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Introduction

In this note we deal with the question as to whether the inverse limit of one-
variable polynomial rings is polynomial again. More precisely, working in the realm
of the pro-affine algebra theory [1, 2], we look at the pro-affine algebra ˜ :=
lim← [ ] given over := lim← and ask if that algebrã is isomorphic to

[Y] for a suitable choice of variableY. Our first answer is that̃ is always locally
polynomial over (seeTh. 1), and our second answer is that˜ ≃ [Y] if the in-
verse system of the units of ’s satisfies a ‘uniformized’ Mittag-Leffler condition (see
Th. 2).

After developing and proving these two theorems, we conclude this note with pre-
sentation of some examples in§3, originally made up by David Wright during the dis-
cussion sessions by him, N. Mohan Kumar and the present author in St. Louis, Au-
gust 2002. Back in Japan in the fall of the same year the authorwas able to prove
Theorem 2 through further study of these examples.

The author wishes to record here his heartfelt thanks to the two friends just men-
tioned, as well as to M. Miyanishi who initially suggested the main question to us in-
formally in July 2002 and to R.V. Gurjar together with whom the author made a first
analysis of the question.

1. The Problem

Referring the reader to [1, 2] for the basics on pro-affine algebras, we consider a
strongly-reduced pro-affine algebra over a field . This means, in effect, that is
a commutative topological -algebra admitting a representation as = lim← ∈N ,
where all ’s are reduced and discrete algebras over forming asurjective in-
verse system 0 ← 1 ← · · · ← ← · · · indexed byN = {0 1 2 . . .}. For
each ∈ N, consider a one-variable polynomial ring [ ], and suppose given maps
φ : [ ] −→ −1[ −1] such that ( [ ] φ ) ∈N forms a surjective inverse system
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compatible with ( )∈N. Namely, we have a commutative diagram

(1)

· · · ←−−−− −1[ −1] ←−−−− [ ] ←−−−− +1[ +1] ←−−−− · · ·x
x

x

· · · ←−−−− −1 ←−−−− ←−−−− +1 ←−−−− · · ·

in which all horizontal arrows are surjections and the vertical ones are the canonical
inclusions.

We now ask our basic question due to M. Miyanishi:
(Q) Given (1), is lim←( [ ]) ≃ (lim← )[Y] ≃ [Y]? (Is the inverse limit of

polynomial algebras again a polynomial algebra?)
As data for (Q), we have the mapsφ : [ ] → −1[ −1] (∀ ∈ N) which sat-

isfy, for all > 0, −1[φ ( )] = −1[ −1]1, i.e., φ ( ) = −1 −1 + −1 with

−1 ∈ U( −1) −1 ∈ −1.2 Note that the selection of the variableφ ( ) is com-
pletely arbitrary and free of choices for otherφ ( )’s. At this point we carry out our
first reduction as follows:

STEP 0. Let ′
0 := 0.

STEP i. If ′
0 . . . ′

−1 have been set, and ifφ ( ) = ′
−1

′
−1 + ′

−1 with
′
−1

′
−1 ∈ −1 and ′

−1 a unit, then choose any′ ∈ such thatφ ( ′) = ′
−1

and let ′ := − ′.
One can see then thatφ ( ′) = φ ( − ′) = ′

−1
′
−1 + ′

−1 − φ ( ′) = ′
−1

′
−1 +

′
−1− ′

−1 = ′
−1

′
−1. So, we do Step 0, then Step 1, Step 2 and so on, replacing

with ′ at each step as we climb up. We then obtain a new series of variables ′
0 =

0
′
1 . . . ′ ′

+1 . . . such that [ ′] = [ ] and φ ( ′) = ′
−1

′
−1 for all > 0.

This implies that, in the surjective inverse system ( [ ]φ ) ∈N for the question (Q)
above, one can assume from the outset thatφ ( ) = −1 −1. We will assume this
hereafter.

It is now clear, then, that an affirmative answer to (Q) boils down to having a
series of units{ ∈ U( ) : ∈ N} such that, if we set := then,∀ φ ( ) =

−1. When such ’s have been gotten, we haveφ ( ) = φ ( ) = φ ( ) −1 −1 =

−1 = −1 −1, so that

(2) φ ( ) = −1
−1 −1 for all > 0

Conversely, if a series of units ’s have been found satisfying (2), then (Q) is an-
swered “yes” as lim← [ ] ≃ lim← [ ] ≃ (lim← )[Y] with Y := ( 0 ← 1 ←
· · · ← −1← ← · · · ), where := for all ∈ N.

1We then sayφ ( ) is a variable for −1[ −1].
2Here as elsewhere, for any ring , we denote its group of units by U( ).
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Theorem 1. Let = lim← be a strongly-reduced pro-affine algebra over a
field . Suppose given a surjective inverse system

(3) 0[ 0] ← 1[ 1] ← 2[ 2] ← · · ·

of polynomial algebras [ ] ’s over 0← 1← · · · , and also given any open prime
⊂ , where = ( 0 ← 1 ← · · · ← ← · · · ) with all prime in . Let
:= − . Then, we get a surjective inverse system of polynomial algebras over

local rings:

(4) ( −1
0 0)[ 0] ← ( −1

1 )[ 1] ← · · · ← ( −1 )[ ] ← · · ·

and its limit, lim←( −1 )[ ], is isomorphic to(lim←( −1 ))[Y] = [Y] for a suit-
ably chosen variableY.

Proof. First observe that, in general, the question (Q) is answerable as “yes” in
case the map → −1 induces a surjectionU( )→ U( −1) for all > 0. Indeed,
suppose [ ]→ −1[ −1] is given by the assignment 7→ −1 −1 with −1 ∈
U( −1) for each . Then, starting at any level, say− 1, and with any choice of

−1 ∈ U( −1), say −1 = 1 ∈ −1, one can solve the equation (2) successively for
∈ U( ), then for +1 and so on,ad infinitum. Then, as we saw just above, putting
:= for all ∈ N and Y := ( 0 ← 1 ← · · · ← −1 ← ← · · · ) gives an

affirmative solution for (Q) in the present instance.
To complete the proof we have only to remember that, for all> 0, the local

homomorphism −1 → −1
−1 −1 of local rings clearly maps the units of the first

ring onto those of the second.

REMARK. The result we saw just now says, geometrically, that the morphism of
ind-affine schemesSp(lim← ( [ ])) → Sp(lim← ) = Sp( ) is locally a product
Sp( )× A1 above each point ∈ Sp( ).

2. Stability and uniform stability

In analyzing the situation as outlined in§1 and in studying various examples of
which some are to be found in§3 below, we see that (Q) is a question of units of the

’s and their inverse images.
With the case =U( ) in mind, we consider more generally the following in-

verse system of groups:

(5) 0
µ1← 1← · · · ← −1

µ← ← · · ·

where theµ ’s are not necessarily surjective. For each pair of integers≥ 0, ≥ 0
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we define two types of subgroups of :

(6) := µ +1 ◦ · · · ◦ µ + ( + ) ∞ :=
∞⋂

=1

where 0 := is to be understood. The inverse system (5) is said to bestable3 if,
for each ≥ 0, there exists a = ( )≥ 0 such that = ∞. In this case, any
integer ≥ is said to bein the stable rangeat level , and then, clearly, = ∞
holds.

In the stable case, there results asurjective inverse system of groups:

(7) 0∞
µ′

1←− 1∞ ←− · · · ←− −1∞
µ′

←− ∞ ←− · · ·

We need to consider next a stronger notion of “uniform stability”. Namely, the
inverse system (5) will be calleduniformly stableif there exists an integer ≥ 0 such
that = ∞ for all ∈ N. Note that uniform stability with = 0 is the same thing
as the surjectivity of the inverse system.

From here on, it will be assumed always that, for all∈ N, = U( ) and
µ = φ | . Let us say in the present note that the -algebra inverse system ( )∈N

is stable or uniformly stable for unitsif the inverse system (5) of units =U( )
arising from it is stable or uniformly stable, respectively.

Theorem 2. Let = lim← be a strongly-reduced pro-affine algebra over a
field . Suppose given a surjective inverse system over

(8) 0[ 0]
φ1←− 1[ 1] ←− · · · ←− −1[ −1]

φ←− [ ] ←− · · ·

of polynomial algebras. Assume that the inverse system( ) ∈N is uniformly stable for
units. Then,

lim
←

( [ ]) ≃ (lim
←

)[Y] = [Y]

for a suitable choice ofY = ( 0← 1← · · · ← ← · · · ) where the for each ∈ N

is a variable for [ ] .

Proof. Letting := U( ) and µ := φ | for all , we consider the inverse
system (5) of unit groups. Let us begin by introducing anad hocnotation as follows:
For any ∈ and ∈ N, define

(9) ( ) := µ − +1 ◦ · · · ◦ µ −1 ◦ µ ( ) for > 0; (0) :=

3This is the well-known Mittag-Leffler Condition.
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so that ( ) ∈ − in all cases. Let ≥ 0 be the level at which the inverse system
( ) ∈N achieves the uniform stability. The case = 0 being trivial, we may and shall
assume > 0. So, = ∞ for all ∈ N, and ( ) ∈ − ∞ if ∈ . Now write,
for each > 0, φ ( ) = −1 −1 with −1 ∈ −1 as given, and define ∈ ∞ and
′ ∈ by the formulae

(10) := ( )
+

′ := ( −1)
+ −1

( −2)
+ −2 · · · · · (1)

+1
(0)

Finally, for each ∈ N, let us define ′ := ′ , a variable in [ ]. Then,

φ ( ′) = φ ( ′ ) = ( )
+ −1

( −1)
+ −2 · · · · ·

(2)
+1

(1) · (0)
−1 −1

= ( )
( −1)+ ( ( −1)

( −1)+( −1) · · · (2)
( −1)+2

(1)
( −1)+1

(0)
−1) −1

= −1( ′−1 −1) = −1
′
−1

This calculation shows that, with respect to the new series of variables ′ = ′ ’s,
the critical coefficients ’s occurring as′ 7→ −1

′
−1 all belong to ∞’s. With

reference to the equation system (2), one sees at once that (2) is solvable for ∈
∞ when −1 = −1 ∈ −1∞ at each level > 0. It follows that a final choice

may be made for a variable in [′] = [ ] for each such thatφ ( ) = −1,
so that lim← [ ] ≃ [Y] with Y =: ( 0← · · · ← ← · · · ).

3. Examples

We conclude the present note with three examples. They were all originally made
up by David Wright as explained in theIntroduction. However, the author has consid-
erably changed the arguments that follow these examples; inparticular, the discussion
below for Example 2 is entirely new, even in its direction.

EXAMPLE 1 (D. Wright). Here is an example of how Theorem 2 above works.Let

(11) := [ −1
1
′
1 2

′
2 . . . ′] for all ∈ N

and letφ′ : → −1 be given by the rule of assignments:

(12) 7→ 1 −1 7→ 1 1 7→ −1
′
1 7→ −1

−1 7→ −1
′ 7→ ′

−1 (2≤ ∀ ≤ )

It is then easily seen thatU( ) = × × 〈 〉, with 〈 〉 meaning the multiplicative
group≃ Z generated by , and thatφ′(U( )) = × for all > 0. So, the surjective
system ( φ ) ∈N is uniformly stable for units with 1 = ∞ for all ∈ N and

= 1. Now extendφ′ to φ : [ ] → −1[ −1] by choosing any unit ∈ U( )
and definingφ ( ) := −1 −1 for all > 0. The resulting pro-affine -algebra
lim←( [ ]) may then be ‘untwisted’ following the recipe given in the proof of The-
orem 2, as follows: Since = 1, the formula (10) gives =µ +1( +1) ∈ ∞
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and ′ = , so we define ′ := . Then, it follows thatφ ( ′) = φ ( ) =

−1 −1 −1 = −1
′
−1. Since all ’s belong to ∞, the equations (2) with the

’s replacing the ’s are successively solvable as goes up, starting with 0 := 1 and
each −1 ∈ U( −1) −1∞ producing a ∈ ∞. We now let := ′ = and
we then get lim←( [ ]) = lim←( [ ]) ≃ [Y] with Y := ( 0← · · · ← ← · · · ).

EXAMPLE 2 (D. Wright). We now give an example of a pro-affine algebra not
uniformly stable for units (and not even just stable for units), over which lim← [ ]
may or may not be an [Y] according as how the units ’s are chosen to define the
map 7→ −1 −1 and consequently the -algebra structure. Let be a field, let

0 := and let := [1 ′
1 . . . ′ −1] for all > 0, with ’s, ′ ’s and ’s

indeterminates for all > 0. Construct a pro-affine -algebra = lim← through
defining

φ′ : = [ 1
′
1 . . . ′ −1] −→ −1 = [ 1

′
1 . . . −1

′
−1 −1

−1
−1]

for all > 0 by means of the assignments:

(13) 7→ ′ 7→ ′ (1≤ ∀ ≤ − 1) 7→ −1
′ 7→ −1

−1 7→ 2
−1

−1 7→ −2
−1

where we interpret 0 = ′
0 = 1. Since the unit groupU( ) ≃ ××〈 〉, a typical unit

looks like ∈ U( ), where ∈ × and ∈ Z. It gets mapped byφ′ to 2
−1 ∈

U( −1), then to 4
−2 ∈ U( −2), and so on. So, the image ofU( ) becomes ever

smaller as this group gets mapped down intoU( )’s of lower indices . It is then
easy to see that the inverse system0 ← · · · ← ← · · · is not stable for units,
much less uniformly so.

Now, over this same pro-affine algebra one can build a varietyof pro-affine al-
gebras lim← [ ] by specifying φ : 7→ −1 −1 = −1

−1 −1 with various choices
for the sequencep = ( 0 1 . . . −1 . . .) of exponents ’s all inZ. And then
one asks whether or not the equation (2) may be solved in succession as one climbs
up on the levels . Namely the question is,whenp is given, whether or not the system
of integer equations,

(14) 2
−1 = − −1

−1 · −1

−1 i.e. = −1 − −1

2

may be solved for ’s as→∞ starting with a suitable initial value for0.
As a first instance of this question, let := for all∈ N with any inte-

ger chosen and fixed. Then, by means ofφ : [ ] → −1[ −1] defined by
7→ −1 −1, one builds a pro-affine algebrã := lim← ( [ ] φ ). Then, this

apparently twisted algebrã , built over which is non-stable for units, can never-
theless be straightened out and we find˜ ≃ [Y] for an appropriate choice ofY.
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Indeed, one can easily solve for the equation system (14) with = − when

−1 = , −1 = − Then, letting := − for all ≥ 0, we see that
φ ( ) = φ ( − ) = −2

−1 · −1 −1 = −
−1 −1 = −1, as asserted just above.

A somewhat more complex choice for the ’s might be the case where :=
for all ∈ N, or where = for all ∈ N. In this instance, too, the untwisting is
made by the solution set :=− + 2 with initial value 0 = 2. Then, indeed, (−1 −
−1)/2 = (− + 3− + 1)/2 = (−2 + 4)/2 = − + 2 = showsY = ( 0 . . . . . .)

with := − +2 makes our˜ ≃ [Y].
These two cases show that the uniform stability for units (or, for that matter, even

the plain stability for units) of as in Theorem 2 above is not anecessary condition
for the affirmative solution of (2).

There are, however, many other instances of assignments of integers ’s for =
for which the resulting˜ = lim← [ ] is not ≃ [Y] for any choice ofY. One

obvious example is the case of := 2 for all∈ N. In this instance, if we are to
denote byν2(−) the 2-adic valuation ofQ, then

ν2( ) = ν2

(
−1 − −1

2

)
< Min(ν2( −1) − 1)

so that we haveν2( ) < ν2( −1)for all > 0. This shows that we cannot keep getting
integer solutions 0 1 . . . −1 . . . . Therefore, this˜ is not polynomial.

Other instances of this example in this negative direction may be worked out like-
wise.

EXAMPLE 3 (D. Wright). Let the base ring :=Q[ ] and, for each ∈ N, let
:= 〈 : ≥ 〉 (which is, by definition, the multiplicative monoid generated by the
’s, ≥ ), where := − . So, 0 ⊃ 1 ⊃ · · · ⊃ ⊃ · · · . Now define, for each
∈ N

def.
= ( −1 )[ 1 2 . . . −1 ] (all ’s are variables)

and further define → −1 through the inclusion −1 ⊂ −1
−1 and the assign-

ments 1 7→ 1 . . . −1 7→ −1 7→ −1
−1. This gives a surjectiveQ-map and a conse-

quent inverse system ( )∈N. (However, the ’s are not algebraic overQ.)

Now define for each > 0 a mapφ : [ ] −→ −1[ −1] by settingφ ( ) :=

−1 −1 over the map → −1 given just above. We claim, then, that one can-
not realize lim←( [ ] φ ) as (lim← )[Y]. Because: if an appropriate series of units
( ∈ U( )) ∈N were to be found so that, letting := (∀ ), one would get
φ : 7→ −1, then these ’s together with the given ’s (where = for all )
must provide a solution set of the equations (2). This, however, is impossible since,
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for each , is expressible like

(15) = ·
∏

( − α )∏
( − β )

where ∈ Q×; all α ≥ β ≥ ;

and, consequently, equation (2) forφ +1 reads as

(16) φ +1( +1) = φ +1

(
+1 ·

∏
( − α′ )

∏
( − β′ )

)
= ( − )−1 · ·

∏
( − α )∏
( − β )

where +1 ∈ Q× and all α′ ≥ + 1, β′ ≥ + 1. Let us assume all rational functional
expressions in (15), (16) are put in reduced form. Then, since the left-side fraction of
(16) can have no − as a fator, there must be exactly one among theα ’s and
none among theβ ’s on the the right-side fraction. We deduce that+1 = /( − ).
Repeat the same reasoning on + 2 and + 1, and we get+2 = +1/( − ( + 1)), or

+2 = /( − )( − ( + 1)), and so on. It follows that = (− )( − ( + 1))×
( − ( + 2)) · · · ( − ( + − 1)) for some > 0 and + = , as long aswe have
stayed away from contradiction up to this point. But, come this far to the ( + )-stage,
one readily sees that nothing works for the choice of+( +1), and this is the final con-
tradiction. This proves our assertion in this example.
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