies that
Pz = 4Q2a” + RE
and therefore &, = 0. Using again Equation (8) we get

Poi3 = 4aR & — 4a* + RY), Pary = (4a® + 2RR &, — 24a> + 6aR? .

-R?

Thus, necessarily a # 0 and &, = %, while a = +Rora = i%. Now, a straightforward

calculation shows that, in any case, the manifold is Bach-flat.
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Case (3): d # 0, H # 0. In this last case, we are not able to get a Grobner basis using the
initial polynomials ‘B; . Thus, our strategy consists in reducing the number of variables as
follows. Since dH # 0, and also R # 0, we can use Equation (8) to get expressions for &, &3
and &;. In particular, from 3,4 we obtain

& = —{aR*¢ — a’F — 2a — d)cH — (F* + H* + R®)F),

from P34 we get

HR2

1
dR?
and, finally, using ‘B33 we get

& = —{FR*& — (a - 2d)cF — (d* + F? + H* + R>)H)

&y = 6HR{6(FH +(a — d)o)é) + 2(F? = 2H? + 2ad + R*)é, — 3(cF — (4a + 5d)H)} .

Thus, we can eliminate the variables &, &3 and &, from the polynomials B, in Equation (8).
Let us denote by D;jk the expressions obtained from the polynomials B; ;. after substituting
&, &3 and &4 with the expressions above. These expressions Q;jk are not directly polynomials
inR[a, c,d, F, H,R, &] since they contain powers of d, H and R with negative exponents. We
avoid this problem considering P’ ik given by

By = dHR* T ,212 = dH’R’ D1pe SB,ZIB = 3dH’R’ Qﬁw Sy = dH Q)
Y _ 2 _ 2p2 & _ 2p2 &

P35 = dHR™ Ty, i = SHR Q). B3 =dH'R™Q; 5, %5, =0,
P = 3dH’R® Dy ‘Bszz = HR® L %323 =0, CB324 =0,

Wiy = 3H R Q. B, = 3dHR ),
s13-212] - 3dH2R2 D2121 ’ iB4/122 - 3dH2R2 Q4/122’ 81}423 - 6dH2RZ D:12'5’ %424 - dHRZ Q:t24’
;ﬁ:@l = 6dH’R* Q3. sB:m = 6dH’R* Q3,, 33233 = 3dH’R* Q3;, gl32&34 dHR® Q3
which are polynomials in R[a, c,d, F, H,R, &1]. Now, Let I3 C Rla,c,d, F, H,R, ] be the
ideal generated by the polynomials ‘B;jk. We compute a Grobner basis Gs of 75 with respect
to the graded reverse lexicographical order and a detailed analysis of the Grobner basis

shows that the polynomial

2 2 2
SB413 = 6dH"R" Q 413’ s’B414 = dHR Q414’

g, = d*H°R?

belongs to G3. Since we are assuming dH # 0, and moreover R > 0, we conclude that there
is no solution in this case. This finishes the proof. O

4. Left-invariant metrics on Re4 < E(1,1) and Re4 < E(2)

Let g = R % g3 be a semi-direct extension of the unimodular Lie algebra g3 = ¢(1,1) or
g3 = ¢(2). Let (-, -) be an inner product on g and (:, -)3 its restriction to g3. Following the
work of Milnor [14], there exists an orthonormal basis {vy, v», v3} of g3 such that

) [va,v3] = Ayvy, [v3,vi] = Apva, [vi,v2] =0

where 41,4, € R and 4,4, # 0. Moreover, the associated Lie group corresponds to E(2)
(resp., E(1, 1)) if ;4 > 0 (resp., 414, < 0). The algebra of derivations of g3 is given by
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b a c
der(g3) = —ﬁ—fa b d|;,ab,c,deR}.
0O 00
Let {vy, v2,v3,v4} be a basis of g such that {v|, v,, v3} are given by Equation (9) and g =
Rv, @ g3. Since Rv, needs not to be orthogonal to g3, we set k; = (v;, v4), fori = 1,2,3. Let

é4 = v4 — > k;v; and normalize it to get an orthonormal basis {e},...,e4} of g = R® g3 so
that

[e2, €3] = Ayey, les, e1] = Azen,
(10) les, e1] = giber — (L + ks)ea), lea, e2] = §{(a + ks dy)ey + bey),

les. e3] = {(c — kadp)ey + (d + ki p)ea}, R > 0.

Lemma 4.1. The groups Rey =< E(1,1) and Rey =< E(2) do not admit any non-Bach-flat
left-invariant conformal C-space metric.

Proof. Unlike the cases Res =< R3 and Res =< H?, for Res < E(1,1) and Res < E(2) we
are not able to get the left-invariant conformal C-space metrics using Equation (2)-(ii) only.
It was shown in [8] that a Riemannian four-manifold with non-vanishing Weyl tensor is
a conformal C-space if and only if (observe that our convention for the Cotton tensor is
different from the one in [8])

(11) [WI Crji — 4 WC e Wi = 0.

In what follows, we combine Equation (2)-(ii) and Equation (11) to get the appropriate
Grobner bases.
In order to simplify the expressions, from now on we use the notation A = % + k3,

C =c—kadyand D = d + kjd,. The components €y = Cijx — X, EWijke and C;j =
[W|? Cy ji—4 wdabeC . Wik of the (0, 3)-tensor fields associated to Equations (2)-(ii) and (11)
determine polynomials *B; ;. and 3, ;. as follows:
j j
1 I 1 1
G = me P, Q= 5Pz, €z = =Pz, Cus = mPBas,
_ 1 _ 1 1 _ 1
G = P G = mPa, Gz = 5 Bsiz, G = = Pai,
_ 1 _ 1 1 _ 1
1) €1 = 2P0, G = 5 PBan, €3 = 5P €1 = 755 Pass
_ 1 _ 1 1 _ 1
G = 5 Barts Cin = 5Parz, €z = 5 PBaiz, Cas = 5 Pass
_ 1 _ 1 1 _ 1
Cu1 = 75Pa21, Cumo = 5Paza, Canz = 5 Pazs, Caog = iz Pans,
_ 1 _ 1 1 _ 1
Cuz1 = 5Pz, Cuzma = 75Paz2, Cuzz = Passs Cazs = 3z Pasa,

and



424  E. CarviNo-Louzao, E. Garcia-Rio, I. GUTIERREZ-RODRIGUEZ AND R. VAZQUEZ-LORENZO

Gy = ﬁ‘ﬁm, T3 = 12%%131, Cipp = ﬁigm, Ty = 1;?%141,
Cipp = ﬁ%m, Tz = ﬁ%m, Gy = ﬁ%zzl, G = ﬁ%m,
13) G = ﬁ%%z, Gy = ﬁ%zm, G = ﬁ%mz, Gy = ﬁ%zm,
C3 = ﬁ‘fm, Cy3y = 121?‘3331, G = ﬁ%%z, Gy = ﬁ‘im,
Gy = T1R7§342’ Gy = ﬁﬁm, Cpp1 = Tl,g%zm, Cp31 = ﬁ%m,
Gy = ﬁ;ﬁmz, Gy = 121?%441, Cup = ﬁ%mz, Gz = ﬁ‘i’;m-

The expressions of the polynomials *B; ; and ‘%i j« are very lengthy, so we do not include them
here for the sake of clarity. They can be obtained after a long but straightforward calculation
using the Weyl curvature tensor and the Cotton tensor of Rey < E(1, 1) and Reg < E(2). In
particular, the Weyl curvature tensor is determined by

6R*Wiz12 = 6R*Wiuza = (A2 + R®)(A; — ) — 2(C* + D?),

AR?W 1213 = —4R*Wagss = AC(24; — ) + bD,

4R*Win3 = 4R*Wyszs = —AD(A; — 24;) — bC,

6R*Wiz13 = 6R*Waang = —(A*(241 + o) — R*(A; + 240))(A; — ) + C* + D?,
2R*Wizp3 = —2R*Wians = Ab(A; — 1),

6R*Wig1s = 6R*Wazpz = (A%(A; + 245) — R*2A; + )4, — A) + C* + D?,

while the Cotton tensor is given by
4R?Cyyy = —=bC(51; — 31,),
4R?Cy15 = bD(3A; — 542),
4R*Cy13 = =2(A% + RH)(A) — 1)* (A1 + ) — C*(2A; — ) + D*(A; - 24,),
4R3Coy = (2(A? + RP)(A — 1) (A1 + ) + C2(2A1 — ) — D*(A1 — 2))A,
4R2C31) = 4AD(A3 — A3) — CD(A +44y),
4R2C313 = 2(A% + RO = 245 + 11.3) — (4b* = 2C% = D)4y +4(b* — D),
4R’C313 = AC(A1 + )dy = 3bD(A; - 312),
4R3C314 = 2(A? + RHCA? = A2CA3 + AbDAy — 3AbDA; — A*C A1, + 2(b* + C? + DY)C,
4R?C = 2(A% + RHQAZ + 42 + L) (A — D) — 4% (A — ) + CH(4A) — ) — 2D A,
4R*C3p = —4Ab(A; — 3) + CD(44; + Ao,
4R?C3p3 = AD(A; + A2)A; = 3bC(3A; — Ap),
4R3Cxpy = —A’DA} + 2D(A? + R®)A5 + 3AbCAy — AbCA, — A2DA1 Ap + 2(b* + C? + D*)D,
4R3Cy1y = —2b(3A% + R2)(X2 — A2) + ACD(A, + 44y) — (7C? + 2D?)b,
4R3Cy1y = —2A(A% + R = 243 + . 43) + (4b* = 2C? — DHAA, — 4(b* — DAL, — 5bCD,
4R3Cy13 = =2(A + R1)CAT + CR*A3 + 2AbDA, — 10AbDA, + CR?A1 A, + 2(3b* — C? — D*)C,
4R*Cy14 = —(AC(A; + Ap) + 4bD) s,
4R3Cyp1 = —A(A? + RH)(AA} = 23 = 2230,) + 4A(B* — CH Ay — (4b* — C* = 2D?)AA, — 5bCD,
4R3Cypp = 2b(3A% + RH)(A3 — 13) = ACD(44, + ;) — (2C* + TD*)b,
4R3Cyp3 = DR*A3 — 2(A? + R)DA3 + DR?1 A, + AbC (104 — 24,) + (66 — 2(C? + D)D,
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4R*Cyo4 = —(AD(A; + A2) — 4bC) A4,

4R*Cy31 = —C(A? + R)(AL2 — 25 — 11.0) + AbD(A; — o) + 4(b* - C* — D*)C,

4R3Cy3y = D(A? + RP)(A2 = 443 + 1 1) + AbC(T4, — Ap) + 4(b* — C* — DD,

4R3Cy33 = 3ACD(1; — A2) + 9(C? + D*)b,

4R*Cy34 = 3CD(A; — A3).

Hence, Res < E(1,1) or Rey < E(2) admit a left-invariant conformal C-space metric if
and only if the structure constants in Equation (10) satisfy the equations {%; = 0} or,
equivalently, {8, = 0}.

Note that since the structure constants of g3 satisfy 44, # 0, one may work with a
homothetic basis ¢; = iek so that we may assume A; = 1 in the rest of the proof. First, we

start working with the polynomials ‘B, -k glven by Equation (13). Let 1c R[A, b, C, D, /12, R]
be the ideal generated by the polynomials ‘B, k- We compute a Grobner basis G of T with
respect to the graded reverse lexicographical order and a detailed analysis of the Grobner
basis shows that the polynomial

g =b’CD(C - D)*(C + D)*(C* + DH)R*
belongs to Q~ Since the zero sets of {%i & = 0} and I-= (‘AB',' i = (Q~) coincide, and R > 0, we
are led to the following cases:
(HLCc=0, 2)b=0, B)b=0, @4D==C.
Next we analyze each one of these cases by separate using the polynomials *B;; given by
Equation (12).

Case (1): C =0. Let I; Cc R[A,b,C,D,R, 15,&1, 62, &3, 4] be the ideal generated by the
polynomials {B;x} U {C}. We compute a Grobner basis G; of I with respect to the graded
reverse lexicographical order and a detailed analysis of the Grobner basis shows that the
polynomials

= D(8A? + 5D? + 8R?),
g'l = (A> + RHR* (A, - D&y,
= (A% + ROR* (4, - D&,
g = (9ADE| + 4(A% + RY) (A — 1)&)R?
belong to G;. Since the zero sets of {;x = 0,C = 0} and I; = (B;x) = (G1) coincide, and
R > 0, it follows that necessarily D = 0 and, moreover, either 4, = l or &} = & = & = 0.
If 1, = 1 then a straightforward calculation shows that the corresponding Lie group given

by Equation (10) is locally conformally flat and therefore a symmetric manifold [16] and
trivially Bach-flat. Now, if 4, # 1 and &) = &, = &; = 0, then we compute

PBazz = 2(A> + RHR(A, — 1)°&,,

which shows that there is no solution in this case.
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Case (2): D=0. Let I, c R[A,b,C,D,R, 12, &1, &2, &3, &4] be the ideal generated by the
polynomials {,;} U {D}. We compute a Grobner basis G, of I, with respect to the graded
reverse lexicographical order and a detailed analysis of the Grobner basis shows that the
polynomial

g = C(C?> +R)(A* + C* + R

belongs to G,. Thus necessarily C = 0, which corresponds to Case (1).

Case (3): b =0. Let Iy C R[A,b,C, D, R, A2, &1, &2, &3, &4] be the ideal generated by the
polynomials {B;;} U {b}. We compute a Grobner basis Gz of T3 with respect to the graded
reverse lexicographical order and a detailed analysis of the Grobner basis shows that the
polynomial

g = DX(C* + D?)
belongs to G3. Thus necessarily D = 0, which corresponds to Case (2).
Case 4): D = &C (¢ = %1). Let Iy C R[A,b,C,D,R, 15,&1,&2,E3,&4] be the ideal
generated by the polynomials {*B; i} U {D — eC}. We compute a Grobner basis G4 of 1, with

respect to the graded reverse lexicographical order and a detailed analysis of the Grobner
basis shows that the polynomial

g, = D(4A% + 5D* + 4R*)R

belongs to G4. Hence D = 0, which corresponds to Case (2). This finishes the proof. O

5. Left-invariant metrics on Slf(?: R)x Rand SUQ2) x R

Let g = g3 X R be a direct extension of the unimodular Lie algebra g3 = sl(2,R) or
g3 = su(2). Let (-,-) be an inner product on g and let (-, -); denote its restriction to gs.
Following the work of Milnor [14], there exists an orthonormal basis {v, v, v3} of g3 such
that

(14) [v2,v3] = Ayvy, [v3,vi] = A2vs, [vi,v2] = A3v3,

where A;, 4>, 43 € R and 44,43 # 0. Moreover, the associated Lie group corresponds to

SU(2) (resp., SL(2,R)) if Ay, Ay, A3 are all positive (resp., if any of 4;, A, A3 is negative).
Let {vy, vy, v3,v4} be a basis of g such that {v|, v,, v3} are given by Equation (14) and

g = g3 ® Rvy. Since Rv,4 needs not to be orthogonal to g3, we set k; = (v;, vq), fori =1,2,3.

Let é4 = v4 — ; k;v; and normalize it to get an orthonormal basis {e},...,es}of g=g3® R
so that

le1, e2] = Aze3, [e2, €3] = Ayey, les, e1] = Azen,
(15) le1, e4] = (ksdaer — ko Aze3), [e2, e4] = (k1 Aze3 — k3 dyey),

[e3, e4] = g(kadier — kidrer), R>0.

Lemma 5.1. The groups Slf(?,-/ R) X R and SU(2) X R do not admit any non-Bach-flat
left-invariant conformal C-space metric.
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Proof. As in the cases Res < E(1,1) and Rey < E(2), for SL(Z,R) X R and SU(2) x
R we are not able to get the left-invariant conformal C-space metrics using Equation (2)-
(i1) only. We proceed as in Lemma 4.1 combining Equation (2)-(ii) and Equation (11) to
get the appropriate Grobner bases. The components € = Cijx — 2, o Wijke and @i k=
[WP Cji—4 W9 C 1y Wy . Of the (0, 3)-tensor fields associated to Equations (2)-(ii) and (11)
determine polynomials *B; ; and %i & with exactly the same expressions than in Lemma 4.1
(Equations (12) and (13)). The expressions of the polynomials ‘B, ;. and %ijk are very lengthy,
so we do not include them here for the sake of clarity. They can be obtained after a long
but straightforward calculation using the Weyl curvature tensor and the Cotton tensor of
Sl:—(T,/ R) X R and SU(2) x R. The Weyl curvature tensor is determined by

6R*Wizi2 = 6R*Waszs = —(dy — 3)(2 + 3)kT + (41 — 12)°k3
= QA =3 - WB)E + (4 — 1)* =223 + (4 + ) A)R?,

4AR?W 1213 = —4R?Wagsa = —(21; — Ao — A3)A1kaks,
AR?Wia3 = 4ARPWigss = —(4) — 245 + A3)Aakiks,

6R*W313 = 6R*Wasns = (A — 3) (A2 + 243)k7 + (A1 — A3)°k5
— QU =15 - LK + (43 =223 + A} + 11 (& — 243) + L A3)R?,
4R*W 323 = —4R*Wia04 = (A1 + Ay — 2A3) A3k ko,

6R*Wi414 = 6R*Wazos = (A — 3)%k; + (4 — 13)(Ay + 2A3)k3
+ (A — A + 20k — 247 = (A — 3)* = (A2 + )R,
while the Cotton tensor is given by

4R2Cayy = —(A = L1(BA — 443) — o(dy + A3))Azki k3,
4R?Cypy = (A3 + 11(BAs + A3) — (Ao + 443)) Askaks,
4R2C213 = A1 + A3) — 2(/1% + 2/1% + ApA3)) (A — /lg)k%

— QA =B + 245 + (4 — 443)A0)k3

=2 = )X (A + )k

—2((A1 = ) (A + A2) + (A; + ) A5 — 2R,
4R3Co1s = (—(A1 (A2 + 223) — L2 + 3))(Ap — A3)k?

+ (247 = 11(A2 — A3) = 2A3)(A; — A3)k;

+ 24 = )X (A1 + k3

+ 24 = 12)* (A1 + )R ks,
4R*C311 = (A7 + 1423 = 323) — (A + A3)A3) sk ko,
4R2C312 =411 + A3) — 2(2/1% + A A3 + /l%))(/lz — /13)](%

+2(4; = /13)2(/11 + /13)](%

+ QA 4208 - BAs - B4 — L)k

F2L =28 = Ay + Ay + B+ (2 - )R,
4R C313 = —(AF + A1 (Ap + 343) — (4dy + A3)A3) Aakoks,
4R3C314 = {—(11 240 + A3) — (Ao + 243)A3)(A; — A3)k}

=2 = 3)X(A1 + 3)k3

— (124 + ) = (41 + 2)3)(A) — )k;

=2 = A3)X(A1 + 3)R* ks,
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4R?C3yp = =2( — 13)2( + 3)k3

T AL = R +205) + (A — 242K

+ (44 = 224+ 43) — 24 — ))K

+2243 — A3(A2 + A3) — (&2 — 3)* (A2 + A3)R%,
4R C3p = (45 — (Ady + o)Ay + (A + 342)A3) A 1kika,
4R?Cyoz = (3 — 22 + A1(Aa — 423) + 33) A1k ks,
4R?Ca4 = {2(A2 — 3)* (Ao + kT

— (A1 +22) 2 = 221 + 1) A3)(A) — k3

+ (4123 = A3) + (A3 = 223)A3)(A; — A3)k3

+ 2 — A3)* (A2 + 3)R* Kk,
4R3Cap1 = —(AF + 441 (A2 + A3) + 3243)(Ar — A3)kikaks,
4R3Cy1y = {(—(A1 — 42) 5 — 221 + )A3 + (4] — ) LAk

- 2(/1? + 41 A5 — 2/12/1%)](%

=28 + 15 - 2)k3

= T + 1 +28) = (A1 + )3 — D)4 — )R ks,
AR Cy13 = {3 + (A1 + )AE — (4 — 1) Az — 4A3kT

+ 200+ 15 - 220k

+ 2(/1? + (1 — 2/12)/12/13)](%

+ (247 = [ — A 420045 — A3 + 4494 — 3)R ks,
4R Cy1a = (A3 + A1 (A2 + A3) — 343)(Ap — A3)kaks,
4R3C421 = {2(/1% + /11/12/13 - 2/11&%)/(%

—208 - 20, - B

- (4/1? - /l%(ﬂg + A3) + A1 (A — A3)A3 — 2/12/1%)](%

— (A3 + 11222 — B3) + (& — 3)A + A3)(A — )R ks,
4R3Cypp = (4142 + 341 A3 + 3 + 4,43)(A) — 3)kkaks,
AR Caps = (208 + L2 = 200K

— (B + A3) = 21 (A — )3 + (A — 423)AD)k3

+2(41(24; — )A3 — /l;)kg

+ (2 + (A + A3) = 203 + a3 + 24D) (A — B3Rk,
4R?Cypq = —(A1 (A2 = 343) + (A + A3))(A) — A3)kiks,
4R3Cy31 = (A1 224, — A3) — 29k}

AR 220 - 23002

+ (443 = B + A3) — L1 — A3) — 24343)k3

+ (427 — 11(A = 243) — (A — A3)(Az + 223))(A1 — 3)R% ko,
AR Cypy = 120283 — 2225 - DR

— 20284 - oy - B

+ (/l%(/lz + 2/13) + A (A — A3) — 13(4/12 — /13))](%

+ (/l% + 4 (A + A3) — 2(2/1% + LAz + /1%))(/12 - /13)[\’2}]{1,
4R3Cyzz = =B + 44y + ) A3 + 3 — ki kaks,
4R*Cy3s = =(Li(BAy = A3) = (A2 + A3)3) (41 — ki .

Hence, SLr(ZJ R) X R or SU(2) x R admit a left-invariant conformal C-space metric if
and only if the structure constants in Equation (15) satisfy the equations {%; = 0} or,
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equivalently, {ig,- ik = 0}

Note that since the structure constants of g3 satisfy 4,443 # 0, one may work with a
homothetic basis ¢; = ﬂ—llek so that we may assume A; = 1 in the rest of the proof. We
consider separately the following cases:

(1) kikaks # 0, (2) kikaks = 0.

Case (1): kikoks # 0. In this first case we work with the polynomials %ijk. A key
observation is that, in this case, most of the polynomials ‘B, can be further decomposed. In
particular,

Pios = k1k3/13‘i'121, B3y = klkz/lz%'m, P, = ;13'132, Py = k1k2k3‘$/141,
P = ks%'m, Pz = kz‘i'm, Py = k2k3/13§'221, Po3y = Eﬁéﬂ,

Doz = klkzig'zn, Poys = k3§§§41, Doy = klkzkz%'z@, Poss = kl;ﬁ,243,
Py = %321, Pi3) = kzkz/lz‘féw P = k1k3‘1§§32, Py = kz‘iggw
Ppp = k1$§42, Py = k1k2k3‘§§43, Py = ksgﬁfm, Pu3) = kz‘fin,
Pz = k1$Q32, Py = k2k3‘§241, Papp = k1k3‘ff142, Py = klkz‘ffm .

(16)

Since kikok; # 0 and, moreover, 4,43 # 0, the study of the equations {A‘ﬁijk = 0} is
equivalent to {%;jk = 0}. Let Z; C R[As, A3,k ko, k3, R] be the ideal generated by the
polynomials ‘Aﬁ;jk. We compute a Grobner basis G of I, with respect to lexicographical
order and a detailed analysis of the Grobner basis shows that the polynomial

81 = LA = D’k + K5 + k5 + R*)*R?

belongs to G;. Since the zero sets of {‘ig;jk = 0} and fl = (A‘ﬁ;jk) = (Q~1) coincide, it follows
that necessarily A3 = 1.

Next, we compute a Grobner basis 5’1 of the ideal generated by C1 U {45 — 1} with respect
to the lexicographical order and we get that the polynomial

g = (- 1)U + I3k + K5 + k3 + RHR?

belongs to ’Qv] Thus, we get 1, = 1 and a straightforward calculation shows that the cor-
responding Lie group given by Equation (15) is locally conformally flat and therefore a
symmetric manifold [16] and trivially Bach-flat.

Case (2): kikyks = 0. In this case we can assume without loss of generality that k; = 0
and we work with the polynomials B, . Let I, C R[ky, ko, k3, R, A2, A3, &1, &2, €3, €4] be the
ideal generated by the polynomials {*B;} U {k;}. We compute a Grobner basis G, of T, with
respect to the graded reverse lexicographical order and a detailed analysis of the Grobner
basis shows that the polynomial

g = k(43 — (k3 + k3 + RY)?

belongs to G,. Thus, 43 = 1 or k, = 0.
If A3 = 1 then we compute a Grobner basis G of the ideal generated by G, U {13 — 1} with
respect to the lexicographical order and we get that the polynomial



430  E. CarviNo-Louzao, E. Garcia-Rio, I. GUTIERREZ-RODRIGUEZ AND R. VAZQUEZ-LORENZO
g, = 5L - DR

belongs to G;. Thus, we get 4, = 1. As in Case (1) the corresponding Lie group given
by Equation (15) is locally conformally flat and therefore a symmetric manifold [16] and
trivially Bach-flat.

If 13 # 1 and k; = O then we compute a Grobner basis G of the ideal generated by
G U {k,} with respect to the lexicographical order and we get that the polynomial

gy = B34 — (A3 + A3 + DR?

belongs to GJ'. Thus this case is not possible and this finishes the proof. |

6. The proof of Theorem 1.1

The results obtained in the previous sections show that the only conformal C-spaces
which are not Bach-flat are those given in Lemma 2.1. It is easy to see that the three
cases in that lemma are equivalent. Indeed, considering é;, = e, &, = e3, €3 = e, and
é4 = ey4, the Lie bracket in Lemma 2.1-(1) reduces to the Lie bracket in Lemma 2.1-(i1).
Analogously, the equivalence between (ii) and (iii) in Lemma 2.1 follows taking &; = e»,
é) = ey, &3 = ez and &4 = e4 in (i1). Thus, in what follows we consider the solvable Lie
algebra given by Lemma 2.1-(i). For this case, we compute the Weyl conformal tensor of
type (1, 3), Wijx = W(e;, e;)ex, which is determined by

— _la=p)p — -pp — (a—pp
Wi =-Sg-e, Wi = e, W= —me,

_  (a-pp _ (a-p)p _ _(a-pp
Wan = “mres, Won = Fes, Wiz =—Spea.

Since the Weyl tensor of type (1,3) does not depend on b, then it follows from the work of
Hall [10] that taking b = 0 we get a homothetic (although not a homothetically isomorphic)
Lie algebra. As a consequence, one easily checks that a solvable Lie algebra given by
Lemma 2.1-(i) is homothetic to a solvable Lie algebra g, = Rey 3 given by

ler,eq] =1, [er,es] =€z, [e3,e4] = es,

where a ¢ {0,1,4}. Here, & = —6e4 and {e, ..., e4} is an orthonormal basis. Finally, we
show thatif & # g, then g, and gz are not homothetic. To do this , we consider the homothetic
metric (-, -);, = 2(a® + 2a + 3)(-, -), so that 75 = —1 and we compute

ot +2a% +3

¥\2 _ & v e v 32— (a_l)zaz
W= darar MW =3 e ar

Hence, two metrics (-, -), and (-, -)g are homothetic if and only if

(@ + 2 +3)((B+2)B+3)? =B +28% +3)(a+ 2)a + 3)?,
(@ =1y ((B+2)B+3)* = ((a +2)a + 3B~ 1)’8,
from where a straightforward calculation shows that necessarily @ = S, which finishes the

proof.

ReMARK 6.1. Let{e!,...,e*} be the dual basis of {ey, ..., e4}. Then the structure equations
corresponding to the Lie algebras in Theorem 1.1 are given by
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de* =0, de' =—e' Né*, de* = -e* A, ded = —ae’ At

Setting ¢* = dt, e' = e'dx, €* = e'dy, ¢ = e*dz, one has that the manifolds in Theorem 1.1
are isometric to the doubly warped product metric R X, R? X, R on R* given by

g = di* + 2 (dx* + dy?) + ¥ dZ.

Moreover, a straightforward calculation shows that the conformal metric § = e~%g is Cotton-
flat. Finally, observe that the Bach tensor B, when expressed in the above coordinates, is
diagonal and given by

1
B = ga(a — (e — 4) diag[a — 1, —( + 1)e*, —(a + 1)e?, (a + 3)e*].

Hence the Bach tensor vanishes if and only if @ = 0, @ = 1, or @ = 4. For the special cases
a = 0 or @ = 1 the underlying structure is symmetric. For & = 0, it corresponds to a product
R x H? while it corresponds to the hyperbolic space H* for & = 1. The case corresponding
to & = 4 is conformally Einstein since § = e %g is Ricci-flat.

ReMARK 6.2. Let {¢} be the dual basis of {e;}, and set ET = % (el ANeZ e A 64), E* =

A (0 A 3 2 A +_ L (0 A 4 2 43
ﬁ(e ANe’ Fe /\e),ar.ldE3—\/§(e ANetxe /\e). . . o
The self-dual and anti-self-dual Weyl curvature operators of any left-invariant metric in

Theorem 1.1 satisfy
1
W* = —ga/(cx - 1)diag[2, -1, -1]

when expressed on the basis {E|, E7, EJ} (resp., {E], E5, ES}) of self-dual (resp., anti-self-
dual) two-forms. The distinguished eigenvalues of W* and W~ define one-dimensional sub-
spaces of A2 and A%. The corresponding sections determine two-forms given by ET. A
straightforward calculation shows that alE]i =e* A Eli, where de* = 0. Hence the two-forms
E7 are conformally symplectic and opposite conformally symplectic. Furthermore, observe
that none of the corresponding almost complex structures J* (determined by J*e; = ey,
and J*e; = +ey4) is integrable. A straightforward calculation shows that the two-forms
Q. =e¢?E | determine a symplectic pair [2] (i.e., they are non-degenerate closed two-forms
suchthat Q, AQ_=0,and Q, AQ, = -Q_AQ_).
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