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Expansiveness is a very important notion for the investigation of chaotic
behaviors in dynamical systems. Let (X, d) be a compact metric space and /:
X->X be a homeomorphism. We say thta / is expansive with expansive constant
c>0 if for each pair (x, y) of distinct points of X there is an integer » G Z such
that d(fn(x),fn(y))>c.

The dynamics we are interested in dealing with are expansive homeomorphi-
sms on compact surfaces. The following is one of the results related to our
investigation. Any compact orientable surface with positive genus admits an
expansive homeomorphism (T. O'Brien and W. Reddy [18]).

The notion of pseudo-Anosov was introduced by W. Thurston [21], in
order to classify diffeomorphisms of compact surfaces up to isotopy. A pseudo-
Anosov diίfeomorphism is an expansive homeomorphism which is a diffeomor-
phism except at finitely many points (singular points), and it is an Anosov dif-
feomorphism if it is on the 2-torus. The notion of pseudo-Anosov can be well
defined for homeomorphisms to admit differential structures so that the homeo-
morphisms become pseudo-Anosov diffeomorphisms (A. Casson and S. Bleiler
[1]). Pseudo-Anosov diffeomorphisms have been studied by many people, for
example, A. Fathi, F. Landenbach and V. Poόnaru [3], M. Gerber and A. Katok
[5], M. Gerber [4], J. Lewowicz [12], J. Lewowicz and E. Lima de Sa [14]
and so on.

A question arises naturally as to whether compact surfaces admit expansive
homeomorphisms which are not pseudo-Anosov homeomorphisms. For the
question we shall give an answer as follows.υ

Theorem 1. Every expansive homeomorphism of a compact surface must be
pseudo-Anosov.

This is a result announced in [10]. After this theorem is established, by
using Euler-Poincarέ's formula and Kneser's Theorem (cf. [3,7]), we can give
an answer to a problem (raised by Hedlund) of whether expansive homeomorphi-
sms exist on compact surfaces. The precise statement is as follows (announced
in [9]).

1) J. Lewowicz [13] obtained the same result by a different method.
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Theorem 2. There exist no expansive homeomorphisms on the 2-sphere, the
protective plane and the Klein bottle.

As constructed in [18], every compact orientable surface of positive genus
admits a pseudo-Anosov difϊeomorphism. Recently R. Penner [19] gave ex-
amples of pseudo-Anosov difTeomorphisms on compact non-orientable surfaces
(for example, the connected sum of two Klein bottles) by generalizing Thurston's
construction.

1. Definitions and Preliminaries
Throughout this paper, * 'surface'' will mean a connected, two dimensional,

C°° Riemannian manifold without boundary and a compact surface will be de-
noted by M. The natural numbers, the real numbers and the complex numbers
will be denoted by N, R and C respectively.

For p^N let πp: C->C be the map which sends z to zp. We define do-
mains 3)p (ρ=l, 2, —) of C by

and 3)p = π

It is easily checked that πp: 3)p->3)λ is a />-fold branched cover for every
p^N. Denote by Si2 and CV2

 t n e horizontal and vertical foliations on S)2

respectively. We define a decomposition Mx (resp. Cϊ^) of S)λ as the projection
of c#2(resp. ^ 2 ) by π2: 3)2->2)ι, and define a decomposition ^ ( r e s p . Cψp) of
3)p as the lifting of Mλ (resp. q ^ ) by πp: S)P^S)V

A decomposition 3 of M is called a C° singular foliation if every L^SF
is path connected and if for every x^M there are p(x)^N and a C° chart φx\
UX-*C around x such that

(1) φx{x) = 0,
(2) φx(Ux) = g)fω,
(3) φx sends each connected component of UXΓ\L onto some element of

MM unless UxΓiL=φ for Leff .
Let 3* be a C° singular foliation on M. Each element of 3" is called a

/£#/ and equipped with the leaf topology. The number p(x) is called the number
of separatrices at #. We say that x is a regular point if p(x)=2, and Λ? is a ««^-
w/αr point with p(x)-separatrices if p(x)Φ2. Since M is compact, obviously the
set S of all singular points is finite. We denote by 313 the C° foliation on
M\S obtained by taking singular points away from each leaf of 3. For ma-
terials of C° foliations on surfaces, the reader may refer to G. Hector and U.
Hirsch [7]. If every leaf of 313 is dense in M, then 3 is called minimal. We
say that 3 is orientable (resp. transversally orientable) if 313 is orientable (resp.
transversally orientable).
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A subset A of M is an arc (resp. open arc) if there is a C° embedding h from
a compact (resp. open) interval / of R into M such that h(I)=A. Let 3 and S
be as above. An arc A is a called a transversal of 3 if the interior of A is con-
tained in M\S and if for every x^A\S there is a C° chart 9>x: UX-^C around x
as above such that Pr°φx is injective on Uxf)A where Pr denotes the projection
from C onto the imaginary axis.

Let Ao and Ax be transversals of 3 . We say ^40—A if there is a continuous
map i/: [0, 1] X [0, l]->Λf such that ίίo=^l[o,i]χ{o} and fli=ff|cofi]x{i} are home-
omorphisms from [0, 1] X {0} onto Ao and from [0, 1] x {1} onto Aλ respectively,
and such that if L<EΞ3 then H~\L)=Bx[0y 1] for some Bcz[0, 1]. Let h: [0, 1]
X {0}^[0, 1]X {1} be the homeomorphism which sends (t, 0) to (t, 1). When
A0—Au the homeomorphism H^hoHo1: A0->A1 is called a projection along the
leaves.

A transverse invariant measure µ for 3 is a collection {µA: A is a transversal}
of finite Borel measures on all transversals of £F such that µ^L '^µ^ ' ^ A'a A
and such that µA1°ί

ι=µAQ if ^ : AO-^AX is a projection along the leaves. A
measured C° foliation (£?, µ) is a C° singular foliation £F equipped with a trans-
verse invariant measure µ.

We denote by <3A(β) the set of all transverse invariant measures for £F. For
W > W e * 3 / ( S ' ) and a>0, we write {^} + {^} = { ^ + ^ } and a{µA} =
{aµA}. Then <_5K(£F) is closed with respect to these operations. Let /: M->M
be a homeomorphism. Then/ sends ? to a C° singular foliation ΞF. If A' is
a transversal of £F' then f~\A') is a transversal of £F. Hence we can define a
map/*: JH(&)-»<5U(&') by/*( W H W / " 1 } - Clearly/*(^+fo)=α/*(µ)+
i/*(v) for µ9 vtΞ<3Λ.{β) and α, δ>0.

When / sends ff to 3 " (f(3)=3f) and f*(µ)=µ', we write /(ff, M ) =

Let S* and £F' be C° singular foliations on M. We say that 3 is transverse
to £F' if £? and 3*' have the same number )̂(Λ?) of separatrices at all x^M and if
every x^M has a C° chart φx: UX->C such that

(1) φx(x) = 0,
(2) ^ ( C / , ) = ^ ω ,
(3) 9?x sends each connected component of UXΓ)L onto some element of

Jίp(x) unless Uxf]L=φ for L G £ F ,
(4) <pΛ sends each connected component of UX(~)L' onto some element of

<VM unless Uxf)L'=φ for Z / e 3 ' .
Let 3 and 3 ' be transverse C° singular foliations on M, and let S be the

set of all singular points. If A is an arc in a leaf of 3* (resp. 3 ' ) and the in-
terior of A is contained in M\S, then it is easily checked that A is a transversal
of 3'(resp. 3 ) .

A homeomorphism / of M is called pseudo-Anosov if there are a constant
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λ > l and a pair ( 3 s , µs) and (3", µu) of transverse measured C° foliations with
the number of separatrices at each singular point greater than 2 and with every
finite Borel measure of µs and of µu non-atomic and positive on all non-empty
open sets such that

/(£F, µS) = (SF% λ"1 µ ) , f(3", µ") = (ff", λµ") .

(This means that / preserves the transverse C° singular foliations 3s and 3U it
contracts all arcs in the leaves of £?5 by λ"1 and it expands all arcs in the leaves
of 3 " by λ).

It is no difficult to check that every pseudo-Anosov homeomorphism is ex-
panvive.

Let / be a homeomorphism of a compact metric space (X> d). For
we define the stable set Ws(x) and the unstable set Wu(x) by

Ws(x)=iyeΞX:d(fn(x)yf
n(y))->0 as n->«>},

W\x) = iy£ΞX: d(fn(x), f\y)) -> 0 as n -> - oo}

and put

EFσ
f = {Wσ(x): XΪΞX} ( σ = s,u).

Then EF} is a decomposition of X and /(£?/)=£?/. If X is a compact surface
and / is pseudo-Anosov, then it is easily checked that every leaf L of the as-
sociate C° singular foliation EFσ coincides with Wσ(x) for all x^L, that is,
3^=3?.

For the proof of Theorem 1 we prepare the following

Proposition A. Let f: M->M be an expansive homeomorphism. Then 3 /
(σ—s, u) have the following properties•;

(1) 3 / iί α C° singular foliation,
(2) w^ry fee/ W"(x)^Sf is homeomorphic to Lp={z<=C: Im(zp/2)=0} for

some p>2,
(3) 3 / w transverse to 3?},
(4) 3 / w minimal.

If Proposition A is established, then the transverse invariant measures µσ

for 3 / (σ=ί, w) and the stretching factor λ > l of/ are obtained from the follow-
ing proposition. These facts prove Theorem 1.

Proposition B. Let f: M->M be a homeomorphism and let £F and ΞFU be
transverse C° singular foliations on M. i/'/(3 r < r)=2 r ( r and EFσ is minimal for σ =
s} u, then there are a constant λ > 0 and transverse invariant measures µσ for 3σ

(σ=sy u) with every finite Borel measure of µσ non-atomic and positive on all non-
empty open sets such thatf*(µs)=X~1 µs and f*(µu)=Xµu.
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As above let X be a compact metric space. For xEϊX and £>0 we put

Bt(x)={y<ίX:d(x,y)<:ε}y

S,(x)={y<ΞX:d(x,y) = £}.

If in particular X is a compact surface, for £>0 small enough .B8(#), U2(x) and
S^Λ;) are a disk, an open disk and a circle respectively. In the case when X is
generally connected and locally connected, by using Theorem 2.4 of [6, p. 95]
we may assume that Bz(x) is connected for all x^X and £>0.

Let/ : X-*X be a homeomorphism. For XEΞX and £>0 we define the
local stable set Ws

e(x) and the local unstable set W^(x) by

Wt(x) = {y<=X: d(Γ(x),fn(y))<:ε, n<0} .

Obviously Wσ
z{x) is a closed subset of X for σ=s, w.

Let/: JY*->X be expansive with expansive constant c>0. Then it is checked
that for every £ > 0 there is N>0 such that

(1.1) f Wi(x) c Wi(fn(x)), fn W

for all n>N and all x&X (see R. Manέ [15]). Hence

(i.2) w\x) = u /-«»τ;(Λ*)). ^ ( * ) = u /
^ 0 ^ 0

for all *<=.X and all
For the proof of Proposition A, we will need to investigate the topological

structures of W°{x) (<r=s, u). To do this, we require that Wζ(x) is connected.
It is difficult to directly verify, however, whether Wζ(x) is connected even if X
is a compact surface, and so we restrict our attention to the connected com-
ponent of x in W°(x), which is denoted by Cσ(x).

The following proposition will play an important role in the proof of Pro-
position A.

Proposition C. Let f: X->X be an expansive homeomorphism. If X is non-
trivial, connected and locally connected, then for every £ > 0 there is δ > 0 such
that for all

2. Proof of Proposition C
Before we start the proof of Proposition C, we prepare several lemmas.
Let (X, d) be a compact metric space as before and denote by C(X) the

set of all non-empty closed subsets of X.
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Lemma 2.1 ([2, p. 439]). // Xis connected and AZΞC(X) with AφXy then
every connected component of A intersects the boundary of A in at least one point.

The Hausdorff metric for C(X) is defined by

H(A, B) = inf {£>0: N,(A)ZDB9 Nζ(B)i)A} (A, BEΞC(X))

where Ne(A) denotes the ^-neighborhood of A in X. The following result is
well known.

Lemma 2.2 ([11, p. 45]). C(X) is a compact space under H.
As before let/: X-+X be a homeomorphism and Wσ(x) (σ=s, u) be defined

for/.

Lemma 2.3. Let £>0 be arbitrary. Suppose that a sequence {x{} ίeΞΛΓ of X
converges to x^^X, and that a sequence {Bi}ieN of C(X) converges to B^

for all i(ΞN(σ=sy u), then J3«c WT(*~).

Proof. We give the proof for σ=s. Let ^ G ΰ c Since B{->Booy there is
a sequence {yi}i(ΞN with y^Bi for all i^N such that y,—># as z->oo. Since
BidWKXi), w e h a v e t h a t d(fn(xd> f"(yi))<€ for all n>0. Since x^x a n d y ^

z, it follows that rf(/Λ(Λ;oo),/Λ(^))<£ for all n>0. This means that z^Wfo,.),
and therefore BoodW^Xoo). The conclusion for σ=u is also obtained.

The above lemma is generalized as follows.

Lemma 2.4. Let {#,-} iSM #«>, {Bg}mN and B^ be as in Lemma 2.3. Then
the following hold;

(1) iff\Bt)(zBz(fn{xt)) for all 0<n<ι and all iε^N, then B«>c W^xJ),
(2) iff-*{Bi)(zBt(f-*{xi))for all 0<n<i and all i^N} then B

Proof. This is very similar to the proof of Lemma 2.3 and so we omit the
proof.

Hereafter we assume that / : X->X be expansive with expansive constant
c>0.

Lemma 2.5 ([14]). Suppose that 0<€<cβ. Then there exists 0<δ<£
such that

(1) if d(x,y)<8 and S<.muL{d(J\x),f\y)y. 0<i<n}<2βy then d(f\x)y

(2) if d{xyy)<hande<mzx{d(f\x\ f\y)): -n<i<0}<2S, thend(f-*(x),

The following is easily obtained from Lemma 2.5.

Lemma 2.6. For 0<£<c/2, let 0 < δ < £ be as in Lemma 2.5. Suppose
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that A is a connected subset of X and that x^A. Then the following hold;
(1) if

for all 0<i<n, then f\A) Π Sδ

(2) if AaB8(x), f\A) Π St(f\x)) Φ φ for some -n^iKO and f\A) C
B2*(fi(x))foral1 -n<i<0, thenf-n(A)f)S8(fn(x))Φφ.

Lemma 2.7. For 0<£<£/2, let 0 < δ < £ be as in Lemma 2.5. Let -fo} i e z

be a sequence of X and let A(Xi) denote the connected component of x{ in J3δ(#( ) Π
/ " ί £ δ / 2 ( / ί ( ^ )) for all i e Z. Then the following hold;

(1) if for a sequence {j} ofZwithj->oo

lira X: = #«, and lira A(xi) = ∆oo,

then AooCzW^Xoo),

(2) z//or a sequence {j} of Z withj-> — oo

lira X: = #_«, awί/ lira ∆(#, ) = ∆_«» ,

then A—
Proof. First we prove (1). Since A(xj)czBs(xj)J we have ∆ooCBg^eo), and

hence ∆ooCJ?ε(̂ «,o). To obtain (1), assume that ∆ooΦ W^x^). Then by the de-
finition of WftxJ) there is ^ 0 > 0 such that/*o(∆00)ct:5ε(/Λo(^00)). Take £ < λ < 2 £
such that/*o(∆oo)ctβλ(/*0(^oo)). Since ∆β CJBβ(Λ?oo), there is Q<kx<kQ such that
ΓiAJdUάfixJ)) for all 0 < / < ^ - l and /*i(∆«)ct Uk(J**(x-)). Since x^Xoo

and ∆(Λ?y)->∆βo, we can find l>kx such that fi(A{xι))(zBλ(f\xι)) for all 0^*'<

Let ^4Λl denote the connected component of xt in

Then we have

(2.1)

Since/*I(∆(Λ?/)) is connected 2ίΏ.ά fkι{A{xi))(tBz{fk^{xι))^ it follows from Lemma
2.1 that

(2.2) / ^

For fΛ>A1 define 4̂Λ as the connected component of xι in f~k[fk(Ak_1)Π

and by (2.1) it is easily checked that

(2.3) f'(Ak)cBx(f'(Xl))
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Now we claim that f\Ak) Π Sa(/*(*/))Φ 0 for k>kv Indeed, if
then /*(i4jfc.1)ctjBt(/

A(Λ?/)), and hence /*(Λ)Π£,(/*(*/)]>Φ0 (see Lemma 2.1).
Since 0 < δ < £ , we have /*(Λ)nSδ(/*(# /))Φ0. For the case when Ak=Ak^
put ^=min {*: Ai=Ak}. Clearly k^i^k. If /„=*!, then/ 'Ό^) n S8(/'°(*/))
Φ0 by (2.2). If io>A1, then AiQ*AiQ_ly and hence / f Ό(Λ)nS ε (/ ί o(^))φ0. In
any case9f

io(Ak)ΠSt(fio(χι))^0. Since ∆ ( X , ) D 4 it is clear that AkczBι(xι).
Combining these facts and (2.3), by Lemma 2.6 (1) we obtain fh(Ak) Π Sh{fk{xι))
Φ0. Therefore the above claim holds.

Since l>kly consequently fι{Aι)ΓϊSδ(fι(xι))^0y which contradicts Ajd
A(Xι). Therefore (1) holds. In the same way, we obtain (2).

Lemma 2.8. If X is non-trivial, connected and locally connected, then for
all 0<S<c/2 and all x^X

int W*(x) = 0 (σ = s, u)

where int Wσ
z{x) denotes the interior of W*(x) in X.

Proof. If the proof is given for σ=u, then the conclusion for σ=s is
obtained in the same way. Thus we give the proof only for σ=u. Fix 0 < £ <
c/2 and Λ J E X Let 0 < δ < £ be as in Lemma 2.5. To show the case of σ=w,
assuming that j>eint W"(x)ή=0, we can take 0<<γ<δ such that B2Ί{y) c int
W\(x). Then we claim that for every 0<η<y there is n>0 such that f"Bη(z)
Z)Bδ/2(fn(z)) for all zdBy(y). If this is established, then we can derive a con-
tradiction as follows. Since X is non-trivial and connected, we see easily that
for k>0 there are 0 < ^ < γ and pidB^y) ( ί = l , 2, •••, k) such that £„(/>,-) Π
BΎJ(pj)=0 for /Φj. The claim ensures the existence of n>0 such that/w Bv(pi)Z)
Bm{fn{Pi)) for ι = l , 2 , .,*. Hence Bm(f (Pi))nB8/2(fn(Pj))=0 for ί#=;,
which means that X contains mutually disjoint k balls with radius 8/2. Since k
is arbitrary, this contradicts that X is compact.

To conclude the lemma, it only remains to prove the above claim. Assume
that the claim does not hold. Then we can take 0<?7<γ such that for every
n>0 there is zn<=By(y) such that fnBv(zn)3>B8/2(fn(zn)). Let A(zn) denote
the connected component of zn in B8(zn)f] f~n B8j2(fn(zn)). Since η>δ and
B8/2(fn(zn)) is connected, by using Lemma 2.1 we can check easily that A(zn)Π
Sv(zn)4z0. By Lemma 2.2 there is a subsequence {znj} of {zn} such that znj->
z«,€ΞBy(y) and A{znj)->A^^C(X) as wy->oo. Then ∆^Π 5r?(^oo)Φ0.

On the other hand, AooClWftzJ) by Lemma 2.7 (1). Since 0<-η<y and
srβoGSγ(j ) and since B2Ί(y)c:W"(x), we have that S ^ ^ c ί Γ ; ^ ) and hence
WKz^ΠW^^A^ΠB^z^). Since 0<£<ί:/2, by expansiveness Ws

z(zJ) f]
Wΐ(x)= {Soo}, and hence ∆oo Π Bv(zJ)= {z^}. This contradicts that A^ Π Sv(zJ)
Φ0. Therefore our claim holds.

Proof of Proposition C. Since C°(x) C Cζ'(x) for 0 < £ < £ ' , it is sufficient to
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give the proof for 0<S<c/4 . Let 0 < δ < £ be as in Lemma 2.5. We prove the
case of σ=s. To do this, fix Λ : G ! and put x(i)=fi(x) for z>0. Then there is
a subsequence {j} of {/} such that x(j) converges to some I . G I as j-*oo.
Since int W"z{xoo)=0 by Lemma 2.8, for 0<?7<δ we can take mη>0 such that

f~mΎ>BΎ]/2(x0O)<J:B2i,(f~fnΊ>(x0O)). T h e n mv->oo as 97—»0. Choose j-η^m^ with
d(x(jv), x^<7i\2. Then the diameter oίf~m^Bv(x(jv)) is greater than 2£. Hence
there is 0 < ^ < ; > ? such tha.t f~{Bv(x(jv))c:Be(x(jv—i)) for all 0 < i < ^ — 1 and

For 0<&</, let ∆^(Λ?(/—k)) denote the connected component of x(i—k) in

By the choice of nv we ee easily that Anrι(x(jΎI—nr})) contains the connected
component C(x(jv—nv)) of x^—nj in Bζ(x(jv—nv))Γ)f~nr>Bv(x(jv)). Since
Bv(x(jv)) is connected ^ndf'^B^x^^ctB^x^r,—nv)), we have by Lemma 2.1
that C(x(jv-nv)) Π S ε(>(Λ-7θ)Φ0, and therefore ∆(0) Π Ss(x(jv-nv))Φ0 where

For ^ > 0 define A(k) as the connected component of xiin—n^—k) in
f-\A(k~l))ΠBs(x(jv-nv-k)). Then it is easily checked that

(2.4)

(2.5)

We claim that f(A(jv—nv)) (Ί ̂ (^(z^ΦO for some 0<i<jv—nv. Indeed, let
/ ' ( ∆ 0 ; - < ) ) Π Ss(x(i))=0 for all OKiK^-n^. Since A^-n^) is the connected
component of #(0) in f~\A(jv—nv—l))n^8(^(0)), by using Lemma 2.1 we have
that A(jη-nv)=f-\A(jv-nv-l)). Hence / ( ∆ 0 ; - n , ) ) = ∆ 0 ; - n , - l ) and by
inductionfi(A{jΎ)—nΎ)))=A{jΎ,--nΎj—i) for all 0<i<jη—nv. Hence f*-nv(A(jv—
nη)) = A(0), contradicting ∆(0) Π SE(x(jv—nv))^0. Therefore the claim holds.

Combining this claim, (2.4) and (2.5), it follows from Lemma 2.6 (2) that
A(jη-nv)f)S8(x)±0. Since A(jη-nv)czAjv(x(0))=Ajv(x) by (2.4) and (2.5),
consequently Ajv(x) Π S8(x) Φ 0.

Since jv-> 00 as 77—̂ 0, by Lemma 2.2 we can take a subsequence {jί,} of {jv}
such that A/v(x) converges to some AOO^C(X) as^->oo. Then Aoof]S8(x)Φ0
by the above result and ∆oo is connected because so is ∆/(#). By the definition
of Aφ)J\Aφ))(zBt{f\x)) for all 0<i<j^ and hence^∆,,C Ws

e(x) by Lemma
2.4 (1). Hence ∆*.C Cs(x), and therefore Cs

ε(x) Π 5,(Λ?)Φ 0.

3. Local connectedness of Cζ(x).

The aim of this section is to prove the following

Proposition 3.1. Let f: X->X be an expansive homeomorphism with expan-
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sive constant c>0. If X is a compact surface, then Cζ(x) (σ=s, u) are locally con-
nected for all x^X and all 0<£<c/2.

Proof. Fix x<=X and 0<£^c/2. Let δ>0 be as in Proposition C. To
obtain the conclusion for σ=sy assume that Cs

s(x) is not locally connected. Then
we can take y^Cs

s(x) and γ > 0 small enough with γ<δ/2 such that the con-
nected component of y in C\{x)[\BΊ{y) does not contain C*(x)ΓiBλ(y) for all
λ > 0 . Denote by <K the set of all connected components of Cs

s(x)f)By(y).
Since Cs

e(x) is connected, it follows from Lemma 2.1 that K Π Sy(y)Φ 0 for all
ίεX

Fix 0<t<γ and put S= {K(Ξ JC: K f]Bt(y)Φφ}. Then by the choice of
y and γ it is easily checked that S is an infinite set. Hence there is a sequence
{KάrnN of S with KiΓ\Kj=0 for z'Φj such that K{ converges to some K^
C(Cl(x)Γ\By(y)) as i-*oo (Lemma 2.2). Since each K{ is connected, so is K*.
Hence K^ is contained in a connected component of Cs

s(x)Γ[By(y). Therefore
we may assume that K{ Π Koo=0 for all / G JV.

Since X is a compact surface and γ is small enough, T=By(y)\Ut(y) is an
annulus bounded by circles Sy(y) and St(y). Since K{ Π Sy(y)3=0, we take a^
K{ Π Sy(y) Denote by Lt the connected component of a{ in T Γl -^t Since i^f

is connected and ift Γl ̂ (jy) Φ 0, there is &ί e L t Π*S'ί(jθΦ0 (Lemma 2.1). Since
KiΓiKj=0 for /Φj, it is clear that LiΓiL — 0, a^aj and 6,-Φδy. By Lemma
2.2 we have that ac+a^S^y), bi-^b^^S^y) and Li->LOO^C(T) as i->oo (take
subsequences if necessary). Then βoo, b^^L^. Since Lt C.Kt , clearly L^aK^.
Since i ξ Π ^=0, we have that L, Π ^=0, a^a^ and ftx Φδoo.

Without loss of generality, we can choose the arcs αt α^ in Sy(j;) jointing
α, and a^ such that

( 3 . 1 ) izx tfTO 3 α 2 αoo 3 ••• 3 ^ - ^ 0 0 3 •••

(take a subsequence of {tf,}f€=jv if necessary). In the same way, choose the arcs
bf boo in St(y) jointing b{ and b^ such that

(3.2) ftxi-S^i-B - S i t ioo3 . . . .

Since a^a^ and δ, ->6oo, we have that diam (#, tfoo)-^0 and diam (ό, 6oo)-»0 as
ί-*oo.

Since Lt , L ί + 1 and L^ are connected and mutually disjoint, it is checked that
the orientation of a{ a^ from αt to a^ must coincide with that of b{ b^ from b{ to
boo. Indeed, we can take mutually disjoint connected neighborhoods Nh Ni+1

and Noo of Lh Li+ι and L^ in Γ respectively. Then there are an arc Ax in N{

jointing a{ and b{ such that A{ intersects Sy(y) (resp. ^(jy)) only at <z, (resp. έt ),
and an arc Aoo in iV^ jointing α^ and έ^ such that A^ intersects Sy(y) (resp. St(y))
only at a» (resp. #«,). Since JViniVβ = 0 , obviously ^ t Γl^4co=0. Hence T\
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{Ai U A,*} is decomposed into two connected components U1 and Γ/2. Since
ai+ι G Uι U f/2 , w e m a Y assume # ί + 1 e t^. If the orientation of a{ a^ differs from
that of if&oo, then bi+1^U2 by (3.1) and (3.2). In this sase, every arc in Ni+1

jointing ai+1 and &ί+1 must intersect A{ or ^4 ,̂ which contradicts that iV,-, JVi+1 and
iVβo are mutually disjoint. Therefore the orientation of α, a^ must coincide with
that of hi δoo.

Since Lt is connected, we can take z^Li for i>2 such that d(y, #,•)=£+
(γ—0/2- S i n c e £. <=ϋΓ, c <?*(*), obviously s f G C5

8(*) Π CJfo), and hence Cε
s(#) Π

Cg(^t) = {#,-} by expansiveness. Since #f $L{r_x U L, +i and !,,•_! U L, +iCCg(x), we
have that (L^ U Li+1) Π C8

M(^.)=0, and so (L^ U L ί+1) Π (Ctf*,) U L,) = 0. Hence
there are connected neighborhoods N^x and A/r

ί+1 of Lί_1 and Li+1 in Γ respec-
tively such that Nj_l9 Ni+1 and CJ(jsrf ) U A a r e mutually disjoint. We can take an
arc Ai_x in JV^ jointing «,-_! and δI _1 such that ^4,.! intersects *S.y(;y) (resp. 5^^))
only at at_x (resp. δ^j), and an arc Ai+1 in ΛΓί+1 jointing ai+1 and i ί + 1 such that
Ai+1 intersects Sy(y) (resp. St(y)) only at α t+1 (resp. bi+1). Then ^ . j , -4, + 1 and
CJ(jsf, ) U i x are mutually disjoint. Denote by #,•_! α ί + 1 the subarc of aι_λ a^ joint-
ing #,-_! and Λ( +1, and by J^j δ ί + 1 the subarc of b{_x b^ jointing bi_λ and bi+ι.
Then

Γ = Λ -i U i4 ί+1 U *,_! Λί+1 U δ,_! ftί+1

is a simple closed curve. From the relation between the orientations of a{_λ a^
and bi_x b^ it follows that Γ bounds a disk D in T. Then L. cZ) by (3.1) and
(3.2). Since Jδf, ^ L , and ^ φ Γ , we see that zΊ is an interior point of D.

Since γ<δ/2 and CJ(^, ) is connected, we have by Proposition C that 5Ύ(y)
ΠCε

κ(^ )Φ0, and hence Γ Π C ^ ) Φ 0 Since ( i M U A - + i ) n C ^ ) = 0 , it is
clear that

or c t (^)

Without loss of generality, we may assume that

w,eC;(*,) Π ^_ x α l + 1 Φ0

Since diam (Λ,- #OO)->0, we see easily that Wi-^a^ as *-»oo. Since z^Li and
Lί ~>Loo, we have that #, converges to some ^ e L o , as /-->oo (take a subsequence
if necessary). Then rf(j;, ^rβ o)=ί+(γ—t)β. Since wt GC"(^ ), it follows from
Lemma 2.3 that a^^W^izJ). Since a^ z^^L^aK^cClipήy we obtain by ex-
pansiveness that a,*,—#00, which contradicts that ^00^57(3;). Therefore Cε(#) is
locally connected. In the same way, the conclusion for σ=u is obtained.

4. Preliminary discussions

In this section we shall investigate the topological structure of Cζ(x) (which
denotes the connected component of x in W<τ(x)).
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As before let (X, d) be a compact metric space and /: X->X be an expansive
homeomorphism with expansive constant c>0.

Lemma 4.1. For every 0<£<c there exists δ > 0 such that

Wζ(x) Π B8(x) = W^*) Π Bh{x) (σ = s, u)

for all x&X.

Proof. This is similar to that of Lemma V of [15].

Lemma 4.2. Let 0<S<c/2 and let A and B be non-empty subsets of X,
If Wl(x)Γ\Wu

ζ(y)*φ for all x^A and y<=B, then Ws
s(x)f]Wu

2(y) consists of
exactly one point a(x>y) and a: AxB^>X is a continuous map.

Proof. Since 0<£<c/2 and c is an expansive constant, Ws
z(x) Π W"(y) must

consist of exactly one point. To show that a: AχB^>X is continuous, assume
that a sequence {(#,-, j>f )}ίeiv of AxB converges to (x,y)^AxB, and put zi=
<x(xi>yd Then there is a subsequence {#;} of {#,-} such that Zj converges to
some Zn^X asj-^oo. Since £yePFε

s(#y), it follows from Lemma 2.3 that s ^ e
Ws

s(x). In the same way, we have that ^ e l Γ J ^ ) , and therefore %00=a(x, y).
This shows that a is continuous.

Hereafter, let M be a compact surface and/ be an expansive homeomorphism
of M with expansive constant £>0.

Fix X^LM and 0<6<c/2. The s-(z/-)direction is written by σ for simplicity.

L e m m a 4.3. Cζ(x) is arcwise connected and locally arcwise connected.

Proof. From Proposition 3.1 and Theorem 5.9 of [6], it follows that C*(x)
is a Peano space. Hence the conclusion is obtained (Theorem 6.29 of [6]).

Lemma 4.4. For each pair (y, z) of distinct points of C*(x) there exists a
unique arc jointing y and z in Cζ(x).

Proof. The existence of arcs follows from Lemma 4.3. We prove the
uniqueness of the existence for σ=s. To do this, assume that there are two arcs
jointing y and z in Cs

ζ(x). Then we can find a simple closed curve Γ in C%(x).
Let 0<S'<c/2 be a small number such that B^{w) is a disk for all κ ) G ¥ , and
choose 0<r<£' such that fBr(w)dB^(f(w)) for all w^M. By (1.1) there is
ΛΓ>0 such that fn(Ws

c(x))aWs
r(fn(x)) for all n>N. Since ΓdCs

s(x)c:Ws
c(x)

and Ws
r(f\x))C.B,{f\x)), we have that f(T)czBr(fn(x)) for all n>N. Since

Br(fN(x)) is a disk and/^Γ) is a simple closed curve in Br(fN(x))y we see that/Λr(Γ)
bounds a disk D in Br(fN(x)). Now we claim that f(D) czBr(fN+i(x)) for all
i>0. Indeed, by the choice of r, we have f(D)dBς,(fN+1(x)). Since/"+ 1(Γ)c
Br(fN+1(x)) and/"+ 1(Γ) is the boundary off(D), it follows that f(D) CBr(fN+\x))
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and by induction f\D) CBr(fN+i(x)) for all i > 2. The claim was obtained. But
this implies that DdWsr(fN(x)), thus contradicting Lemma 2.8 since 0<r<6'<
c/2. Therefore an arc jointing y and z in C\{x) is unique. The conclusion for
σ=u is also obtained.

Let y and z be distinct points of Cζ(x). We denote by σ(y, z; x, £) the
arc from y to a in Cζ(x) (Lemma 4.4). Since Cζ(x)c.Cΐ/2(x), we have
σ(y, z\ x, ε)=σ(y, z; x, cβ). For simplicity we omit £ in σ(y, z; x, S) and
write

<r(y,z; χ) = σ(y,z; χ,s)

We denote by ICσ{x) the union of all open arcs in C'(x) and define

BCζ(x) = Cζ(x)\(ICζ(x) U{x}).

That x belongs to ICζ(x) will be proved later on (Lemma 4.13).

Lemma 4.5. BC%(x) φ 0 and

(4.1) C?(*)= U σ(x,b;x).

Proof. Since Cζ(x) 3 {#} by Proposition C, we take y e Cσ(x)\ {x} and de-
fine

S = {<x(#, sr; ΛJ): σ ^ y ; «)C(τ(x, z; x)} .

Obviously <5 is an ordered set with respect to inclusion. By Zorn's lemma
there is a totally ordered subset So such that each element of S\S0 is not upper
bound of So. Denote by L the union of all elements of So. Then y^L.

It is enough to prove that L=σ(x, b; x) for some b^C*(x). Indeed, by
the choice of So, b^BCζ(x) and so BC*(x)Φ0. Since y^L=σ(x, b; x) and y
is taken arbitrarily, (4.1) holds.

Let HJ be the set of all injective continuous maps from [0, 1) to Cζ(x) and
define

HJL = {aεΞV: α(0) = x, α([0, l ) ) c i > .

Then we claim that for every a€icUL there is σ(x, z; x)^SQ such that <x([0, 1))
<Zσ(x, z\ x). Indeed, if this is false, we can take (XOO^HJL such that for every
σ(x, z; x)^S0 there is ίG[0, 1) satisfying a0O(t)^σ(x, z; x). Since ^^([0, l))ci
L, we have αf«»(ί)GL and so there is σ(x,w; x)^S0 such that a<*>(?)&σ(x, w; x).
Since So is totally ordered, it follows that σ(x, z; x)(Zσ(x,w\ x). Since tfoo(0)
=ΛT, we have by Lemma 4.4 that αTO([0, t])ZDσ(x, z\ x), and hence a^O, 1))H)
CT(JC, z; x). Since cr(x, 5r; Λ;) is arbitrary in <50, cifoo([0, 1))=L. Hence there is a
sequence {Zj}ieN of L such that σ(x, jsrf ; x)Sσ(^, srί+1; #) for all ^GiV and L=
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U cr(xy %i\ x). Obviously there is a subsequence {zΊ} of {#,} such that Zj con-

verges to some z^ G Cζ(x). We write / = σ (xy z^ x)ΠL when £00 Φ xy and / = {x}
when ^00=^. Then it is checked that / £ L . Indeed, if not, then #ooΦ# and
J=L. Hence Ldσ{xyz00\ x). Since L=αTO([0, 1)), obviously L^σ(xyzoo; #),
contradicting that L is the union of all elements of So. Therefore β SL.

Combining this fact and Lemma 4.4, we see that J is either an arc or one
point set. Hence J^σ(xyzι; x) for some / e JV. Since σ(x, Zj\ x)ϋσ(x, zt\ x)
for j>/, by using Lemma 4.4 we can check that cr(#oo, z}\ x)=£σ(zooy %ι\ x) for

/, and so

(̂ oo, zt\ x))>0 .

Since Zj-^Zoo asy~>oo, this contradicts the fact that Cζ(x) is locally arcwise con-
nected (Lemma 4.3). Therefore the above claim holds.

Since LaCs(x)y there is a countable subset G of L such that the closure G
of G in Cζ(x) contains L. Then we can construct αe^U^ such that α([0, 1))H)
G, because L is the union of elements of the totally ordered set So. By the
above result there is σ(xyb; x)^S0 such that α([0, l))cσ(#, b; x). Then G c
<r(x, b\ x). Since LdG and σ(xyb; x)dLy we have easily that L=σ(xy b\ x).
The proof is completed.

Lemma 4.6. Let A be an arc in Cζ(x). If x is an end point of A, then
there exists b^BCs(x) such that Adσ(xyb; x).

Proof. Let y be another end point of A. Since j / e Q j c ) , by Lemma 4.5
there is b^BC%(x) such that y^σ{xyb\ x). Then the conclusion is obtained
by Lemma 4.4.

Let a, b and c be points of Cs(x) such that αφδ and βφc. We write
σ(ay b; x)^>σ(a, c; x) if σ(a, b\ x)Γ\σ(ay c; #)Ξg {a}. In this case, σ(ay b; x)f]
σ(a, c; x) is a subarc of both σ(ayb; x) and σ(ay c\ x) (Lemma 4.4). Hence " ~ "
is an equivalence relation on {σ(xy b\ x); b^BCζ(x)}. We define

Λ M = # [{<r(χ, ft; *) : fteβC?(Λ)}/J

where #[•] denotes the cardinal number of .

Lemma 4.7. Pζ{x)=Pa
cβ{x) {remark that 6 is chosen such that 0<£<c/2

as promised before).

Proof. Using Lemma 4.1, we can find δ > 0 such that Wζ(x)Γ\Bs(x)=
Wΐ/2(x)ΓlB8(x). Let C be the connected component of x in Ws(x)Γ\Bδ(x).
Then C C CT(#) Π ^s(^) and hence C is the connected component of x in Cζ(x) Π
£δ(x). Since PfT(*)n5e(^)=JFT/2(^)n5e(^), it is easily checked that C is the
connected component of x in C*/2(x) f)B8(x). Therefore the connected compo-
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nent of x in Cζ(x) Π B8(x) coincides with that of x in Cσ
c/2(x) Π B8(x). Combining

this fact and Lemma 4.6, we see that P<ζ{x)=Pσ
cj2{x).

As above let x^M and σ=s, u. Since Pζ(x) is independent of £(0<£<c/2)
by Lemma 4.7, we omit £ and write

Now we define
Sing'tf) =

Lemma 4.8. Singσ(/) is a finite set (ar=sy u).

Proof. We give the proof for σ=s. If this is done, then the conclusion
for σ—u is obtained in the same way. Let c be an expansive constant for / as
before and fix 0<S<c/6 small enough. Let 0 < δ < £ be as in Proposition C
and Lemma 2.5. To show that Sings(/) is finite, let Λ be the set of points
X^LM with the property that C|(#) contains distinct three points aly a2y a3 such
that

s(x, ak; x)o^ s(x, ax\ x) (k Φ /),

s(x9ah;x) fl S8(x)Φ0 (k = 1, 2, 3).

Then it follows from Lemma 4.6 that ΛcSing s(/).
First we show that # [Λ]>#[Sings(/)]. Let *<ΞSings(/). Then P\x)>3.

By the definition of Ps(x) there are ak^Cs{x) (fe=l, 2, 3) such that s(x, ak\ x)o°
s(x,aι; x) for ftφ/ and s(xy ak\ x)(ZB8(x) for ft=l,2, 3. Since 0<δ<£<c/6,
we can find mk>0 such that /"''[^(Λ?, ak\ #)]c5 s (/" '(#)) for 0<i<mk and
f~mk[s(x, ak\ x)](tBζ(f~mk(x)). Let Ak(mk) denote the connected component of
f~mk(x) Ίnf~mk[s(xyak yx)]Γ\Bs(f~mk(χ)). Then we can see easilyt tha Ak(mk)
is an arc in CJ(/" W *(Λ:)) such that f~mk(x) is an end point, and that Ak(mk)f]

For i>mk define A\i) as the connected component of / \x) in
f~\Ak(i— 1)) Π Bs(f~\x)). As above the result obtained for Ak(mk) is established
for A\ΐ) (i>mk)y that is, Ak(ί) is an arc in Cs{f~\xj) such that f~\x) is an end
point.

Since Ak(tnk)ΓlSt(f-m*(x))Φ09 it is easily checked that fi-'(Ak(i)) Π
Sζ(f~j(x))Φ0 for some j with mk<j<i. Note that fι(Ak{ϊ))Cs(xy ak\ x)dB8(x).
Combine these facts and Lemma 2.6 (2). Then we see that Ak(ι) Π S8(f~'(
0 for ί>mk. Since s(xy ak\ x)o^s{xy at\ x), obviously Ak(i)o^A\i) for
We write mo=max{mly m2y m3} for simplicity. Then we have that / '(x)£Λ for
i>m0.

Hence an injection from Sings(/) to Λ is defined as follows. For x^
Sings(/) consider the orbit Of(x) of x by/ and put S= U Of(x). Obviously
Sings(/) C S. For x <Ξ Sings(/) we define x e S i n g ' c / )
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?(/'(*))=/'(*) (i^O) if *ePer(/),
f~mo+2i(χ) (i < 0)

£(/'(*)) = /-*O(Λ?) (i = 0) if

/-*o-2«"+1(ic) (ί > 0)

where Per(/) denotes the set of all periodic points of/. Then the right hand
sides of the above relations belong to Λ and ξ: *S->Λ is an injection, from
which an injection from Sings(/) to Λ is obtained. Hence we have #[Λ]>

To obtain that Sings(/) is finite, we assume that this is false. Then Λ is an
infinite set by the above result. Hence we can take p^M such that Λ Π U^p)
is infinite. Applying Zorn's lemma, we can choose a subset Λo of Λ Π U8/4(p)
with the properties that if x, y^A0 and x^y then Cs

s(x) Π C*(y)=0> and that if
Λ;G[ΛΠ U8M(p)]\A0 then there is j>eΛ0 such that C*(x) Π Q(y)Φ0. Then one
of the following must hold

(I) Λo is infinite,
(II) Λo is finite.

In any case we can derive a contradiction as follows.

Case (I). Since Λo is infinite and A0dU8/4(p)y there is a sequence {Xi}ieN
of Λo with X{ΦXj for i φ j such that x{ converges to some x^^B^p) as ι-»oo.
Since Λ o cΛΠ U8/4(p), obviously Λ:, G Λ Π U8/A(p). By the choice of Λ we can
take ai^Cfai) (k=l, 2, 3) such that s(xh a

ι
k\ xt)o^s{xh a\\ xt) for kφl and such

that aίeSB/2(p) and s(xh a{ Xi)czB8/2(p) for &= 1, 2, 3. Since δ is small enough,
S8/2(p) is a circle, and hence {<4}Li cut S8/2(p) in three open arcs.

We claim that if z'Φj then {a[}l-ι is contained in an open arc of S8/2(p)\

{#i}Li Indeed, write 2, = U s(xiy a{\ xi). Since s(xiy a[\ xi)o^s(xi, a); x{),
k = l

we see easily that Σ, is a trident curve with end points a{ (k=l, 2, 3). Since
XiΦXj, by the choice of Λo, Ci(xi)Γ\Ci(xj)=0 and hence Σ f n Σ y = 0 . Since Σr

and Σy are in a disk B8/2(p), we have that 2, is contained in a connected compo-
nent of B8/2(p)\Xj, from which the claim is obtained.

Let Ik(k=l, 2, 3) be the open arcs in which {α*}Li cut S8/2(p). By the
above result {^}|=iC/^(l) for all /Φl where &(z)=l, 2 or 3. We take the mini-
mal arc A{ in Ik(i) such that ^4f 3 {4}Li Let ̂ 4r Π^4; Φ0 for ί Φ j . Then AjCZ
Ik(i). Since {«i} is contained in an open arc of S8/2(p)\{a3

k}l=ι by the above
result, it is eas,ly checked that there is an implication between A{ and Aj. Note
that {^|}Li cut A{ in two open arcs /} and /f. If AjdAi then either AjClJ)
or AjCZj2i must hold. Consequently we have proved that there is a family
{Aj^Y^i such that one of the following cases holds.

(a) AiιΠAim=0 for Iφm
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o r ^ m c Λ f o r

Since A{ is a miniaml arc such that AfZ) {<4}Li, we may assume that end points
of Aι are a[ and a\, and write <z{ a^A^ Since α ^ ^ ί #3, we denote by a[ a2

the subarc in a\ a\ jointing a\ and a2. The notation «2 #3 is also defined. Then
the interiors of a\ a2 and a2 a\ are equal to J) or /? respectively. Under these
notations, without loss of generality we can rewrite the cases (a) and (b) as fol-
lows:

(Ia) aiaiz)a{al=0 for i φ j ,

(Ib) aiaizDai^ai*1 for all i<=N.

We can assume that the orientation of a\a\ from a\ to #3 coincides with that
of a\ a\ from a\ to <z3 for all / (by taking a subsequence of N if necessary).

(Ia). Since xλ e U8/i(p) and α£ eS8 / 2(p), we can take ^ E ί ( ^ , <Z2 #f ) Π
for ieiV. By Lemma 2.2 there are a^^S^p), ^ e 53θ/8(/)) and

Aoo^C(Bs/2(p)) such that #2, #, and ^(x, , <22#, ̂ , ) converge to α,, -SΌo and ∆*, as
i-^00 respectively (take a subsequence if necessary). Since ai, ^ G ί ^ , (A\ ^, ),
we have ^ ^ G ∆ o o . Since ί f e ^ ^ c f F g ^ ) and x{->x^, ∆^aWlipc^ by
Lemma 2.3 and therefore β^, z^^W^xJ).

On the other hand, let Σ, be as above. Then Xt is a trident curve in the
disk B8/2(p) with end points a%

k(k = \, 2, 3). Since zi^s(xiy a2; X;)cΣ, C f f ^ t ),
by expansiveness C"{zt) Π Σ, = fe }. Since δ is as in Proposition C and #, e
S3δ/s(P)> w e have that C .̂sr,) Π Ss/2(p) Φ 0. Note that α2 G ̂ ί α .̂ Then we can find
^•GCg(^) Π a{ « 3 φ0. By (Ia) it is easily checked that diam(α{ #3)—>0 as ί->oo.
Since «>,-, ̂ l^^ί «3 and ^2-̂ «co, clearly w{ converges to a^ is z"-»oo. Since
C"(5rt ) and g^z^, by Lemma 2.3 we conclude that α^G T F " ^ ^ . Since a^
PFg^oo), by expansiveness a^^z^, thus contradicting that aoo^Sδ/2(p) and

(Ib). Write T=Bδ/2(p)\US/4(p). Then T is an annulus bounded by
circles S8/i(p) and S8/2(p). Since Xi^U8/4(p) and ax

k^.S8/2{p)y there are δ£e
$(#,•, tfJU Λ;, ) Π^/^^)) (/eiVand A=l, 2, 3) such that s(bι

k, a\\ x^dT. By Lemma
2.2 we can find aoo^SB/2{p)iboo^:S8/4ί(p) and ∆oo ̂ C(T) such that aι

2y b2 and
«y(̂ 2, #2 ^, ) converge to a^, b^ and ∆^ as i—>oo respectively. Clearly α^, ftoo^∆oo.
Since ί(i]fe, β ;̂ x, ) c Ws

z{xt) and Xf-^-x^ we have by Lemma 2.3 that ∆00C W*2(xJ).
By (Ib) we have a^^alal and ^ooΦαi, ^3. As above let aa! denote the

subarc of a\ a\ jointing a and a' for a, a' ^a\ a\. By using the relation between
the orientations of a\ a\ and a\ α3, we have that a^^a^ a\{iEzN), and then

(4.2) acoaiz>a»aίz)aβββi+1Z)alκta
i2+1 (ViϊΞN).

In the same fashion, we can choose the arcs in S8/4(p) such that
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+1(4.3) b» ftίDδoo bί Ώb^ tt+'zDb^ H

Since ai<=Ss/2(p) and bi<=SBM(p), there is arf e ί(6j , αj; #,) Π S38/&(p)Φ 0 for all
ί GiV. Since δ is as in Proposition C, it follows that C£(#, ) Π Sδ/2(/))Φ0. Com-
bining this fact, (4.2) and (4.3), by expansiveness we have that

Ufa) Π ai+1 ^ Φ 0 or C*(s,) Π M*1 H Φ 0 .

Without loss of generality, we assume that ίϋ, GCJ(2ff ) π 4 + 1 «3Φ0 for all
Since #2—>#<*,, diam(#2+1 #3)—*0 as z—>oo by (4.2) and hence zϋt converges to α*, as
z—>oo. Since Zi^S38/s(p), z{ converges to some z^^.S38/S(p) as /->oo and then
^ M E ∆ M since ^ Gί(fl2, #2; #, ) and s(bι

2y a2; xi)->AOQ. Since α ^ e C j ^ ) , we have
a*, e Pί̂ g(̂ oo) (Lemma 2.3). Since a^ z^ e ∆oo and ∆oo C W\{x*)> by expansiveness
^^=,2:^, thus contradicting that a^^S^p) and Z

Case (II). Since Λo is finite and Λ is infinite, by the choice of Λo we can
take y GΛ0 and a sequence {#,},• <=iv of Λ with #t Φ# y for z'Φj such that C\(x^) Π
Cε

s(3;)Φ0 for all ieiV. Then Cε
s(^ ) c C5β(y) for all ieiV. Since ^EΞΛ, by

the choice of Λ we can take a[^C\{x^ (k=l, 2, 3) such that s(xiy aι
k\ Xi)o^s(xh

a); Xi) for ftφ/ and a\<=Sm{p) for fc=l, 2, 3. Let K={a{: i<EΞNy k=l, 2, 3}.
If K is finite, then {ai}l-i={ai}k-i for some /φy. In this case, there are two
arcs in Ci2(y) jointing x{ and xjy which contradicts Lemma 4.4 since 0<3£<c/2.
Hence K must be infinite, and so there are a subsequence {#/} of {#,} and a
sequence {a1} of if with β ' φ / for /Φ/' such that #/ and a1 converge to some
xoo^B8/4(p) and some a^^S^p) as i-»oo respectively. Then Xoo, ΛooGC3β(j)
because #/, α ^ C f ^ j ) . Since Csε(j) is locally arcwise connected by Lemma 4.3,
there are arcwise connected neighborhoods U and V of x^ and a^ in C\z{y) such
that ί 7 Π F = 0 , respectively. Then xh ^ G f / and α7, / G F for sufficiently
large / and /' with /Φ/'. This implies the existence of two arcs in Cs

32(y) joint-
ing Xj and Λ?//. But this contradicts Lemma 4.4.

Lemma 4.9. Let x<=M and σ=s,u. If Pσ(x)>3, then a?ePer(/).

Proof. Assume that Ps(x) > 3 and take 0 < £ < c / 2 . Since /W 8̂
S(Λ?) C

PΓ;(/(Λ?)), clearly /Cε
s(x)cC*(/(*)) and so by Lemma 4.6, P s (/(*))>3. Induc-

tively P S ( / ' ' ( Λ 0 ) > 3 for all z>2, and therefore by lemma 4.8, * e P e r ( / ) . We
obtain also that PM(ΛJ)>3 implies

Lemma 4.10. jPor every x^My Pσ(x) is finite (σ=s, u).

Proof. Fix 0<ε<c/2 and let 0 < δ < £ be as in Lemma 2.5. Assume that
Pσ(#) is infinite for some x^M. Then # e P e r ( / ) by Lemma 4.9. Now we
write

B = {b^BCσ
s(x): σ{x, b; x) Π Sδ(x) Φ 0} .
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Since Pσ(x) is infinite and #^Per(/), as the first part of the proof of Lemma 4.8
we can prove that there is an infinite subset B' of B such that σ(x, bx\ x)o°
σ(x,b2; x) for bub2^B' with bx^b2 (use Lemma 4.6). Since Cζ(x) is locally
arcwise connected by Lemma 4.3 and B' is infinite, there is an arcwise connect-
ed subset U of Cϊ(x) such that diam (?7)<δ and U contains distince points bly b2

of Br. Hence σ{x, bγ\ x)\J σ(x, b2; x)aU by Lemma 4.4. Since σ(x, bλ\ x)f)
S8(#)Φ0, we have that diam(£/)>δ, thus contradicting diam(ϊ7)<δ.

Let x^M and 0<S<cj2 and let J / G Q J C ) \ { 4 . We say that y is a branch
point of Cζ(x) if there are distinct points al9 a2 of BCζ(x) such that σ(x, aλ\ x) Π
σ{x, a2; χ)=σ(x,y\ x). Noet that σ(x,y; x)S^σ(x, a{\ x) (i=ί, 2). We obtain
in proving the following lemma that if y is a branch point of Cζ(x) then y e=
Sing*(/).

Lemma 4.11. For x^M and 0<£<c/4, C°(x) has at most one branch
point (σ=s, u). If P(r(x)>3y then Cζ(x) has no branch points.

Proof. Assume that y is an branch point of Cζ(x). Since C%ζ(y)ZDCζ(x)y

by Lemma 4.6 we see that P<τ(y)>3. Therefore j>ePer(/) by Lemma 4.9 and
so every branch point of Cζ(x) is a periodic point. By this fact and (1.1), we
obtain that Cζ(x) has at most one branch point. The conclusion of the second
statement is easily obtained in the same way.

Lemma 4.12. For x^M and 0<6<c/4, BCζ(x) is a finite set (σ=s, u).

Proof. The conclusion is easily obtained from Lemmas 4.10 and 4.11.

Lemma 4.13. For every x^M, Pσ(x)>2 (<r=s, u).

Proof. If the proof is given for σ—s, then the conclusion for σ=u is
obtained in the same way and so we prove the case of σ=s. Since BCs

c/2(x)Φ0
by Lemma 4.5, obviously Ps(x)>l for all ΛJGM, Hence it is enough to show
that P\x)Φί for all XEΞM.

Assume that there is x e M such that Ps(x) = 1. Then by using Lemma 4.11
we can find 0<3£<c/4 such that C^x) is an arc, and then C3ζ(x)—s(x, z; x)
where {z} =BCs

3e(x). Since Cs
ζ(x) C Cs

3s(x)y Cζ(x) = s{x, y x) for some y ^
s{x,z\ x).

Let 0<2δ<£ be as in Proposition C. Then we can take a^s(x,y; x)f]
Sδ(x) φ 0 and b e Cu

z{x) Π Sδ(x) Φ 0 such that s(x,a; x)\ {a} c Uδ(x) and u(x3 b x)\
{b} C U8(x), i.e., L=s(x} a; x) Uu(x> b; x) intersects S8(x) only at a and b. Since
s(x, a; x)Γ\u(x,b; x)= {x} by expansiveness, L is an arc in Bs(x), and so BB(x) is
cut in two components U1 and U2 by L.

Now we claim that there are q^s(x, a; x)\{xJa} and qi^Ui(i=\,2) such
that ft, q2^C"(q) and u(qly q2; q)c Uδ(x). Indeed, take p^s(x, a; x) with d{xyp)
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=δ/2. Then s(x, a; x)f]C8/4(p) = {p} by expansiveness. If w^.u(x, b\ x)f]
CξM(p)Φ09 then w(=Wu

ζ(x) Π Wu
s(p) and so x,pίΞWu

z(w). Since p^s{xia\x)d
Cl(x)y by expansiveness x=p, which contradicts d(x,p)=SI2. Hence u(x, b; x)
Π C8/4(p)=0y and therefore L f] C8/i(p) = {p}. Combining this fact and Propo-

sition C, we have that U1Π Cu
8M(p)4:0 or U2 Π C8/4(p) Φ 0, iye.y one of the follow-

ing three cases holds:

(I) ί
(Π)
(III) ϋ

V
n

r. n cup)
CUP)-
1 CδΛίί) +

φ

0
:0

0 (ί = 1,
and C721

and ί72

2),
'Ί Cu (

1 ^ δ/4V

n cu
p)Φ
[p) =

0,
-0.

For the case (I), the above claim holds since qly q2^Ct/ic:C"(p) and u(qu q2;
q)czCs;A(p)czU8(x). For the case (II), we take a sequence {pάi eN of U1 such
that pi converges to p as £->oo. By Lemma 2.2, Cs/^pi) converges to some
∆oo ̂ C(M) (take a subsequence if necessary) and then ^G∆o, CZ Cu

δ/A(p) by
Lemma 2.3. By using Proposition C, we have {p} Si ∆oo and hence ∆oo Π U2^F0.
So 22<Ξ£/2n Ct/4(pι) Φ0 for sufficiently large /GiV with d(pypi)<8lί0 and then
u(phq2; pι)aB78/2O(p)c:Uδ(x). Combining this and the fact that p^Uγ and
q2^U2> we can find q^[s(x, a; x)\{x, a}]Γiu(phq2;pι)Φ0. Since Cl^p^d
C«(q), obviously ^ , q2^C"(q) and w(^, q2',pι)=u(pι, q2; q). Therefore the above
claim holds for (II). In the same way, we obtain that the above claim holds also
for (III).

Take q^s(x,a; x)\{x,a} and qi^Ui(i=l,2) as in the above claim. We
note that q^u(qlyq2; q). Since 2δ is chosen as in Proposition C, there are
ti(ΞSs(x) Π Cί(g, ) (£=1, 2) such that s(q{, t{; q^itά dUB(x). By expansiveness
it is easily checked that

If ^ ί2 is an arc in S8(x) jointing tλ and t2y then we have that

Γ = tι

is a simple closed curve in B8(x). Since ί(^, g; Λ?)C^(ΛJ, «; ΛJ)\{^
obviously Ss(#) Π ̂  (Λ:, q\ X) = 0. By expansiveness s(g, , t{; q{) f] s(x, q x) = 0
(£= 1, 2) and w(qly q2;q)ΓiS(x, q\x)={q}, and therefore r n ^ ? ; ^ ) = { ? } .

Ler D be the disk in B8(x) bounded by Γ. Then we can assume that
s(x, q; x) (ZD (retake the arc tx t2 in S8(x) if necessary). Since Γ Π s(x, q x)= {q\,
there is a neighborhood U of s(x, q: x) in D such that U Π Γ C w ^ , q2; q). Since
s(x, q\ x) C C3ε(Λ:) = s(x,z\ x)y by expansiveness ί (#,#;#) ΓΊ w(^, q2\ q) = {g}.
Hence there is a neighborhood £/' of s(#, ̂  Λ?) in M such that C/ contains the
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connected component V of s(x, q\ x) in D Π U'. Then s(x, q; x)=s(x, z; x) f] V.
We claim that there is a conneated neighborhood W of s(x, q; x) in D such that
WdV and C\(w) C [/' for all W^LW. Indeed, if this is false, then we can find a
sequence {Wi}ieN of D such that C^w^cfU' for all i^N and w{ converges to
some woo^s{xiq\ x) as z-*oo. By Lemma 2.2, Cg(w, ) converges to some ∆ooG
C(M) as i->oo and then ∆oo C Pt^w..) (by Lemma 2.4). Since

^ c o E ί ^ j ; Λ?)Cί(Λ?,έi; x)ds(x,y; x) = Cs
s(x),

obviously W&tvJcWiάx). Therefore A»czWU(x) and so AoodCs
3t(x)=s(xί z;

x), contradicting that (?£(«;,) φ E/' for all i^N and U' is a neighborhood of
s{x,z\ x) in M. Therefore the conclusion is obtained.

Since W(zDczB8(x)y by Proposition C there is e^S8(x) Π Cg(^)Φ0 for every
w^W. Since Γ is the boundary of Z), it follows that s(w, e; w) Π ΓΦ0. Hence
there is t^s(w, e; w) ΠΓ such that s(w,t; w)<Z.D. Since w^.Wy we have that
ί(w, ί to)Cί7r. By the choice of V, s(w, t\ to)dVdU. Since UΓ\Γ<Zu(q1} q2;
q), we have that t^u(qu q2; q) and therefore Cs

ζ(w)Γiu(qly q2; q)φ0.
Now we write

Wi = {wtΞW\s(x} q; x): Cs
e(w)nu(q, q- q) Φ 0} (i = 1, 2).

Then Wx U W2=W\s(x, q x) as we saw above. It is checked that Wx Π W2=0.
Indeed, let to^W1f)W23=0. Then Cs

2(w)Γ\u(q1,q2; q)=iq} by expansiveness.
Hence s{to,q\ w)dV. Since ^ ^ ^ ( ^ 3 ; ; x) = Cs

2(x) and geC s
s(^), we have that

Cs
2(w)aCS3Z(x)=s(x, z\ x), and so s(w, q; w)<z.s(xy z\ x). Since s(x, z; x) Π V=

s(x, q\ x) we have that s{w, q;w)cs(x,q',x), thus contradicting w^Wi9 There-
fore W1f]W2=0.

We claim that W{ is closed in W\s(xyq; x) for ί = l , 2 . Indeed, take a
sequence {«J, }f Sjv of W1 such that «;,- converges to some woo^W\s{xiq\ x) as
/-* 00. Then there are <?,- e C;(wf ) Π u (q, q{ ?) (ί G iV) and ôo e C (Wo ) Π w (ft, q2

^). By Lemma 4.2, e,- converges to ̂  as i->oo. Hence e00^u(qy qx\ q) and so
woo^Wv which means that Wλ is closed in W\s(x, q\ x). We obtain also that
W2 is closed in W\s(x, d; x).

Since W is conneated, so is W\s{x,q\ x) and hence Ji^=PF\j(^,i; x) for
/ = 1 or 2 by the above results. Without loss of generality, we may assume that
Wι=W\s{x,q\ x). Then for w ̂ u{q,q2\ q)\{q} there is a sequence {Wi}iGN

of Wλ such that zot converges to w as i->oo. Since w^W^ there is ̂  GCJ(«; $ )

Πw(g, ft; ?)Φ0 for every i^N. By Lemma 4.2, £, converges to some e^^.
u(q,q1;q) as 1-+00. Since ^ePϊ^zϋ,-), we have ^oo^PFg^) by Lemma 2.3.
Since £00, w^u(qlyq2; q), by expansiveness £oo=&>, thus contradicting that ̂ G
z/(#, ft; #) and w^u(q, q2; q)\{q}. The conclusion for σ = ί was obtained.

Lemma 4.14. For every 0<δ<c/4 there exists 0 < δ < £ such that



138 K. HlRAIDE

Sδ(x) Π σ(x, b\ x)Φ0 (σ = s, u)

for all XSΞM and all b(=BCζ(x).

Proof. By Lemma 4.1 there is 0 < δ < £ such that Wίs(x) ΠBs(x)= W*(x) Π
BB(x). To obtain the conclusion, assume that σ(x, b\ x)<z.U8(x) for some x^M
and b e BCζ(x). Then there is 0 < γ < 8 such that σ (*, b;x)(Z Uy(x). Since 5 e
C 8 » , we have Cε

σ(έ) cCσ
2z(x) and hence C (̂ή) Π B8_y(b) c CTe(*) Π B8_y(b). Since

B8_γ(b)aBs(x) and # and έ are jointed by the arc σ(x, b; x) in Us(x)y the con-
nected component of b in C$8(Λ?) Π Bs_y(b) is contained in that of x in C^tf) (Ί
βδ(Λ?). Since J^JεWΠ^δW^^ΓWΠ^δ^) , we see easily that the connected
component of x in Cσ

2z(x) Π Bδ(x) coincides with that of x in Cζ(x) f}B8(x).
Therefore the connected component of b in Cσ

z{b) Π BB_y(b) is contained in that
of x in Cς(x)Γ\Bs(x). Therefore Pσ(b)=l, which contradicts Lemma 4.13.
The proof is completed.

For 0<£<c/4, let 0 < δ < £ be as in Lemma 4.14. By Lemma 4.11 for
x^M we can take 0<8(x)<δ/2 small enough such that Cζ(x)f]Bζ(x)(x) has no
branch points (σ=s} u), and define then

(4.4) Sζω(x) = {*eS« s ) {x) Π C't(x):σ(x,a x)\{a} c U,ω(x)} .

We note that SS(x)(x) is a circle for every x^M.

Lemma 4.15. For every XZΞM, %[Sζω(x)]=Pσ(x) (σ=s, u).

Proof. The conclusion is easily obtained from Lemmas 4.6 and 4.14.

Lemma 4.16. For every x^M, S8(x)(x) is a finite set with at least two
points (σ=s, u). Let Isi{l<i<ϊ) be the open arcs in which S(x)l(x)(x) cut Sz(x)(x).
Then every y^S^x)(x) is contained in some /|^{/f: \<i<l}. Choose from
S"(x)(x) another point different from y. Then the point is not contained in the
same /f. Exchanging s and u, one has the same result.

Proof. The first staement is obtained from Lemmas 4.8, 4.13 and 4.15.
Since Sσ

s(x)(x)(zCζ(x)y by expansiveness Sl(x)(x)Γ\S"ω(x)—0 and hence each
point of S"(x)(x) is in some /?. To obtain that distinct two points of S"(x)(x)
are not in the same Is

iy assume that there are distinct points a, bξΞS"(x)(x) such
that a, δ e / | for some i. We denote by ab the subarc in /? jointing a and b.
Then it is easily checked that

Γ = ab\Ju(x,a; x) Uu{xy b x)

is a simple closed curve in Be(x)(x)y and so it bounds a disk D in Be(x)(x). Put
2 = U s(x, z; x). By the definition of Ss

s(x)(x), we have that ΣaBξω(x) and

2 intersects S2(x)(x) only at Ss
ε(x)(x). Since abdlϊ, by expansiveness 2 Π Γ = \x}
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and 2 Π (Z>\Γ)=0. For S(x)/2 choose γ > 0 as in Lemma 4.14. Since 2 Π D=
{#}, there is a neighborhood U of Σ in jBε(jc)(#) such that U Π DdBVi(x). Since
2Π(£)\Γ)=0, we can take a sequence {#,},=ΛΓ of D\Γ with </(#,#,)<γ/4 such
that #f converges to x as z—> oo. Then by Lemma 2.2, Cl(xy2{Xi) converges to
some ∆oo EίC (M) as z—*oo (take a subsequence if necessary). Since ∆ M C
Cg(j)/2(#)c:£/ε(Λ)(x), we have that ∆ooCΣ and hence C^xy2(xι) Ct/ for sufficiently
large /. Since y is as in Lemma 4.14, by Lemma 4.13 there are aλ, a2^
cUχ)fz(xι) Π Sy/2(x) such that $(#,, aλ\ xl)oos{xh a2; xt). Since Cs

zix)/2{xi)dU and
Uf)Dc:ByM(x), it follows that αD α 2 ί ft Hence J(Λ?/, ak\ xt) ΠΓΦ0(A=1, 2)
and since s(xh ak; X / j c C ^ ^ ^ ) c Uz(x)(x), we have

IWr SJ v\\ \IJ(Y h' rWzh.CS (h — 1 2λ\U\X3 u , ΛJ U Uy&y U , Λjj =ρ ψ \K> — 1, ^

which contradicts expansiveness.

Lemma 4.17. P\x) = PM(Λ?) /or a// #eΛf.

Proof. The conclusion is easily obtained from Lemmas 4.15 and 4.16.

Lemma 4.18. Let 0<£<c/8. For every x^M there exists 0<η<6(x)
such that if

y<=Bη(x)\ U <r(x, a; x) (σ = s ,u)

then Cζ(y) is an arc.

Proof. Using Lemmas 4.8 and 4.13, we can find ηo>O such that P<r(y)=2
for all y^BVQ(x)\{x}. If the lemma is false, for n^N there is

yn£ΞBVo/n(x)\ n σ(xya;x)

such that Cσ
z{yn) is not an arc. Since Pσ(yn)=2, Cζ(yn) has a branch point zn

and then ^ n eSing σ (/). By Lemma 4.8, we can assume that zn=z for all n^N.
By Lemma 2.2 there is a subsequence {n} of N such that Cζ(yn) converges to
some Aoo^C(M) as n-^oo. Since yn—>x> ∆ooClCζ(x) by Lemma 2.4. Since
z=zn^Cζ(yn), obviously -2fG∆M and so z^Cζ(x). Hence J C G C ^ ) . Since
z^Cζ(yn)y yn^C2ζ(z). Since 0<2£<c/4, we note that C2ζ(z) is a finite uniion
of arcs (lemmas 4.5 and 4.12). Since yn-+x, there is an arc An in C2ζ(z) with
sufficiently small diameter such that yn, x<=An. Since z<=Cζ(x), Cσ

2z(z)dClz(x)
and so AndCσ

Zz{x). By Lemma 4.1 it is easily checked that AndCζ(x). Hence
And U σ{x3 a; x), thus contradicting the choice of yn.

5. Proof of (1), (2) and (3) in Proposition A

In this section we shall give the proof of (1), (2) and (3) of Proposition A.
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As before let /: M-+M be an expansive homeomorphism with expansive con-
stant c>0. Fix 0<£<c/S.

For X<ZΞM let P\x) (σ=s,u) be as in §4. By Lemma 4.17, Ps(x)=Pu(x)
and so we define

By Lemmas 4.10 and 4.13 we have that 2<p(x)<oo for all
Next, let X G M . Then we can construct a C° chart φx\ Ux-+C as follows:

Construction of Ux. Let S(x)>0 be as in §4 and define S*ω(x) (σ=s, u)
as in (4.4). Then S^x)(x) is a subset of a cirlce SBω(x). Since #[S°(x)(x)] =
p(x) by Lemma 4.15 and 2<p{x)<ooy we have that Sσ^x){x) cut S2(x)(x) in
p{x) open arcs /Γ(l<x<P(^)). From Lemma 4.16 it follows that

SUx)(x) c 1? /?, S»(x){x) c ΐ f J{.
» = 1 » = 1

Since #[Se (*>(#)] =./>(*) ( σ = ^ w), we see by Lemma 4.16 that S^x)(x)ΓiI1 is ex-
actly one point a\ and S^x)(x)f]Isi is exactly one point a" for every ί<i<p(x).
Since each I* is an open arc of SS(x)(x)\S°(x)(x)y we may assume that the boundary
points of Isi are a\ and αf+i, and that the boundary points of /" are αj_i and α?,
where α; w + i=αT and ao=a^x). Then {^} U/f U {flί+i> and \aUι} U/J U {β?}
are arcs of Sβ(x)(x)9 and so we denote them by tff αf+1 and α/_! α" respeatively.
Obviously α?Gαfα?+i and β Gβ . i αj ΐor 1 < / < ^ ( Λ : ) . We denote by α* α" the
subarc of a\ as

i + ι jointing a\ and a\. The notation α" αf+i is also defined.
By the definition of 5g(Λ)(Λj) (σ=ί, w) we have that the arc σ(x, a*; x) is con-

tained in a disk B2(x)(x) and it intersects Se(x)(#) only at «T for 1 <i<p{x). Since
ί(Λr, ΛJ; Λ?)ntί(Λ, α?; x)= {x} by expansiveness, it follows that

Γ = aiaui\Js(x,asi; x)Όu{xJa
u

i\ x)

is a simple closed curve in Bs(x)(x), and so Γf bounds a disk D\ in J3g(jc)(#).
Also we have that

Γ? = auiaUi\Ju(x,aUi; x)\Js(x,aUι', x)

bounds a disk Z>? in Bz{x)(x). Since ^)(Λ?)>2, obviously D\ ΠDui=u(x, d\\ x)
and Z)ϊΠ-Df+i=ί(^Λf+r, JC) for \<i<p{x).

Let 0<97<f (Λ:) be as in Lemma 4.18. For l<i<p(x), take and fix j ^ e
ί(^, αf Λ;) such that 0<J(^^,)<97. Then C"(yi) is an arc, and so we denote its
end points by 6,(1) and &, (2). Lemma 4.13 ensures that yi^pbi{k)(k=\,2).
Since 0<6(x)<8/2 and δ is as in Lemma 4.14 (see §4), it follows that u(yif b^k);
yd Π St(x)(x)Φ0 for k=l, 2, and hence we can find ci(k)^u(yh b^fy yi) (k=l, 2)
such that u(yh φ) y{) ClBs(x)(x) and u(yh c^k) y{) Π Ss(x)(x)= {^(k)}. Since

a\ Λ:) and j ί Φ ^ , by expansiveness it is easily checked that
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(5.1) {u{x, aU; x)Uu{x, ai; x)} Πu(yo φ); yd = 0 (k = 1, 2).

Combining (5.1) and the fact that D*_iU.D? is a disk in BM(x) bounded by
u

iUu{x>aϊ-.ι\ x)[ju(xJa
u

i; x),

we see that u(yi9 £,-(&); y, )cD"_i U D* for A=l, 2. By expansiveness, w(j>, , £,-(&);
yi)ds(x,a*\ x)=iyi}9 and therefore w(^ , c^k); y{) (&=1, 2) are contained in
Z)"_i or Df respectively.

We deal with the case u(yh ^(lj ^ J c D t i In this case, by using Lemma
4.16 it is easily checked that u(yiy ^(2); y^dD]. Note that φ)^St(s)(x) (Λ=
1, 2). Then we have that ^ ( 1 ) 6 ^ a\ and c, (2)<Ξaf α?.

Choose Zi(=u{x, a"; x) (\<ί<p(x)) such that 0<d(zh X)<ΎJ. Then CJfo )
is an arc. In the same way as above, we can find έ/f (&) e CJ(#, ) (Λ=l, 2) such
that rft (l)eα? αj and ί(arf , rff.(l); ̂  ) c £ ) ^ a n d s u c h t h a t

We claim that if rf(^ , x) is sufficiently small, then

(5.2) s(zh rf, (l); arf.) Πu(yh

(5.3) s(z

Indeed, u{yi,ci{2))yi) cuts Z)f in two components /)*(—) and Df(+) because
w(j>, , cf (2) j/,-) is contained in D] and it intersects Γf only at two poonts yiy c{(2).
Since ί, (2)GαJ α?, it is clear that a\ cs(2)\fe (2)} and cf (2) ΛJ\{έτf.(2)} is contained
in Dsi(—) or J5*(+) respectively, where a\ c{ (2) and t:,- (2) a" denote the subarcs of
a] aui. Hence Ci{2) au\{Ci{2)} cZ)f(+) whenever αf ^.(2)\fe(2)} c D J ( - )

To show the above claim, assume that έ/t ( l )^^ x (2) Λ? even if d(x, zt) is small
enough. By Lemma 2.2 there is a sequence (z{} such that έ/, (l) and 5(^t , έ/, (l);
srf ) converge to some d^^c^) a" and some ∆oo^C(Df) as z^x, respectively.
Then ∆ooCϊF;(#) by Lemma 2.3, and so ∆ M CC;(ΛI) . Since Λ?, 1 E ∆ M , it fol-
lows that ί(Λ?, rfoo*, #)c∆oo. Since ∆ooCDf, obviously (̂Λ?, dL; Λ?)cDf. Combin-
ing this and the fact that doo^s(x,as

i; x), we see that s(x> a\\ x)ds(x,doo; x).
Since d^^c^Ί) a", this implies that s{x, tfL; x) intersects u(yo cf (2) jy, ) in at least
two points, thus contradicting expansiveness. Therefore β?t.(l)eαfί:ί(2)\{cί (2)}
whenever d(ziyx) is small enough, i.e., rff (l)e.Df(—•). Since # l eZ) | (+) , (5.2)
holds. (5.3) is also obtained.

For 1 </</>(#), take and fix z^u{x3 a*; x) such that (5.2) and (5.3) hold.
Expansiveness ensures that the left sides of (5.2) and (5.3) are exactly one point
Wi{—) and Wi(-\-) respectively. It is clear that

/} = s(x9y4; x)Όu(yi,wi(-);yi)
Us(zh Wi(—); Zi)\Ju(x, Zi\ x)

is a simple closed curve in Z)J. Hence/? bounds a disk R] in DJ. In the same
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way, we obtain that

JΊ = u(x, *,.; x) Us{z iy Wi(+); z{)

U u(yi+1, Wi(+) yi+1) U s(x,yi+1 x)

bounds a disk R\ in D". For 1 <i<p(x), we write

And define Ux= *U {U\ U f/J). SinceIj3 (Λf U-R?) is a disk and its boundary is
ί = l ί l

U [u(yh Wί(—); j ί
ί = l

U ί ( ^ t ,

it follows that ί7x is an open disk which contains the point x. This Ux is our
desire.

For p>2 let ^ , Mp and ̂  be as in §1. To construct φx: Ux->Cy we
define the coordingates of 3)p with respect to Mp and ̂ ^ as follows. Let Rθ:
C->C denote the rotation which sends z to eiθz, and write

i)/^([0,1]),

. Then

Lhp= \J Hj, and L ; - U Vι
p

ί = l » = 1

are the elements of Jίp and ^ ^ through OeC respectively. We denote by <Dh
Pti

the closed subset of £Dp which is enclosed with H), and F^, and by SfPti the clos-
ed subset of 3)p which is enclosed with Vp and Hp+1. Clearly

Let (zu z2)^HpX Vp. Then the element of Q?p through zx and the element of
Mp through z2 intersect in exactly one point ahi(zly z2)^φh

pj. It is easily check-
ed that

are homeomorphisms. By the same fashion we can define homeomorphisms
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Construction of φx: Ux-+C. Let \<i<p{x). In the same way as in
Construction of Uχy for y^s(x, y{ x) we can find cy(k)eC"(y) (k= 1, 2) such that

- i , u(y9 cy(2);y)dRi,

) y) Π * (*„ «>,(-); *, ) -

And also for #et/(#, #f x) we can find */,(&) e CJ(#) (ft=l, 2) such that

, ^ - ( - ) ; y{) = {dz(ί)} ,
j(ar, dz(2); z)f]u(yi+1, toi(+); yi+1) = K(2)} .

Let (y, 2ί)Gί(^J, ; x)xu(x, z{; x). Then it is easily checked that

y cy(2);y)ns(z, da(l); z) Φ 0 .

Hence W"(y) Π Ws
s(z) is exactly one point by expansiveness and the point is

penoted by α\{y, z). Since u(yy cy(2); y) and s(z, dz(l); z) are contained in i?f,
we have αj(y, z)^Rϊ, and therefore

are defined. By Lemma 4.2 and expansiveness α\ is continuous and injective.
It is clear that

αϊ(y,x)=y if
αsi(x, z) = z if z^iu(xy z{; x).

Since αϊ(yiy zi)=wi(—)9 we have that

αsi(s{xyyi) χ)χ {z{}) = s(zh w{{—); ^ ) ,
αfίίy,-} xu(χ, Zi\ x)) = ί/(^, , »,-(—); jO ,

and hence α\ sends the boundary of s(xyyi; x)Xu(xy z{\ x) onto the boundary
of R]. Since R\ is a disk and α\ is continuous, the image of α\ coincides with
R\. Since α] is injective, consequently αf is a homeomorphism.

For l<i<p(x)y we write

i}] x [u(x, z{; Λ?

and define

In the same way as above, we have that if (zyy)eu(xy z{-y x)xs(xyyi+1] x)
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then Ws
s(z) Π Wu

s(z)= {aui(z,y)} CJR". Hence homeomorphisms

ai: u(x, z{; x)xs(x9yi+1; x) -> RΊ

are obtained such that

aui(z, x) = z if z^u(x, z{; x),
aui(x,y)=y if y(Ξs(x,yi+1; x),
aui(u(x, Zi'y x)X ίyi+ά) = u(yi+v

So we write

Eui = [u(χ,%i\ χ)\i*i}]x[s(χ,yi+ι; χ

and define

For l < i < ^ ( x ) , let ^}: s(x,yξ; *)\{y/}-*ffiw and ^J: w(ΛT, ar,
F"j(Λ) be homeomorphisms, and define

by

respectively. Then it is easily obtained that rσi(l<i<p(x), σ—sy u) art homeo-
morphisms with the following properties:

Therefore we can define a map φx\ UX-^WP(X) by

?>,Uf = Ύσi (l<i<p(x), σ = s,u).

Obviously φx is a homeomorphism which sends x to 0. This 9^ is our desire.

Now we define S={x^M; p(x)>3}. Since />(*)=Pσ(tf) (<r=s,u)> we re-
mark that *Sf=Sing<r(/) where Singσ(/) is as in §4.

Proof of (1), (2) and (3) in Proposition A. For x^M, write

Γ*/y y^ I f ϊc(γ Λ) v\

<*,*)= Uχ [«(*,*,; *)\{*,>].
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Obviously Lσ(x> x)czCζ(x)c:Wζ(x) (σ=syu). By the construction of <px it is
easily checked that

(5.4)

for all
Let x^M and l<i<p(x). For z^u(xy #, ; x)\ {xy z{}y write

L\xyz) = /3f([s(x,yi; x)\iyi}]xix})Uff({x}x[s(x9yi+ι;x)\{yi+ά).

Then by the definition of βσi(σ=sy u) we have that L\xy z)aC*t(z)C W\(z). By
the construction of φx it is obtained easily that φx sends L$(x, z) onto an ele-
ment of Mp{x). Combining this fact and (5.4), we see that φx({L\xy z); # e
Lu(xy x)})=J(p(x) and hence

(5.5) Ux= U Ls(xy z) (disjoint union).
z(=LuCx,x)

Since Ls(xy z) C Ws
e(z), by (5.5) and expansiveness it follows that Ls(x, z) =

UxnW5
2(z) for all ZEΞLU(X, X).

(xyy{; #)\{#,j\ } (l<i<p(x)) and write

L\xyy) = βU([u(χ,x^; χ)\iχ

Then Lu(xyy)cW*(y). In the same way as above, we have that φx({Lu(xyy)\
s(xy x)}=:CVp(χ)y and hence

(5.6) Ux= U Lu(x,y) (disjoint union)
y&LsCx,X)

and L\xy y) = UxnW&y) for all y<=L\xy x).
As in Proposition A, let Lp= {z<=C\ Im zp/2=0} (p>2). We show that for

xEzM and <r=sy u there are p>2 and an injective continuous map jσ
x\ Lp-+M

such that j<τ
x(Lp)=Wσ(x). To do this, take a finite subset A oί M such that

{£/,; <ze^4} is a covering of M. Obviously S c A Let 0<p<2£ be a Lebes-
gue number of {Ua; a^A}. For x^M choose a(x)^A such that Bp(x)c:Ua(x).
Then α(Λ?)=Λ? if x^S. Let Λ ? ^ M and put

M'(a(x), x) = ^ , ω Π Wϊ.(*) (σ = *,«).

Then we have

(5.7) w;{χ) = ua(x) n w;(χ)

By (5.5) and (5.6) there is w^L<r(a(x)y a{x)) such that #eLσ /(#(#),«;) where
σ ' = ί (reps. σ'=u) if σ=M (resp. σ=s). Since Lσ/(α(x), «;)— ?7β(Λ)Π Wζ'(w)y it
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is easily checked that Lσ\a(x), w) dMor\a(x)y x). Combining this fact, (5.5) and
(5.6), by expansiveness we obtain that Lσ\a(x), w)=Mσ\a(x)9 x).

By (1.2) we have that

(5.8) W\x) = U / - Wi(f(x)), W\x) = U f Wµ(f-(x)),
»;>o »;>o

and by (1.1) there is no>O such that

fXM (a(x),x))dWi(fΌ(x))t

f-»o(Mu(a(x), x)) c W'µ(f-Ό(x)).

So we put g=f*° and write

*u(x)=g-'[M'W(*)), A*))],
un(x)=g"[Mu(a(g-»(x)),g->(x))).

Then from (5.7) and (5.9) it follows that

(5.10) *„(*) eg'"'1 WXf+Xx)) c»,+ 1(*).

(5.11) un(x)dg^ W;(g-«-\x))<zun+ι(x),

and therefore by (5.8)

(5.12) W°(x) = U σn{x) (a =s,u).
«>0

Let x&S. Since S is finite, we can assume that x is a fixed point of g.
Since a(x)=x, it follows that Mσ{a{x), x)=Lσ(x, x)y and hence σn(x) is home-
omorphic to Lp(x) for all n>0. By (5.10), (5.11) and (5.12) we can construct an
injective continuous map jσ

x: Lp(x)->M such that j<Γ
x(Lp(x)) = Wσ{x). Let y e S and

let x<^Wσ(y). Then W*{x) = W*(y). Hence a bijective continuous map jσ
x:

Lp()->Wσ(x)c:M is obtained. Let *<=M\ U ί^*(v). Then it is easily checked
y(=s

that M\a(gn{x))y gn(x)) is an open arc for all n>0. Hence by (5.10) and (5.12)
we can construct an injective continuous map js

x: L2->M such that j*x{L^=W*(x).
In the same way, for x^M\ U Wu(y) the map j*\ L2-+Wu(x) is obtained.

Therefore Wσ(x) (σ=ί, w) are path connected.
To obtain that 3σ

f{σ=s, u) are C° singular foliations, it is enough to show
that for x,y^M every connected component of Wσ(x) Π Uy is of form Lσ(y, z).
We give the proof for σ=s.

Let w<=Ws(x)Γ\ Uy. By (5.7) there is z^Lu(yyy) such that w<=L\yyz).
Since L\y, z)aW\(z), there is wx>0 such that g\L\y, z)
Since w e PFS(Λ:), we can assume gHl{w)^Ws

p/z(gMi(x)). Then we have

g\L\y,z))czWl{g\x)).
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Since

Wl{g\x))czMs(a(gχx))9g\x)) (by (5.6)),

by the definition of sni(x) we have Ls(y, z) dsni(x). Since sni(x) c W\x)i Ls(y, z)
C Ws(x). Hence there is a subset {zλ}λ<=A of Lu(yyy) such that

W(x)Γ\U,= \JL\y,*,).
λeΛ

Since Ls(y, zλ) is either an open arc or homeomorphic to LPiyh (ji)~\Ls(y, zλ))
is open in Lp where js

x(Lp)=Ws(x). Note that Ls(pfzκ) (λeΛ) are mutually
disjoint (by (5.5)). Hence {#λ}λ6ΞΛ is a t most countable, and therefore each
L\y, zλ) is a connected component of W\x) Π Ur It is obtained also that each
connected component of Wu(x) Π Uy is of form Lu(y, z). Therefore 3f(σ—sf u)
are C° singular foliations and S is the set of all singular points of 3}.

By the definition of jζ we see that the toploogy of W<r(x) induced by jσ
x coin-

cides with the leaf topology. Hence each Wσ(x) is homoemorphic to Lp (p>2).
As we saw above, φx sends Ls(x, z) onto an element of MP(X) and φx sends
Lu(x, z) onto an element of CV^x). Therefore 3} is transverse to £F/.

6. Proof of (4) in Proposition A

Let £F be a C° singular foliation on M and let S be the set of all singular
points of £F. We recall that 313 denotes the C° foliation on M\S obtained by
taking singular points away from each leaf of £F. A simple closed curve Γ of
M\S is called a closed transversal of 313 if all subarcs of Γ are transversals of £?.
Let A be a connected subset of a leaf of 313. Clearly there is Le£F such that
AaL. If s e L n S ' Φ 0 and if s is a boundary point of A in L, then we say that
A leads to s.

As before let /: M->M be an expansive homeomorphism and let S / =
{Wσ(x): x^M} (σ=s,u). From the results of §5 it follows that 3} satisfies
all of (1), (2) and (3) in Proposition A. Hereafter let S be the set of all sigular
points of 3}. Define 313/ as above. For the proof of (4) in Proposition A
we prepare the following

Lemma 6.1. Suppose that 3}(σ=s, u) are orientable. If Γ is a closed
transversal of 313} (resp. 313}), then Γ intersects each leaf of 313} (resp. 313}) in
at least one point.

For χ(=M\S let If{x) denote the leaf of 313} through x(σ=syu). By
Proposition A(2) we have that each Lσ(x) is homeomorphic to R. Suppose that
3} (<r=s, u) are orientable. Then an order relation for LΓ{x) is defined as fol-
lows. Let y, z^L(r(x). We say y<σ z if either y=z or the arc in Lσ(x) from y
to z has the same orientation as that of Lσ(x). When y<σ z and y^=z, we write
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For x^M\S we define

For y9 z^Lσ(x) with y<σ z we define

and write

We call here intervals in leaves such subsets.

Lemma 6.2. L*£ / ίwnZ /' be intervals in leaves of 313} and let cl{I) and
cl{Γ) denote the closures of I and Γ in the leaves of 3/ respectively. Suppose
that cl(I) is compact. If h: /—•/' is a map which sends x^I to %)GL"+(Λ;) such
that (x, h{x)\uP[Γ= {h{x)\ and if in particular h is a homeomorphism, then cl(I')
is compact and there is a contίnuou map H: [0, 1] X [0, 1]->M satisfying H([0, 1] X
{0})=cl(I) and #([0, l ]χ {l})=cl(Γ) such that for every xEΞM

(1) H'1(W\x))= [0, l]xA for some Ad[0, 1],
(2) H-\Wu(x)) = Bx[0,l] for some £ c [ 0 , 1].

Exchange s and u. Then the same statement holds.

Proof. Fix α e / . We first consider a subinterval J of I satisfying the fol-
lowing :

(a) a&J,
(b) there is a continuous map φj\ Jx[a, h(a)]u->M\S such that

(1) φj(xya) = x (*<=/),
(2) φj{a,y)=y (y^[a} h(a)]u),
(3) <pj(x, •) is a homeomorphism from [a, h(a)]u onto [x, h(x)]u for all x^ J,
(4) for every Le5iΞF} there is A c [a, h(a)]u such that φ~j\L) =JχA.

Let <S be the set of subintervals of / which obey the above properties. Since
313} is transverse to 313}, we have £ Φ 0 (cf. [7, p. 35]).

For JZΞS let φj and φfj be as in (b). Then it is checked that φj=φ'j.
Indeed, let π: R2-*M\S be the universal cover. Denote by 313/ (σ=s, u) the
lifts of 313} by π and let L*(x) be the leaf of ]R3r} through xEΞR2. Since each
leaf of 313/ is homeomorphic to R> we have that π\ L(r(x)-^L<Γ(π(x)) is a
homeomorphism for all x^R2. Fix a^π~1(a). Since JdLs(a) and [a, h(a)]u(Z
Lu(a), we let
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7 = (nI z W'C/). A = (πIΓmΠI*, %)]«)

Then π\ j: J-+J and π \ A - Λ-> [a> h(a)]u are homeomorphisms. Let φj and φ'j
( : / χ [a, h(a)]u->R2) be the lifts of ψj and 9?/ by π such that ^/(α, a)=φ'j(a, a)
=ay respectively. Then πoφj(Jχ {a})=<pj(Jχ {a})=JaU{ά). Since a^
φj(jx {a}), it follows that Φj(jx {a})dL\a)y and hence φj{jx {a})=J. In
the same way, we have φ'j{jx {#})=/. For x^J it is easily checked that

π\jo φj(x, a) = φf(xy a) = x=π\jo φ'j(χ, a ) .

Since π\ 7 is a homeomorphism, we have that Φj(x9 a)=Φ'j(x, a). In the same
fashion, we have that Φj(a,y)=<p'j(a,y) for ally^[a, h(α)]u.

Since

clearly ^7({Λ;} X[Λ, J ^ J J C Γ ^ , ^ α)). Also φ ( / x { y } ) c ί s ( ^ ( α j ) ) , and
hence

(xy α))nLs(Φj(α,y))

for all (x,y)^Jx [α, h(α)]u. In the same way, we have

Φ'j(x,y)f=L'W(x, α)) ΠL\φ'j(α,y))

for all (xyy)^Jx [α, h(α)]u. Note that the left hand sides of above relations are
one point sets respectively (cf. [7, p. 66]). Since Φj(x, α)=φj(x, ά) and φj(αyy)
=Φ'j(αyy)y we conclude that Φj(x, y)=Φ/j(x,y), and therefore <pj=<p'j.

By the above result we see that S is inductive, and hence there is a maxi-
mum /oo of S. We can check that /«,=/. Indeed, let &G/00. Since 313'} is
transverse to 5J£F/, there are a connected neighborhood K of b in / and a con-
tinuous map ψκ: Kx [b, h(b)]u->M\S such that

(1) ψκ(x,b) = x (XZΞK),
(2) ψκ(byy)=y (y(=[byh(b)]u)y

(3) ψκ(x, •) is a homeomorphism from \by h(b)]u onto [#, λ(#)]κ

for all x^Ky

(4) for every L e 513"; there is ^ c [δ, A(6)]w such that ψκ\K) = KxA.

We define ψ: ϋΓx [α, A(α)].->M\S by

Then it follows that ψ=φjoo on ( ^ Γl /oo)X [αy h(α)]u. Since /«, is a maximum
of <S, we have Kczjoo. Hence J^ is open in /. In the same way, we obtain
that /oo is closed in /, and therefore JOO=I. By this result we can take a con-
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tiniuous map φ: Ix [a, h(a)]κ-*M\S such that

(1) φ{x,a) = x ( * e / ) ,
(2) φ(a,y)=y (y^[a,h(a)]),
(3) φ(x, •) is a homeomorphism from [a, h(a)]u onto [x, h(x)]u

for all # e / ,
(4) for every L <Ξ jRS) there is A c [α, A(α)]M such that ^ ( L ) = Ix A .

By (1) and (3) we have that φ(x, h(a))=h(x) for all χ(=I. Hence 0>(/χ {%)})=
J'

Hereafter, let / be homeomorphic to [0, 1) for simplicity.
It is easily proved that cl(φ(Ix {y})) is compactf or all y^[a, h(a)]u.

Indeed, assume that there is b^[a} h(a)]u such that cl(φ(Ix {b}) is not compact.
Then φ(lx {b})=L%(b) U {b} and L%(b) leads to no singular points. Hence
<p(lx {b}) has the recurrent property, and so we can find x, x'^I with X^FX'
such that (x, h(x)]u Π (x', A(Λ?')]αΦ0, thus contradicting.

By the above result, for all y^[a, h(a)]u we can take a boundary point cy of
φ{Ix{y}) in the leaf of 3} such that cy$φ(Ix{y}). Define φ':cl{I)x
[a, h(a)]n->M by

φ IixiaMoi = ψ, φ\c,y) = cy (ye[β,%)])

where cl(I)=I U {̂ }. Since £?/ is transverse to £?// it is easily checked that φ'
is continuous and for all x^M there are A del (I) and £ c [ α , /*(#)] such that
φ'-χW'(x))=d(I)xA and 9ι'-

1(ΪΓ"(Λϊ))=fix[Λ, A(α)].. Since φ{Iχ {h(a)}) =
Γ, clearly 9>'(rf(/) X {h(a)})=cl(Γ), and hence £:/(/') is compact. Let gs: [0, l]->
cl(I) and ^": [0, l]-*[tf, h(ά)]u be homeomorphisms and define H: [0, 1] X [0, l]->
M by Jϊ(^, j)=9>X^(^), gu(y))> Then i ί satisfies all the properties in Lemma
6.2.

Proof of Lemma 6.1. Let Γ be a closed transversal of iRΞF/, and define

S =

Then S is open in M\S. Clearly Ls(x)dS whenever x<=S. To obtain the
conclusion, it is enough to prove S=M\S. To do this, assume that Sί?M\S.
Then there is a transversal T of 3} in a leaf of SOu

f such that T 5 T Π cSφ 0 and
J1 Π Γ = 0 . Let / be a connected component of T Π S and β be a boundary point
of / in T. Since S is open in M\S, obviously a<£S and so Ls(α) ΓΊ Γ = 0 .

Claim I. Ls(α)ΦMΓs(α), that is, L\a) leads to a singular point.

Proof. By retaking the orientation of 3(3{ if necessary, we can assume that
a is the least upper bound of /. Take and fix x^I. Then [xu a)udIc:S.
Since Ls(^) Π ΓΦ0, clearly either Lίfo) Π ΓΦ0 or Lifo) Π ΓΦ0.

From now on we deal with the case Li(x1) Π Φ0. Since L\a) Π Γ— 0 and
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Γ is a closed transversal of SiEF}y there is x2^(xly d\u such that Ls+(x2) Π Γ = 0 and
Ls+(x) Π Γ Φ 0 for all x^[xly x2)u. Since T Π Γ = 0 , we can define 7 : [x19 #2)«->Γ
by y(x)^Ls+(x) and (x, y(x)]s C)Γ= {y(x)}. Then it follows that 7 is continuous
and locally injective.

We first prove that 7 can be extended to a continuous map from [x19 x2]u

to Γ. If this is false, then [xly x2)u covers infinitely Γ through 7, and so there is
a decomposition

[x19 x2)u = [yly y2)u U [y2y yz)u U U [y i 9 yi+1)u U (y1 = xj

such that 7 : [jv, , Jί+i)«-^Γ is a bijection for all i^N. Clearly 7(j>, ) = 7 ( # i ) .
From the definition of 7 it follows that yi^LL(y(x1)). Hence we can take the
maximum yh of {;y, }r=i in L l ^ f o ) ) . Then (^ 0 , 7(*i)L Π [>i, * 2 ) M = φ . Hence
it is checked that (x> y(x)]s Π \xχ, x2)u=0 for all x^ [yiQ, yio+i)u Indeed, let

JL =

and suppose that cJ?Φ0. Then there is the greatest lower bound w of Jl. If
(ê ;, 7(^)] S Π \xχy x2)u=t0> then a Φ j ; ^ . In this case, we have that x1φ(zo9 7 ( ^ ) ] s ,
and hence (w9 y(w)]s Π (xu x2)uz^0' Since 313} is transverse to 5iΞF/, there is a
neighborhood i£ of w in (y, 0, y, 0+i)M such that (x9 y(x)]sΠ [x^ x2)u^

z0 f ° r all
.re.ff. This contradicts that w is the greatest lower bound of <_̂?, and therefore
(wy y(w)]s Π [Λ?!, X2)U=0. Since L5

+ (Λ?2) Π Γ—0, (w, y(w)]s Π [^, * 2 )«=0 Hence
we can find a neighborhood .K of Λ in [yiQ, yio+i)u such that (x, 7(#)] s Π [xi, X2)u==

0 for all x^K, thus contradicting. Therefore <JI=0.
Combining the above result and the fact that 7 : [yiQ, yiQ+1)u->T is bijective,

we see that (x, y(x)]sΠ [yiQ9yio+i)u^0 for all x^[yiQ+1> x2)». Hence there is a
m a P <*: b . 0+i» ^)«-*l>.v Λ2)« s u c h t h a t « W ^ M W and (x,a(x)]tn[yio,x2)u=
{a(x)}. Let α ( ^ y ) Φ ^ # 0 for all j>io+l, then α([y, 0 + 1, x2)u)c:(yioy x2)u. Since
5i£F} is transverse to SOu

fy it follows that a: [yio+i> x2)u-* [y^ ^)« is continuous.
If cx(yj)=yio for some j >/'<>+1, then α ( ^ , ) Φ ^ ί 0 for all / > j . In this case, we
have that a([yj+ly x2)u)a(yiQy x2)

n
y and hence a: [yj+ly x2)u-^[y^ x2)u is continu-

ous. In any case, we can find ix>iΌ-\-\ such that a: [yiv Λ?2)«~>[j;ίo> X2)u is con-
tinuous.

Note that a is locally injective. Then we have that a: \yiχ9 x2)uΓ^[yi^ χ
2)u

is a C° embedding, and therefore it is extended to a: [yiχy x2]u->[yio> x2]u- Since
the diagram

[yio,
 χ

2)u

Ύ

commutes and Γ is covered infinitely by [xiv x2)uy we conclude that a(x2)=x2.
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Combining this result and Lemma 6.2, we can find a simple closed curve in
Ws(x2)y which contradicts Proposition A(2). Therefore 7 is extended to a map
7: [xvx2]u-^T.

By using Lemma 6.2, we see that j(x2)^ Ws(x2). Let l2 be the arc in W\x2)
jointing x2 and 7(#2)- Since L%(x2) Π Γ = 0 , we have L%(x2) Si/2, and so there is a
singular point s2 in /2. To obtain the conclusion of Claim I, assume Ls(a)=
Ws(a). Then we have x2Φa, and so [xι, x2]uSi[xi, a)u. Hence Z/(#2)ΓΊΓΦ0,
and therefore LL(#2) ΠΓΦ0. Let z2 be the maximum of Ll(#2)ΠΓ in LL(x2)y

and take the arc A2 in W\x2) jointing s2 and z2. Then x2^A2 and A2 Π Γ = {z2}.
By repeating the above argument, we can find a sequence {xi}^τa2 in [xly d)u

with #, < w Λ?y for i<j and a family {A{} of arcs in leaves of 3} such that
Xi^Ai9 Ai Π Γ consists of one point z{ and end points of A{ are #t and a singular
point. Since S is finite, {̂ 1,} must be a finite set, which contradicts that {x{}
is infinite. Therefore the conclusion of Claim I was obtained.

Since S is finite, we can find k>0 such that g=fk fixes all singular points
and it preserves every leaf of SO} and of SO} which leads to a singular point.
Let IS(x) lead to a singular point p(<r=syu). Then L\x)ciW\p). By the
definition of Wσ{p) we haev that g"(x)-^p as n->oo if σ=sy and that gn(x)-*p
as #->— 00 if (j=M.

Now we take a transversal T of £?} in a leaf of S(3U such that T 3 Γ' Π <S
Φ0 and T"ΓlΓ=0. Let / ' be a connected component of T'ΓϊS and α be a
boundary point of / ' in T'. By retaking the orientation of Si3u if necessary,
we may assume that a is the greatest lower bound of / ' . By Claim I, L\a) leads
to a singular point (say, s{ά)). Hence one of L%(a) or LL(a) leads to s(a).
Without loss of generality, we may assume that LL(ά) leads to s(a). Then L%(a)
has the recurrent property. Hence we can find a transversal T of 3} in a leaf of
SO" with Γ n Γ = 0 such that Ls

+(a)ΓiT has an accumulation point b in T.
Then there is a sequence {#,-}• , eiv of Li(<z) Π T such that

and Λ?, converges to ό in Γ as ί->oo. By taking subsequence if necessary, we
have one of the following two csaes:

(A) xλ<u x2<u x3<u ••• <u b ,

(B) b<u — <u x3<u x2<u xλ.

We consider the case of (A). Since a is the greatest lower bound of / ' in T",
for i^N we can take the connected component Jf of SΓϊT such that x{ is the
greatest lower bound of / t . If yt denotes the least upper bound of Ih then
/,- is expressed as Ii=(xhyi)u.

Claim II. y^L%{y^ for all ieiN
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Proof. Since x1 $ S , obviously L%{x^) Π [x2, y2)u
= {#2} Since <R3f} is trans-

verse to 3MΞuf, we can find z^(xlfy1]u satisfying the following: for all x^[xlf z)u

there is a(x) e L%(x) such that (x, a (x)]s Π [#2> y^u = i<*(x)} Let #«> ̂  (xί9 yx]u be
the least upper bound of such points z. Then we have the map ctoo from [x19 #«,)„
to [x2,y2)u such that (x, (Xoo(x)]s Π [x2, y2)u== {<Xoo(x)}. It is easily checked that a^
is a C° embedding. Hence α,*, is extended to a^: [xly #oo]«-*[#2>y2]u- Using
Lemma 6 2, we see that cL0o{zco)^:W\z0^)y and hence there is an arc / in \V\Zoo)
which joints z^ and #oo(#oo). If / contains a singular point p> by Lemma 6.2
there is q^[xly x2]s such that L+(q) leads to p. Then L%(q)\{q} CcS. Let g:
M-+M be as above. Clearly g\q) <ΞL\(q)\ {q} ccS for some n<0. Since L s(^)
( = L 5 ( Λ ) ) leads to ί(α), we have that gn(q)^ gn(Ls(x1))=L\xι), which contradicts
Ls(xι)Γ\S=0- Therefore / contains no singular points, and so #oo(#o
Note that zao=y1 or ^ G / J . In the case when z^^I^ we have that
which contradicts the choice of %<», and hence zO0=yv Obviously z^^S and so
aOo(z0O)=y2. Therefore y2Gi+(};1). Inductively we obtain y^L'^y^ for /

Since ϋ ( ^ ) leads to ί(#) and Λ?1eL+(Λ), L I ^ ) leads to s(ά). Hence we can
take the arc A in W\x^) jointing s(a) and xv

Since yx is a boundary point of I19 L*(y^) leads to a singular point (say,
s(y1)) by Claim I. Claim II ensures that L^y^ has the reccurent property, and
hence LL^) leads to s(y1). Let B denote the arc in W\y^) jointing s(yj and yλ.

Note that y&S. Then (^, ^ J » n I i ( j Ί ) = 0 and so (x1,y1]uΓiB=iy1}.
Since £F/ is transverse to £?/, it follows that there is (#, ΛJJSC-4 such that if xG
(̂ r, ΛJS then (x, β(x)]uΠB={β(x)} for some β(x)<=:Lu+(x). Let i7ooC 4̂ be the
maximum of such intervals (z, #JS. Then we have the map /?«,: U^-^B such
that (*, /3oo(̂ )]M Πfi= {/3OO(Λ?)} for all ce i7oo. Since β^UJCjB\{ί(y1)}, it is eas-
ily checked that /3oo is a C° embedding. Suppose that Li_(x^)^ Uoo. Then [/«,=
(#oo, ̂ i]s for some ^ G i i ^ ) , and hence β^ is extended to /SL: [̂ oo, ^J S ->JB. If
/&o([#oo, ΛjjjC-B, then the arc / in Wu(zoo) jointing z^ and /£?oo(#oo) must contain a
singular point p. In this case £*(£«>) converges to p as w—> — oo. By Lemma 6.2
we have that gn(zoo)^S for » < 0 small enough, which contradicts that /"(zj)^
Z/fo) and L s(^) Π ^ = 0 - Therefore &.([*.., Λ?J,)=B, and so ^ e ϊF"(/ff«(*«,))=
^(^(JΊ))* Hence gn(zoo) converges to s(yx) as Λ-> —oo, and we see by Lemma
6.2 that g^z^^S for n<0 small enough, which is a contradiction. Therefore
U«,=LL{xx).

By this result β^ is extended to /3°°: A-+B. By Lemma 6.2 it follows that
s{a) and ]3oo(s(a)) are in PFw(ί(^)). Hence gn(/5oo(s(a))) converges to s(a) as n->
— oo, and therefore gn(βoo{s{a)))^S for w<0 small enough. But gn(Ls(y1))=
Ls(yi), which contradicts Ls(y1)Γ\S= 0. Therefore the conclusion of Lemma
6.1 was obtained.

Proof of (4) in Proposition A. Let π': N->M\S be a finite cover such that
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the lifts 3) (σ=s, u) of 313} by π are orientable and a lift of / by π' exists (cf.
[7, p. 17]). And let π: M-+M be the branched cover induced from π'. Then
the lifts 3} (σ-=s, u) of 3} by π are orientable because 3l3f=3% and we can
take a lift / : M-+M off by zr.

Let ^ ( Λ ) (σ=s, u) denote the local stable and unstable sets for /. If £>0
is small enougn, then for all x

{x)) (σ=s>U),

which implies that Ws
z{x) Π ΪΫ"(x)= {x}. Hence / is expansive. By using this

fact it is easily checked that 3j=3} for <r=s, u.
To show that 3} is minimal, let / be an arc in a leaf of 313}. Since 3}=

3* fn(ϊ) has the recurrent property if n<0 enough small. Since 3} is orientable,
we can construct a closed transversal Γ of 313} by deforming /"(/) along the
leaves of 313} (cf. [7, p. 52]). By Lemma 6.1, Γ intersects every leaf of 313} in
at least one point, and hence so does /*(/)• Therefore / intersects every leaf of
313!}. Since / is arbitrary, we see that 3} is minimal, and therefore so is 3}.
The conclusion for σ=u is also obtained.

7. Proof of Proposition B

As before let JM(3) denote the set of all transverse invariant measures for a
C° singular foliation 3. For the proof of Proposition B we establish the fol-
lowing

Lemma 7.1. Let 3 be a C° singular foliation on M. If 3 is orientable
and transversally orientable and if 3 is minimal, then the following hold;

(1) JM(3) is non-trivial,
(2) if µEίc3ί(3) is non-zero, then every finite Borel measure of µ is non-

atomic and positive on all non-empty open sets,
(3) there is an injective map kfrom <3H(3) into a finite dimensional Euclidean

space such that

k(sµ + tv) = Sk(µ) + tk(v)

for µy vtΞ<M(3) and s,t>0.

Proof. Let S be the set of all singular points of 3 and define 313 as
before. For x^M\S let L(x) be the leaf of 313 through x. Since 3 is mini-
mal, it follows that each L(x) are homeomorphic to R. Since 3 is orientable,
we can give an order<for L(x) in the same way as in §6. Then the intervals
L+(x), L_(x), [y> z) and {y> z\ of L(x) are defined (see §6).

Take and fix a transversal T of 3 with Tf]S=0 such that the end points
a, b of T are not in same leaf of 313 and they are not in leaves of 313 which
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lead to singular points. Hereafter, we identify T with [0, 1] for simplicity.
Let us define

D= ix(=T:L+(x)nT=0}.

Since £? is minimal, it is clear that if xGl) then L+(x) leads to a singular point.
Hence L+(x) f] L+(y)=0 for xyy^D with x^y. Combining these and the fact
that S is finite, we see that D is finite. By the choice of a and b, it follows

Define 7: T\D->T by <y{x)<=L%(x) and (x, γ(x)] Π T={<γ(x)}. Then 7 is
injective. Since L_(tf) and L_(b) intersect Γ, we have that ay b^y(T\D).
Hence 7~1({#, b}) p[D=0. Since Z> is finite and fγ~1({a, b}) consist of two
points, F=D(Jγ~1({a, b}) is finite, and hence F cuts T in finitely many subint-
ervals I19I2> •••, Im. Then 7 17. is continuous. Since 7 is injective, we have that
γ I Ig is a C° embedding for all 1 <i<m.

Let c^(γ~\{a,b}). Then c$Zλ Hence we can take ί(c)e{l, 2, •••, #z}
such that c is a boundary point of /f (c) and 7|/ίCou{c) i s a C° embedding. For
simplicity, denote /ί(<.) U {c} by /t(tf). Then we have

(7.1) T\D = /x U /2 U U Im (disjoint union).

Since 7 is injective, clearly 7(/ t.)Π7(/, ) = 0 for
Let b(i) be the least upper bound of Jf (l<i<tn). If b(i)^D, then we

write /,-=/,• U {δ(f)} If not, then we write /,•=/,-. Combining (7.1) and the
fact that {#, δ} (1-0=0, we see that

Ϊ 1 = / 1 U / 2 U " U / M (disjoint union).

Since 7 | 7 . is a C° embedding, it is extended to a C° embedding 7,-: /,—>Γ. Let
b(i)^D. As we saw above, L+(b(i)) leads to a singular point. This implies that
L_(7, (&(i))) leads to the same singular point. Since £F is transversally orientable,
we have that 7i(b(i)) is the least upper bound of 7, (/, ) Since 7, (/t ) Π Ύj(Ij)=0
for i φ j , 7t.(/.)Π7y(/y)=0. Consider the set fl^^GΪ1: L_(x) Π Γ=0} and
the map yf:T\D'-^T defined by 7'(*)eL_(*) and [ 7 ^ ) , x)Π T={γ\x)}.
Then we see that y'(T\D')=T\D and 7 / = 7 " \ and therefore

T - 7i(Λ) U Ύ2(ϊ2) U - U 7 . ( 4 ) (disjoint union).

Define 7: T-^T by 7 |z ί =7i for all /. By the above results 7 is a bijection
and 7 | 7 < ( ί=l,2, —,m) are C° embeddings. We note that F=D{Jγ-\{a,b})
coincides with the set of all discontinuous points of 7 and that <γn(x)&F for all
x^F and all n^Z with /ί=t=0. Since 3 is minimal, it is easily checked that 7 is
minimal.

Let cM(T) be the set of all finite Borel measures on T and define
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<3ty{T) == iµ<Ξ<5H(T): µ is γ-invariant}.

Claim I. JMy(T) is non-trivial.

Proof. Let C(T) be the set of all real valued continuous functions on T.
Then C(T) is a Banach algebra with norm

p

Take and fix * o eT, and define for n>\ and

Then Ktt: C(T)->R is a continuous linear map such that Kn(l)=ί and i
if ξ(x)>0 for all Λ G Γ . By Riez representation theorem, there is a Borel pro-
bability measure µn on T such that

There are a subsequence {µnj} and a Borel probability measure µ on T such
that

If?, ?o7-

(7.2)

since l^/eo*?- 1 )-^^)^—|fo^W-f(*) |^—Hfll .

To obtain that /z, is 7-invariant, we first check that µ is non-atomic. To do
this, assume that µ({y})>0 for some y^T\F. We can take l^N such that
lµ(iy})>l Since yn(x)$F for xGί 1 and #Φθ, we can assume that ψ(y)φF
for all />0. Take S « G C ( Γ ) ( n = l 5 2, —) such that Sn(y)=l and δn->l{>)(w->oo)
where l^j denotes the characteristic function. Then there is ΛΓ>0 such that

for all w>ΛΓand 0<i<l-l. By (7.2) we have

J 8n dµ = j hnoT{ dµ (0<i<l-ί)

and hence by Lebesgue convergence theorem

which implies that µ{iy})=µ(W(y)}). Hence ( ( y ) ) ^ ( y )
> 1 , a contradiction. Therefore At({^})=0 for all y^T\F. Next, assume that
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µ(F)>0. Take ξn<=C(T) (n=l , 2, •••) such that ξn\F=0 and ξn-+lτ\F as »-*oo.
Then ^ o ^ e C ^ Γ ) and f ^ ? - 1 - ^ ; ^ . By (7.2) we have

and hence

J \τ\Fdµ = j lτ\y(F)dµ

which implies that 0<µ(F)=µ(γ(F)) . Since v(F)aT\F, we have µQf(F))=
0, a contradiction. Therefore µ(F)=0 and so µ, is non-atomic.

Let £ β GC(Γ)(n=l ,2 , •••) be as above. Then ξnξ,{ξnξ)oTι^C{T) for
ξ<=C(T). By (7.2) we have

and hence

j 1Γ\F |rfµ = j (ίΛF ξ)oτι dµ .

Since µ is non-atomic, we have

which implies that /̂  is 7-invariant. The proof of Claim I is completed.

Recall that T is expressed as the disjoint union of subintervals ϊi(l<i<m).
We define c: JHy->Rm by

Then it follows that

ι(sµ+tv) = sι(µ)+tt(v)

for µ, v<= Jά(β) and s91>0.

Claim II. ^ is injective.

Proof. It is enough to show that if ι(µ)=ι(v), then µ=v. To do this, let

Then each element of 3? is a subinterval subinterval of T and ίP2 is a decomposi-
tion of Γ. So we write S>2={JιyJ29 '",j2m} where each index of /,• obeys the
order of T. Then it is easily checked that for 1 <j<2m, K~JX U J2 U — U Jj
is the union of elements of {//}f=i or of elements of {? (/,•)} ?-i Since µ is 7-
invariant, µ^^µ^^i)) for ί<i<my and hence
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µ(Kj) = µ(Ill

for some l</ 1 </ 2 < •••</,<#*. Since ι(µ)=ι(v)y it follows that µ(Kj)=v(Kj)
for \<,j<2my and therefore

Next we write

Then we can easily prove that µ(I)=v(I) for all / E 5 " . Inductively, letting

s>" = {ihn?(/, 2) n - n γ - U J *^*»^« (z = !»2, - , «)>,
we have that

(7.3) µ{I) = v{I) ( / e 5 " , « ^ l ) .

Note that the set of all boundary points of elements of 3?" coincides with

F, = F U ?(.F) U - U Ύn~\F).
CO

Since 7 is minimal, we have that Foo= U Fn is dense in T. Therefore every

open set of T is expressed as a disjoint union of at most countable elements of
00

U 9?n. Combining this result and (7.3), we obtain µ=v.

Claim III. There is a bisection T: <3My-+JM(3ϊ) such that

τ{sµ+tv) = sτ(µ)+tτ(v)

for µ} v^JMη and s} t>0.

Proof. Let A be a transversal of £F. We can choose a finite decomposi-
tion {̂ 4,.}?.! of A and a family {T,}?^ of subintervals of T such that there is
a projection h{\ A^Ii along the leaves for \<i<n. Indeed, let x^A be a re-
gular point. Since L+(x) or L_(x) lead to no singular points, we may assume
that L+(x) leads to no singular points. Then there is t(x)^L+(x)Γ\ T\{a, b}
since £F is minimal. Since A is a transversal of £F, it follows that there is a
projection along the leaves which maps a neighborhood of x in A onto a neigh-
borhood of t(x) in Γ. For the case when x^A is a singular point, take a trans-
versal 4̂ί of £F with ^4icM\iS such that there is a projection along the leaves
which maps A'x onto a neighborhood of a? in A. Then we can find a projection
along leaves which maps a neighborhood of x in 4̂ onto a subinterval of T.
Therefore we can choose a finite decomposition {A^n

t^λ of 4̂ and a family
ni=i of subintervals of T which satisfy our desire.
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Since each A, : Ar+Tt is a homeomorphism, for µ^<3ίy(T) we can define
a finite Borel measure µA on 4̂ by

µA = Σ3 µ I r.oAi.

Since µ, is 7-invariant, it is checked that µA is independent of the choice of
({A{}, {Ti}, {hi}). Indeed, let A be a projection along the leaves from a subarc
A' of A onto a subinterval T' of Γ. Then ct=hi\A.nA'°(h\A.nA')~1 is a projec-
tion along the leaves which maps a subinterval h(AiΓ[A/) onto a subinterval
hi(Ai f)A'). By the definition of 7 we can find a finite set £ of h(A{ f]Af) such
that if / is a component of A(^4t f)A')\E then α | / is equal to jn\j for some

Since µ, is 7-invariant, we have

and so

/^lAU. niiONJE^IUίniiOXA"1^) ~ Mil I U C

Since µ and ^^ are non-atomic, we have

which means that the definition of µA is independent of the choice of

We next show that {µA: A is a transversal} is a transverse invariant measure
for 2\ To do this, let A and 5 be transversals of £F and let h: A-+B be a pro-
jection along leaves. Then we can take decompositions {A}?=i °f ^ and {#,}?=1
of B such that h(Ai)=Bi(l<i<n) and such that for l<ί<τz there is a projec-
tion /,- (resp. gi) along the leaves which maps A{ (resp. 5, ) onto a subinterval of
T. Clearly g^h \ A.°fj

ι is a projection along leaves for 1 <i<n. By the defini-
tions of µA and µβ, we see that µA\Ai

z={µ>B\B^°h\A{>
 a n < ί therefore µA=µB°h.

Define r: ^ γ - ^ ^ ( S ' ) by

τ(µ) = {µA: A is a transversal} .

Then T satisfies all the properties in Claim III.

By Claims II and III there is an injection k from M(β) to Rm such that

k(sµ + tv) = Sk(µ) + tk(v)

for µ,v^ι3i(3ϊ) and s, £>0. Hence Lemma 7.1(3) holds. Lemma 7.1(1) is
obtained from Claim I. Note that if µ^^Hy is non-zero then µ is non-atomic
and positive on all non-empty open sets. Then Lemma 7.1(2) is easily checked.
The proof of Lemma 7.1 is completed.
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Proof of Proposition B. Let us take a >̂-fold branched cover n\ M->M
(p=ly 2, or 4) such that the lifts 3f*(<r=s, u) of 3σ are orientable and there is
a lift / : M—>M of /. Clearyl / preserves 3*. Since 3σ is minimal, it follows
that 3σ are minimal.

By Lemma 7.1(3) there is an injective map k: <j#/(£Fs)-->ΛΛf for some m>\
such that k(sµ+tv)=sk(µ)+tk(v) for µ, vtΞJM(3σ) and s, t>0. Clearly the
image V of k is a convex cone of Rm. Define / * : V-+V by f/^=kof^ok"1.
Then/* is continuous. Note that FflS'"" 1 is a disk where S™"1 denotes the
unit sphere of Rm. By Brouwer's fixed point theorem, the map V Π Sm~ι-*VΠ
AS1"""1 which sends x to /#(#)/||/#(#)|| (|| II denotes the Euclidean norm) has a fixed
point. This ensures the existence of µs^JM(3s) such that f*(µs)=Λsµs for
some λ s > 0 . We can find also µu<=3t(3u) such that Mµu)=Xttµu for some
λM>0. By Lemma 7.1(2) every finite Borel measure of 7/ and of ~µu is non-
atomic and positive on all non-empty open sets.

Let A5 be a transversal of £F5 and take all lifts A{, •••, A'p of As by π: M-*
M. Then we define a finite Borel measure µAs on As by

By homotopy lifting property we have that

iµAs: As is a transversal of 3s}

is a transverse invariant mesaure for £FS. Since f*("Jzs)=Xs Jΰ\ we see that
/*(µ s )=λ s Ms F ° r σ"=w we obtain the same one. Clearly every finite Borel
measure of µs and of µu is non-atomic and positive on all non-empty open sets.

Since / preserves 3s and 3?u, we can show that λ s λ M = l . Indeed, let 31
be the family of RczM with the following property: there is a C° embedding
HR: [0, 1] X [0, 1]->M with Hx([0, 1] X [0, 1])=JR such that
(1) if LSCΞ35 then ffϊ1(Lf)=[0, 1] Xi4 for some i4c[0, 1],
(2) if LU<Ξ:3U then Hj\Lu)=Bx[0, 1] for some Bc[0, 1]. Since 3s and £P
are transverse, it is easily checked that 31 generates the Borel σ-field of M.
ForΛe^iwe le t

Rs = HR{[0y 1] x {0}), Ru = HR({0} x [0,1])

and define µ: 31->R by

Then µ is extended to a finite Borel measure µ on M. Obviously µ is positive
on all non-empty open sets. Since / preserves 3s and 3U, f(R)€z3l for all

, and hence
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µ(f(R)) = A(f(R)T) µU((f(R)Y)

= Xs µs(Ru) λ" µ"(Rs)

= X5 \ u µ{R) .

Therefore µ°f— \SXU µ on Borel σ-field. Since µ is finite, we have λ s λ u = l .
The proof of Proposition B is completed.
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