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Abstract
Let Ry(x) be the first return time of the initial sequenkg - - x, of X = X%z - -.
For mixing processes, sharp bounds for the convergen&® () P,(x) to exponential
distribution are presented, wheRy(x) is the probability ofx; - - - x,. As a corollary,
the limit of the mean of lodR.(X)P.(x)) is obtained. For exponentiallg-mixing
processess-E[log(R, Py)] converges exponentially to the Euler's constant. A samil
result is observed for the hitting time.

1. Introduction

Convergence of the logarithm of the first return time (reence time) of the ini-
tial block normalized by the block length has been investidan relation to estima-
tion of entropy or data compression methods such as the 2mplel algorithm [21].
Let {X,: n € N} be a stationary ergodic process on the space of infinite seqae
(AN, =, P), where A is a finite set,Z is the o-field generated by finite dimensional
cylinders, andP is a shift invariant ergodic probability measure.

Define R, to be the first return time of the initiai-block x{ = X1« -+ X, i.e.,

Ra(X) := min{j > 1: x{ = xfﬂ}

Ornstein and Weiss [15] showed that for an ergodic procesis entropyh
1
lim —log Ry(X) = h
n—oo N

almost surely. This convergence was first considered by Wgne Ziv [18] as con-
vergence in probability related do data compression dlyos. For a comprehensive
introduction to the relationship among the first return tiraetropy, and data compres-
sion algorithm, refer to [17] and [19].

The waiting time (hitting time) is defined by, (x,y) := min{j > 1: x] = yj””’l}.
A.D. Wyner and Ziv [18] proved that for Markov chains (194,)/n converges to en-
tropy in probability with respect to the product probalilineasure ok andy. Shields
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2 D.H. Kim

[16] showed the almost sure convergence for Markov chains meispect to the product
measure. He also showed that for a general ergodic case)gg may not converge
to entropy. Also refer to [13] and [11] for related results.

Let P,(x) be the probability of the initial sequenod := X1 Xz - - Xn, i.€., Pa(X) =
P({y: y{ = x{}) = P(x]). Then, the Shannon—-Breiman—McMillan theorem [17] states
that for ergodic processes;(log Pn(x))/n converges to entropy in L' and almost
surely. This suggests that Idg, and — log P, are closely related.

A process is called/-mixing if

P(AN B) — P(A)P(B)|
ress o pape 0

n+l

for a decreasing sequenggl) converging to 0, and it is calle@-mixing if

sup |P(AN B) —P(A)P(B)| < ()

Aex],Bexy, P(A)

for a decreasing sequengél) converging to O, wheré:ij denotes ther-algebra gen-
erated beij = X Xig1-- Xj.

For anyp > 0, Kontoyiannis [10] showed that for Markov chains, 1Bg(x) P(x)) =
o(nf) almost surely, and fogy-mixing processes, lo§¢(X, y)Pa(X)) = o(n?) almost
surely with respect to the product measure. In f&tP, and W,,P, converge to the
exponential distribution with mean 1 for Markov chains apemixing processes [20].
We refer to [1], [2], [5], [6], [7], and [8] for more informatin on the convergence to
exponential distribution.

For each blockB € A", let [B] = {x: Xx{ = B} denote the cylinder set defined by
B. Define the waiting time (hitting time) to the cylinder s&][by

tg(X) = inf{i > 1: T'(x) € [B]},

where T is the left shift map defined byTX)x = X1 on AY. Note thatR,(x) =
Txe(X) and Wh(X, y) = = (y). For each blockB € A", we denoteP({x: tg(X) = k})
and P([B]) by P(rg = k) and P(B), respectively. LetPg(rg = k) be the conditional
probability of P(rg(x) = k, X{ = B)/P(B). Kac [9] showed thatEg[zg] = 1/P(B),
where Eg is the conditional expectation on the cylinder s&f.[ Abadi [2] gave an
exponential bound oP (g P(B) < t) for ¢¥-mixing and¢-mixing processes with sum-
mable ¢.

In this article, for each blockB € A", we have an exponential bound of the con-
ditional probability distributionPg(zgP(B) < t) in the case of{,-mixing and¢-mixing
processes with summabtg this bound enables us to obtain the limit of the mean of
log(R,P,). In Section 2, we present a lemma for demonstrating theioekhip be-
tweenPg(tg P(B) < t) and P(tgP(B) < t) and a theorem for determining the bound
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of Pg(rgP(B) < t) for y¥-mixing and ¢-mixing processes with summable In Sec-
tion 3, the bounds of the expectation val&glog rg] and Eg[log zg] for each block
B are obtained fony-mixing and ¢-mixing processes with summabte Finally, in
Section 4, we show that for exponentiallymixing processes

lim Eflog(Wn(x, y)Pa(x))] = -y

and
Nim Eflog(Ra(x)Pa(x))] = —v-

For an earlier work for Bernoulli processes, see [8].

Maurer [12] studied the nonoverlapping first return time faxdi processes in or-
der to test pseudorandom number generators. His testimgithlp employed the non-
overlapping first return timeRy(x) := min{j > 1: X = xljgﬁ'} He showed that the
convergence speed of Idg},/n to its entropy is asymptotically proportional tgrion
average, and he conjectured that a similar result would fusl®arkov chains; however,
a correction term is necessary ([3], [4]). In [3], Abadi andl&s showed the exponen-
tial bound of the nonoverlapping return time and hitting foimixing processes and dis-
cussed the difference between the nonoverlapping retara &nd the overlapping one.

see also [14] for the distributional convergence to the rabmdmstribution.

2. Estimation of the distribution of the recurrence time

The relationship between the distribution of the first nettime and the waiting
time is expressed as follows (e.g. [7]):

Lemma 1. In the case of stationary processege have
P(tg =i +1)=P(rg = i) —P(B)Pg(rg = i)
for any integer i> 1, therefore we have
P(B)Pg(tg > i) =P(rg =i) =P(rg = i) —P(rg =i + 1)
fori > 1.

From the following lemma, we have determined the boun@®gfrg > t) using the
bound of P(zg > t).

Lemma 2. For each integer k= 0 and real number d> 0, we have

P(TB > k) — ]P’(‘CB >k + dl)
d.P(B)

]PB(TB > k) >
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For any integer k and real number,dwhere0 < d, <k, we have

P(tg > k—dy) — P(rg > k)

IPB(‘L'B >k — 1) < dz]P’(B)

Proof. Leti, j be integers, where £i < j. Since
Pg(tg 2 j—1)=Pg(tg = j—2)=---=Pg(rtg =i +1) = Pg(rg = i),
from Lemma 1, we have
P(tg 2 ] —1)-P(rg 2 ) =P(tg 2] -2)-P(te 2 j - 1)

< <P =i+ 1) -P(g =i +2)

<P(rg i) —P(rg 2 i +1).
Therefore, we have
P(tg >i)—P(tg > j)=P(tg i) —P(tg =i + 1)+ P(tg > i + 1)—P(tg > i + 2)
+--+Pg =] -1)-P(ts = j)
<P(tg >i)—P(tg =i + 1)+ P(rg = i) —P(rg =i + 1)
+-+P(rg =1)—P(re =i +1)
=(j—i)P(g =i)—P(tg =i + 1))

and similarly,
P(zg 2 i) —=P(rg = ) = (] —i)(P(zg = ] — 1) = P(zs = })).
Therefore, from Lemma 1

P(rg > 1)~ P(re > i +1) _ P(ra>1) ~P(tz > )
P(B) - (G -)P(B)

1) Pg(rg = i) =

and

Pt > j—1)—P@g>j) _P(g=i)—P(ws > )
P(B) - (j —1)P(B)

(2) Pe(re=j—-1)=

for1<i <.
If 0 <d; <1, then

P(TB > k) —P(TB > k+ dl)

PB(TB > k) >0= dl]P’(B)
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for anyk > 0. Whend; > 1, letd; = m; + « wherem; e N, m; > 1 and O< « < 1.
Substitutingi and j with k + 1 andk + m; + 1, respectively, in (1), for each integer
k > 0, we have

Pzt > k+1)—P(zg = k+mp + 1)
mﬂP’(B)

_ P(tg >K) —P(tg > k+my +«) - P(tg > k) — P(rg > k+ dy)
mP(B) - d;P(B)

Pg(tg > k) =Pp(tg = k+ 1) >

For the upper bound, led, = m; — o, wherem, e N, m, > 1, and 0< « < 1.
Substitutingi and j with k—m; + 1 andk + 1, respectively, in (2), for any integds,
wherek > m, > d, > 0, we have

P(tg = k—my+1)—P(tg = k+1)
m2]P’(B)

_ P(tg>k—my+a)—P(r5 > K) - P(tg > k—dy) —P(r5 > k)
m,P(B) o d,P(B)

Pg(tg > k—1)=Pg(8 2 k) =

O]

In [2], Abadi showed th following bound of the waiting time:

Fact 3 ([2], Theorem 1). For ¥-mixing or ¢-mixing with ¢ summable processes
there exist constants € 0, 1, B, and iy where0 < E; < 1 < E, < oo such that
for all B € A", n > ng, and t> O there existstg € [E1, E] for which we have

) ‘P(TB > < Ce(B)e'(t v 1),

t _t
sBP(B)) —°

whereg(B) = infr<a<ype)[AP(B) + *(A)] and * representsy or ¢.

For any ¥-mixing or ¢-mixing processes, it is known that the maximum proba-
bility of n-blocks decreases exponentially msncreases to infinity ([1], [6]). There-
fore, for largen, &(B) = info<a<1/pe)[AP(B) + *(A)] < nP(B) + x(n) is defined and
bounded by a decreasing function wfconverging to 0. Moreover, for exponentially
¢-mixing processes, constan@y and " > 0 exist such that for alB € A", n> ng

4) e(B) < nP(B) + ¢(n) < Coe™ ™.
Let
o(B) 2/Cs(B)

= /11 CeB) + JCe(B)

Note 0< p(B) < 1. We have the following theorem on the distribution of thestfir
return timetg. We assume thaB € A", n > ng.
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Theorem 4. For y-mixing or ¢-mixing with summable processeswe have

t }
]P’B(‘L’B > EBP(B)) > £ge t(l— 2,/Ce(B)t v 1)) for t>0

and

t
PB(’B g sBP(B))

< &ge (1 + 2/Ce(B)(t v 1)(1 + Ce(B)(t v 1)) + 2Ce(B)(t v 1))

for t > p(B), whereég and C are the same constants as those useHaict 3

Proof. Letcg = Ce(B) and pg = P(B) for notational simplicity.
First, we shall prove the lower bound. For &l 0O, let

! S + where
= o,
éspPs &BPB ésPB

eNU{0} and 0<ua < 1.

From Lemma 2 and Fact 3, for ardf = §;/(¢gps) > 0, we have

P ( s ) _ P(t8 > s/(§spe)) — P(rs > S/(§8Ps) + dh)
Bl T > sl
§8Ps dipe
- tge™®
Z 7
_ &g’
==

1—e™ 1+e™
> sBe‘s( 5 —cg(sVvl) +81 —CB).

(1—cg(sv 1) —e™(1+cs((s+681) V1))
(5)

(1—e —cg((sv1)+e((s+68) V1)

Let
4
81 =2y/cg(svl)+ écB(sv 1).

Then, we have

3 2 51
. D="(J1+25-1) = .
ce(sV1) 4( t3% ) VIt @30 + 1

Since
52 §3 st 52 83 54(4 — 451)
R T S e T I o T S R N S L ML 2O
TR e T2a T T T T e T 24(6— 40, + 82)
6+ 261

T 645, + 62
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we have

6— 48, + 82 68 — 52 3 25
1—eh>1- 10 _ D070 s (122 )
6 + 28, 6 + 28, 43+ 5,

Also, we have

2 _ 3046 \/9+1881+9af_1< /9 + 1851 + 952 + (4/3)33 )

3+68; 3+68; 3+681 3+61
@+ @/3)5)(9 + 651 + 82) 7 4
= —1=4/1+=61—1=—=+/cg(sVv1l).
3+6; 3% zvessvl)
Therefore, we have
1—eh
(6) 5 —+/cg(svl).
If 0 <cg(sVv 1) <1/4, then 0< §; < 4/3,
82 8 s 5 & 3\? &4
851 1 1 _ 1
e 1-86+—=—-2L 4+ L=1-Z§-—=(8-2 -1
<l-dit g — gty =l-gh 6(1 2)+24
82 5 81 (4\° 81
<1-8+-Lt<1—>8+—|-= 1——8 =./[1 -3
1+24_ 81+24()< 1 (+ ) 1

_ [ 5
1+31+——31 Ltb+ 1 - —51 Ji+ 51—31.

and
ey 1)1+ e - calsv 1)(1+ «/1; @/3)51 1)
@) !
— M —C (S \V4 1)
Jce(sVv 1) . '

Therefore, by substituting (6) and (7) in (5), we get
Pg (rB > %) > &ge (11— 2+/cg(s Vv 1)).
B MB

Note that ifcg(sV 1) > 1/4, then the right-hand side of this inequality is negative an
the inequality still holds. Sincé > s, we have

]P’B(‘L’B > t ) = ]P’B(‘L’B > L) > SBe’S(l— 24 CB(SV 1))
£8Ps £8PB
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Sincee S(1—2,/cg(s Vv 1)) is a decreasing function & when it is positive, we have

]PB (TB > #) > %‘Be_t(l_ 2\/ CB(t \ 1))
B MB
For the upper bound, let

t S
o, where eN and O<ao <1.

ésPB - fsPs ésPB

Then, from Lemma 2, it can be noted that for abyy= 8,/(£g pg), Where 0< §, <'s,
we have

P ( S ) P(te > s/(gps) — db) — P(t8 > S/(£8PB))
B| 78 > -1)=
£ PB d2ps
< 0% ({1 + cal(5—5) v 1))~ 1+ Ca(s v 1)
2
< _éB(Se‘S (6% — 1+ cg(s Vv 1)(€” + 1)).
2
Let
2/cg(sv 1)

82 =2,/ca(sVv 1)(1+cg(sVv 1) —2ca(sV1).

- J1+cg(sv1)+ Jes(svi)

Then, 0< 8, < 1. Since

s 8°  8° 3.2
(8) ez<1+82+7+7<1+82+z82 for 0<6, <1,
we have
S &€ 5
Pg| 18 > —1)=>—=——(€?—-1+cp(sVvI1)(e?+1)
EsPB 82
_ 8o 852 2 35,
e(1+ =4+ = +cg(sv)|—+1+—=
<és (+2+4+B( )(82+ +4))

for s > §;. Sinceds = 4cg(s Vv 1)(1—8;), we have

1) 2cg(sv1l 8
_ 1) - sBe—S(1+ 2+ % + 2ca(s Vv 1)— ca(s v 1)22)
2

1) 2cg(sv1l
< &ge® l+—2+—B( Vi)
2 8

= Ege (1 +2y/ca(s v 1)(1+ ca(s v 1)) + 2c(s v 1))

Pgl 7
B(B>§BPB

+ 2cg(s Vv 1))

for s > 6.
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If s> p(B), then eithers > 1> §, or

. 2,/Cs . 2/cg(sVv 1) .
1>sz0(B)= STt /6 JiraevDrvaevn 2

therefore, the conditios > §, is satisfied whers > p(B).
Sinces/(gps) — 1 = t/(§sps) < /(68 Pe), for t = p(B), we have

t S
Pg( 8 > = Pg| 8 > -1
B(B éBpB) B( ®” &ps )

< g€ (1 + 2y/ca(s v 1)(1 + ca(s v 1)) + 2cg(s Vv 1))
< g€ (1 + 2¢/Cat v 1)(L+ calt v 1)) + 2ca(t v 1)).

The last inequality results from the fact that'/(t v 1)(T+ c(t v 1)) ande'(t v 1)
are decreasing functions for amy> 0. O

Using the lower bound oPg(zs > t/(€gP(B))), we have the following corollary:

Corollary 5. For y-mixing or ¢-mixing with summable processeswe have

PP
1—2/Ce(B)

for 0 < 2/C¢(B) < 1.

Proof. Lettingt — O in the lower bound of Theorem 4, we have
1> !in&[sge“(l —24/Ce(B)(t v 1))] = &g(1 — 24/Ce(B)). O

Note that for an exponentiallg-mixing system, it is shown [2] that there are some
constants such a€ andc such thatég < 1+ Ce " for all B € A", which can also
be derived from Corollary 5 and (4).

3. Bounds for the expectation of the logarithm of return time

Forr > 0, define

h(r) := —for logée * d& = /oo logée* d& + y,

r

wherey = limp .o (Y y_; 1/k —logn) = 0.5771--- is Euler's constant.
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For 0< x < 1, we have—x log x < e™1; therefore, for O< x < 1, we have
1+ (elogx)t<i1-x<e*<1

and

—logx —et < —e*logx < — log x.
By taking integral from 0 to we have
(9) —rlogr < —rlogr + (1—eYr <h(r) <—-rlogr +r for O0<r <1.
Lemma 6. Let X be a positive random variable. Suppose
Fi(t) = P(X > 1) = Fp(t), t=0,

for absolutely continuous functions With lim_o+ F(t) = 1 and lim{_, F(t) = 0O,
i =1, 2 If the derivative if = F/ satisfies

Jim t(log )*** fi(t) = lim t(logt)*** fi(t) = 0

for somee > 0, then we have

o0

—/ fi(t) logt dt < E[log X] < —/ fo(t) logt dt.
0 0
Proof. SinceF(e') < P(log X > t) < F»(€'), we have

s

[o¢] d o0 o0
/1 Fl(s)? = /O Fi(e) dt < /O P(log X > t) dt
5/0 Fz(et)dt:/l Fz(s)?.

By I'Hospital's theorem, lim_.« t(logt)? fi(t) = 0 implies lim_ ., Fi(t)logt = 0. Using

integration by parts
/ Fi(s)d—S = —/ fi(s) logs ds
1 S 1

and

(o]

—/ f1(s)logs dsf/ P(log X >t)dt§—/ fo(s) logs ds
1 0 1
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Similarly, by lim_o+ t(logt)?f;(t) = 0 we have lim_o+ (1 — Fx(t)) logt = 0 and
0

1 1 ds 0
/0 fa(s) logs ds= /O 1- Fz(s))? = [w(l— Fo(e')) dt < f P(log X < t)dt

—00

1
< / f1(s) logs ds
0
From the assumption lim . t(logt)?* fo(t) = 0, lim_o+ t(logt)?* f,(t) = 0, we have

00 0
/ P(log X > t) dt < oo, / P(log X < t) dt < oo.
0 —

Therefore, logX is integrable and

[} 0
E[log X] = / P(log X > t)dt—/ P(log X < t)dt,
0

—00

which concludes

o0

—[ f1(s) logs ds=< E[log X] < —/ fo(s) log s ds []
0 0

Assume thatCe(B) < 1. Then, we have the following theorem on the expectation
of log tg:

Theorem 7. For ¢-mixing or ¢-mixing with summabl@ processesthere exists
a constant C such that for all B with0 < ¢(B) < 1/C

|Eflog(reésP(B))] + v| < —Cs(B) log(Ce(B)) 4 C's(B).

Proof. Letcg = Ce(B) and pg = P(B) for notational simplicity.
Then, (3) implies that fot > 0

P(tgégps > t) <€ '(1+cg(t v 1)).
From the assumptioog < 1, we have log(} cg) < 1; therefore,
1, 0<t <log(1+ cg),

P(rgépps > t) < {e“(l—l— cg), log(l+cg)<t<1,
e'(1+4cpt), t>1.
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Therefore, from Lemma 6, we have

1

E[log(rgés ps)] < / (14 cg)etlogt dt + / (1—cg + cgt)et logt dt
1

log(1+cg)

< / etlogtdt + CB/ (t —1)elogt dt
log(1+cg) 1
= h(log(1+ cs)) — ¥ + € 'cs < h(cs) — ¥ + € 'cs.
From (9), we have

E[log(tgés ps)] < —Cg logcs + Cg — ¥ + € 'ca.

Since P(tg = 1) = pg, Lemma 1 implies thafP(zg = k) < pg for all k € N.
Therefore, for a real numbédr> 0

(10)

t t
31—{ Jpazl——21——
£8PB £ E1
Let ty be the positive real number that satisfiestd/2; = e(1—cg). Then, we have
c
(11) O<top< —— 2 < 1.

Eil-1+cp

Therefore, (3) and (10) imply that

t
P(tgégps > t) > E1
et(l—cp(tVvl), t>to.

Since [{°(t — 1)e™' logt dt = ™%, from Lemma 6, we have

E[log(reégps)] = 21 ¢ /:0 logt dt + tl(l —cg)e'logt dt
0
+ [100(1 + cg —cgt)etlogt dt
> B, Yt log to — to) + /too etlogt dt — e cg.
o
Therefore, from (9), we have
Ellog(reés pe)] = E17*(to logto — to) + h(to) — ¥ — € 'ca

> (El_l — 1o logty — El_lto -y — e‘ch.
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From (11), we have

2, 1= 1)c c
Ellog(rséeps)] > %~ Y Iog( s )
= g

1t -1+cp —1+4+cg
E1 ‘g y—elc
- - - B
E171—1+CB
_ Cp _
>cBIoch—cBIogEll—l  —y —elcg
&,
1
>cBIoch;—(1 — +e1—logEl)cB—y. L]
&,

Now, we have the following theorem for determining the exataon logrg on [B].

Theorem 8. For y¥-mixing or ¢-mixing with summable processesif n is suffi-
ciently large then for each n-block Bwe have

Es[log(re&sP(B))] + v&s < —268+/Ce(B) log(Ce(B)) + &g+/Ce(B)
and

Egllog(reés P(B))] + vés
> (1—&g) log P(B) + 2£g+/Ce(B) log P(B) + log(¢s(1 — 24/Ce(B))).
Proof. For a simple calculation, we assume t@a{B) < 1/25. Letcg = Ce(B)
and pg = P(B) for notational simplicity.

First, consider the upper bound &fg[log(tgés pB)]-
Let tp = log(1+ 2+/ce(1 + cg) + 2cg). Note that

2,/c
0< ,O(B) = \/_B =2y CB(1+ cg) — 2cg < 1.

v/1+cg+ /C
Then, we have
3 6Cg/Cs
e® <14+ pB)+=pBP=1+2cg(l+cg)+Cg— —¥ "=
p(B) 4P( ) B( B) +Cs ot Jites

<1+ 2y/cg(l+cg)+2cg =€

c 2./Cs)? 2./Cs)3
<1+2«/CB(1+EB)+2CB=l+24/CB+( 28) 4! SB) < VG,

which implies that

(12) p(B) < tg < 2,/Cg < 1.
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From Theorem 4, ig < 1, then from (12)

1, 0<t <ty
Pg(teéeps > 1) < {&s€'(1+2VCa(1+Cp) +2c8), to=t=1,
gge (1 + 24/Cat(1+ cal) + 2cgt), t > 1.

Therefore, from Lemma 6, fofg < 1, we have
Eg[log(reés ps)]

1
< (1—&g)logty + &g(1 + 2y/ce(l+cg) +2cg) | e'logtdt
to

0 _ /Ce(1 + 2cgt) _ ) —t
(13) +gB/1 (1+2,/th(1+th NN + 2cg(t —1))e™ logt dt

< (1-¢g) Iogto+$B/ et Iogtdt+2§B\/E/ (Vt +2/cgt)e logt dt
1

o

14 %0
< (1= &) logto + Eo(h() — ) + 5 €05 [ telogtat.

Whenég > 1, from Theorem 4 and (12), we have

1, 0<t<ty+logés,
Pg(teéppe > t) < {&se'(1+ 2y/Ca(X + Cg) +2¢8), to+logés <t <1,
gge (1 + 24/Cet(1+ cat) + 2cgt), t > 1.

Note that from the assumptiory < 1/25 and Corollary 5, we have

(14)  to+logés < 2,/cg — log(1— 2,/Cs) < é - Iogg =0.91082 - < 1.

Similarly, for &g > 1, we have

[e¢]

14 o
(15) Eg[log(rsés ps)] < &8 / et logt dt + ESJ-B«/CB / te ! logt dt.
1

to+log &g

Let Do := (14/5) /" e'tlogt dt = 1.644336 --. Then, from (9) and (13), for
£g < 1, we have

Eg[log(teée ps)] + v&s < (1 —&g)logto + £r(—to l0g to + to) + &8 +/Ca Do.
Since —x log x + x is increasing for O< x < 1, we have, from (12), fokg <1

Eg[log(reée pe)] + vés
< (1-é&g)log(2(/ce) — &e+/Ca logca + £8+4/Ca(2— 2109 2+ Do).
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For £€g > 1 by (9), (14), and (15), we have

Es[log(tséspe)] + vée
< &gh(to + log ég) + £g/Ce Do

<o (—(4@ +305) 109(4,/G3) + = VG5 + ¢c—BDO)

23
= —SB«/C_B(Z logcg + 4 log 4+ 3,/cg log(4./Cs) — T Do)

5
< —&g+/Ce(2logcg — 1) < —25g./Cg log Ccg + £54/Ca.

3 23
< _SB\/@(Z logcg + 4 log 4— z‘refl = Do)

Now, we estimate the lower bound. Sineg > 1, from Theorem 4, we have

) - {EBe_t(l— 2/cs(tvI), t>&sps,

t
P
B(IB>§BDB 1, 0<t < é&gpg.

From Corollary 5,£g(1 - 2,/Cg) =< 1, therefore, from Lemma 6, we have
Egllog(rsés Pe)]

1
> (1— £a(1 - 2/25)) log(és pe) + fo £se (1 — 2,/G3) logtdt

+ /Oo gge (1— 2\/0_3'[(1— i)) logt dt
1 2t

> (1- £s(1— 2,/5)) log(Es Pe) + £o /0 etlogt dt
1 o0
—253\/0_3/ et Iogtdt—2§B\/§/ e'Vtlogt dt
0 1
> (1—&g(1—24/cg)) log pg + log &g — (1 — 2,/Cg)ég log &g — v &,

where the last inequality is from the fact thﬁi etlogtdt+ [ e*Vtlogtdt <O.
Sinceég logég < —log(1—2,/cg)/(1—2,/Cg), we have

Es[log(r&s ps)] > (1 —&g) log ps + 2£g+/Cs log ps + log(és(1l — 2./Cs)) — véB

which completes the proof. We note

(16) Eg[log(repe)] > (1 —&g) log ps + 2£8+/Cs log pg + log(1—2,/Cg) — yés. [
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4. Convergence of mean

For eachs € N, Let 3,(s) be the set oB € A", which recurs before tima/s, i.e.,
B="Dby---byby---b---by---by, where 1<| <k for somek < n/s. Then, from [1], it
can be noted that for ang-mixing, there exists € N and two positive constantS;
andc; such that

a7) P({x: x] € Bn(s)}) < C,e "

Also refer to [5] and [20].
In [1], Abadi shows that for exponentialty-mixing processes, iB € A"\ B,(s), then

]P’(‘L’B > L) —et
P(B)

where C, and ¢, are constants. Combining (18) with (3), for exponentiathmixing
processes, iB € A"\ By(s), then

(18) sup
t>0

< Ce "

(19) |Eg — 1] < Cse " and |logé&g| < Cae @",

whereC3z and cz are constants.
Now we have the theorem on the convergence of the mean of thimgvime.

Theorem 9. In the case of exponentialj-mixing processesve have
nIim Exxy[log(Wh(X, Y)Pa(X))] = —y exponentially

where Exxy is the expectation with respect (&, y) in the product measur® xP and
for almost every x

nIi_r)noo Ev[log(Wh(X, Y)Pa(X))] = —y exponentially
where E is the expectation with respect to y.
Proof. From (4) and Theorem 7 we have
|Ev[log(Wa(x, Y)P(x]))] = (—7)| < llog&x| — CCoe ' " log(CCoe ™) + C'Coe ™.
By (19), for x with x}' € Bn(s), we have
|Ev[log(Wa(x, Y)P(x{))] — (—¥)| < Cse *" — CCoe™"" log(CCoe ") + C'Coe™ ™.

The Borel-Cantelli lemma with (17) implies that, for almastery x, X7 € Bn(s) fi-
nitely manyn’s and

nIim Ev[log(Wh(X, Y)P.(X))] = —y exponentially.
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Also we have

|Exxy[log(Wh (X, Y)P(X))] — (=)
< Ex|logé&x| — CCoe " log(CCoe ™) + C'Coe ™.

Since &y is uniformly bounded, from (17) and (19), we have

nIim Exxv[log(Wh(X, Y)P.(X))] = —y exponentially. []

From Theorem 8, we have the following theorem.
Theorem 10. In the case of exponentially-mixing processeswve have
lim_ Eflog(Ra()Pa()] =~
exponentially.

Proof. From (4) and Theorem 8, we have for sufficiently lange

Esllog(rs P(B))] < —yés —3e+/Ce(B) log(Ce(B)) —log s
<~y +3E2y/CCIne ™2 —log &z + y (1~ &a),
and from (17) and (19), we have for sufficiently large
Ellog(R\P)] = > Es[log(reP(B)]P(B)+ Y Esllog(zsP(B))]P(B)
BeBn(s) BeAM\By(s)

< -y +38,y/CCIne™™2 4+ 3" (—logés + y(1— £s))P(B)

BeBa(s)

+ > (—logés + y(1- &8))P(B)

Be A" By(s)
< —y + 3E2y/CCoI'ne™? + (—log E1 + y (1 — E1)P(X] € Bn(S))
+ (1 + y)Cse @"P(x] € A"\ Bn(9))
< —y +38,/CCyI'ne ™2 4 (—log E1 + y(1 — 1)) Cre@"
+ (14 y)Cae ™",

Therefore, we have the upper bound

lim supE[log(R,Pn)] < —y.
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Now we consider the lower bound. From (4) and (16), we havestdficiently
large n

Egllog(re P(B))] > —y&s + log(1— 2,/Ce(B))
+ (1 - &) log P(B) + 25 /Ce(B) log P(B)
> —y + log(1— 2,/CCoe™?)
+(1—&p + 28,1/CCoe "™?) log P(B) — y (£5 — 1)

and from (19), we have for sufficiently large

Ellog(R,Pn)]
= Y Esgllog(zsP(B))]P(B)+ Y  Eg[log(reP(B))]P(B)
BeBn(s) Be A"\ B (s)

> —y +log(1—2,/CCye "2
+ ) ((1— B1+ 282/CCoe™"?) log P(B) — y(E2 — 1))P(B)

BeB,
+ > ((Cse ™" +28,/CCoe "™?)log P(B) — yCse *")P(B)
BeAM B,

> —y +log(1—2,/CCoe T"?)
+ (1~ 1 +28,y/CCoe™?) | P(B)logP(B) — y(E2 — )P (5:(9))

BeB,
+(Cae™" + 28,1/CCoe™?) 3" P(B)logP(B) — yCse™".
Be A"\ B,

Here, we have

> P(B)logP(B)> ) P(B)logP(B) > —nlog| Al
BeAM Bn(s) BeAn

and from (17), we have

P(x] € Bn(s))
|Bn(s)|

> Cie " (Iog Cie " — 2 IoglAl).

> P(B)logP(B) = P(x] € By(s)) log
BeBn(s)
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Therefore, we have
Eflog(R,Pn)] > —y + log(1— 2y/CCoe™™?) — y (8, — 1)C1e™*" — y Cqe™®"
+ (1 By + 28,y/CCoe?)Cre™" (Iog Cpe " — 2 logIAl)
— (C3e®" + 28,,/CCoe "™?)nlog|A|,

which implies that
Iirr1n inf E[log(R,P)] = —v. []

Similarly, we can show that

72

Jim Varflog(Re(x)Pa(x))] = lim_Var,[log(Wh(x, Y)Pa(X))] = -
where Vay and Var, are the variance ovex-variable andy-variable, respectively. For
the nonoverlapping return time and hitting time consult [3]
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