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Abstract
Beta Laguerre ensembles, generalizations of Wishart and Laguerre ensembles, can be real-

ized as eigenvalues of certain random tridiagonal matrices. Analogous to the Wishart (β = 1)
case and the Laguerre (β = 2) case, for fixed β, it is known that the empirical distribution of
the eigenvalues of the ensembles converges weakly to Marchenko–Pastur distributions, almost
surely. The paper restudies the limiting behavior of the empirical distribution but in regimes
where the parameter β is allowed to vary as a function of the matrix size N. We show that the
above Marchenko–Pastur law holds as long as βN → ∞. When βN → 2c ∈ (0,∞), the lim-
iting measure is related to associated Laguerre orthogonal polynomials. Gaussian fluctuations
around the limit are also studied.

1. Introduction

1. Introduction
Beta Laguerre (β-Laguerre) ensembles are ensembles of N positive particles distributed

according the following joint probability density function

(1)
1

Z(β)
N,M

∏
i< j

|λ j − λi|β
N∏

i=1

(
λ
β
2 (M−N+1)−1
i e−

βM
2 λi

)
, (λi > 0),

where β > 0 and M > N − 1 are parameters, and Z(β)
N,M is the normalizing constant. For

two special values β = 1, 2, they are the joint density of the eigenvalues of Wishart matrices
and Laguerre matrices, respectively. For general β > 0, the ensembles can be realized as
eigenvalues of a random tridiagonal matrix model JN = BN(BN)t with a bidiagonal matrix
BN consisting of independent entries distributed as

BN =
1√
βM

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χβM
χβ(N−1) χβ(M−1)

. . .
. . .

χβ χβ(M−N+1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where χk denotes the chi distribution with k degrees of freedom, and (BN)t denotes the
transpose of BN .

Wishart matrices (resp. Laguerre matrices) are random matrices of the form M−1GtG
(resp. M−1G∗G), where G is an M × N matrix consisting of i.i.d. (independent identically
distributed) entries of standard real (resp. complex) Gaussian distribution. Here G∗ denotes
the Hermitian conjugate of the matrix G. These random matrix models can be defined in
a different way as invariant probability measures on the set of symmetric (resp. Hermitian)
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matrices. The limiting behavior of their eigenvalues has been studied intensively, and it is
known that as N → ∞ with N/M → γ ∈ (0, 1), the empirical distribution

LN =
1
N

N∑
i=1

δλi

converges to the Marchenko–Pastur distribution with parameter γ, almost surely. Here δλ
denotes the Dirac measure at λ. The convergence means that for any bounded continuous
function f ,

∫
f (x) dLN(x) =

1
N

N∑
i=1

f (λi)→
∫

f (x)mpγ(x) dx as N → ∞, almost surely,

where mpγ(x) is the density of the Marchenko–Pastur distribution with parameter γ,

mpγ(x) =
1

2πγx

√
(λ+ − x)(x − λ−), (λ− < x < λ+), λ± = (1 ± √γ)2.

Gaussian fluctuations around the limit were also established with explicit formula for the
limiting variance. The convergence to a limit and fluctuations around the limit of the empir-
ical distributions are two typical problems in the global regime when a random matrix model
is considered. Refer the book [12] for more details on Wishart and Laguerre matrices.

The convergence to Marchenko–Pastur distributions and fluctuations around the limit
were extended to β-Laguerre ensembles for general β > 0 in [5] by using the random tridi-
agonal matrix model. Based on the model as well, results in the local regime and the edge
regime were established [9, 14]. Note that the parameter β is fixed in those studies.

The aim of this paper is to refine results in the global regime of β-Laguerre ensembles.
We assume that the parameter β varies as a function of N, while the parameter M depends on
N in a way that N/M → γ ∈ (0, 1) as usual. We show that the Marchenko–Pastur law holds
as long as βN → ∞. When βN stays bounded, the limiting measure is related to associated
Laguerre orthogonal polynomials. For the proof, we extend some ideas that were used in
[7, 11, 15] in case of Gaussian beta ensembles. Our main results are stated in the following
two theorems.

Theorem 1.1 (Convergence to a limit distribution). (i) As βN → ∞, the empirical
distribution LN converges weakly to the Marchenko–Pastur distribution with pa-
rameter γ, almost surely. Here LN = N−1 ∑N

i=1 δλi is the empirical distribution of the
β-Laguerre ensemble (1).

(ii) As βN → 2c ∈ (0,∞), the sequence {LN} converges weakly to the probability mea-
sure νγ,c, almost surely, where νγ,c is given in Theorem 3.3.

To prove the above results, it is sufficient to show that any moment of LN converges almost
surely to the corresponding moment of νγ,c because the limiting measure νγ,c is determined
by moments. Here for convenience, we refer to νγ,∞ as the Marchenko–Pastur distribution
with parameter γ. It then follows that (see [6]) for any continuous function f of polynomial
growth (there is a polynomial P(x) such that | f (x)| ≤ P(x) for all x ∈ R),

∫
f (x) dLN(x) =

1
N

N∑
i=1

f (λi)→
∫

f (x) dνγ,c(x) as N → ∞, almost surely.
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Theorem 1.2 (Gaussian fluctuations around the limit). Assume that the function f has
continuous derivative of polynomial growth. Then the following hold.

(i) As βN → ∞,

√
β

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

f (λi) − E
[ N∑

i=1

f (λi)
]⎞⎟⎟⎟⎟⎟⎠ d→ (0, σ2

f ),

where

σ2
f =

1
2π2

∫ λ+

λ−

∫ λ+

λ−

(
f (y) − f (x)
y − x

)2 4γ − (x − λm)(y − λm)√
4γ − (x − λm)2

√
4γ − (y − λm)2

dxdy,

with λm = (λ− + λ+)/2 = (1 + γ). Here ‘
d→’ denotes the convergence in distribution.

(ii) As βN → 2c ∈ (0,∞),

√
β

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

f (λi) − E
[ N∑

i=1

f (λi)
]⎞⎟⎟⎟⎟⎟⎠ d→ (0, σ2

f ,c),

where σ2
f ,c is a constant.

The paper is organized as follows. In the next section, we introduce the random tridi-
agonal matrix model and related concepts. Results on convergence to a limit and Gaussian
fluctuations around the limit are shown in Section 3 and Section 4, respectively.

2. Random tridiagonal matrix model and spectral measures

2. Random tridiagonal matrix model and spectral measures2.1. Random tridiagonal matrix model.
2.1. Random tridiagonal matrix model. Let G be an M × N random matrix consisting

of i.i.d. real standard Gaussian random variables. Then X = M−1GtG is called a Wishart
matrix. When M ≥ N, the eigenvalues λ1, . . . , λN of X have the following joint density

1
ZM,N

|Δ(λ)|
N∏

i=1

(
λ

1
2 (M−N+1)−1
i e−

M
2 λi

)
, (λi > 0),

where ZM,N is the normalizing constant, and Δ(λ) =
∏

i< j(λ j − λi) denotes the Vandermonde
determinant. A Laguerre matrix X = M−1G∗G is obtained when the entries of G are i.i.d.
of standard complex Gaussian distribution, where recall that G∗ stands for the Hermitian
conjugate of G. In this case, the joint density of the eigenvalues has an analogous formula
to the Wishart case. Then β-Laguerre ensembles are defined to be ensembles of N positive
particles with the joint density

(2)
1

Z(β)
M,N

|Δ(λ)|β
N∏

i=1

(
λ
β
2 (M−N+1)−1
i e−

βM
2 λi

)
, (λi > 0),

where β > 0 and M > N − 1, which generalizes Wishart (β = 1) and Laguerre (β = 2)
ensembles.

A random tridiagonal matrix model for β-Laguerre ensembles was introduced in [4] based
on tridiagonalizing Wishart or Laguerre matrices. Let
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BN =
1√
βM

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χβM
χβ(N−1) χβ(M−1)

. . .
. . .

χβ χβ(M−N+1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
denote a random bidiagonal matrix with independent entries. Then the eigenvalues of the
tridiagonal matrix JN = BN(BN)t are distributed as the β-Laguerre ensemble (2). Using this
random matrix model and combinatorial arguments, the convergence to Marchenko–Pastur
distributions and Gaussian fluctuations around the limit (only for polynomial test functions)
were established in [5].

2.2. Spectral measures of Jacobi matrices.
2.2. Spectral measures of Jacobi matrices. A symmetric tridiagonal matrix is called a

Jacobi matrix. Spectral measures of Jacobi matrices {JN} have been studied recently. Here
the spectral measure of JN is defined to be the probability measure μN satisfying∫

xkdμN(x) = (JN)k(1, 1), k = 0, 1, 2, . . . .

It follows from the spectral decomposition of JN that μN has the following form

μN =

N∑
i=1

q2
i δλi , (q2

i = vi(1)2),

where v1, . . . , vN are the normalized eigenvectors of JN corresponding to the eigenvalues
λ1, . . . , λN .

Spectral measures can also be defined for infinite Jacobi matrices. Let J be an infinite
Jacobi matrix,

J =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a1 b1

b1 a2 b2
. . .
. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , ai ∈ R, bi > 0.

Then there exists a probability measure μ such that∫
xkdμ(x) = Jk(1, 1), k = 0, 1, . . . .

When the above moment problem has a unique solution μ, or the measure μ is determined
by moments, it is called the spectral measure of J. A simple, but useful sufficient condition
for the uniqueness is given by [13, Corollary 3.8.9]

∞∑
n=1

1
bn
= ∞.

The matrix MPγ in (3) and Jα,c in Lemma 2.1 clearly satisfy this condition. Thus, their
spectral measures (the Marchenko–Pastur distribution with parameter γ and the measure
μγ,c (and hence νγ,c in Theorem 3.3)) are all determined by moments.

By definition, moments of the spectral measure μN depend locally on upper left entries of
JN , and thus, the limiting behavior of μN follows easily from those of entries. In particular,
for fixed β, as N → ∞ with N/M → γ ∈ (0, 1), entry-wisely,
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BN =
1√
βM

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χβM
χβ(N−1) χβ(M−1)

. . .
. . .

χβ χβ(M−N+1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1√
γ 1
. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Here the convergence holds almost surely and in Lq for any q ∈ [1,∞). It follows that almost
surely, the spectral measure μN converges weakly to the spectral measure of the following
infinite Jacobi matrix

(3) MPγ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1√
γ 1
. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
√
γ

1
√
γ
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
√
γ√

γ 1 + γ
√
γ√

γ 1 + γ
√
γ

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is nothing but the Marchenko–Pastur distribution with parameter γ [6].
For the Jacobi matrix JN , the weights q2

1, . . . , q
2
N in the spectral measure μN are indepen-

dent of the eigenvalues and have Dirichlet distribution with parameter β/2. From which the
empirical distribution LN and the spectral measure μN have the following relations

E[〈LN , f 〉] = E[〈μN , f 〉],(4)

Var[〈LN , f 〉] = βN + 2
βN

Var[〈μN , f 〉] − 2
βN

(
E[〈μN , f 2〉] − E[〈μN , f 〉]2

)
,(5)

for suitable test functions f . Here we use the notation 〈μ, f 〉 to denote the integral
∫

f dμ for
a measure μ and an integrable function f .

We conclude this section by giving several remarks on spectral measures of Jacobi ma-
trices. The spectral measure μ orthogonalizes the sequence of polynomials {Pn}n≥0 defined
by

P0 = 1, P1 = x − a1,

Pn+1 = xPn − an+1Pn − b2
nPn−1, n ≥ 1.

In a particular case, an = (α+ 2n− 1) and bn =
√

n
√
α + n, the sequence of polynomials {Ln}

defined by

L0 = 1, L1 = x − (α + 1),

Ln+1 = xLn − (α + 2n + 1)Ln − n(α + n)Ln−1, n ≥ 1

coincides with the sequence of scaled generalized Laguerre polynomials. The spectral mea-
sure in this case is the Gamma distribution with parameters (α+ 1, 1), that is, the probability
measure with density Γ(α + 1)−1xαe−x, x > 0. In other words, the Gamma distribution with
parameters (α + 1, 1) is the spectral measure of the following infinite Jacobi matrix Jα,

Jα =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
α + 1

√
α + 1√

α + 1 α + 3
√

2
√
α + 2
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
α + 1√

1
√
α + 2
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
α + 1

√
1√
α + 2

√
2
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

When the entries of Jα are ‘shifted’ by a constant c ∈ R, the resulting orthogonal poly-
nomials are called associated Laguerre polynomials. The spectral measure in this case was
explicitly calculated in [8] as Model II for associated Laguerre orthogonal polynomials.

Lemma 2.1 ([8]). For c > −1 and α + c + 1 > 0, let

Jα,c =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
α + c + 1√

c + 1
√
α + c + 2
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
α + c + 1

√
c + 1√
α + c + 2

√
c + 2
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

and μα,c be its spectral measure. Then the density and the Stieltjes transform of μα,c are
given by

μα,c(x) =
1

Γ(c + 1)Γ(1 + c + α)
xαe−x

|Ψ(c,−α; xe−iπ)|2 , x ≥ 0,

S μα,c(z) =
∫ ∞

0

μα,c(x)dx
x − z

=
Ψ(c + 1, 1 − α;−z)
Ψ(c,−α;−z)

, z ∈ C \ R.

Here Ψ(a, b; z) is Tricomi’s confluent hypergeometric function.

Note that when α is not an integer, an alternative formula for Ψ(a, b; z) could be used

Ψ(c,−α; xe−iπ) =
Γ(α + 1)
Γ(α + c + 1) 1F1(c;−α;−x)

− Γ(−α − 1)
Γ(c)

xα+1e−iπα
1F1(α + c + 1; 2 + α;−x),

where 1F1(a; b; z) is the Kummer function.

3. Convergence to a limit distribution

3. Convergence to a limit distribution
In what follows, the parameter M depends on N in the way that N/M → γ ∈ (0, 1)

as N → ∞. We study the limiting behavior of the empirical distribution LN through its
moments 〈LN , xr〉, r = 0, 1, 2, . . . . Recall from the identity (4) that for r = 0, 1, 2, . . . ,

E[〈LN , xr〉] = E
[ 1
N

tr[(JN)r]
]
= E[〈μN , xr〉] = E[(JN)r(1, 1)].

Here tr[A] denotes the trace of a matrix A.

3.1. The Marchenko–Pastur regime, βN → ∞.
3.1. The Marchenko–Pastur regime, βN → ∞. A key observation in this regime is the

following asymptotic behavior of the chi distribution.

Lemma 3.1. As k → ∞,
χk√

k
→ 1 in Lq for any 1 ≤ q < ∞.

Let {ci}Ni=1 and {di}N−1
i=1 be the diagonal and the sub-diagonal of BN , respectively. Note that

although we do not write explicitly, {ci} and {di} depend on the triple (N,M, β). It is clear
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that as βN → ∞,

BN =
1√
βM

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χβM
χβ(N−1) χβ(M−1)

. . .
. . .

χβ χβ(M−N+1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1√
γ 1
. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Here the convergence means the pointwise convergence of entries, which holds in Lq for any
q ∈ [1,∞), that is, for fixed i, as N → ∞ with βN → ∞,

(6) ci → 1, di → √γ in Lq for q ∈ [1,∞).

Since JN is a tridiagonal matrix of the form

JN = BN(BN)t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c2
1 c1d1

c1d1 c2
2 + d2

1 c2d2
. . .

. . .
. . .

cN−1dN−1 c2
N + d2

N−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

it follows that for fixed r ∈ N, when N > r, (JN)r(1, 1) is a polynomial of {ci, di}i≤ r+1
2

. Let us
show some explicit formulae for (JN)r(1, 1),

JN(1, 1) = c2
1,

(JN)2(1, 1) = c4
1 + c2

1d2
1,

(JN)3(1, 1) = c6
1 + 2c4

1d2
1 + c2

1c2
2d2

1 + c2
1d4

1.

Then the pointwise convergence (6) implies that as N → ∞ with βN → ∞,

(JN)r(1, 1)→ (MPγ)r(1, 1) in Lq for any q ∈ [1,∞),

where recall that the Jacobi matrix MPγ is given in (3). Consequently, as N → ∞,

E[(JN)r(1, 1)]→ (MPγ)r(1, 1).

Recall also that the spectral measure of MPγ is the Marchenko–Pastur distribution with
parameter γ. Therefore, in this regime, the following convergence of the mean values holds.

Lemma 3.2. For any r ∈ N, as N → ∞ with βN → ∞,

E[〈LN , xr〉] = E
[

1
N

tr[(JN)r]
]
= E[(JN)r(1, 1)]→ 〈mpγ, xr〉.

3.2. High temperature regime, βN → 2c ∈ (0,∞).
3.2. High temperature regime, βN → 2c ∈ (0,∞). Let

B∞ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
χ̃ 2c
γ

χ̃2c χ̃ 2c
γ

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , χ̃k =
1√
2
χk,

be an infinite bidiagonal matrix with independent entries. Then as βN → 2c,
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BN =
1√
βM

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χβM
χβ(N−1) χβ(M−1)

. . .
. . .

χβ χβ(M−N+1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
d→
√
γ√
c

B∞,

meaning that entries of BN converge in distribution to the corresponding entries of the infinite
matrix

√
γ√
c B∞. Recall that (JN)r(1, 1) is a polynomial of {ci, di}i≤ r+1

2
. Moreover, the entries of

BN and those of B∞ are independent. Therefore we can deduce that as βN → 2c,

(JN)r(1, 1)
d→ (J∞)r(1, 1),

E[(JN)r(1, 1)]→ E[(J∞)r(1, 1)],

where

J∞ =
γ

c
B∞(B∞)t.

By this approach, we have just shown the existence of the limit of the mean values when
βN → 2c. However, we are not able to identify the limit directly from J∞.

To identify the limit, we now extend some ideas that used in [7] in case of Gaussian beta
ensembles to show the following.

Theorem 3.3. Let νγ,c be the spectral measure of the following Jacobi matrix

γ

c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
c
γ√

c + 1
√

c
γ
+ 1
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
c
γ

√
c + 1√
c
γ
+ 1

√
c + 2
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
γ

c
J c
γ ,c.

Then for any r ∈ N, as N → ∞ with βN → 2c,

E[〈LN , xr〉] = E
[

1
N

tr[(JN)r]
]
= E[(JN)r(1, 1)]→ 〈νγ,c, xr〉.

Theorem 3.3 is equivalent to Theorem 3.5 below which states a result for scaled β-
Laguerre ensembles. Let us switch to the scaled version. Let J̃N := B̃N(B̃N)t be a Jacobi
matrix, where

B̃N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ̃2α+2+2κ(N−1)

χ̃2κ(N−1) χ̃2α+2+2κ(N−2)
. . .

. . .

χ̃2κ χ̃2α+2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(with κ = β/2 and α = β2 (M − N + 1) − 1 = κ(M − N + 1) − 1). Then the joint density of the
eigenvalues of J̃N is proportional to

|Δ(λ̃)|2κ
N∏

i=1

(
λ̃αi e−λ̃i

)
, λ̃i > 0.

Let μ̃N be the spectral measure of J̃N and

mr(N, κ, α) = E[〈μ̃N , xr〉] = E[(J̃N)r(1, 1)].



Beta Laguerre Ensembles 443

Then mr(N, κ, α) satisfies the following duality relation.

Lemma 3.4 (cf. [5, Theorem 2.11]). The function mr(N, κ, α) is a polynomial with respect
to N, κ and α and satisfies the following relation

mr(N, κ, α) = (−1)rκrmr(−κN, κ−1,−α/κ).
Based on the above duality relation, we now identify the limit of mr(N, κ, α) in the regime

where κN → c. For fixed N, it is straightforward to calculate the limit of κ−1/2B̃N with
parameters (N, κ, aκ) as κ → ∞, where a is fixed,

(
1√
κ

B̃N

)
→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
a + N − 1√

N − 1
√

a + N − 2
. . .

. . .√
1
√

a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=: DN(a).

Here the convergence holds in Lq entry-wisely. Therefore,

lim
κ→∞ κ

−rmr(N, κ, aκ) = lim
κ→∞E[κ−r(J̃N)r(1, 1)] = (DN(a)DN(a)t)r(1, 1).

Next, in viewing of the duality relation, it holds that

lim
N→∞,κN→c

mr(N, κ, α) = lim
κ→∞(−1)rκ−rmr(−c, κ,−ακ).

Let us consider the following infinite matrix by exchanging N ↔ −c, a↔ −α and replacing
the sign inside square roots as well,

Wα,c =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
α + c + 1√

c + 1
√
α + c + 2√

c + 2
√
α + c + 3
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let Jα,c = Wα,cWt
α,c and lr(α, c) = (Jα,c)r(1, 1). Then it follows that

lim
κN→c

mr(N, κ, α) = lim
κ→∞(−1)rκ−rmr(−c, κ,−ακ) = lr(α, c).

In conclusion, we have just proved the following result.

Theorem 3.5. Let α > −1 and c ≥ 0 be given. Then in the regime where βN → 2c,

E

[
1
N

tr((J̃N)r)
]
= E[(J̃N)r(1, 1)]→ 〈μα,c, xr〉,

for any r ∈ N. Here recall that μα,c is the spectral measure of Jα,c whose density is given in
Lemma 2.1

The limiting measure in this regime was calculated in [1] by a different method.

3.3. Almost sure convergence.
3.3. Almost sure convergence. In this section, we complete the proof of Theorem 1.1

by showing the following almost sure convergence.

Lemma 3.6. For any r ∈ N, as Nβ→ 2c ∈ (0,∞],
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S N :=
1
N

tr[(JN)r] − E
[

1
N

tr[(JN)r]
]
→ 0, almost surely.

The idea is that for fixed r, pi := (JN)r(i, i) is independent of p j = (JN)r( j, j), if | i − j | ≥
Dr, where Dr is a constant. Then write S N as a sum of Dr sums of independent random
variables

S N =
1
N

∑
i

(p1+iDr − E[p1+iDr ]) + · · · +
1
N

∑
i

(pDr+iDr − E[pDr+iDr ]).

For each sum of independent random variables, we use the following result whose proof can
be found in the proof of Theorem 2.3 in [15] to show the almost sure convergence.

Lemma 3.7. Assume that for each N, the random variables {ξN,i}
Ni=1 are independent and
that

(7) sup
N

sup
1≤i≤
N

E[(ξN,i)4] < ∞.

Assume further that 
N/N → const ∈ (0,∞) as N → ∞. Then as N → ∞,

1
N


N∑
i=1

(
ξN,i − E[ξN,i]

)→ 0, almost surely.

The moment condition (7) can be easily checked for pi in the regime βN → 2c ∈ (0,∞].
The desired almost sure convergence then follows immediately.

4. Gaussian fluctuations around the limit

4. Gaussian fluctuations around the limit4.1. Polynomial test functions.
4.1. Polynomial test functions. In this section, we establish central limit theorems

(CLTs) for polynomial test functions. Since arguments are similar to those used in [15]
in case of Gaussian beta ensembles, we only sketch main steps. Without loss of generality,
assume that M = N/γ, where γ ∈ (0, 1) is fixed.

Let us write BN as

BN =

√
γ√
βN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1

d1 c2
. . .

. . .

dN−1 cN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, where

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ci ∼ χβN

γ −β(i−1),

di ∼ χβN−βi.

Then

JN = BN(BN)t =
γ

βN

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c2
1 c1d1

c1d1 c2
2 + d2

1 c2d2
. . .

. . .
. . .

cN−1dN−1 c2
N + d2

N−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Recall that for fixed r ≥ 1, the rth moment 〈μN , xr〉 is a polynomial of {ci, di}1≤i≤ r+1
2

. It is
actually a polynomial of {c2

i , d
2
i }, that is,
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〈μN , xr〉 = (JN)r(1, 1) =
γr

(βN)r

∑
�η,�ζ

a(�η, �ζ)
r∏

i=1

c2ηi
i d2ζi

i ,

where non-negative integer vectors �η = (η1, . . . , ηr) and �ζ = (ζ1, . . . , ζr) satisfy
∑r

i=1(ηi+ζi) =
r. Then, from formulae for moments of the chi-squared distribution, we conclude that

Lemma 4.1. (i) For r ∈ N,

E[〈μN , xr〉] =
r∑

k=0

Rr;k(β)
(βN)k ,

where Rr;k(β) is a polynomial in β of degree at most k.
(ii) For r, s ∈ N,

E[〈μN , xr〉〈μN , xs〉] =
r+s∑
k=0

Qr,s;k(β)
(βN)k ,

where Qr,s;k(β) is a polynomial in β of degree at most k.

Let p be a polynomial of degree m. From the above expressions, we can derive a general
form of Var[〈μN , p〉], and then that of Var[〈LN , p〉] by taking into account of the relation
(5). Similar to the case of Gaussian beta ensembles, the formula for Var[〈LN , p〉] can be
simplified as follows. The proof is omitted.

Lemma 4.2. Let p be a polynomial of order m. Then the variance Var[〈LN , p〉] can be
expressed as

Var[〈LN , p〉] =
2m+1∑
k=2

β
p;k(β)
(βN)k ,

where 
p;k(β) is a polynomial in β of degree at most (k − 2).

Corollary 4.3. (i) As βN → ∞,

βN2 Var[〈LN , p〉]→ σ2
p.

(ii) As βN → 2c,

βN2 Var[〈LN , p〉]→ σ2
p,c.

Theorem 3.4 in [15] provides sufficient conditions under which CLTs for {〈LN , p〉} hold
in case of Jacobi matrices with independent entries. The result can be easily extended to
Wishart-type Jacobi matrices {JN} here by considering the filtration {k = σ{ci, di : i =
1, . . . , k}}k. The convergence of variances as in the previous corollary is one of the two suf-
ficient conditions. The remaining one is quite similar to that in the Gaussian beta ensembles
case, and hence, we will not mention it in details here. Consequently, the following CLTs
for polynomial test functions follow.

Theorem 4.4. Let p be a polynomial. Then the following hold.

(i) As βN → ∞,
√
βN(〈LN , p〉 − E[〈LN , p〉]) d→ (0, σ2

p).
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(ii) As βN → 2c,
√
βN(〈LN , p〉 − E[〈LN , p〉]) d→ (0, σ2

p,c).

Remark 4.5. (i) For fixed β, it was shown in [5] that as N → ∞,

N〈LN , p〉 − N〈mpγ, p〉 −
(
2
β
− 1

)
〈μ1, p〉 d→ (0, σ2

p/β),

where μ1 is given by

μ1 =
1
4
δλ− +

1
4
δλ+ +

1
2π

1√
(λ+ − x)(x − λ−)

1(λ−,λ+)(dx).

(ii) Using results in case β = 1, 2, we deduce that the limiting variance in the regime
βN → ∞ is given by

σ2
f =

1
2π2

∫ λ+

λ−

∫ λ+

λ−

(
f (y) − f (x)
y − x

)2 4γ − (x − λm)(y − λm)√
4γ − (x − λm)2

√
4γ − (y − λm)2

dxdy,

where λm = (λ− + λ+)/2 = (1 + γ); cf. [12, Theorem 7.3.1].

4.2. C1 test functions.
4.2. C1 test functions. To extend CLTs from polynomial test functions to C1 test func-

tions, one idea is to use a type of Poincaré inequality. Consider (scaled) β-Laguerre ensem-
bles with the joint density proportional to

|Δ(λ)|β
N∏

i=1

(
λαi e−ηλi

)
,

where α = β2 (M − N + 1) − 1, and η > 0. Directly from the joint density, we can derive a
Poincaré inequality by using the following result. However, this approach requires α > 0.

Lemma 4.6 ([3, Proposition 2.1]). Let dν = e−Vdx be a probability measure supported
on an open convex set Ω ⊂ RN. Assume that V is twice continuously differentiable and
strictly convex on Ω. Then for any locally Lipschitz function F on Ω,

Varν[F] =
∫

F2dν −
(∫

Fdν
)2

≤
∫

(∇F)t Hess(V)−1∇F dν.

Here Hess(V) denotes the Hessian of V.

Let Ω = {(λ1, . . . , λN) : 0 < λ1 < · · · < λN} ⊂ RN . Let ν be the distribution of the ordered
eigenvalues of (scaled) β-Laguerre ensembles, that is, the probability measure on Ω of the
form

dν = const × |Δ(λ)|β
N∏

i=1

(
λαi e−ηλi

)
dλ1 · · · dλN = e−Vdλ1 · · · dλN ,

where

V = const + η
N∑

i=1

λi − α
N∑

i=1

log λi − β2
∑
i� j

log |λ j − λi|.

Then the Hessian matrix of V can be easily calculated
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∂2V
∂λ2

i

=
α

λ2
i

+ β
∑
j�i

1
(λ j − λi)2 ,

∂2V
∂λi∂λ j

= −β 1
(λ j − λi)2 .

Observe that Hess(V) ≥ D = diag( α
λ2

i
). Here for two real symmetric matrices A and B, the

notation A ≥ B indicates that A−B is positive semi-definite. It follows that Hess(V)−1 ≤ D−1.
And hence, using Lemma 4.6 with

F =
1
N

N∑
i=1

f (λi),

for a continuously differentiable function f , we get the following inequality

Varν[F] ≤
∫

(∇F)t Hess(V)−1∇Fdν ≤
∫

(∇F)tD−1∇Fdν.

The inequality can be rewritten as

(8) Var[〈LN , f 〉] ≤ 1
αN
E[〈LN , (λ f ′(λ))2〉].

This is one type of Poincaré inequality for β-Laguerre ensembles in this paper.
The restriction of the above inequality is that α must be positive, which does not hold in

the regime βN → 2c when c is small. The second approach based on the random Jacobi
matrix model removes such restriction. We will end up with a slightly different inequality.
Let us begin with several concepts.

A real random variable X is said to satisfy a Poincaré inequality if there is a constant
c > 0 such that for any smooth function f : R→ R,

Var[ f (X)] ≤ cE[ f ′(X)2].

Here, by smooth we mean enough regularity so that the considering terms make sense. By
definition, it is clear that X satisfies a Poincaré inequality with a constant c, if and only if αX
satisfies a Poincaré inequality with a constant cα2, for non-zero constant α.

Lemma 4.7. For k > 0, the chi distribution χk satisfies a Poincaré inequality with c = 1,
that is,

Var[ f (X)] ≤ E[ f ′(X)2], X ∼ χk.

Proof. The probability density function of the chi distribution with k degrees of freedom
is given by

1

2
k
2−1Γ( k

2 )
xk−1e−

x2
2 , (x > 0).

Thus, for k ≥ 1, the conclusion follows immediately from Lemma 4.6.
Next, we consider the case 0 < k < 1. Let Y = Xk. Then the probability density function

of Y is given by

const × exp(−y
2
k

2
), (y > 0).
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By using Lemma 4.6 with V = const + y
2
k

2 , we obtain that

Var[g(Y)] ≤ k2

2 − k
E[Y2− 2

k g′(Y)2].

For given f (x), let g(y) = f (y
1
k ). Then we see that

Var[ f (X)] = Var[g(Y)] ≤ k2

2 − k
E[Y2− 2

k g′(Y)2] =
1

2 − k
E[ f ′(X)2] ≤ E[ f ′(X)2].

This means that X satisfies a Poincaré inequality with a constant c = 1. The proof is com-
plete. �

We need the following property.

Lemma 4.8 ([10, Corollary 5.7]). Assume that Xi, (i = 1, . . . , k), satisfy Poincaré in-
equalities with constants ci. Assume further that {Xi} are independent. Then for any smooth
function g : Rk → R,

Var[g(X1, . . . , Xk)] ≤ (max
i

ci)E[|∇g(X1, . . . , Xk)|2].

Let Y = (ymn) be an M × N real matrix, and X = YtY = (xi j). For a continuously
differentiable function f : R→ R, let

g = g((ymn)) = tr( f (X)).

Then the partial derivatives of g can be expressed as follows.

Lemma 4.9 (cf. Eq. (7.2.5) in [12]). It holds that(
∂g

∂ymn

)
M×N
= 2Y f ′(X).

Consequently

∑
m,n

(
∂g

∂ymn

)2

= 4 tr(Y f ′(X) f ′(X)Yt) = 4 tr(X f ′2(X)) = 4
N∑

i=1

λi f ′(λi)2.

Here λ1, . . . , λN are the eigenvalues of X.

Combining three lemmas above, we arrive at another type of Poincaré inequality for β-
Laguerre ensembles.

Theorem 4.10. Assume that f is a continuously differentiable function. Then for the
β-Laguerre ensemble (1), the following inequality holds

(9) Var[〈LN , f 〉] ≤ 4
βMN

E[〈LN , x f ′(x)2〉].

The above Poincaré inequality is a key ingredient to extend CLTs to C1 test functions.
Let us now prove Theorem 1.2.

Proof of Theorem 1.2. Assume that f has continuous derivative f ′ of polynomial growth.
This implies that f ′ ∈ L2((1 + x2)dνγ,c(x)). Recall that for convenience, νγ,∞ denotes the
Marchenko–Pastur distribution with parameter γ. We need the following property of mea-
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sures determined by moments (called M. Riesz’s Theorem (1923) in [2]): the measure μ is
determined by moments, if and only if polynomials are dense in L2((1 + x2)dμ(x)). Conse-
quently, there is a sequence of polynomials {pk} converging to f ′ in L2((1 + x2)dνγ,c(x)). It
then follows that∫

x(pk − f ′)2dνγ,c(x) ≤ 1
2

∫
(pk − f ′)2(1 + x2) dνγ,c(x)→ 0 as k → ∞.

Let Pk be a primitive of pk. Since Pk is a polynomial, for fixed k, as N → ∞,

(10) XN,k :=
√
βN(〈LN , Pk〉 − E[〈LN , Pk〉]) d→ (0, σ2

Pk ,c), Var[XN,k]→ σ2
Pk ,c.

Let YN =
√
βN(〈LN , f 〉 − E[〈LN , f 〉]). Then by the Poincaré inequality (9),

(11) Var[YN − XN,k] ≤ 4N
M
E[〈LN , x( f ′ − pk)2〉],

which implies that

lim
k→∞

lim sup
N→∞

Var[YN − XN,k] ≤ 4γ lim
k→∞
〈νγ,c, x( f ′ − pk)2〉 = 0.

Here we have used the property that for continuous function g of polynomial growth,

E[〈LN , g〉]→ 〈νγ,c, g〉.
Then, the CLT for YN follows from the equations (10) and (11) by using the following
general result whose proof can be found in [11] or [16]. The proof is complete. �

Lemma 4.11. Let {YN}∞N=1 and {XN,k}∞N,k=1 be mean zero real random variables. Assume
that

(i) for each k, as N → ∞, XN,k
d→ (0, σ2

k), and Var[XN,k]→ σ2
k;

(ii) limk→∞ lim supN→∞Var[XN,k − YN] = 0.
Then the limit σ2 = limk→∞ σ2

k exists, and as N → ∞,

YN
d→ (0, σ2), Var[YN]→ σ2.
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