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1. Introduction

Let us consider the Schrϋdinger operator

(1.1) S=-A+Q(y)

in RN. The purpose of this work is to show an asymptotic formula for the
solution V of the equation (S—k2)V=F under the assumption that Q(y) is a
long-range potential, i.e., Q(y)=O(\y\ ~ε) (£>0) as |y|->oo. Here k^R— {0}
and F(y) is a given function on RN, and the solution V satisfies the * 'radiation
condition"

(1.2) _

The exact definition of the radiation condition will be given below (Defini-
tion 2.1).

Our method has its origin in the works of W. Jager ([4]̂  [7]). He considered
the differential operator with operator-valued coefficients

(1.3) L = -+B(r)+C(r) re/=(0, -) ,

where for each rEΞ/ B(r) is a non-negative definite, self-adjoint operator in a
Hubert space X and C(r) is a symmetric operator in X . L acts on .XT-valued
functions on /. In the above papers Jager, among others, has established the
limiting absorption principle for L and an asymptotic formula for the solution v
of the equation (L — k?)v=f, which were used to develop an eigenfunction
expansion theory associated with L. These results can be applied to the
Schrϋdinger operator as follows: Let X=L£SN~1), SN~l denoting the (N— 1)-
sphere, and let L2(7, X ) be the Hubert space of all Jf-valued functions F(r) on /
such that I/Ml* is square integralbe on /, where | |^ means the norm of X.
Then the multiplication operator U of the form



12 Y. SAITO

(1.4) U: L2(RN)Έ$f(y) H* r^-^2f(rω)^L2(I, X) (r=\y\, ω=}

gives a unitary equivalence between L2(RN) and L2(/, X). Further, we have

(1.5) S= U~1LU

with

KN being the Laplace-Beltrami operator on SN~l. Thus all results obtained for
L can be applied to S by the use of the unitary operator U. Saito [8] ~~[12] have

extended Jager's results to apply to the Schrϋdinger operator. [10] gives an
asymptotic formula for the solution v of the equation (L—k2)v=f which can be

applied to the Schrϋdinger equation (S—k2)V=^F with Q(y)=O( \y\~*)> £>l/2.
On the other hand the Schrϋdinger operator can be treated directly by using

essentially the same idea as the above works. Along this line Ikebe-Saito [3]
has shown the limiting absorption principle for S with Q(y)=O(\y\-*), £>0,
and the asymptotic behavior of the solutions of the equation (S—k2)V—F and
spectral representations for S have been investigated in Ikebe [2] with Q(y)=
0(\y\-*),8>l/2.

In this work we shall restrict ourselves to the case that the potential Q( y)

satisfies Q(y)=O( \y\ -ε) at infinity with 0<£^l/2. More precisely Q(y) is
assumed to satisfy the following

Assumption 1.1.

(Q) Q(y) can be decomposed as Q(y)=QΌ(y)+Qι(y) such that QQ and Ql are
real-valued functions on RN, N being an integer with N>2.

There exist constants C>0 and 0<£ ̂ 1/2 such that Q^Cm(RN) and

(1.7) \DiQ0(y)\^C(l+\y\)->-* (y^RN

9j=09 1, 2, -, m),

where D} denotes an arbitrary derivative of y~th order and

= (if 2/£ is an integer),
( ' ' m I [2/£]+l (otherwise),

[a] denoting the greatest integer n such that n^a.

(1.9)

with the same C, 8 as in

In §2^ §4 we shall consider the operator L given by (1.3), where B(r) and
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C(r) satisfy (1.6) with ΛΓ^3. The argument have much similarity to the one
used in [10]. But we have to newly construct a function \(yy k) (y^RN,
k&R— {0}) which is introduced as a solution of the following problem: Find a
function λ(j>, k) such that (L— k2)(etμ'x)=O(r-1~ζ) at infinity for any smooth
x(ω)ϊΞX=L2(SN-1), where

(1.10) μ(y, k) = r*-λ(y, *) (r=\y\)

The function Γ00(*— }dt, which was used in Saito [10], [11] (or Ikebe [2]),
Jo V \y\/

will be turn out to be the "first approximation' ' to \(y, k). The case of N=2
will be discussed briefly in §5.

Using the results obtained in this work we can develop an eigenfunction
expansion theory for the Schrϋdinger operator (1.1) with Q(y)=O(\y \ ~ε) with

^ 1/2. We shall discuss this in [13].

2. The limiting absorption principle and the main theorem

In this and the succeeding two sections we shall assume the spatial dimen-
sion N^3. Then B(r) defined by (1.6) is a non-negative self-adjoint operator
in X for each r^I— (0, oo). Corresponding to the decomposition Q(y)=

0oOO+0ιOO, we set qr)=C.(r)+CI(r), i.e., C;.(r)=ρ/rω)x (j=l, 2).
Now we shall list the notation which will be employed in the sequel without

further reference. Many of these were used in [10] and [11].

C+ == {k = βi+^EΞC/^φO, k2^0} .

X=L2(SN~1). Its norm and inner product are denoted by and | | x and

(,)*•
L2tβ(J, X) (β^R) is the Hubert space of all X-valued functions /(r) on

an open interval / such that (l+*")β \f(r) \ x is square integrable on /.
The inner product and norm are defined by

and

respectively. When ^8=0 or /=/=(0, oo) the subscript 0 or 7 may
be omitted as in L2(7, X), \\\\β etc.

Hί»(J, X^UHM, where /=(0, R), Bx={ye=R»l\y\ ^R}, U is
given by (1.4) and Hm(Ω) is the Hubert space obtained by the com-
pletion of C^ (Ω) by the norm
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For N^3 HQ B(I, X) is a Hubert space with its inner product

(/> g)B.j = (Λ g\

and norm ||/IU,/=-[(/,/)β,/]1/2. When /=/ we shall omit the sub-
script /as in || ||B etc.

, X) (7^0) is the set of all anti-linear continuous functionals I on

HJ V> X)> i e ,

such that

is finite. Fγ(J, X) is a Banach space with its norm ||| |||γ>/. When
/=/ the subscript / will be omitted as in ||| |||γ.

L2(I, X)loe (H\'B(I, X)loe) is the set of all X- valued functions / such that
ξf^L2(I9 X) (Ho'B(I, X)) for any real-valued, smooth function ξ on
/=[0, oo ) with compact support in 7.

D denotes the domain of the Laplace-Beltrami operator ΛN (as a self-
adjoint operator in X).

C(A, B9 •••) denotes a positive constant depending only on A, By •••. But
very often symbols indicating obvious dependence will be omitted.

Cm(RN)y C«(RN)y H2(RN)loc etc. will be employed as usual.

Let us first show the limiting absorption principle for L which is our main
tool. Throughout this paper a number δ will be fixed such that l/2<δ<
1/2-K/4.

DEFINITION 2.1 (radiative function). Let /eF0(/, X) and k^C+ be given.
Then an X- valued function v(r) on / is called the radiative function for {L, &, ^},
if the following three conditions hold :

1) veH\'*(It X)loc.
2) v'-ikv^L2^(I, X).
3) v satisfies the equation

(2.1) (v, (L-k*)φ)0 = </, φ> (φe C7CΓ(Λ^)).

For the proof of the limiting absorption principle it suffices to replace
in Assumption 1.1 by
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(Qiϊ Q^C\R«) and

(2.2) \Ql(y)\^C(l+\y\)-^ (y^R»)

with C and 6 as in Assumption 1.1.

Theorem 2.2 (limiting absorption principle). Let (£)), (£)0) in Assumption

and (Qΐ) be satisfied and let N^.

( i) Let (k, 1)^C+XF0(I, X) be given. Then the radiative function for

{L, k, /} is unique.

(ii) For given (k, J)^C+xF8(Iy X) there exists a unique radiative function

v=v( ,k,ί) far {L, k, /} which belongs to L2,_δ(/, X)tMil*B(I, X)hc. The

mapping

(2.3) C+xFs(I, X)=)(k, /)*-»*(•, *, 0^^2,-δ(/, X)ϊλHl *(I, X)loc

is continuous as a mapping from C+xF8(I, X) into L2>_S(I, X) and is also con-

tinuous as a mapping from C+xF8(I, X) into H\tB(I, X)hc.

(iii) Let Kbea compact set in C+. Let v=v( , k, £) be the radiative function

for {L, ky /} with k^K and t^F8(I, X). Then there exists a positive constant

C=C(K)y depending only on K (and L), such that

(2.4) I W

and

(2.5) ||β|

Before proving this theorem we prepare

Lemma 2.3. Let v^.Hl'B(I, X)loc be a solution of the equation (2.1) with

and l=i\f] (/eL2(/, X)loc), where we set

(2.6)

Then v satisfies following (1)^(4):

(1) v(r) is an X-valued, strongly continuously differ entiable function on I

with its derivative v'(r). We have v(0)=0.

(2) v'(r) is an X-valued, strongly absolutely continuous function on every

compact interval in I, and v'(r) is strongly differ entiable almost everywhere on I

with its derivative v"(r)^L2((a, ό), X) for any 0<a<b<oo.

(3) v(r)<=D for almost all r<Ξ/, and B(r)v<=L2((a, b), X) for any

(4) We have

(2.7) -v"(r)+B(r)v(r)+C(r)v(r)-k2v(r) = f(r) (a.e. re/).



16 Y. SAITO

Proof. Using (1.5), we obtain from the relation (2.1) with ^=

(2.8) (U-*V, (S-k*)φ)L2 = (U-lf, φ)K2 (φ^C~(R»)\

where (, )LZ means the inner product of L2(RN). Then, as is well-known,
φQ= U~lv belongs to H2(RN)loc (see Ikebe-Saito [3], p. 536). Therefore there
exists a sequence {φn} c C^(RN) such that φn->φ0 in H2(RN)loc. We set
vn= Uφn. From the relations vn-*v, vn'-+v' in L2((Q, b), X) and vn"-*v",
Bvn-^Bv in L2((a, b), X) (Q<a<b<°o) we can easily obtain (1)^(4). Q.E.D.

Proof of Theorem 2.2. B(r) and C(r) satisfy Assumption 1.1 of [10] except
the smoothness of C^r)1^ Hence we can proceed as in the proof of Theorem
1.3 of [10], if we use Lemma 2.3 in place of Proposition 2.4 of [10]. Q.E.D.

Now we are in a position to state the main theorem. Here we may assume
with no loss of generality that

(2.9) ρ000 = o ( i j i ^ i )

Theorem 2.4 (asymptotic behavior of the radiative functions). Let
Assumption 1.1 and (2.9) be satisfied and let N^3. Then there exist real-valued
functions Z(y)=Z(y, k) on RN X (R- {0}) and <ψ(ω)==ψ(ω,fc) on SN~l X (R» — {0})
such that Z(y)<=C\RN), ^(ω}^C2(SN'λ) and there exists the limit

(2.10) a = a(k, f) = s-lim e-"«'"k>v(r) in X
r+<χ>

for any radiative function v for {L, k, /[/]} with k^R— {0} andf^L2tl+8_ζ(I, X),
where μ(y, k) is defined by

(2.11) μ(y, k) = r*-{Γz(fω)Λ+f(r)ψ(ω)} (r= \y\, ω=yl\y\),

and ξ(r] denotes a real-valued smooth function on [0, °o) such that

ί O
(2.12)

This theorem will be proved by making use of the next

Theorem 2.5. Let Q(y) be as in Theorem 2.4 and let — i</3^1 — δ.
(i) Let v be the radiative function for {L, k, ί\ with k^R— {0} and

', X). Then we have u'—iku, Bl/2u<=L2>β(I, X), where u=e*v and

(2.13) λ(3/) = \(y, k) = \rZ(ΐω)dt+ξ(r)ψ(ω).
Jo

1) The condition (J53) of Assumption 1.1 of [10] is justified by the Rellich lemma.
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Further let Kbea compact set in R— {0} . Then there exists C= C(K, β) such that

(2.14) \\uf

for any radiative function v for {L. k, /} with k^K nad J^F1+β(Iy X).
(ii) There exists C=C(K) such that for any radiative function v for {L, k, 1}

(k(ΞK, /eF1+β_,(/, X)) we have

(2.15) Kr)|^C|||/|||1+δ_ε (re/).

In the following section we shall construct λ(y) and prove (i) of Theorem 2.5.

Theorem 2.5, (ii) and Theorem 2.4 will be shown in §4.

3. An estimate for radiative function

Let us first consider the following problem: Find a real-valued function
\(y)=\(y9 k) on RNx(R— {0}) such that

(3.1) x =

for any #eZ), where μ is given by (2.12). If £)0— 0, then \(y)= 0 is a solution
of this problem. We shall construct a solution of this problem which will play
an important role in this and the next sections. In order to solve this problem
we have to investigate some properties of the Laplace-Beltrami operator AN on

SN~1. Let us introduce polar coordinates (r, Θ19 Θ2, •••, ΘN-I)> i e >

(yi =rcosθly

(3.2) \yj =r sin θv sin 02 sin β ̂  cos 0,- (;=2, 3, •-•, N— 1) ,

(yN =

where r^O, O^Θ19 Θ2, •••, θN.2^πy Q^ΘN_^2π. We set

/ bj = bj(θ) = sin Θ1 sin 02 sin θj_l (j=2, 3, -, N-l),

(3.3) ]*ι = * ι W = l ,
lM, = AΓ/ί) = *χ^A.

Then, as is well-known, we have

(3.4) A '

(see, for example, Erdάlyi and others [1], p. 235), and hence, sesting A=—AN-\-

3) - n a k. -^ as in (1.6), we obtain
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(3.5)

Moreover we set

(ΛΓ-l)(Λr-3)Ίi/2
- - '

)(Λr-3)Ίi
J - 'J

φ = φ(y) = φ(y, \) =
yλ)2

& Γr R7
_(Λr-i)2 |^-y.l,.fcn=ι Jo σ

(3.6)

Here λ is given by (2.13)

Lemma 3.1. Let x^D. Then we have

(3.7) (e±iλB(r)-B(r)e±iλ)x = e±iλ(-

and

(3.8) (L-k2)(eillx) = eil

\r~*.

where λ, 9?, P are as above, W=iξ"ψ+ξ'ψ(ξ'ψ<+2Z—2k\ and ξ, Mj are defined
by (2.12) and (3.3), respectively.

Proof. A(e±iλx) can be calculated as follows:

(3.9) 0±i\

Since the fourth term of the right-hand side of (3.9) is equal to ::fir2P(y)e±ίλx
by Lemma 5.7 of [11], the first relation of (3.7) follows from (3.9). The second
relation can be obtained from the first relation and

(3.10) Mj(e±iλx) = ±ι(Mj\)e±iλx+e±iλMjx .

(3.8) follows from (3.9) and

(3.11) (*•>*)" = -(iZ'+k2+Z2-2kZ+W)e*x .
Q.E.D.

2) 3)(W) denotes the domain of W.
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Let \(y) satisfy the estimates

12)
' '

Then, since M j\=O( \ y \ »-') and P(y), Z'(y)=O( \y \ -'-*), it follows from (3.8)
that (3.1) holds good. To obtain \(y) which satisfies (3.12) let us consider

sequence {Z™(y)} and {-ψ-(Λ)(ω)} defined by

(«=0, 1, 2, .», ί

(»=0, 1, 2,

0 (n=0, 1,2, .. ,

(3.13)

(«=«„+!, •••, m— 1),

where m is given by (1.8) and n0 denotes a positive integer which satisfies n0£<l

Lemma 3.2. Le£ w be an integer such that O^n^m.

( i ) ThenZ< >(y, -k)=-Z™(y,k) (y(ΞRN, k<=R-{0}) and Z^(y}k)=
for |y|^l,fteΛ-{0}.

( ii ) We have

. ^O, 1, -, m-n)

(3.14)

(iii) Further, Z^"\y) e C—^Jfί*)

(3.15) IZVZWCy)! ^C,,(l+ |y|)-'-

with constants Cn.

If we note (1.7) in Assumption 1.1 and (2.9), then the proof is easy by induc-
tion, and hence we shall omit it.

DEFINITION 3.3. We set

(3 16)
Y(y) = 2kZ(y)-Q,(y)-Z(y)*-<p(y) .

\(y, k) is defined by (2.13).

REMARK 3.4. (1) From Lemma 3.2 we see that Z(y)^C2(RN\
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C^S"-1) and

Γ \D^Z(y)\^C(\+\y\Y^ 0=0, 1,2),
1 ' J

(2) In order to obtain λ( y) which satisfies (3.12) it is sufficient to set λ(jy)=
\(n\y\ n=[l/£\. But we have taken \(y)=\(m-2\y) for the sake of convenience
of showing Theorems 2.4 and 2.5.

(3) In the case that £>l/2 it suffices to set Z(y)= Z(0\y)=(2k)-1QQ(y) and
ψ(ω)=0 (cf. Ikebe [2] or Saito [10], [11]).

Now let us enter into the proof of (i) of Theorem 2.5. Through the
remainder of this section β is taken to satisfy — l/2<β^l — 8.

Proposition 3.5. Let Q(y) be a real-valued, continuous function on RN

^3) such that \ Q(y) \ ̂ C(l+ | y \ )~2 (y<=RN). Let v be the radiative function
for {L, k, /[/]} with k(=C+ andftΞL2>1+β(I, X). Then we have v'-ikv,

Proof. The proof will be divided into three steps.
(I) Let φ<Ξ UCo(RN) and setf=(L—k2)φ. Then, taking the real part of

the both sides of the relation (α(l+r)2β+1(L-A2)φ, φ'-ίkφ\=(a(\+r}2^f,
φ'—ikφ)0 with a real-valued smooth function a on / such that a(r)=Q (r^ 1),= 1
(r^2), and using partial intagration, the interior estimate (Lemma 3.1 of [10])
and (2.4), we obtain

(3.18) nφ'-^φll.+ l^φii^cil/ll^

with C=C(k) which is bounded when k moves in a compact set in C+. Here
we should note the relation (L—k2)φ=—(φ'—ikφy—ik(φ'—ikφ)+Bφ+Cφ.
Then we can proceed as in the proof of (1.7) in Lemma 1.5 of [10].

(II) Next let us assume that /eL2>1+β(7, X) and k^C+ with Im &>03).
Then, by translating the argument used in the proof of Lemma 1.10 of Ikebe-
Saitϋ [3] into our case by the use of the unitary operator [7, we can find a
sequence {φjc UCo(RN) such that fn=(L— k2) φn converges to/in L2>l+β(I, X).
Then it follows from the continuity of the radiative function that φM converges
to the radiative function v for {Ly k, /[/]} in L2,-δ(/, X)f\H\'B(Iy X)hc, whence
follows that v'—ikv, Bl/2v<=L2tp(I, X) and that (3.18) holds good with φ replaced
by v.

(III) Finally let us assume that k^R— {0} and /eL2,1+β(/, X). Then,
setting kn=k+i/n and denoting by vn the radiative function for {Ly kn) 4/]}> we

3) Im z (Rez) means the imaginary (real) part of z.
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have (3.18) with φ=vn. If we let n-+°°, then we can easily see that v'—ikvy

B1/2v<=L2tβ(I, X), which completes the proof. QJE.D.

The following proposition is the key lemma to the proof of (i) of Theorem 2.5.
Let us set

(3.19)

where G(y) is a function on RN and

Proposition 3.6. Let Q(y) satisfy Assumption 1.1 with N^3 and let \(y)
be as in Definition 3.3. Further QΌ(y) is assumed to have compact support in RN.
Then there exists C=C(k, Q) such that the estimate

(3.20) \\u"-iku\\β+\\B^u\\β^C\\f\\l+β

holds for any radiative function v for {L, ky J[f]} \with k^R— {0} and
/<ΞL2>1+β(/, X), where u=e*v and λ is given by (2.13). The constant C=C(k, Q)
is bounded when k moves in a compact set in R— {0} and p2(ζ?ι)> Pj+s(D'Qo)
(/=0, 1, •••, m) are bounded.

In order to show this proposition we need several lemmas.

Lemma 3.7. (i) Let u be as in Proposition 3.6. Then

(3.21) -(uf-ikuy-ik(uf-iku)+Bu = eiλf-2i(Z+ξ'ψ)(u'-iku)

+(Y-Cl-iZ'-ιP-W)u-2ir-2Mu ,

where we set

(3.22) M = JJ2(Mj\)Mj

and MJ, P and Y are given by (3.3), (3.6) and (3.16), respectively.
P

(ii) Set V(y) = ^gj(y)Gjy with C1 functions g j on RN— {0} and operators

Gj in X such that Φ(Gj) c S)(AII2\ A being given in (1.6). Then

(3.23) (T(Vu, u'-ίku)xdr = (2ik)-l{[(Vu, u'-iku)x]
T

R
JR

-(T(V(u'-iku), u'-iku)xdr-(T(V'u, u'-iku)xdr
JR JR

+2i\T \(Z+ζ'ψ)Vu, u'-iku)xdr+\T(Vu, (Y-Cl-iZ'-iP-W)u+ei^f)xdr
J R J R

-(T(Vu, Bu)xdr+2i\T (Vu, r~2Mu)xdr} (0<R<T).
JR JR

(in) Let x, x'^D and let S(y) be a C1 function on RN. Then
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(3.24) (SMx, oS)x+(Sx, Mx% = -r2(SPx, x')x-((MS)x, *')* .

Proof. Multiply the both sides of (L—k2)v=fby eiλ. Then, by an easy
computation, we arrive at (3.21). (ii) is obtained from (i) by the use of partial
integration, (iii) also follows from partial integration if we note Lemma 5.7 of
[11]. Q.E.D.

Lemma 3.8. Let Q(y) be as in Proposition 3.6 and let v be as in Proposition
3.6, too. Then we have

(3.25)

, Bu)xdr ,

where a is a real-valued, smooth function on I such that a(r)=0 (r^jR), —1
(r^Λ+1), -η(T) is a function of T satisfying ilm ι?(Γ)=0, T>R+l, and

y->oo

C=C(k, Q) satisfies the same properties as in Proposition 3.6. m is as in (1.8).

Proof. Multiply the both sides of (3.21) by ar2β+\u'—ίku), integrate over
the region {y^RN/R< \y\<T} and take the real part. Then we obtain

(3.26) K = Re(Tar2β+1{(Bu, uf -ϊku)x-((u' -iku)1 , u'-ikux)} dr
J R

= ReΓαr"+1{(β'V, u'-iku^+UY-C^W)^ u'-iku)x}dr
J R

+Im(7 ar2^\(Z'+P)u, u'-iku)xdr
JR

+2Lm[T arV-^Mu, u'-iku)xdr = K,+K2+K3 ,
JR

where M in K3 of the right-hand side is defined by (3.22). The left-hand side
K of (3.26) is estimated from below as follows:

(3.27)

T 2 1 1 2 22w 1 2xdr-~ T2β+1 \ u'(T)-iku(T) \ 2

X .
2 JR 2

Noting that β^l — δ, we can estimate Kλ as

(3.28) K^C\\f\\l+β[ ar2? u'-i
JR
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where we have used (2.4) and the constant which depends only on k and Q(y)
will be denoted by the same symbol C in the sequel. Let us estimate K2. Set
V=ar2β+1(Z'+P) in (3.23) and use the Schwarz inequality and (2.4). Then

(3.29) K2£-Kε{T»+\(Z'(T)+P(T))ιι(T), u'(T)+iku(T))x}LR

+CF(T)+k~1 Im ατ2fi+1(Z(Z'+P)M, u'-iku)xdr
JR

+k-1 Im (Tar2β-\(Z'+P)u, Mu)xdr ,
J R

where we set

(3.30)

K3 can be estimated by the use of Lemma 3.7, (ii), too. Setting V=ar2β~1M in
(3.23), we obtain

(3.31) K3^-k~l Re T2*-\Mu(T\ u'(T)-iku(T))x+CF(T)

+2k~l Im [T ar2β-\ZMu, u'-iku)xdr
J R

Im [Tarzβ-\Mu, (Z'+P)u)xdr
R

Re Γαr^-Ww, Bu)xdr.
JR

Here we have used the relation

(3.32) Re (M(u'—ϊku\ u'—iku)x = — ~r\P(u'—iku\ u'—iku)x ,

which follows from (2.24) with χ=χ'=u'—iku and S(y)=l. Thus it follows
from (3.26), (3.27), (3.28), (3.29), (3.31) and the interior estimate (Lemma 3.1 of
[10]) that we obtain

(3.33) J = 0+ γ I u'~iku \2

xdr+-βRar2^ \ B^u \ \dr

^ η(T)+CF(T)

~l Im [Tαr2β-1{((Z/+P)ιι, Mu)x+(Mu, (Z'+P)u)x}dr
J R

-1 Im (Tar2*+l(Z(Z'+P)u, u-iku)xdr
J R

-1 Im (T ar^-\ZMu, u'-ίku)xdr

-1 Re αr*-'(M«, Bu)xdr =
R
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where

(3.34) v(T) = 1 Γ2"+1 1 u'(T)-iku(T) I i

*-1 Re {Γ^-^M^T), u'(T)-~iku(T))x} .

Since v'—ikv, J31/2eL2>/3(/, ^L) by Proposition 3.5 and the support of Z(y) is
compact in RN by the compactness of the support of Q0(y), it can be easily seen
that u'—ihu, 51/2weL2>j3(/,, X)y which implies that lim^(T)=0. By using

Γ-*03

(3.24) J3 is shown to be zero. J4 and J5 can be estimated in quite the same way
as in the estimation of K2 and K3, respectively. Thus we obtain

(3.35) J^(T)+CF(T)

+k-2 Im (T

 Cff
2β+l(Z2(Z/+P)u9 u'-iku)xdr

J R

+2k-2 Im (T ar^-\Z2Mu, u'-ϊku)xdr
JR

+A:-1 Re (* ar2ft-\Mu, Bu)xdr
JR

+k~2 Re (T ar2β-\ZMu, Bu)xdr .
JR

Repeating the above arguments, we arrive at

(3.36) J^ η(T)+CF(T)+ Σ k-"-1 Re (T ar^-^Z Mu, Bu)xdr
» = 1 J R

« Im [T ar2^\Zm-l(Z'+P)u, u'-iku)xdr
JR

-(m-» Im (Tαι^-1(Z—1Afa, u'-iku)xdr ,

whence (3.25) follows directly. Q.E.D.

In order to show Proposition 3.6 completely we shall estimate the term
Re (ZnMu, Bu).

Lemma 3.9. Let S(y) be a real-valued C1 function on RN such that
\ S(y) \ ̂ c (y^RN) and \ DS(y) \ ̂ cr~l ( \ y \ > 1) with a constant c>0. Then we
have

(3.37) |Re(SM*, Ax)x\^Ci*-*(\AWx\*x+\x\*x) (r^l, x^D)

with C=C(c, k) which is bounded when c is bounded and k moves in a compact set in
R— {0}. A is given in (1.6).
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Proof. We shall divede the proof into several steps.
(I) From (3.5) we obtain

(3.38) / = Re(SMx, Ax)x = Reg(Mn(SMx), Mnx)x

+c2

NRe(SMx,x)x=Jl+J2.

Throughout this proof we shall call a term K an O.K. term when K is dominated
by Crl-\\A1/2x\2

x+\x\2χ) for r^l with C=C(c, k). Since | SMx\x^Crl~*
\Al/2x\x, we can easily show that J2 is an O.K. term. Thus we have only to
consider the term/!.

(II) Let us calculate Jί

(3.39) J, = Re*Σ((MnS)(MX), Mnx)x

g (5 Σ (MBM,.λ)(M,.*), Mnx)x

J

n M j x ) , Mnx)x =Jn+Ja+Ja.

By noting that MnS(y) is bounded on {y^RN/ \y \ ̂  1} Ju is seen to be an O.K.
term. Before calculating J13 we mention

(3.40) (n=j),

which is clear from the definition of Mj (see (3.3)). Using (3.40), we have

(3.41) J13 = Re g {(S g (Mj\)bj^^-(MnX), M'nx)x

jX), MnX)N}

+ Re (SM(Mnx), Mnx)x=J131+J132 .

Here J132 is an O.K. term, because, making use of (3.24) with x=x'=M nx, we

have

(3.42) Jm = — {r\SP(Mnx\ Mnx)x+((MS)MnX, Mnx)x} .

Therefore let us consider J12-\-Jι3ι
(III) Set



26 Y. SAITO

(3.43)

Zt(rω) = ,tωtdt (p=\,2, ,N),

z,t(f>) = 0A)-1 Σ
j = P,n = 4 J(

(p,q=l,2, .,N),

bjyyjtp being given by (3.3), (3.6), respectively. Then, setting cos 0^=1, we
obtain

(3.44)

and

sin P

(3.45) MJM,\ =

Thus yi2 takes the form

(3.46) J12 = Re

B — *» 2 Σ -̂  A cos ̂  0'= ») >

sin

jv
Σ/> = »

j!V-ι ιr-\

n=ι y = ι

Σ ^ ί̂ cos

Zyjl(M^),M lgx) jr=.

/122 is an O.K. term, because Zjn(y)=O(\y\l-<!) by the first estimate of (3.17).
Hence, in place of Jl2-\-Jm, it is sufficient to consider

(3-47) J'

with

(3.48) P. =

and

(3.49) Ga =

, MHx)x+

sin Ό ρ=n

, Mnx)x =//+//

cos θt = FΛ-Fn2 ,

sin

(IV) Now let us calculate Fnl. Using (3.44) and interchanging the order
of summation, we arrive at

(3.50) Σ ZJ>p cos θp+ Σ ,̂δ,δ-2 cos ΘP+Z, cos 0j ,



ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS OF THE SCHRODINGER EQUATION 27

and hence

(3.51) Fn = - Σ Zpbp cos Θp+Zl cos θ, ,
p-2

which implies that // is an O.K. term. As for J2' we can interchange the
order of summation to obtain

.ZV-l n-l ΓΩS f) .
(3.52) // = Re Σ Σ {(Sbr—^-(Mn\)(M].X), Mnx)x

, MjX))x} = 0 .
\j j

Thus we have shown that each term of /=Re(5M#, Ax)x is an O.K. term,

which completes the proof. Q.E.D.

Proof of Proposition 3.6. By the use of Lemma 3.9 the last term of the
right-hand side of (3.25) is dominated by CF(T), where F(T) is defined by (3.30)
and (2.4) has been used. Therefore by letting T— >°° along a suitable sequence
{Tn} in (3.25) we obtain

(3.53) (β+^~χaι&\u'-iku\2

xdr+(^

Take R sufficiently large in (3.53). Then it follows that

(3.54) Γ f*(\u'-iku\2

x+\B^\*x)dr£C\\f\\l+β (C=C(k, Q)),
JR+l

which, together with the interior estimate (Lemma 3.1 of [10]), yields to (3.20).
Q.E.D.

Now that we have shown Proposition 3.6, we can prove (i) of Theorem 2.5.

Proof of (i) of Theorem 2.5. Let v be the radiative function for [L, ky 1}
with k<=K9 the compact set of R— {0}, and /eί\+β(7, X). Let k0<=C+ such
that Im £0<0. Then v can be decomposed as V—VQ-\-W, where VQ is the radiative
function for {L, kQ, /} and w is the radiative function for {L, k, J[f]},f=(k2—kl)v0

(Lemma 1.8 of [10]). It follows follows from Lemma 1.7 of [10] that
v0<=L2Λ+β(I, X) and

(3.55) IK-^I

with C0— C0(kQ, k, /3)4), and hence it suffices to show the estimate (3.20) with

4) It should be noted that Lemmas 1.7 and 1.8 are valid in our cass if the space CQ>S(/, X)
is replaced by UC"(R#).
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u=eiλw. To this end we shall approximate Q0(y) by a sequence {Q0n(y)}> where
we set

(3.56) QM = *.( |y I )Q0(y) , ί.(r)=ί(r/n),

and ί(r) is a real-valued, smooth function on / such that s(r)=l (r^l), =0
(r^2). Then it can be easily shown that for each j=Q, 1, •••, wpj+^D'Qto) is
bounded uniformly for w=l, 2, •••. Let us set

(3.57) Lβ = -^-+B(r)+CΛt(r)+Cl(r) (Cta(r) = QJjrω) X ),

and let us denote by a/n the radiative function for {LM, &, 4/1) with/=(£2— &o)^0

(fl=l, 2, •••). For each LM the function Zn(y) and ψw(ω) can be constructed
according to Definition 3.3 with Q0(y) replaced by Q0n(y) and we set

(3.58) un = e*»wn (\n(rω) = \' Zu(tω)dt+ξ(r)ψu(ω)) .
Jo

Now Proposition 3.6 can be applied to show

(3.59) IK-^JU+II^XIIβ^CH/ll^ (k^K),

C=C(Ky β) being independent of n=l, 2, •••. Since DJ'QQn(y) converges to
DjQ0(y) as n-*o° uniformly on RN for each j= 0, 1, •••, my it follows thatλΛ(^y)->
\(y) (w->oo) uniformly on every compact set in RN. Therefore, by the use of
Theorem 4.1, of [10], we obtain un-^u in H\tB(I, X)loe as w-^oo. Thus, letting
#— >oo in the relation

(3.60) IK-^JIβ,(o

which is a direct consequence of (3.59), we have

(3.61) 1 1^-0111^(0.̂ + 1 |J3^||β.(0iΛ)^C| I/I |1+β.

Since .R>0 is arbitrary, we have obtained (2.14). Q.E.D.

4. Proof of the main theorem

In this section we shall prove (ii) of Theorem 2.5 and Theorem 2.4 by using

Theorem 2.5, (i) which has been proved in the preceding section.
(ii) of Theorem 2.5 follows from (i) of Theorem 2.5 quite similarly as

in the proof of (4.16) in Theorem 4.3 of [10].

Proof of (ii) of Theorem 2.5. Let us first consider the case that v is the

radiative function for {L. k, t[f]} with k^K and/eL2>ι+δ-ε(Λ -X) Using (i)
of Lemma 3.7, we have
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d f J>.irk/-.//-.\

dr
), u(r))x} = e*'«

(4.1) \g(r)= \u'-iku\2

x+\BU*u\2

x+(e*f,u)x

—((Y—Cϊ-iZ'—iP—Wϊu, u)x+2ir-2(Mu, u)x.

It follows from (2.14) with β=S—£ that^(r) is integrable over /with the estimate

where C, C' are positive constants and we have made use of (2.4), too. By start-
ing with (4.1) and (4.2) the estimate

(4.3) b(r)|x^C||/||1+δ_s (re/, C=C(K))

can be shown in the very same way as in the proof of Lemma 4.6, (II) of [10].
Next let us consider the general case. Let k0^C+ with Im&0>0 be fixed.
Then, as in the proof of (i) of Theorem 2.5, the radiative function v for {L, k, 1}
can be decomposed as v=v0-\-w, where VQ is the radiative function for {L, &0, 1}
with ^0eίfJ'B(/, ^)nL2>1+δ_8(/, X) and w denotes the radiative function for
{L, k, t[(k2— kl)v0]}. Let us estimate v0 and w separately. It follows from

Lemma 1.7 of [10] and the inequality |^0(
r)l *^Sv/2ΊI* ;olls> which is shown in the

same way as in the proof of (2.34) in Lemma 2.5 of [10], that

(4.4) \v0(r)\x^C\m\1+8-, (re/, C=C(K)).

On the other hand we obtain from (4.3)

(4.5) |«<r)|τ^C||ί;ollι+8-. (re/, C=C(K))9

which, together with (4.4) and Lemma 1.7 of [10], yields to (2.15). Q.E.D.

Proof of Theorem 2.4. Set β=δ—S. Theorem 2.4 will be proved by
proceeding along a similar line to the one in the proof of Theorem 5.1 of [10].
First we shall show that | v(r) | x tends to a limit as r-^°o. In fact, starting with
(4.1) and the relation

(4.6) -j- {Im (u'(r), u(r))x} = lmg(r) ,

and noing that (u'(R^—iku(R^, u(Rn))x-*0 for some sequence {Rn}, Rn-^°°,
we obtain
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(4.7) I β(r) I I = A-'{Im («'(r), u(r))x+lm j>*«-

= Λ-'{Im(α'(Λ), u(R))x+Im [ g(t)dt+lm
J R

with R>0 fixed, whence follows the existence of the limit. Now let us set

(4.8) ak(r) = (2ik)-le-i^r-l!\v'(r)+ikv(r)) .

Then, by an easy computation, we have

(4.9) e-w-'tyr) = ak(r)+e-
2ilί^ ^a-k(r)

and

(4.10) α/(r) = (2ίkγιe-ίk'{Bu-eίKf+i(Z+ξ'ψ )(u'-ίku)

+(W+Cl- Y+iP)u+2ir-2 '

and hence we obtain for

*) = («, Bx)x-(r*f, x)x+ί((Z+ξ'γ)(u?-iku), x)x

Ί- Y+iP~W)u, x)x-2ir-2(u, Mu)z-2i(Pu, x)x

where we have used the relation (3.24) in Lemma 3.7, (iii). Therefore it follows
from Theorem 2.4, (i) with β=S — £ that£(r, x) is integrable over (1, oo), which
implies the convergence of (ak(r), x)x as r-»oo. On the other hand setting
h(r)=eirk(u'(r)—iku(r),x)x,x^D, and proceeding as in the proof that
lim (ak(r)9 x)x=ax exists, we can show that lim A(r)— 0. In fact by the use ofr->°° r->°°
Lemma 3.7 and Theorem 2.5 it can be shown that h'(r)=eikr((u'—ikuy+
ίk(uf—iku), x)x is integrable over (1, oo)? which implies the existence of lim h(r).

Moreover, since u'~iku^L2Λ+ΐ)-z(I, X) we have h(rn)-*Q (w— >oo) along some

sequence {rn}> whence we obtain limA(r)=0. Note that lim e~2ikrh(r)=0 and
r-><χ> r^.<χ>

)=:Q, then we arrive at

lim {(e-»v'(r), x)x~ίk(e^v(r\ x)x} = 0 ,
(4 12] \ r~*™
V ' ; 1 lim {(e-»v'(r), x)x+ik(e-*v(r), v)x} =2ikax ,

and hence lim (e~iμιv(r)9 x)x=ax for any x^D. Thus taking note of the
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boundedness of | v(r) \ x and the denseness of D in X, we have established the
weak convergence of {e~iμtv(r)} as w-^°°. Set a=w—Yιme~i[Lv(r). Then the

r^oo

proof of Theorem 2.4 will be complete if we can find a sequence {rn} such that

(4.13) a

Let us take a sequence {rn} which satisfies

, lim \v'(rn)-ikv(rn)\x = =δ-ε)

with a constant c0>0. Such a{rj surely exists by Theorem 2.5, (i). Then from
(4.9) we obtain

(4.15) I v(rn) I £ = (e^ak(rn)+e-*^a-k(rn), β(r,))z

Obviously we have bn-^0 as n-*o°, and hence it is sufficient to show that
an-^\a\2

x. Setting

(4.16) an = e-^v(rn),

we obtain

(4.17) an = (a^R), an)x- \* (ak'(t), an)x dt
Jrn

where ^(r, x) is given by (4.11). Now we shall construct a function g0(r) on
(1, °°) which is integrable on (1, oo) and dominates g(ry u(rn)) uniformly for n in
the sense that

(4.18) \g(r, u(rn))\ <^go(r) (r^r.(^l), n=l, 2, -,) .

In fact, the following estimates are obvious :

(4 19) ί lΛ(r' "(rB)) ' -C ' /(Γ) ' τ = ίβ(r) '
1 I A(Λ «(r.) I + \gjr, u(rn)) \ ^c0Cr-^ \ v(r) \ x = gθί(r) (r ̂  1).

As for^Ί(r, u(rn))=(u(r), B(t)u(rn))x we have from (4.14)
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(4.20) \gl(r, u(rn)) \ ̂ c^r™^ \ B(r)^u(r) \ x

r) \ x =

Quite similarly we obtain for r^>ra with /3=δ— £

\g3(r, «(!•„)) I 5S<*-'-•Ir*(u'(r)-iku(r)) \ x = g03(r),

Igsvi uvn)j I =cQ^r = £o5Vy).

5

Combining (4.19)^(4.12), we may set£0(r)= Σ£o/r) Here it should be noted

that /3+£>l/2 and 8+β+(l/2)>ί. Now that the existence of g(r) has been
shown, (4.13) is obtained by letting //—>oo in the relation

(4.22) Iβ(r.)I i = (α, an)x- \^ (2ίk)-^^-^g(t, u(rn))dt+bn ,
rn

which follows from (4.15) and (4.17) with R^>°° along a sequence {rm} which
satisfies ^(r^—ikv^^-^O in X. Q.E.D.

5. The case of N=2

Now we shall consider the Schrϋdinger operator S= — Δ+Q(y) in R2. As
in the preceding sections we set L=USU~1=—d2ldr2+B(r)-\-C(r)y where U is
the multiplication operator by r1/2. In this case the .operator

is not necessarily non-negative definite and, further, the element v of UH^R2)

does not necessarily belong to L2(I, X). We, therefore, have to modify the argu-
ments in §2~ §4.

Let us set H\'B(Iy X^UH^R2) and define the inner product and norm of
H1

Q>B(I,X)by

(5.2)
, V)19

where v=UV, w^UWwith V, W^Hλ(R2) and ( , \ denotes the inner product
of H\R2). Obviously Hl>B(I, X) is a Hubert space.

In the case of N^ 3 we have used the estimate \v(r)\x<*^/^Σ\\v\\B ([9], (2.6)),
where the fact that B(r)^0 has been only employed. But in this paper, which
deals with the concrete operator S= — Δ-\-Q(y), a sharper estimate can be shown
for vtΞHl>B(I, X)=UH,(RN) with N^2.

Lemma 5.1. Let v^H^B(If X)=UH1(RN) with N^2. Then v(r) is an
X-valued continuous function on [0, oo) with ^(0)=0, and the estimate



ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS OF THE SCHRODINGER EQUATION 33

(5.3) \v(r)\x^\\v\\B (re[0, oo)).

Proof. Starting with the relation

(5.4) -2Re( φ&-dy = |«
J\y\^r OT

we obtain (5.3) for v^UC^(RN). As for v^Ho'B(I, X) there exists a sequence
{vn} c UC£(RN) such that vn converges to v in Hl'B(I, X) as w-»oo. It follows
from (5.3) with v=vn that vn(r) converges to v(r) in X uniformly for re[0, oo).
Therefore v(r) is an X- valued continuous function on [0, oo) with z;(0)=0 and
the estimate (5.3) holds for v, too. Q.E.D.

In this section, instead of B(r) and Q(y), we shall use

|3(r) = r->(-Λ2))

I Q(y) = δobΉ&ω (&(y) = Qι(y)-*r~z)
Since Qι(y) has a singularity at y=Q, Qι(y) does not satisfy the condition (Qλ) in
Assumption 1.1. But Q\(y)=O(\y\ ~2) as |j>|^oo, and the analysis in a neigh-
borhood of y— oo proceeds as in the preceding sections. Here we shall note that
the interior estimate (Lemma 3.1 of [10]) has the following form.

Lemma 5.2. Let v<=H<>'B(I, X)loc satisfy

(5.6) (v, (L-P)φ)0 = </, φ> (φe UC0(R*))

with k<=C and /eF0(/, ^Γ). Then for any R>0 there exists C=C(R, k) such that

(5.7) Hϋ||Λ(o.Λ)^C'{||ι;||o i(o.Λ+ι)+II

«;A^^ «;̂  set for an open interval Jdl

(5.8) I M | Λ / = [ f ( | V F | 2

J^e/

By using the relation U~1LU=S the proof is easy, and we shall omit it.

Now we have to modify the definition of the radiative function slightly. Let

us set /ι=(l, °°). A solution v^HlB(I, X)loc of the equation (5.6) with k^C+

and <feF0(/, X) will be called the radiative function for {L, k, /} if v'—ikv^
L2j8-1(I1, X). Then it can be shown that the results of Theorems 2.2, 2.4 and
2.5 are valid in the case of N=2 without any serious alteration. The method of
the proof is essentially the same as in the preceding sections and [10]. There-
fore the proof of the theorems below will be left to the reader.

Theorem 5.3. Let Assumption 1.1 with N=2be satisfied. Then all the
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results of Theorem 2.2 hold if we have only to replace (2.4) by

(5.9) IWI-a+l l^

Theorem 5.4. Let Assumption 1.1 with N=2 and (2.9) be satisfied. Then

all the results of Theorem 2.5 are valid if we have only to replace (2.14) by

(5.10) HW'—^z/||β)/ι+||j51/2w||β>/ι^C|||/|||1+β.

Theorem 5.5. Let Assumption 1.1 with N=2 and (2.9) be satisfied. Then
all the results of Theorem 2.4 hold good.

Finally let us apply Theorem 2.4 to the Schrodinger operator S.

Theorem 5.6. Let Assumption 1.1 be satisfied. Let V <=H2(RN)lncΓ\
L2(RN, (1+ \y I )~2Sdy) be a unique solution of the equation

(S-k2)V=F,

(5.11) W

d\y\

with k(ΞR-{Q} and F^L2(RN, (1+ \y \)2+2*~2*dy\ where we set E,=
{y^RNl \y\>\}. Then there exists a strong limit

(5.12) α(ft, F) = j-lim e-w-W-wVfr•)

in L2(SN~l), μ(y, k) being defined by (2.12).
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