<table>
<thead>
<tr>
<th>Title</th>
<th>Crystallization Behavior of Synthetic Blast Furnace Slag by TiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Iwamoto, Nobuya; Umesaki, Norimasa</td>
</tr>
<tr>
<td>Citation</td>
<td>Transactions of JWRI. 9(1) P.137-P.139</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1980-06</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/7976</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td>本文データはCiNiiから複製したものである</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
TECHNICAL NOTE

Crystallization Behavior of Synthetic Blast Furnace Slag by TiO₂

Nobuya IWAMOTO* and Norimasa UMESAKI**

KEY WORDS: (Blast Furnace Slag) (Crystallization) (TiO₂)

In the previous paper, the crystallization behavior of the synthetic blast furnace slag containing various amounts of TiO₂ as a nucleating catalyst was investigated. The compositions of the slag (basicty, CaO/SiO₂ = 1.225) existed in the limiting region of glass formation. Therefore, the effect of TiO₂ as a nucleating catalyst has not been fully observed previously.

In this present note, the authors report the crystallization behavior of the slag (CaO/SiO₂ = 1.0) containing 10% TiO₂ during heat-treatment. The compositions of the investigated slag are given in Table 1.

<table>
<thead>
<tr>
<th>Composition Wt%</th>
<th>basicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaO SiO₂ Al₂O₃ MgO Fe₂O₃ TiO₂</td>
<td>CaO/SiO₂</td>
</tr>
<tr>
<td>39.96 39.96 14.96 5.08 0.33 0</td>
<td>1.0</td>
</tr>
<tr>
<td>35.96 35.96 13.46 4.57 0.30 10</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The slag was prepared from the parent slag, TiO₂ and SiO₂ (reagent grade, respectively) weighted. The thoroughly mixed raw materials were melted in Pt crucible at 1500°C for 1hr in air, and then quenched into the ice-cooled water. To cause crystallization, the glassy slag was heat-treated at 1000°C under various time schedules in air, and then quenched into the ice-cooled water.

In order to determine the crystallinity α of the heat-treated slag, the amorphous X-ray scattering was measured. The crystallinity α is defined as

\[\alpha = \frac{I_1 - I_c}{I_g - I_c} \]

where I₁ is the total scattering intensity from the partly crystallized slag of the measurement, I₉ the total scattering intensity from glassy part (α = 0), and Iₐ the total scattering intensity from crystalline one (α = 1). The amorphous X-ray scattering of each slag was measured by counting of 1000 sec at the fixed angles of 2θ = 34° and 42°, respectively, using CuKα radiation (current and voltage: 35 Kx-15 mA). The angles were chosen that there was considerable amorphous X-ray scattering and there were no diffraction maxima near to those.

Fig. 1 shows the crystallinity α of the heat-treated slag. The slag containing 10% TiO₂ was fully crystallized with the heat-treatment of 3hr, while the measurement over about 6hr was necessary in the case of the slag not contained TiO₂. This result shows that the crystallization of the slag can be remarkably promoted by addition of TiO₂.

The X-ray diffraction patterns of the slag containing 10% TiO₂ during heat-treatment at 1000°C are shown in Fig. 2. It was recognized that mullite which was a solid solution of gehlenite (2CaO-Al₂O₃·3SiO₂) and akermanite (2CaO-MgO·SiO₂) was precipitated from the glassy slag. The diffraction peaks (2θ = 22.3°, 30.0°, 31.7°, 34.6°) due to an unknown crystalline phase appeared besides. It seems that the unknown crystalline phase is a

† Received on April 1, 1980
* Professor
** Research Associate

Transactions of JWRJ is published by Welding Research Institute of Osaka University, Suita, Osaka, Japan
Photo. 1 Scanning electron microscopy analysis of slag containing 10% TiO₂ heat-treated at 1000°C for 30 min.
(a), (b) : surface textures
(c) : analysis of surface crystalline shown in Photo. 1 (b).
(d) : analysis of glassy matrix shown in Photo. 1 (b).

Photo. 2 Scanning electron microscopy analysis of slag containing 10% TiO₂ heat-treated at 1000°C for 30 min.
(a), (b) : Bulk textures
(c) : analysis of bulk star-like crystalline shown in Photo. 2 (a).
(d) : analysis of glassy matrix shown in Photo. 2 (a).
Crystallization Behavior of Blast Furnace Slag

Fig. 2 X-ray diffraction patterns of slag containing 10% TiO₂ during heat-treatment at 1000°C.

Ca₃SiO₅-like one containing Al₂O₃ and TiO₂. The diffraction sites and intensities of gehlenite⁶ and akermanite⁵ and Ca₃SiO₅⁶ are shown in Fig. 2.

Photographs 1 and 2 show the surface and bulk textures of the slag containing 10% TiO₂, which was heat-treated at 1000°C for 30 min, observed by means of scanning electron microscopy. The surface of the slag was polished by Al₂O₃ powder and then etched in 1% HF acid for 10–30 sec. The surface (Photo. 1 (a) and (b)) and bulk (Photo. 2 (a) and (b)) crystallizations took place from the glassy matrix at the same time. As shown by X-ray energy dispersion analysis (Photo. 1 (c) and (d)), the difference of the distribution of chemical elements between the surface crystalline and the resided glassy matrix was hardly detected. This surface crystalline might be mellite. On the other hand, the large star-like precipitates, which were aggregated of small dendrites, were formed in the bulk glassy matrix. As shown by X-ray energy dispersion analysis (Photo. 2 (c) and (d)), the amount of Si and Mg in the bulk crystalline decreased in comparison with those of the glassy matrix, while the amount of Ti increased. In view of the X-ray diffraction patterns (Fig. 2), it can be concluded that the bulk crystalline phase is composed from Ca₃SiO₅-like phase containing Al₂O₃ and TiO₂.

Maurer⁷ investigated the crystallization of glass containing TiO₂ by means of light scattering. He elucidated that the glass contained a TiO₂ rich emulsion phase, which is known as the two-liquid phase separation, before heat-treatment, and the emulsion phase acted as heterogeneous nuclei in the crystallization of the glass. In this work, the observation of the optical microscope showed partly the less acid-resistant glassy matrix by etching of HF acid. This result suggests that the inhomogeneity of the components can exist in the glassy slag.

The crystallization mechanism of the glassy slag containing TiO₂ will be made clear by carrying out the transmission electron microscope examination or the small angle scattering measurement.

Acknowledgement

This work was supported by a grant-in-aid from the Iron and Steel Institute of Japan.

References