<table>
<thead>
<tr>
<th><strong>Title</strong></th>
<th>Inverse limits of polynomial rings</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Author(s)</strong></td>
<td>Kambayashi, Tatsuji</td>
</tr>
<tr>
<td><strong>Citation</strong></td>
<td>Osaka Journal of Mathematics. 41(3) P.617–P.624</td>
</tr>
<tr>
<td><strong>Issue Date</strong></td>
<td>2004-09</td>
</tr>
<tr>
<td><strong>Text Version</strong></td>
<td>publisher</td>
</tr>
<tr>
<td><strong>URL</strong></td>
<td><a href="https://doi.org/10.18910/7961">https://doi.org/10.18910/7961</a></td>
</tr>
<tr>
<td><strong>DOI</strong></td>
<td>10.18910/7961</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/repo/ouka/all/
INVERSE LIMITS OF POLYNOMIAL RINGS

TATSUJI KAMBAYASHI

(Received January 27, 2003)

Introduction

In this note we deal with the question as to whether the inverse limit of one-variable polynomial rings is polynomial again. More precisely, working in the realm of the pro-affine algebra theory [1, 2], we look at the pro-affine algebra \( \hat{A} := \lim_{\longrightarrow} A_i[T_i] \) given over \( A := \lim_{\longrightarrow} A_i \) and ask if that algebra \( \hat{A} \) is isomorphic to \( A[Y] \) for a suitable choice of variable \( Y \). Our first answer is that \( \hat{A} \) is always locally polynomial over \( A \) (see Th. 1), and our second answer is that \( \hat{A} \cong A[Y] \) if the inverse system of the units of \( A_i \)'s satisfies a ‘uniformized’ Mittag-Leffler condition (see Th. 2).

After developing and proving these two theorems, we conclude this note with presentation of some examples in §3, originally made up by David Wright during the discussion sessions by him, N. Mohan Kumar and the present author in St. Louis, August 2002. Back in Japan in the fall of the same year the author was able to prove Theorem 2 through further study of these examples.

The author wishes to record here his heartfelt thanks to the two friends just mentioned, as well as to M. Miyanishi who initially suggested the main question to us informally in July 2002 and to R.V. Gurjar together with whom the author made a first analysis of the question.

1. The Problem

Referring the reader to [1, 2] for the basics on pro-affine algebras, we consider a strongly-reduced pro-affine algebra \( A \) over a field \( K \). This means, in effect, that \( A \) is a commutative topological \( K \)-algebra admitting a representation as \( A = \lim_{\longrightarrow} A_i \), where all \( A_i \)'s are reduced and discrete algebras over \( K \) forming a surjective inverse system \( A_0 \leftarrow A_1 \leftarrow \cdots \leftarrow A_i \leftarrow \cdots \) indexed by \( \mathbb{N} = \{0, 1, 2, \ldots \} \). For each \( i \in \mathbb{N} \), consider a one-variable polynomial ring \( A_i[T_i] \), and suppose given maps \( \phi_i : A_i[T_i] \longrightarrow A_{i-1}[T_{i-1}] \) such that \( (A_i[T_i], \phi_i)_{i\in\mathbb{N}} \) forms a surjective inverse system.
compatible with \((A_i)_{i\in\mathbb{N}}\). Namely, we have a commutative diagram

\[
\begin{array}{cccccc}
\cdots & \leftarrow A_{i-1}[T_{i-1}] & \leftarrow A_i[T_i] & \leftarrow A_{i+1}[T_{i+1}] & \leftarrow \cdots \\
\uparrow & & \uparrow & & \uparrow \\
\cdots & \leftarrow A_{i-1} & \leftarrow A_i & \leftarrow A_{i+1} & \leftarrow \cdots
\end{array}
\]

(1)

in which all horizontal arrows are surjections and the vertical ones are the canonical inclusions.

We now ask our basic question due to M. Miyanishi:

(Q) Given (1), is \(\lim_{\to}(A_i[T_i]) \simeq (\lim_{\to} A_i)[\mathbb{Y}] \simeq A[\mathbb{Y}]\)? (Is the inverse limit of polynomial algebras again a polynomial algebra?)

As data for (Q), we have the maps \(\phi_i: A_i[T_i] \rightarrow A_{i-1}[T_{i-1}]\) \((\forall i \in \mathbb{N})\) which satisfy, for all \(i > 0\), \(A_{i-1}[\phi_i(T_i)] = A_{i-1}[T_{i-1}]\), i.e., \(\phi_i(T_i) = e_{i-1}T_{i-1} + b_{i-1}\) with \(e_{i-1}, b_{i-1} \in \mathbb{U}(A_{i-1}), b_{i-1} \in A_{i-1}\).\(^2\) Note that the selection of the variable \(\phi_i(T_i)\) is completely arbitrary and free of choices for other \(\phi_j(T_j)'s\). At this point we carry out our first reduction as follows:

**Step 0.** Let \(T'_0 := T_0\).

**Step i.** If \(T'_0, \ldots, T'_{i-1}\) have been set, and if \(\phi_i(T_i) = e_{i-1}'T_{i-1} + b_{i-1}'\) with \(e_{i-1}', b_{i-1}' \in A_{i-1}\) and \(e_{i-1}'\) a unit, then choose any \(b_i' \in A_i\) such that \(\phi_i(b_i') = b_{i-1}'\) and let \(T'_i := T_i - b_i'\).

One can see then that \(\phi_i(T'_i) = \phi_i(T_i - b_i') = e_{i-1}'T_{i-1} + b_{i-1}' - \phi_i(b_i') = e_{i-1}'T_{i-1} + b_{i-1}' - b_{i-1}' = e_{i-1}'T_{i-1}\). So, we do Step 0, then Step 1, Step 2 and so on, replacing \(T_i\) with \(T'_i\) at each step as we climb up. We then obtain a new series of variables \(T'_0, T'_1, \ldots, T'_i, T'_{i+1}, \ldots\) such that \(A_i[T'_i] = A_i[T_i]\) and \(\phi_i(T'_i) = e_{i-1}'T_{i-1}\) for all \(i > 0\). This implies that, in the surjective inverse system \((A_i[T_i], \phi_i)_{i\in\mathbb{N}}\) for the question (Q) above, one can assume from the outset that \(\phi_i(T_i) = e_{i-1}T_{i-1}\). We will assume this hereafter.

It is now clear, then, that an affirmative answer to (Q) boils down to having a series of units \(\{u_i \in \mathbb{U}(A_i): i \in \mathbb{N}\}\) such that, if we set \(Y_i := u_iT_i\) then, \(\forall i, \phi_i(Y_i) = Y_{i-1}\). When such \(u_i\)'s have been gotten, we have \(\phi_i(Y_i) = \phi_i(u_iT_i) = \phi_i(u_i)e_{i-1}T_{i-1} = Y_{i-1} = u_{i-1}T_{i-1}\), so that

\[
\phi_i(u_i) = e_{i-1}^{-1}u_{i-1}^{-1} \quad \text{for all } i > 0,
\]

(2)

Conversely, if a series of units \(u_i\)'s have been found satisfying (2), then (Q) is answered “yes” as \(\lim_{\to} A_i[T_i] \simeq \lim_{\to} A_i[Y_i] \simeq (\lim_{\to} A_i)[\mathbb{Y}]\) with \(\mathbb{Y} := (Y_0 \leftarrow Y_1 \leftarrow \cdots \leftarrow Y_{i-1} \leftarrow Y_i \leftarrow \cdots)\), where \(Y_i := u_iT_i\) for all \(i \in \mathbb{N}\).

\(^1\)We then say \(\phi_i(T_i)\) is a **variable for** \(A_{i-1}[T_{i-1}]\).

\(^2\)Here as elsewhere, for any ring \(R\), we denote its group of units by \(\mathbb{U}(R)\).
Theorem 1. Let $A = \lim_{\to} A_i$ be a strongly-reduced pro-affine algebra over a field $K$. Suppose given a surjective inverse system

$$A_0[T_0] \leftarrow A_1[T_1] \leftarrow A_2[T_2] \leftarrow \cdots$$

of polynomial algebras $A_i[T_i]$'s over $A_0 \leftarrow A_1 \leftarrow \cdots$, and also given any open prime $P \subset A$, where $P = (P_0 \leftarrow P_1 \leftarrow \cdots \leftarrow P_i \leftarrow \cdots)$ with all $P_i$ prime in $A_i$. Let $S_i := A_i - P_i$. Then, we get a surjective inverse system of polynomial algebras over local rings:

$$S_0^{-1}A_0[T_0] \leftarrow (S_1^{-1}A_1[T_1]) \leftarrow \cdots \leftarrow (S_i^{-1}A_i)[T_i] \leftarrow \cdots$$

and its limit, $\lim_{\to} (S_i^{-1}A_i)[T_i]$, is isomorphic to $(\lim_{\to} (S_i^{-1}A_i))[\mathbb{Y}] = A_P[\mathbb{Y}]$ for a suitably chosen variable $\mathbb{Y}$.

Proof. First observe that, in general, the question (Q) is answerable as “yes” in case the map $A_i \leftarrow A_{i-1}$ induces a surjection $\mathcal{U}(A_i) \rightarrow \mathcal{U}(A_{i-1})$ for all $i > 0$. Indeed, suppose $A_i[T_i] \rightarrow A_{i-1}[T_{i-1}]$ is given by the assignment $T_i \mapsto e_{i-1}T_{i-1}$ with $e_{i-1} \in \mathcal{U}(A_{i-1})$ for each $i$. Then, starting at any level, say $i = 1$, and with any choice of $v_1 \in \mathcal{U}(A_{i-1})$, say $v_1 = 1 \in A_{i-1}$, one can solve the equation (2) successively for $v_i \in \mathcal{U}(A_i)$, then for $v_{i+1}$ and so on, ad infinitum. Then, as we saw just above, putting $Y_i := v_iT_i$ for all $i \in \mathbb{N}$ and $\mathbb{Y} := (Y_0 \leftarrow Y_1 \leftarrow \cdots \leftarrow Y_{i-1} \leftarrow Y_i \leftarrow \cdots)$ gives an affirmative solution for (Q) in the present instance.

To complete the proof we have only to remember that, for all $i > 0$, the local homomorphism $S_i^{-1}A_i \rightarrow S_{i-1}^{-1}A_{i-1}$ of local rings clearly maps the units of the first ring onto those of the second.

Remark. The result we saw just now says, geometrically, that the morphism of ind-affine schemes $\mathcal{Sp}(\lim_{\to} A_i[T_i])) \rightarrow \mathcal{Sp}(\lim_{\to} A_i) = \mathcal{Sp}(A)$ is locally a product $\mathcal{Sp}(A_P) \times \mathbb{A}^1$ above each point $P \in \mathcal{Sp}(A)$.

2. Stability and uniform stability

In analyzing the situation as outlined in §1 and in studying various examples of which some are to be found in §3 below, we see that (Q) is a question of units of the $A_i$’s and their inverse images.

With the case $U_i = \mathcal{U}(A_i)$ in mind, we consider more generally the following inverse system of groups:

$$U_0 \xrightarrow{\mu_1} U_1 \leftarrow \cdots \leftarrow U_{i-1} \xrightarrow{\mu_i} U_i \leftarrow \cdots$$

where the $\mu_i$’s are not necessarily surjective. For each pair of integers $i \geq 0$, $q \geq 0$
we define two types of subgroups of $U_i$:

\[ U_{i,q} := \mu_{i+1} \circ \cdots \circ \mu_{i+q}(U_{i,q}), \quad U_{i,\infty} := \cap_{q=1}^{\infty} U_{i,q}, \]

where $U_{i,0} := U_i$ is to be understood. The inverse system (5) is said to be stable\(^3\) if, for each $i \geq 0$, there exists a $q = q(i) \geq 0$ such that $U_{i,q} = U_{i,\infty}$. In this case, any integer $r \geq q$ is said to be in the stable range at level $i$, and then, clearly, $U_{i,r} = U_{i,\infty}$ holds.

In the stable case, there results a surjective inverse system of groups:

\[ U_{0,\infty} \xrightarrow{\mu_1} U_{1,\infty} \leftarrow \cdots \leftarrow U_{i-1,\infty} \xrightarrow{\mu_i} U_{i,\infty} \leftarrow \cdots. \]

We need to consider next a stronger notion of “uniform stability”. Namely, the inverse system (5) will be called uniformly stable if there exists an integer $q \geq 0$ such that $U_{i,q} = U_{i,\infty}$ for all $i \in \mathbb{N}$. Note that uniform stability with $q = 0$ is the same thing as the surjectivity of the inverse system.

From here on, it will be assumed always that, for all $i \in \mathbb{N}$, $U_i = \mathcal{U}(A_i)$ and $\mu_i = \phi_i|_{U_i}$. Let us say in the present note that the $K$-algebra inverse system $(A_i)_{i \in \mathbb{N}}$ is stable or uniformly stable for units if the inverse system (5) of units $U_i = \mathcal{U}(A_i)$ arising from it is stable or uniformly stable, respectively.

**Theorem 2.** Let $A = \lim_{\to} A_i$ be a strongly-reduced pro-affine algebra over a field $K$. Suppose given a surjective inverse system over $A$

\[ A_0[T_0] \xrightarrow{\phi_0} A_1[T_1] \leftarrow \cdots \leftarrow A_{i-1}[T_{i-1}] \xrightarrow{\phi_i} A_i[T_i] \leftarrow \cdots \]

of polynomial algebras. Assume that the inverse system $(A_i)_{i \in \mathbb{N}}$ is uniformly stable for units. Then,

\[ \lim_{\to} (A_i[T_i]) \simeq (\lim_{\to} A_i)[\mathbb{Y}] = A[\mathbb{Y}] \]

for a suitable choice of $\mathbb{Y} = (Y_0 \leftarrow Y_1 \leftarrow \cdots \leftarrow Y_i \leftarrow \cdots)$ where the $Y_i$ for each $i \in \mathbb{N}$ is a variable for $A_i[T_i]$.

Proof. Letting $U_i := \mathcal{U}(A_i)$ and $\mu_j := \phi_j|_{U_i}$ for all $i$, we consider the inverse system (5) of unit groups. Let us begin by introducing an ad hoc notation as follows: For any $z \in U_j$ and $r \in \mathbb{N}$, define

\[ z^{(r)} := \mu_{j-r+1} \circ \cdots \circ \mu_{j-1} \circ \mu_j(z) \text{ for } r > 0; \quad z^{(0)} := z, \]

\(^3\)This is the well-known Mittag-Leffler Condition.
INVERSE LIMITS OF POLYNOMIAL RINGS

so that \( z_0^{(q)} \in U_{j-r} \) in all cases. Let \( q \geq 0 \) be the level at which the inverse system \( (U_i)_{i \in \mathbb{N}} \) achieves the uniform stability. The case \( q = 0 \) being trivial, we may and shall assume \( q > 0 \). So, \( U_{i,n} = U_{i,\infty} \) for all \( i \in \mathbb{N} \), and \( z^{(q)}_0 \in U_{j-q,\infty} \) if \( z \in U_j \). Now write, for each \( i > 0 \), \( \phi_i(T_i) = e_{i-1}T_{i-1} \) with \( e_{i-1} \in U_{i-1} \) as given, and define \( u_i \in U_{i,\infty} \) and \( v_i' \in U_i \) by the formulæ

\[
\begin{align*}
  u_i := e^{(q)}_{i,q} \cdot v_i := e^{(q)}_{i,q-1}e^{(q-2)}_{i,q-2} \cdots e^{(1)}_{i+1}e^{(0)}_{i}. 
\end{align*}
\]

Finally, for each \( i \in \mathbb{N} \), let us define \( Y_i' := v_i'T_i \), a variable in \( A_i[T_i] \). Then,

\[
\begin{align*}
  \phi_i(Y_i') &= \phi_i(v_i'T_i) = e^{(q)}_{i,q}e^{(q-1)}_{i,q-1}e^{(q-2)}_{i,q-2} \cdots e^{(2)}_{i+1}e^{(1)}_{i+1}e^{(0)}_{i}T_{i-1} \\
  &= e^{(q)}_{i,q}e^{(q-1)}_{i,q-1}e^{(q-2)}_{i,q-2} \cdots e^{(2)}_{i+1}e^{(1)}_{i+1}e^{(0)}_{i}T_{i-1} \\
  &= u_{i-1}(v_{i-1}'T_{i-1}) = u_{i-1}Y_{i-1}'.
\end{align*}
\]

This calculation shows that, with respect to the new series of variables \( Y_i' = v_i'T_i \)'s, the critical coefficients \( u_i \)'s occurring as \( Y_i' \mapsto u_{i-1}Y_{i-1}' \) all belong to \( U_{i,\infty} \)'s. With reference to the equation system (2), one sees at once that (2) is solvable for \( v_i \in U_{i,\infty} \) when \( e_{i-1} = u_{i-1} \in U_{i-1,\infty} \) at each level \( i > 0 \). It follows that a final choice may be made for a variable \( Y_i \) in \( A_i[Y_i'] = A_i[T_i] \) for each \( i \) such that \( \phi_i(Y_i) = Y_{i-1} \), so that \( \lim A_i[Y_i] \simeq A[Y] \) with \( Y := (Y_0 \leftarrow \cdots \leftarrow Y_i \leftarrow \cdots) \).

\[ \Box \]

3. Examples

We conclude the present note with three examples. They were all originally made up by David Wright as explained in the Introduction. However, the author has considerably changed the arguments that follow these examples; in particular, the discussion below for Example 2 is entirely new, even in its direction.

Example 1 (D. Wright). Here is an example of how Theorem 2 above works. Let

\[
\begin{align*}
  A_i := K[x_i, x_i^{-1}, t_1, t_1', t_2, t_2', \ldots, t_i, t_i'] 
\end{align*}
\]

and let \( \phi_i : A_i \to A_{i-1} \) be given by the rule of assignments:

\[
\begin{align*}
  x_i \mapsto 1, x_i^{-1} \mapsto 1, t_i \mapsto x_{i-1}^{-1}, t_i' \mapsto x_{i-1}^{-1}, t_j \mapsto t_{j-1}', t_j' \mapsto t_{j-1}' (2 \leq j \leq i).
\end{align*}
\]

It is then easily seen that \( \U(A_i) = K^\times \times \langle x_i \rangle \), with \( \langle x_i \rangle \) meaning the multiplicative group \( \simeq \mathbb{Z} \) generated by \( x_i \), and that \( \phi_i(\U(A_i)) = K^\times \) for all \( i > 0 \). So, the surjective system \( (A_i, \phi_i)_{i \in \mathbb{N}} \) is uniformly stable for units with \( U_{i,1} = U_{i,\infty} \) for all \( i \in \mathbb{N} \) and \( q = 1 \). Now extend \( \phi_i \) to \( \phi_i : A_i[T_i] \to A_{i-1}[T_{i-1}] \) by choosing any unit \( e_i \in \U(A_i) \) and defining \( \phi_i(T_i) := e_{i-1}T_{i-1} \) for all \( i > 0 \). The resulting pro-affine \( K \)-algebra \( \lim \_\_ (A_i[T_i]) \) may then be 'untwisted' following the recipe given in the proof of Theorem 2, as follows: Since \( q = 1 \), the formula (10) gives \( u_i = \mu_{i+1}(e_{i+1}) \in U_{i,\infty} \)
and \( v'_i = e_i \), so we define \( Y'_i := e_i T_i \). Then, it follows that \( \phi_i(Y'_i) = \phi_i(e_i T_i) = u_{i-1} e_{i-1} T_{i-1} = u_{i-1} Y'_{i-1} \). Since all \( u_i \)'s belong to \( U_{i,\infty} \), the equations (2) with the \( u_i \)'s replacing the \( e_i \)'s are successively solvable as \( i \) goes up, starting with \( v_0 := 1 \) and each \( v_{i-1} \in \mathcal{U}(A_{i-1})_{i-1,\infty} \) producing a \( v_i \in U_{i,\infty} \). We now let \( Y_i := v_i Y'_i = v_i e_i T_i \) and we then get
\[
\lim_{i \to \infty}(A_i[T_i]) = \lim_{i \to \infty}(A_i[Y_i]) \simeq A[\mathcal{Y}] \quad \text{with} \quad \mathcal{Y} := (Y_0 \leftarrow \cdots \leftarrow Y_i \leftarrow \cdots).
\]

**Example 2 (D. Wright).** We now give an example of a pro-affine algebra \( A \) not uniformly stable for units (and not even just stable for units), over which \( \lim_{i \to \infty}(\mathcal{Y}) \) may or may not be an \( A[\mathcal{Y}] \) according as how the units \( e_i \)'s are chosen to define the map \( T_i \mapsto e_{i-1} T_{i-1} \) and consequently the \( A \)-algebra structure. Let \( K \) be a field, let \( A_0 := K \) and let \( A_i := K[t_1, t'_1, \ldots, t_i, t'_i, x_i, x_i^{-1}] \) for all \( i > 0 \), with \( t_j \)'s, \( t'_j \)'s and \( x_j \)'s indeterminates for all \( j > 0 \). Construct a pro-affine \( K \)-algebra \( A = \lim_{i \to \infty} A_i \) through defining
\[
\phi'_i \colon A_i = K[t_1, t'_1, \ldots, t_i, t'_i, x_i, x_i^{-1}] \longrightarrow A_{i-1} = K[t_1, t'_1, \ldots, t_{i-1}, t'_{i-1}, x_{i-1}, x_{i-1}^{-1}]
\]
for all \( i > 0 \) by means of the assignments:
\[
(13) \quad t_j \mapsto t_j, t'_j \mapsto t'_j (1 \leq j \leq i-1), t_i \mapsto x_{i-1}, t'_i \mapsto x_{i-1}^{-1}, x_i \mapsto x_{i-1}^2, x_i^{-1} \mapsto x_{i-1}^{-2},
\]
where we interpret \( x_0 = x'_0 = 1 \). Since the unit group \( \mathcal{U}(A_i) \simeq K^\times \times \langle x_i \rangle \), a typical unit looks like \( r x_i^{m} \in \mathcal{U}(A_j) \), where \( r \in K^\times \) and \( m \in \mathbb{Z} \). It gets mapped by \( \phi'_i \) to \( r x_i^{2m} \in \mathcal{U}(A_{i-1}) \), then to \( r x_i^{4m} \in \mathcal{U}(A_{i-2}) \), and so on. So, the image of \( \mathcal{U}(A_j) \) becomes ever smaller as this group gets mapped down into \( \mathcal{U}(A_j)'s \) of lower indices \( j \). It is then easy to see that the inverse system \( A_0 \leftarrow \cdots \leftarrow A_i \leftarrow \cdots \) is not stable for units, much less uniformly so.

Now, over this same pro-affine algebra \( A \) one can build a variety of pro-affine algebras \( \lim_{i \to \infty} A_i[T_i] \) by specifying \( \phi_i \colon T_i \mapsto e_{i-1} T_{i-1} = x_i^{p_i-1} T_{i-1} \) with various choices for the sequence \( p = (p_0, p_1, \ldots, p_i, \ldots) \) of exponents \( p_j \)'s all in \( \mathbb{Z} \). And then one asks whether or not the equation (2) may be solved in succession as one climbs up on the levels \( i \). Namely the question is, when \( p \) is given, whether or not the system of integer equations,
\[
(14) \quad x_{i-1}^{2q_i} = x_{i-1}^{p_i - 1} \cdot x_{i-1}^{q_i - 1}, \quad i.e., \quad q_i = \frac{q_i - p_i - 1}{2}
\]
may be solved for \( q_i \)'s as \( i \to \infty \) starting with a suitable initial value for \( q_0 \).

As a first instance of this question, let \( p_i := m \) for all \( i \in \mathbb{N} \) with any integer \( m \) chosen and fixed. Then, by means of \( \phi_i \colon A_i[T_i] \to A_{i-1}[T_{i-1}] \) defined by \( T_i \mapsto x_{i-1}^{p_i} T_{i-1} \), one builds a pro-affine algebra \( \bar{A} := \lim_{i \to \infty} A_i[T_i], \phi_i \). Then, this apparently twisted algebra \( \bar{A} \), built over \( A \) which is non-stable for units, can Nevertheless be straightened out and we find \( \bar{A} \simeq A[\mathcal{Y}] \) for an appropriate choice of \( \mathcal{Y} \).
Indeed, one can easily solve for $q_i$ the equation system (14) with $q_i = -m$ when $p_{i-1} = m$, $q_{i-1} = -m$. Then, letting $Y_i := x_i^{-m} T_i$ for all $i \geq 0$, we see that $\phi_i(Y_i) = \phi_i(x_i^{-m} T_i) = x_{i-1}^{-2m} \cdot x_i^{-m} T_{i-1} = x_i^{-m} T_{i-1} = Y_{i-1}$, as asserted just above.

A somewhat more complex choice for the $e_i$'s might be the case where $e_i := x_i^j$ for all $i \in \mathbb{N}$, or where $p_i = i$ for all $i \in \mathbb{N}$. In this instance, too, the untwisting is made by the solution set $q_i := -i + 2$ with initial value $q_0 = 2$. Then, indeed, $(q_{i-1} - p_{i-1})/2 = (-i + 3 - i + 1)/2 = (-2i + 4)/2 = -i + 2 = q_i$ shows $\mathbb{Y} = (Y_0, \ldots, Y_i, \ldots)$ with $Y_i := x_i^{-i+2} T_i$ makes our $A \simeq A[\mathbb{Y}]$.

These two cases show that the uniform stability for units (or, for that matter, even the plain stability for units) of $A$ as in Theorem 2 above is not a necessary condition for the affirmative solution of (2).

There are, however, many other instances of assignments of integers $p_i$'s for $e_i = x_i^j$ for which the resulting $\hat{A} = \lim_{\rightarrow} A_i(t_i)$ is not $\simeq A[\mathbb{Y}]$ for any choice of $\mathbb{Y}$. One obvious example is the case of $p_i := 2^i$ for all $i \in \mathbb{N}$. In this instance, if we are to denote by $\nu_i(-)$ the 2-adic valuation of $Q$, then

$$\nu_i(q_i) = \nu_i \left( \frac{q_{i-1} - p_{i-1}}{2} \right) < \min(\nu_i(q_{i-1}), i - 1),$$

so that we have $\nu_i(q_i) < \nu_i(q_{i-1})$ for all $i > 0$. This shows that we cannot keep getting integer solutions $q_0, q_1, \ldots, q_{i-1}, q_i, \ldots$. Therefore, this $\hat{A}$ is not polynomial.

Other instances of this example in this negative direction may be worked out likewise.

**Example 3 (D. Wright).** Let the base ring $B := \mathbb{Q}[X]$ and, for each $i, j \in \mathbb{N}$, let $S_i := \langle f_j : j \geq i \rangle$ (which is, by definition, the multiplicative monoid generated by the $f_j$'s, $j \geq i$), where $f_j := X - j$. So, $S_0 \supset S_1 \supset \cdots \supset S_i \supset \cdots$. Now define, for each $i \in \mathbb{N}$,

$$A_i \overset{\text{def}}{=} (S_i^{-1} B)[t_1, t_2, \ldots, t_{i-1}, t_i] \quad (\text{all } t_i \text{'s are variables}),$$

and further define $A_i \twoheadrightarrow A_{i-1}$ through the inclusion $S_i^{-1} B \subset S_{i-1}^{-1} B$ and the assignments $t_1 \mapsto t_1, \ldots, t_{i-1} \mapsto t_{i-1}, t_i \mapsto f_i^{-1}$. This gives a surjective $\mathbb{Q}$-map and a consequent inverse system $(A_i)_{i \in \mathbb{N}}$. (However, the $A_i$'s are not algebraic over $\mathbb{Q}$.)

Now define for each $i > 0$ a map $\phi_i : A_i[T_i] \rightarrow A_{i-1}[T_{i-1}]$ by setting $\phi_i(T_i) := f_{i-1} T_{i-1}$ over the map $A_i \rightarrow A_{i-1}$ given just above. We claim, then, that one cannot realize $\lim_{\rightarrow}(A_i[T_i], \phi_i)$ as $(\lim_{\rightarrow} A_i)[\mathbb{Y}]$. Because, if an appropriate series of units $(u_i \in \mathcal{U}(A_i))_{i \in \mathbb{N}}$ were to be found so that, letting $Y_i := u_i T_i(\forall i)$, one would get $\phi_i : Y_i \rightarrow Y_{i-1}$, then these $u_i$'s together with the given $e_i$'s (where $e_i = f_i$ for all $i$) must provide a solution set of the equations (2). This, however, is impossible since,
for each \( i \), \( v_i \) is expressible like
\[
(15) \quad v_i = r_i \cdot \frac{\prod(X - \alpha_j)}{\prod(X - \beta_k)} \quad \text{where} \quad r_i \in \mathbb{Q}^\times; \quad \text{all} \quad \alpha_j \geq i, \beta_k \geq i; \\
\]
and, consequently, equation (2) for \( \phi_{i+1} \) reads as
\[
(16) \quad \phi_{i+1}(u_{i+1}) = \phi_{i+1} \left( r_{i+1} \cdot \frac{\prod(X - \alpha'_j)}{\prod(X - \beta'_k)} \right) = (X - i)^{-1} \cdot r_i \cdot \frac{\prod(X - \alpha_j)}{\prod(X - \beta_k)}, \\
\]
where \( r_{i+1} \in \mathbb{Q}^\times \) and all \( \alpha'_j \geq i + 1, \beta'_k \geq i + 1 \). Let us assume all rational functional expressions in (15), (16) are put in reduced form. Then, since the left-side fraction of (16) can have no \( X - i \) as a factor, there must be exactly one \( i \) among the \( \alpha_j \)'s and none among the \( \beta_k \)'s on the the right-side fraction. We deduce that \( v_{i+1} = v_i/(X - i) \).

Repeat the same reasoning on \( i + 2 \) and \( i + 1 \), and we get \( v_{i+2} = v_{i+1}/(X - (i + 1)) \), or \( v_{i+2} = v_i/(X - i)(X - (i + 1)) \), and so on. It follows that \( \forall q > 0 \) and \( v_{i+q} = r_i \), as long as we have stayed away from contradiction up to this point. But, come this far to the \((i+q)-\)stage, one readily sees that nothing works for the choice of \( v_{i+(q+1)} \), and this is the final contradiction. This proves our assertion in this example.

References