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Abstract
Let f : S — B be a finite cyclic covering fibration of a fibered surface. We study the lower
bound of the slope Ay when the relative irregularity g is positive.

Introduction

Let f : S — B be a surjective morphism from a smooth projective surface S to a smooth
projective curve B with connected fibers. We call it a fibration of genus g when a general
fiber is a curve of genus g. A fibration is called relatively minimal, when any (—1)-curve is
not contained in fibers. Here we call a smooth rational curve C with C?> = —n a (—n)-curve.
A fibration is called smooth when all fibers are smooth, isotrivial when all of the smooth
fibers are isomorphic, locally trivial when it is smooth and isotrivial.

Assume that f : S — B is a relatively minimal fibration of genus g > 2. We denote by
K; = Ks — f*Kp arelative canonical divisor. We associate three relative invariants with f:

K} =K{ —8(g—D(b- 1),
xr:=x0s)—(g-Db-1),
epi=e(S)—4g- Db -1,
where b and e(S) respectively denote the genus of the base curve B and the topological
Euler-Poincaré characteristic of S. Then the following are well-known:
e (Noether) 12x; = K7 +e;.
e (Arakelov) Kjp is nef.
e (Ueno) xy=>0andy; = 0ifand only if f is locally trivial.
e (Segre) ey > 0andes = 0if and only if f is smooth.
When f is not locally trivial, we put

and call it the slope of f according to [5], in which Xiao succeeded in giving its effective
lower bound as

4g -1
TE)
) g

Another invariant we are interested in is the relative irregularity of f defined by g, :=
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q(S) — b, where ¢(S) := dimH'(S, Os) denotes the irregularity of S as usual. When qy is
positive, we call f an irregular fibration. Xiao showed in [5] that Ay > 4 holds for irregular
fibrations. It seems a general rule that the lower bound of the slope goes up, when the
relative irregularity gets bigger.

In the present paper, we consider primitive cyclic covering fibrations of type (g, &, n)
introduced in [2], where Enokizono gave the lower bound of the slope for them. Note that
it is nothing more than a hyperelliptic fibration when 4 = 0 and n = 2. Recall that Lu
and Zuo obtained the lower bound of the slope for irregular double covering fibrations in
[4] and [3]. Inspired by their results, we try to generalize them to irregular primitive cyclic
covering fibrations with n > 3. We give the lower bound of slope for those of type (g, 0, n)
in Theorems 3.4 and 4.7, and for those of type (g, #,n) with 2 > 1 in Theorem 3.8.

The key observation for the proof is Proposition 3.2. We apply it to the anti-invariant part
of the Albanese map with respect to the action of the Galois group canonically associated
to the cyclic covering fibration, and derive the “negativity” of the ramification divisor when
qr > 0. Recall that y; and (the essential part of) K]% can be expressed in terms of the
so-called k-th singularity index ay defined for each non-negative integer k. The negativity
referred above can be used to get some non-trivial restrictions on @y which is the most
difficult one to handle with among all @;’s. Thanks to such information together with an
analysis of the Albanese map, we can obtain the desired slope inequalities.

We also give a small contribution to the modified Xiao’s conjecture that g, < I'%'I holds,
posed by Barja, Gonzélez-Alonso and Naranjo in [1]. It is known to be true for fibrations
of maximal Clifford index [1] and for hyperelliptic fibrations [4] among others. We show in
Theorem 4.5 that gy < (g + 1 —n)/2 holds, when f is a primitive cyclic covering fibration of
type (g, 0, n) under some additional assumptions. For the history around the conjecture, see
the introduction of [1].

The author express his sincere gratitude to Professor Kazuhiro Konno for suggesting this
assignment, his valuable advice and support. The author also thanks Dr. Makoto Enokizono
for his precious advices, allowing him to use Proposition 3.2 freely.

1. Primitive cyclic covering fibrations

We recall the basic properties of primitive cyclic covering fibrations, most of which can
be found in [2].

Dermition 1.1. Let f : S — B be a relatively minimal fibration of genus g > 2. We
call it a primitive cyclic covering fibration of type (g, &, n), when there are (not necessarily
relatively minimal) fibration ¢ : W — B of genus & > 0 and a classical n-cyclic covering

n—1

P on(- jS)} - W

J=0

f:S = Specy

branched over a smooth curve R € |n§| for some n > 2 and d € PiC(W) such that f is the
relatively minimal model of f = @ o 6.

Let f : § — B be a primitive cyclic covering fibration of type (g, i, n). Let F,F,T and
I be general fibers of £, f,  and ¢, respectively. Then the restriction map 6| F:F—Tisa
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classical n-cyclic covering branched over RNT. By the Hurwitz formula for 8]z, we get

2(g—1-n(h-1))

(1.1) r:=Rl =
n—1

From R € |n72ﬂ, it follows that r is a multiple of n.

Lety : W — W be the contraction morphism to a relative minimal model W — B of
o W — B. Since Y is a composite of blowing-ups, we can write / = ¢ o - - - Yy, where
Vi« Wi — W;_; denotes the blowing-up at x; € W_; (i=1,--- ,N), Wy = W and Wy = w.
We define a reduced curve R; inductively as R;_; = (¥;).R; starting from Ry = R down to
Ry =R. We also put E; = ¢ (x;) and m; = mult, Ry (i =1,--- ,N).

Lemma 1.2 ([2], Lemma 1.5). In the above situation, the following hold for any i =
1,---,N.

(1) Either m; € nZ or nZ + 1. Furthermore, m; € nZ if and only if E; is not contained in
R,‘.
(2) R; = YiRi_1 — n[=L]E;, where [t] denotes the greatest integer not exceeding t.
(3) There exists d; € Pic(W;) such that d; = y;d;_1 — [%]Ei and R; ~ nd;, dy = .

Remark 1.3. By [2], we can assume the following for any primitive cyclic covering fi-
brations. Let & be a generator of the covering transformation group of 6, and o the auto-
morphism of S over B induced by . Then the natural morphism p : S — S is a minimal
succession of blowing-ups that resolves all isolated fixed points of o

We must pay a special attention when & = 0, since we have various relatively minimal
models for @ : W — B. Using elementary transformations, one can show the following.

Lemma 1.4 ([2], Lemma 3.1). Let f : S — B be a primitive cyclic covering fibration of
type (g, 0,n). Then there is a relatively minimal model of  : W — B such that

r_ g
mult,R, < = = +1
Wbt =5 = 0

for all x € Ry, where Ry, denotes the ¢-horizontal part of R. Moreover if mult,R > 3, then
mult,R € nZ + 1.

When i = 0, we always assume that a relatively minimal model of ¢ : W — Bis as in the
above lemma.

Corollary 1.5. Let the situation be the same as in Lemma 1.4. If x is a singular point of
R and m = mult, R, then

3l=3
n — —
nl— 2
Proof. When m € nZ, the inequality clearly holds by Lemma 1.4. If m € nZ + 1, then
n[%]+ 1 = m. From Lemma 1.4, we have m < 5 + 1. So we get n[%'] < 3. O

In closing the section, we give an easy lemma that will be usuful in the sequel.
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Lemma 1.6. Let 1 : C; — C, be a surjective morphism between smooth projective
curves. Let R, and A be the ramification divisor and the branch locus of n, respectively.
Then,

(deg(m) — DHA > degR,,
where §A denotes the cardinality of A as a set of points.

Proof. We put A = {Qy, ... ,Qya}. Forany Q; € A, we put Q) = {P"l, ,P;i}.
Note that deg(r) = r(Pil) + -0+ r(Pi.i) forany i = 1, ... ,#A, where r(P) denotes the
ramification index of 7 around P € C;. Then, from the property of ramification divisor,

A i

deg Ry = " > (r(P) = 1)

i=1 j=1
= deg(mMYA — (ji + -+ + jsa)
< (deg(m) — DHA,

which is what we want. O

Lemma 1.7. Let 8 : X — P! be a fibration. Take any finite sub set J of P! with §J > 4.
Foranyy € J, letT', = }.fipD be the fiber of B over y, and put

Fa:=B'A, Fo:= > D
yeA, DT, ip=1

If there is a smooth rational curve C on X which is 3-horizontal, then
HCNF,) >degpBlc(BJ —4)+4 > HJ.
Proof. From Hurwitz formula for |c : C — P!,
2degBlc — 2 = deg Ry,

where Rg. is ramification divisor of S|c. Let r(P) be the ramification index of S|c at P € C.
Then we have

degRg. = > (r(P)=1).

PeCNFyy

By definition, #(P) > 2 for any P € (C N Fyy) \ (C N F,). Hence,
Yoem-n= > @)=+ Y (P -1

CNFyy (CNFu)\(CNF,) CNF,
P P)-1
r( )+ Z (r(P)—1)

=
2

(CNFap)\(CNFy) CNF,
_ 3 P _HenEy
2 2 '

CNFay

So we have

2degfle -22 ) r(21>) - ﬁ(ch’).

CNFay
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Therefore we get

HCNF)2 ) r(P)—4degflc +4 = deglc(B) —4) +4 2 §J

CNFy

by the assumption #J > 4. i

2. Singularity indices and the formulae for K; and y .

We let f : S — B be a primitive cyclic covering fibration of type (g, i, n) and freely use
the notation in the previous section. We obtain a classical n-cyclic covering 6; : S; — W;
branched over R; by setting

n—1

S = Spec () Ow, (= o)
j=0
Since R; is reduced, S; is a normal surface. There exists a natural birational morphism
S; = Si-1. Set §' = 8g, 60 =6, d=1>yand f' = ¢ o 6. Then we have a commutative
diagram:

P
S =Sy Sn-1 So=S"’ S
lg lgzv—l l@
WIWN YN Wi UN-1 Ui Wo=W f
\l
[
B

The well-known formulae for cyclic coverings give us

(2.1) Kj% = n(K; +2(n — 1dK; + (n — 1)°0),

n—

N —

(2.2) X7=nxp+

T
<)

(see e.g., [2]). From Lemma 1.2 and a simple calculation, we get

N

12

23 2= ﬁ] ,
(2.3) Zl“ .

N .
(2.4) BK, = DK, + Z[ﬂ

=1
and

2 _ 2

(2.5) K2=K2-N.

DeriNmion 2.1. Let I, and F, respectively denote fibersof ¢ : W — Band f : § — B
over a point p € B. For any fixed p € B, we consider all singular points (including infinitely
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near ones) of R on I',. For any positive integer k, we let a(F,) be the number of singular
points of multiplicity either kn or kn + 1 among them, and call it the k-th singularity index
of F. We put @y := X ,cp @x(F)) and call it the k-th singularity index of the fibration. We
also put o := (K + E)E and call it the ramification index of @[ : R — B.

By a simple calculation, we get

(2.6) N=>a
k>1
N
n
2.7) ;[7] = ; kay,
2.8) i[’"l’]z W5
. —| = a,
i=1 n k>1 ’
and
(2.9) @ = (Ky + RIR = )" nk(nk — Da.
k>1

Substituting (2.3), (2.4), - -+ ,(2.8) to (2.1) and (2.2), one gets
K% = n(Kj +2(n — 1K, + (1 = 1)’0") =n Z((n — Dk - 12y

k>1

and

o nn—1) nn-1)2n-1) , nn-1) 5
Xj =g+ ——— 0K, + > % — ;((2 k> = 3k)ey.

Since K7 > K]%, . X7 =Xy and ;5 = x,, we obtain

(2.10) K7 2 n(KZ +2(n— oK, + (n = 1)’0°) —n Z((n - Dk -1’y
k>1

and

~1 —-D@2n-1 -1
Q.11) xp=ny, + "(”4 Dok, + 1)(2 1= Dy -l 5 2(@n = DI = 3kay.

k>1

We treat the cases & = 0 and & > 0 separately.

Proposition 2.2. Let f : S — B be a primitive cyclic covering fibration of type (g, 0, n)
and let a; (i > 0) be the singularity index in Definition 2.1. Then,

nk<s

(2.12) (r—DK; = v 2)n (—1)ao+Z(

k>1

nk(r —1-(mk-1)—-(r- l)n)a/k,

nk<3

3
@213) (- lyy= T )” C(n—1)ag + Z(

k>1

nk(r —1—-(nk- 1)))
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Proof. Note that if a; > 0, then nk < 5 from Corollary 1.5.

We find that R = —5K, + MoI" for some M, € %Z, where the symbol = means the
numerical equivalence, since ¢ : W — B is a P!-bundle and we have KyI' = —2 and
RT = RT = r. Hence we get

(2.14) RK, = —2M,

(2.15) R? = 2rM,.
Therefore we have
(Ky + R)R = 2(r — 1)M,.

From this equality and (2.9), we get

,
nk< 3

(2.16) 2(r— DMy = ap + Z nk(nk — ay.

k>1

On the other hand, substituting (2.14) and (2.15) to (2.10), we get

nk<%
— 2y — =2

K}> %2@ ~DMy=n Y (n = Dk = Dlay.
k>1

Multiplying this by » — 1 and substituting (2.16) to it, we get (2.12). Similarly one can show
(2.13). O
When £ > 0, we have the following:

Proposition 2.3. Let f : S — B be a primitive cyclic covering fibration of type (g, h, n)
such that h > 1 and «a; (i > 0) the singularity index in Definition 2.1. Put

t:=2(g-1)—-(th-Dn+1),

2(g — DKR, ifh =1,
T:=9 (-1 1)Ke-o-Da-DR) s

- n—Dh-1) , fh=2.

Thent>0and T > 0. Furthermore,
KZ
2.17 K2 >t —————— + 1T+t o +
( ) f X (n_ 1)(/1— 1) y Z Qo ;aka’k
and
K;

2.18 tys = nty, + tx’ +ty'T + 17 g + a
(2.18) Y f = Nty x(n—l)(h—l) i 7 o Zakak

k>1
hold, where we define
Y= (g—D(n-1((g-Dn+1)-2nh-1)) o (n—1Dmn+1)(g-1-nh-1))>
= nt ’ B 12nt ’
, =-D2-%1) D@+ 1)
y = ¢ > ¥ = 12nt

B
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S = 2(n-1)*(g -1 - (n-D22n-Dg-1 -nn+Dh-1)

nt 12nt
ay = 124, —nt, a, = %(n2 - DR -1)+nh-1D((n-Dk-2)).

as O when h = 1.

KZ
In (2.17) and (2.18), we regard m

Proof. We gett > 0 fromr > 0, n > 2 and g > 2. We shall show that 7 > 0. If 4 = 1, by
the canonical bundle formula, we have

l
1
Ky =Xl + 3 (1= T
i=1 !

where {k; | i = 1,...,1} denotes the set of multiplicities of all multiple fibers of ¢, k; > 2.
Hence we get

2(g-1
n—1
Since W is an elliptic surface, we have y(Oy) > 0 and hence 7 > 0. If 7 > 2, we consider

the intersection matrix

(2.19) K R > y(Oy)IR =

x(Ow).

K; K, K,
K, o ol
K, of 0

for {K,, d, I'}. Since we have K; > 0 by Arakelov’s theorem, it is not negative definite.
Hence its determinant is non-negative by the Hodge index theorem, and we get

(2.20) 2(K,d)(I)(K,T) - 0*(K,I)* = (0I)°K; > 0.

Since

r_2g-1-nh-1)

ol =
n nn-—1)

, K =2(h-1),
the inequality (2.20) is equivalent to

2(g -1 —n(h— D)K,d - n(n— D)(h— 1)d* > (g—1-n(h- D) K2

1
nn—1)h-1)

So we get
0> ((g—1-n(h—1)K, - (n—1)(h — DR)*

and, hence, T > 0.
Now, by a direct calculation, one has

2n—1 -1 K2
(n )K‘pR"I‘(n )2R2)=xl

2 [
n(Ky, + n n-Dh-1)

+y'T +7 (K, +RR

and

n—1 (n-1D2n-1) K

+ ——K,R+ R =ny,+¥ ———— +§T +7(K, +RR.
o R 12n Wt Vo TIT KA R)
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Hence we obtain from (2.10) and (2.11) that

KZ
(2.21) Kiox—f v yT+7(K,+RR-n > ((n- k-1’
f (I’l—l)(h—l) y ¢ ;( ) k
and
(2.22)
K; nn-1)
- ¥— 4 iyT+7(K,+RR- 2n— Dk? - .
X =M+ ¥ o ey HI T+ 7 (Ko + B) = D@n - DI = 3Ky

k=1
From (2.9) and (2.21), we get
2
5 K

1K > tx’m +ty' T+ 17 g + Z(Z(n - D*(g - Dk(nk — 1) — nt((n — Dk — 1)} ay.

k>1

Since one sees ax = 2(n— 1)2(g — Dk(nk — 1) — nt((n — 1)k — 1)%, we obtain (2.17). Similarly,
we obtain (2.18). O

3. Slope inequality for irregular cyclic covering fibrations.

The purpose of this section is to show the slope inequalities for irregular cyclic covering
fibrations of type (g, h,n), n > 3. We start things in a more general setting.

DerintTion 3.1. Let 8 : S — W be a finite Galois cover (not necessarily primitive cyclic)
between smooth projective varieties with Galois group G. Let « : S — AIb(S) be the
Albanese map. For any & € G, we denote by a(d) : Alb(§ ) — Alb(§ ) the morphism
induced from & : § — § by the universality of the Albanese map. We put

Albs(S) := Im{a(5) — 1 : AIb(S) — Alb(S)}
and let
@y : S — Albs(S)
be the morphism defined by a5 := (@(6) — 1) o a.
The following is due to Makoto Enokizono.

Proposiﬁ@ion 3.% Suppose that G is a cyclic group generated by & in the above situation.
If g7 := q(S) — q(W) > O, then the following hold.

(1) dim Albs(S) = g5

2) IfFi)'((G) ={xeS| G(x) = x} # 0, then it is contracted by az to the unit element
0 € Albs(S).

3 If a/;,(§ ) is a curve, then the geometric genus of a/;,(§ ) is not less than gj.

Proof. Firstly, we show (1). By the construction of a(6) — 1 : Alb(§ ) — Alb(§), we get
the following commutative diagram:
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0 1 (@()-1)" 170 1
H (Alb(S) QAlb(§)) —— JH (Alb(S ), QAlb(S))

.| E

HO(S, QJi) HO(S, Qé).

Since a* is an isomorphism, we have dim Ker(a(5) — 1)* = dim Ker(6* — 1). Since G is
a cyclic group generated by &, we see that Ker(6* — 1) coincides with the G-invariant part
HO(S,Qé)G of HO(S,Qé). On the other hand, since &* : HY(W, Q%}) — HO(S, Qé)G is an
isomorphism, we have dim(Ker(a(6) — 1)*) = q(W) and, hence,

dim(Im((@) - 1)) = () — g(W).

It follows that Albg,(s: ) is of dimension ¢j.
Secondly, we show (2). We take a point xj in Fix(G) as the base point of the Albanese
map @ : S — AIb(S). Let x € Fix(G). Note that we have

az(x) = (a(6) — D(a(x)) = a(@)(a(x) — a(x)

and that a(6)(a(x)) — a(x) is the function given by w +— fx z Fw - fx z w forw € Ho(g, Q;.)
modulo periods. Since x and xj are both in Fix(G), we find

X X 7 (x) X
f Fw— f f w=0.
X0 Xo U'(xo) Xo

Hence we get a5(x) = a(d)(a(x)) — a(x) = 0. Since x can be taken arbitrarily in Fix(G), we
get (2).

When a&(g) is a curve, let B’ be a normalization of CL’@-(§ ). From the universality of the
Abel-Jacobi map for B’, we have

i :Jac(B') = Albs(S),

where Jac(B’) is the Jacobi variety of B’. On the other hand, since a(§) generates Alb(g) as
group, a#(S) generates Albs(S ). Since jp is the group homomorphism, Im(jp) = @5(S) is
the sub-group of Albs(S). Therefore jp is surjective, we get (3). |

3.1. The slope inequality in the case of 2 = 0. We consider the primitive cyclic covering
fibration f : § — B of type (g,0,n) with gy > 0. Since ¢ : W — B is a ruled surface, we
have q(W) = b and it follows g5 = qy. We apply Proposition 3.2 to the cyclic covermg
6:S — W to find that its ramification divisor Fix(G) is contracted to a pomt by as : S —
Alb(,-(S ), where & denotes a generator of the Galois group G := Gal(S / W). So if a/(,(S )isa
surface (resp. a curve), from Mumford’s theorem (resp. Zariski’s Lemma), the intersection
form is negative definite (resp. semi-definite) on Fix(G), and we in particular get

Fix(G)*> <0 (resp. < 0).
Hence, in any way, we have
(3.1) R? <0,

since #*R = nFix(G).
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Here, we remark the following.

Lemma 3.3. Let f : S — B be a primitive cyclic covering of type (g,0,n). If it is not
locally trivial and gy > 0, then r > 2n.

Proof. We assume that r < 2n and show that this leads us to a contradiction.

Recall that r is a multiple of n. If r < 2n, then r < n and R has to be smooth by
Lemmas 1.2 and 1.4. On the other hand, since g > 0, we already know from (3.1) that the
self-intersection number of any irreducible component C of R is non-positive.

Let Cy be the minimal section with C(z) = —e and I a fiber of ¢ : W — B. Note that we
can choose the normalized vector bundle of rank 2 associated with W so that there are no
effective divisor numerically equivalent to Co—cI for any positive integer c. Put C = aCy+bI"
with two integers a, b. We have a > 0. If a = 0, then we have b = 1, that is, C is a single
fiber by its irreducibility. So we may assume that a is positive.

We have C? = a(2b — ae) < 0. Hence 2b < ae. Furthermore, since C is irreducible and
a > 0, we have (K, + C)C > 0 by the Hurwitz formula applied for the normalization of C.
Since K, = —2Cy — eI, we have

0<(K,+C)C =(a-1)2b—ae)<0,

by 2b < ae and a > 1. Hence we get (K, + C)C = 0 and, either a = 1 or 2b = ae.
In particular, as the first equality shows, C is smooth and ¢|c : C — B is unramified.
Furthermore, we get C> = 0 when a > 2 by 2b = ae. In this case, we also have b < 0,
because 0 < CCyp = b—ae = —=b. If a = 1 and 2b < e, then b > 0 and it follows from
CCy = b—e < —b <0 that we have C = Cy by the irreducibility of C. We remark here that
we have (a;Cy + bI')(a,Cy + boI') = 0 when a; > 0 and 2b; = a;e fori =1, 2.

In summary, the only possibilities left for smooth R are (i) R consists of several fibers
(including the case R = 0), (ii) R is the minimal section with R?> < 0, and (iii) R consists of
several smooth curves with self-intersection numbers O which are unramified over B (via ¢).
If (i) or (ii) is the case, then we have either g = 0 or r = 1, any of which is absurd. If (iii) is

the case, then f : S — B s a locally trivial fibration, which is again inadequate. m|

From R? = R? — 3., n2k%ay, (2.15) and (3.1), we get

nk<%
2rMy < Z nzkzak.
k=1
Combining this with (2.16), we get
nk<s
k
(3.2) aw< Y -1k - Dy
S

Theorem 3.4. Let f : S — B be a primitive cyclic covering fibration of type (g,0,n)
which is not locally trivial and q; > 0. Then

B 8(g+n-1) (_ B 4r )
(n-1DQRg—-(n-DHn-2)\" (n=D(@r-n))

A=A, :=8
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Proof. For A € R, we put

A = u((r -2n—-r- AM)
n 12
From Proposition 2.2, we get
nk<j nk<3z
(r = D(K? = A} ) > AQ) Dao + Z aray — Z AL aay
k=1 k=1

where

ai = (n* — Dk(r— 1 — (nk - 1)) — (r — Dn,
21
12
We can check that A(/l_{lm) < 0 as follows. Since r > 2n by Lemma 3.3, a calculation shows
that the inequality

n

ay =

k(r =1 —(nk - 1)).

n-1 4r Q2r-3n-r
A /11 = ( -2 —r—(8 - ) < 0
o) n (r=2p-r={ (n—1)(@r- n)) 12
is equivalent to

(r—-n)(-(n—1*+2)+2n* - 3n-r <0,

and we can check easily its validity. Therefore A(/l}/,n) < 0. Hence from (3.2), we get

nk<s
(33) = DK;=Ax) = ) (W(s — Ay Ink(r —nk) - (r - l)n)ak.
k=1

For any integer k satisfying 5 > k > 1, we have nk(r — nk) > n(r — n). Since we have

n-D@r-1)
4r

the coefficient of a4 in the right hand side of (3.3) is not negative. Therefore, we get KJ% -

(8 — A,,)n(r—n)—(r—1)n =0,

/l;’,,)(f > 0 as desired. O

3.2. The slope inequality in the case of 2 > 1. Before showing the slope inequality
when /2 > 1 and n > 3, we study the upper bound of ay.
Recall that we decomposed ¢ into a succession of blowing-ups ¥; as,

lﬂ:W:WNw—[V)WN_l—)-“—)W]ZO)Wo:W

We define the order of blowing-up ¢’ appearing in i as follows. If the center of ¢ is a point
on the branch locus of multiplicity m’, we put

’

ord(y/') := [ﬂ]
n
Moreover we introduce a partial order on these blowing-ups ¢’ and " appearing in ¢,

W2y S ordw) 2 ord(”).
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Lemma 3.5. Assume thatn > 3. Let x; (€ R; C W;) be a singular point infinitely near to
X; € R;. Then the multiplicities satisfy m; < m;.

Proof. Though this can be found in [2], Lemma 3.7, when & = 0, we shall give a proof
for the convenience of readers.

Let x;;; be the singular point of R;,; infinitely near to x; € R;. If m; € nZ, then R,
coincied with E, the proper transform of R; by 41, by Lemma 1.2. Hence m;,; < m; in this
case. If m; € nZ+1, then R;y = 1’3\, + E;. Hence we get mjp; < m; + 1 € nZ + 2. From
Lemma 1.2 and the assumption n > 3, we get m;; < m;. O

From Lemma 3.5, we can reorder those blowing-ups appearing in ¢ so that y; > ¢ ; holds
whenever i < j. We put,

M := max{ord(¥/') | ¢ is a blowing up in y/}.

Then we can decompose i as

WiW= Wy S Wy o S Wo=W
in such a way that ord(y’) = M + 1 — i holds for any ¢’ appearing in ;.
Lemma 3.6. Let /' be a blowing-up appearing in ; and D the proper inverse image of
the exceptional curve of ' on S. Then the geometric genus of D satisfies

m-1DmM-i)+n-2)

g(D) < >

Proof. Let m’ be the multiplicity of the singular point blown up by ¢’, and E the proper
transform of the exceptional curve of ' on w.

When m’ € nZ + 1, since E is contained in ﬁ, D is a smooth rational curve.

Assume that m’ € nZ. From m’ = n(M + 1 — i), the intersection number of the exceptional
curve of ¢ and the branch locus is n(M + 1 — i). Hence the intersection number of their
proper transforms on W is at most n(M +1—i). On the other hand, we consider the composite

— — b5 — — -, .. —~
7D —>D3E , where D’ — D is normalization of D, and let B, be the branch locus 7.

From the Hurwitz formula for 7 and Lemma 1.6, we get
29(D’) =2 +2n < (n — DYB,.
Since @) is totally ramified,
8B, < #By < ER <n(M+1-1i).

Therefore we get

n-1nM-0)+n-2)
2 9
which is what we want. O

g(D) = g(D) <

Proposition 3.7. Let f : S — B be a primitive cyclic covering fibration of type (g, h, n)
such that g5 > 0, h > 1, n > 3 and let a; (i > 0) be the singularity index in Definition 2.1.
Then,
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(3.4) 2(g—1-n(h—-1))ag
2

2 Kw 12n ~
<(g-1-nh-1) S +T+;—(n_ Do D

where ay is defined in Proposition 2.3. If the image a/;,(§ ) is a curve and v(qz) > 1, where

_[2(x=1) B n-—2
V) = [n(n -1 n ]’
then
v(qp)
(3.5) 2(g—1=n(h—D)(ay + Z nk(nk — 1ay)
k=1
K2 12n
S(g—l—n(h—l))—+T+ —— Qi
D(h-1) k>1§)+1 n-Dmn+1)
In (3.4) and (3.5), we regard —<+— as O when h = 1.

(n— 1)(h D
Proof. Firstly assume that a>(S) is a curve of geometric genus ¢g’. In this case, by
Proposition 3.2, we have g’ > g and see that any curve of geometric genus less than g’ on
S is contracted by as. Hence, we know from Lemma 3.6 that for any 1 < i < M satisfying
m—1D(nM-i)+n-2)
2

<g -1,

the proper transform of the exceptional curve of ; to S is contracted by as. Then, since
qp < ¢, forany 1 <i < M satisfying
(n— 1)(n(M2— )+n-2) <gi-1,

the same holds true. So we conclude that the total inverse image of R, M—v(g;) 1N S is contracted
by ag, where Ry, € Waroy(g,) 1s the image of R. Therefore, the total inverse image of
Ry, forms a negative semi-definite configuration. In particular, we have

2
(3.6) R o < 0.

By the construction, we have

K2
Ry ign = K= D oy = S b T + 2K, + IR - PR
k> v(qz) (n=Dh=1) ke>v(qg)

where

. (g-1-nt-1Y . 1 . (9-1-n(h-1))
e 1 YET T 1 '

Hence from (2.9), (3.6) and the above equality, we get

v(qp) K2
t2ag + Y nk(nk = Day) < —tﬁm — T + Y (0K = nk(nk - 12)ay.
k=1 k>v(qp)
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This is nothing more than (3.5).
Even when a(S) is not a curve, we have R> < 0 by Proposition 3.2. Using this instead
of (3.6), we get (3.4) by a similar argument as above. O

Theorem 3.8. Let f : S — B be a primitive cyclic covering fibration of type (g, h, n)
which is not locally trivial and such that qz and h are both positive, n > 3. Put
F(g,h,1) = (g = 1)’ = 2n(g = D((h + D(n = DI + 1) = 1) = (L + D(n = 1? = 1’n*(h* = ).
(1) If F(g,h,0) > O, then

2n+ 1)(g—1-n(h-1))
A > Aypn i=8— .
;= 3a,
(i1) Assume that a/;,(§) is a curve and v(qz) > 1. If F(g, h,v(gz)) = 0, then
2n+ 1)(g—1-nh-1))

36_11/((]§)+l

/1f > ﬂg’h’n,% =38

Proof. Here we restrict ourselves to the case that a/;,(s: ) is a curve and show (ii) only,
since (i) can be shown similarly. From (2.17) and (2.18), we obtain

2
2 ’ =/ (4 ’ -
(37) t(Kf - /lg,h,n,qg/\/f) 2> t(x - Ag,h,n,q@x )(n _ 1)(h — 1) + t(y - /lg,h,n,qg,y )T
+ l‘(ZI - Ay,h,n,%z’)ao + Z(ak - /lg,h,n,qgak)a'k - n/lg,h,n,qgt)(w-

k=1
To apply (3.5) to the above inequality, we have to check that z" — 4,4, < 0 in advance.
Since
2n+ 1)(g—1-nh-1))
B 3a;
_g_ 8(g—-1-nh-1))
(= Dg-D+nh-Dn-3))

(3.8) Aghng > 8

it is sufficient to see that
~ 8(g—1—-nh-1)) - 2dn—-1)(g-1)
n-1DQ2@g-1D+nh-1)n-3) 22n-1)(g-1)—-nn+1)(h-1)

which is equivalent to

(g—1-nh-1)(16(g— Dn(n—-2)+8n(n+ 1)(h—1)((n—1)(n-3)+ 1)) >0,

the validity of which can be checked directly. Therefore we get 2’ — Ay 04,2 < 0. Applying
(3.5) to (3.7), we obtain

K7 = AghngsXs)
2

®
R R Y
n—Dh—1) ehnalXe

n—1 3
> (12 - D) = Sgnalo — 1= = 1)

(n - 1)(8 - /lg,h,n,qg,)
+
8(g—-1-nh-1))
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V(%)
Z ((n = DK(@n = Dk = Ddgpng — 12001 = Dk — 1P)a
(8 = Aging)3n
" ’sz(:; )(2(;1 D=1 -nthi—1)™ ”)“"'

We will show that ((n — Dk((2n — Dk = 3)Ag g, — 12((n — Dk — 1)’)>0forl <k< v(qz)-
Note that

(n— Dk(2n = Dk = 3)Agpng, — 12((n — Dk — 1)

=%(nk((n = D(nk = D)(Agpng,(2n—1) = 12(n = 1)) + n* - 1)(12 - Aghngs)) = 12n2).

Firstly we will show that Ay 5.4, > 20-l) From (3.8), it is sufficient to check that

= 2n-1
) 8(g — 1 —n(h - 1)) 20—
n-DRg-D+nh-1)n-3)  2n-1

A calculation shows that it is equivalent to

8n(n—-2)(g-1)+ An* - 1)(n-3)+82n—-1)n(h—1) >0,

12(n— 1)
2n—

which holds true clearly. So we have shown A .4, > and it follows that

(n = Dk((2n — Dk = 3)Agppg, — 12((n — Dk — 1)?
is increasing in k. Evaluating at k = 1, we get

(n = Dk(2n = Dk = 3)Agpng, — 12((n — Dk — 1)
> 2(n - 2)((n = DAgpng, — 6(n —2))

>0,
by Aghng, = li(n” D Since
8- /lghq)Sn (8 - /lghq)3n
(39) v(q9)+l 0
2n+ 1)(g—-1-n(h— 1)) 2(n +1)g-1-nh-1))

holds for any k > v(gz) + 1, we obtain
(3.10) K} = AgnnasX s

> —1(12( - 3 (g—1-n(h- 1)))—2

= 12 g ghnqg 9g- 1)(]1 _ 1)

—nd Lo 1)(8 o)
ghngXe 8(g—1—n(h-1))

If F(g,h,v(g3)) > O and h = 1, then by (2.19) we have T = 2(g — DK,.R > %=y
Hence it follows from (3.10) that

n+1
szf glnquf > 3G F(g’l V(qe))/‘(tp >0

aV(‘IH)Jr 1

which gives us (ii) for & = 1. If F(g, h,v(gz)) = 0 and h > 2, then we can use Xiao’s slope
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4(h 1)

inequality K2 > Yo and T > 0, to get

n+1
K2 - > ——F(g,h,v(q; >0
f AghnagX f 2 3hityigr1 (g, h, v(ga))x

from (3.10). Hence we have shown (ii) also for 4 > 2. O

4. Special irregular cyclic covering fibrations of ruled surfaces.

Let f : § — B be a primitive cyclic covering fibration of type (g, 0,n) with g, > 0 and
suppose that it is not locally trivial. Let a5 : S — Albs(S) be the morphism defined as in
Definition 3.1 for the generator & of the covering transformation group G of 0 : S - W.
Moreover we assume that there is a component C of Fix(G) such that C?> = 0. Note then that
a(,(S ) is a curve by Proposition 3.2.

Proposition 4.1. In the above situation, there are fibrations f’ : S - B, ¢ :W - P!
and a morphism @ : B — P' with B’ a smooth curve such that R is &-vertical, qr < g(B),
and they fit into the commutative diagram:

— 0 —
S—Ww
fl lsﬁ'

B =5~ P
Proof. We can obtain f ’. S — B’ from the Stein factorization of as - S — a/(,(S ). Hence
we have g(B’) > g by Proposition 3.2, (3). We will show that the automorphism & : S-S
induces an automorphism of B’. We assume that there is a fiber F” of f” such that *F” has a
f-horizontal component. Let F, ¢ be the fiber of f” which contains the curve C with C? = 0.
Then, from Zariski’s lemma, we see that F;. = aC for some positive integer a and it follows
Fi = 0"F(, since C is a component of Fix(G). Hence

0< & F'Fl. = (5 F)0"F.) = F'Fl.=0,

a contradiction. Therefore & maps fibers to fibers, and descends down to give an automor-
phism 6 : B — B’. Furthermore we have the commutative diagram

where 6’ : B® — D’ := B’ /{6 p) denotes the quotient map. In order to complete the proof,
it suffices to see that D’ = P'. This can be shown as follows. Any general fiber of @ is ¢'-
horizontal by R.I" > 0. Since @ is ruled, we see that P! dominates D’ and it follows D’ = P!,

O

The contraction ¢ : W — Wis composed of several blowing-ups. We decompose it as
W = o as follows. Let i : W — W be the longest succession of blowing-downs such
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that we still have the morphism ¢’ satisfying ¢ = ¢’ o . Then we have the following

commutative diagram.
4
w
¢
¢

]
NS

Let R := R be the image of R by .
Lemma 4.2. The morphism s : W — W is not the identity map.

Proof. We will prove this by contradiction. Suppose that i is the identity map. As one
sees from the proof of Lemma 3.3, any irreducible curve D on W with D> < 0 is smooth,
and ¢|p : D — B is an unramified covering when D? = 0 and D is not a fiber of ¢. Hence,
any irreducible fiber of ¢’ : W — P! has to be smooth. Suppose that there is a fiber of ¢’
whose reduced scheme is reducible, and take an irreducible component Dy. Then DS <0
and, from the proof of Lemma 3.3, we conclude that Dy coincides with the minimal section.
The unicity implies that we cannot have such reducible singular fibers. Therefore, a singular
fiber of ¢’, if any, is a multiple fiber whose support is a smooth irreducible curve. Since R is
areduced divisor with support in fibers of ¢’ by Proposition 4.1, we see that R is smooth and
¢lg : R = Bisunramified. Then f : S — Bis alocally trivial fibration, which is inadequate.

O

Assume that ¢ : B” — P! is branched over A c P'. For any y € A, let 1:; = Y 7icC be the
fiber of ¢’ over y, and put

jéa[[ = &'*A, Er = Z C.

yeA, €Ty, ic=1
Lemma 4.3. In the above situation, Er <R.
Proof. We put
Gy :={reqG| 7(F') = F’ for any fiber F of f'}.

Since f’ ot = tforany 7 € G, the morphism f” induces the morphism 7 : §/Gf, - W
and we have the following commutative diagram.
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Note that the degree of 7 is equal to that of ¢'. We claim that Fix(G ;) = Fix(G). This can be
seen as follows. It is clear that Fix(G 7)D Fix(G). If there is a point x € Fix(G 7) \ Fix(G),
then we have d(x) # x for the generator & of G. On the other hand, since G is a subgroup
of G of order n/deg &', we have G 7= (59¢¢?y. Hence the number of G-orbits of x is at most
deg @’. This contradicts that  : S - Wis totally ramified. Therefore Fix(G )= Fix(G).
Hence §/ G 7 is smooth. Let R, be the branch locus of 7. Since 8 is totally ramified, one
can check easily that R, = R. Hence it is sufficient to prove that R, < R,. Let C be any
component of Er. We can take analytic local coordinates (Up1, x) on P!, (U W Y>2) on W and
(Ug,w) on B’ such that ¢’(C) is defined by x = 0, C is defined by y = 0, 8*x = w'e? and
@*x = y. Up Xp Uy is defined by y = w2 in Up X Uy So Up X1 Uy, — Uy is ramified
over C N Uy and Up Xpi Uy is smooth. Hence the natural morphism §/Gf, — B’ Xpi Wis
an isomorphism around Up Xp1 Uy;. Therefore we get C < R, = R. O

We suppose that J =0 -+ oy, where J; : W; > Wi_y is a blowing-up at X;_; € Wi_i,
Wo = W and W, = W. Let R; be the image of Rin W;, and let ¥; be a singular point of R; of
multiplicity n;.

Lemma 4.4. Assume thatn > 3. For 1 <i <u-— 1, we have m; > 5% + 2. Moreover if
there is m; such that equality sign holds, then % +2 enZanddegt =n.

Proof. Let £ ¢ W be any (—1)-curve contracted by ¢. Note that @[ : £ — P! is
surjective and ER € nZ. We will show that ER > % +2. Ifn> % + 2, then the assertion is

clear from Lemma 1.2, (1). Hence we may assume that n < %i + 2. In particular, we have
gr>2n—1.ByLemma l.6 and gy > n— 1, we get

#A g(B)+2 > 4.

2 -

degt — 1
So we apply Lemma 1.7to ¢/ : W — P' as J = A, Foy = Ry := ¢’ A and F, = R,, we have
#(E NR,) > (deg ¢’|e)(HA — 4) + 4. Therefore we get

— — — - 2
(ER) 2 (ER) 2 HENR)) > (deg¢'le) degH—’—lg(B/) -2|+4

2
> ———g(B)+2
_dege’—lg( )

> ——qr+2
B deg@’—qu

For any X;, let X, ;, be the singular point infinitely near to X; with i + j; maximal blown up
by i, i+, the exceptional curve. Then, from the above argument, we get

qr + 2 < (8i+ji1_-\>) = ﬁl,q.ji < nﬁ,:

degt — 1
Moreover if the equality signs hold everywhere, then we get
y 2 =
m; = degG—’—qu +2= (gi+jiR) € nZ.

Since deg ¢’ < n, we are done. |
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Theorem 4.5. Let f : S — B be a locally non-trivial primitive cyclic covering fibration
of type (g,0,n) with gy > 0 and n > 3. Assume that there is a component C of Fix(¢) such
that C* = 0. Then,
g—n+1

<
qar = )

Proof. There is a singular point x of R which is blown up by ¢ : W — W from Lemma

4.2. 1f m := mult,R < 5, then

24y r_ g

n_1+25ms§:n_1+1

from Lemma 4.4. So we get gy < (9 —n+ 1)/2. It m > 5, then we have m € nZ + 1 from
Lemma 1.4. Let ¥ be the last singular point, infinitely near to x, blown up by ¢ and 7 its
multiplicity. Then it holds that 7z € nZ. Indeed, if 77 € nZ + 1, the exceptional curve arizing
from X is contained in branch locus. It contradicts the definition of . So we get /i + 1 < m.

Therefore we get

2
U v 3<mel<ms<is1=—9_ 42
n-— 2 n-—1
from Lemma 1.4 and Lemma 4.4. It follows gy < (g —n + 1)/2. O

Therefore, the Modified Xiao’s Conjecture is true in this particular case.

Now, we turn our attention to the slope. Let ¢, be the number of the singular points of R
with multiplicity nk or nk + 1 appearing in ¢. Then ¢ > 0 and by Lemma 4.4 one has

4.1) ar=0
for any k satisfying nk + 1 < % + 2. We put @ := ay — & then by (4.1),
(42) ay =

for any k satisfying nk + 1 < f%f] + 2. By the construction of ¢, R is contained in fibers of
¢’, hence we get

On the other hand, we have

21 12<nk

n—1
As R? = 2rM, by (2.15), we get
nkS%
(4.3) 2rMy < Z 23,

qu
o7 T2<nk

Hence
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nk+1< +2 nk<3
o + Z nk(nk — Day < ag + Z nk(nk — 1)ay,
k=1 k=1
nk<s

Z @(r —1 = (nk — 1)

25 +2<nk

-1

IA

nkSi nk
D, 1= (k= a

2q ¢
2 y2<nk
=

IA

where the first and the last inequalities above follow immediately from @, > 0 and (4.2), and
the second one follows from (2.16) and (4.3). Hence we have shown:

Proposition 4.6. Under the same assumptions as in Proposition 4.1,

nk+1< +2 nk<j k
n
@ + Z nk(nk = Dae < Y =(r= 1= (nk = 1)y
k=1 0 e
n—1 -

Using this, we will prove the following:

Theorem 4.7. Let f : S — B be a locally non-trivial primitive cyclic covering fibration
of type (g,0, n) such that there is a component C C Fix(G) with C*> = 0. If g r>0andn >3,
then we have

2n(g +n—1) 4rn
44) A= A%, =8- =8
9 gns ° (g—qr)qyr+n-— 1)( (n-12+ = 2‘“ r-Q+2 24r )))

Proof. We first remark that, for two real numbers x, y with x + y < r, we have x(r — x) >
y(r — y) if and only if x > y. Since we have n + (2 + 2q/(n — 1)) < r by the proof of
Theorem 4.5 and r > 2n, this observation works for x = n, y = 2 + 2qs/(n - 1).

(1) The case ofn >2+ 2ﬂ ,l.e., %2(”_1) > qy.

Sincen > 2 + , We get

n(r—n) > (2 + nszl )(r - (2 + %))

Therefore, /1; N2 /lé ng,» and (4.4) follows from Theorem 3.4.

(ii) The case of n < 2 + ~ 2

In this case, we have
2 2
(2+ 4s )(r—(2+ 47 ))Zn(r—n)
n—1 n—1

and, hence, /lg a < /12 na, . Then we have A(/lg nay ) <0, since the function A(A) defined in the
proof of Proposition 3.4 is decreasing in A and we have already proved A(/l;’n) < 0 there.

From Proposition 2.2, we have

‘If

nk<j

(4.5) (r= (K} = 22, x7) 2 A(Agnq,>ao+2<ak A2 04,80
k>1
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where a; and 4y, are the same as in the proof of Proposition 3.4. Applying Proposition 4.6 to
(4.5), we get

nk< ﬂ +2

(r= 1)K} = 25,4, X7) 2 Z (A, 4 nk(nk = 1) + ar = 45, , @)y
k>1

nk<3
+ Z (A(/lgn ar (r —nk) + a; — /l;n’qfc"zk)ak.

245
2+ <nk
First, we will show

(4.6) A2, nk(nk -1 +ap— A2, @ >0

g4 f Q"Qf

for any positive integer k with nk + 1 <2 + % By a simple calculation, we get

4.7) - A1, g k(nk = Dag + ay = Aj,n,qfak
=nk(%( k — 1)(/lqan( n-1)-12(n-1))
+ %(12 /lgan)) —(r—=1n.
We claim that /lé gy 2 lé(n"__ll). It is equivalent to

4n+Dgpg—n+1-qp)+Q2n—-4)g—2nn-1)2n-1) > 0.

(n=2)(n—-1)
r oz 2

Fromg —n+1 > 2q; and ¢ + 1, we easily see that it holds true. Since

/ls - 1%51"__11), the right hand side of (4.7), which is incleasing in k, is not less than
(n-D@r-1) (* = (r=1)
n(T( - 1)(/lgan( n—1)—-12(n - 1))+T(12 /lgan)) (r—=1Dn
nn—1)r-1)
= f(/l;an( -2)—6(n- 3)) —(r—1n
n(n—72)
= -1
=5,
> 0.
Therefore we get (4.6).

Secondly, we will show

2 2
(4.8) Ay g ) — . (r—nk) +ax — Ay, 4 ax > 0
for any positive integer k satisfying 5 > nk > 2 + By a simple calculation, we get
2 2 -
A(/lgan)T(r—nk)+ak A g, Ok
_(m-D@r-1
(4.9) ==, " nk(r — nk)(8 — Agan) (r—Dn.

Since we have
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nk(r — nk) > (2 N %)(r ~ (2 L2 ))

n—1

for any positive integer k satisfying 2 + < nk < 5, the right hand side of (4.9) is not less
than
(n—D(r—1)(, 24 2q;
4r (2+n—1)(r_(2+n ))(8 /lg"qf) (r=Dn=0

2 32
Thus, we obtamK /lqan r20. m]

5. An example.

We construct primitive cyclic covering fibrations of type (g, 0, n) with relative irregularity
qy satisfying g + n — 1 = m(qy + n — 1) for any integer m > 2. Hence, when m = 2, this
implies that the bound of g in Theorem 4.5 is sharp. Also, our examples show that the slope
bound (4.4) in Theorem 4.7 is sharp.

Let g : W := P(Op1 P Opi(e)) - B := P! be the Hirzebruch surface of degree e > 0.
Denote by I' and Cj a fiber of ¢ and the section with C(z) = —e, respectively. We know that
mCy + bI is very ample if and only if b > me. So we take by with by > me.

We take two general members D, D’ of [mCy+bol'| which intersect each other transversely.
Let A be the pencil generated by D and D’. Then A define the rational map ¢, : W--- — P!
Let ¢ be a minimal succession blowmg ups which eliminates the base points of A. We get
a relatively minimal fibration ¢’ :W - P! by putting ¢’ = @4 o . Denote by Ia general
fiber of ¢" and Ky; a canonical divisor of w. By a simple calculation, we get

m —

— 1 —
(5.1) K‘% =8—ux, Kyl = x—2m, T?=0,

where x is the number of blowing ups in . Note that x = (mCy + boI')>.

Let A c P! be a set of T +2 general points, where qis is an integer satlsfymg T +2 e nZ.
Then there is a divisor b’ on P! such that nd’ = A. LetR = (¢")*A be the fiber of @’ over A.
Since A is general, we can assume that R is both reduced and smooth.

We consider a classical cyclic n-covering

n—1
¢ :B = Specpl(@ Op (—jb’)) — P!,
=0

Since A is general, we can assume that the fiber product S :=B Xp W is smooth. Noting
that the morphism 6 : S — W induced by &’ is nothing but the natural one

n—1
S = Specpl(@ OW(_j(gD')*b,)) - W,
J=0

one gets a commutative diagram
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~
| ——
l%,
A
=

~n
°§<—C/J
jg=
Al

;

where f := @ 0 6.

By the construction, we get g; = g = g(B’). From the formulae

1.

>R R + K}
J=1
and (5.1), we get

n—1
Ks = n(Ky + TR) » X(O3) =nx(Og) + 3 E P

-1
(52 Ki= 4m—( 1 +1)(n—1)—n x+8(n—m(n—1)(i+1)),
S m \n-1 n—1
-1
(5.3) X(Og):m—(iﬂ)(n—1)x+n—m(n—1)(i+1).
2m \n-1 n-1
Let g be the genus of fibration f : S — B. Then it is easy to see that
2
g +2:m( 24 +2).
n—1
Hence we get

n—1

%+1)(n— 1)—n)x,
.

Wl(%+l)(n—l)x.

-1
K2= K2 -8(g - 1)(g(B) ~ 1) = (4’”7 (

X7 =x(05) —(g-DgB) - 1) =
Therefore we get

2

LK 2n(g+n-1)
=%

by g =qy.

- (g—ap)gr+n-1)

We remark that f is relatively minimal. In fact the singular points of R, the image of Rin
W, are all of multiplicity rzl% + 2 € nZ and can be resolved by a single blowing-up. So there
is no @-vertical (—n)-curve in W. Therefore there is no f -vertical (—1)-curve in S.
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