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Einige Sάtze ύber \-freie Zahlen

Professor Dr. Zyoiti Suetuna zum 60. Geburtstag

Von Yoshikazu EDA

Es sei NSιλ(n) die Anzahl der Darstellungen von n als Summe von
Quadraten von λ-freien Zahlen.

Eine natϋrliche Zahl n heisst eine \-freie kondίtionale Zahl, kurz λ-
konditionaly wenn es s ganze Zahlen, mlym2, -- , ms gibt, so dass

?=ΞΞrc (mod 22λ+1) (1)

mit

2 λ /T^> * = 1,2,-, s, λ^2.

Unter einem Quadrat sei hier das Quadrat einer positiven ganzen
Zahl verstanden, und unter einer λ-freien Zahl eine positive ganze Zahl,
die durch kein λ-Potenz ausser 1 teilbar ist.

Das Ziel der vorliegenden Arbeit ist es, die Estermannschen Satze
T2|1 und T2>2 fur λ^3 zu beweisen. Das gelingt uns mit der gleichen
Methode, wie sie Professor Estermann damit bewies.

Satz Tλl. Es sei s^>5. Dann gilt: Jede geniigend grosse \-kondi-
tionale Zahl n lάsst sich als Summe von s Quadraten \-freier Zahlen
darstellen.

Satz Tλ2. Es sei 5^2λ+1. Dann gilt: Jede genugend grosse Zahl n
lάsst sich als Summe von s Quadraten \-freier Zahlen darstellen.

Bezeichnungen. Fur reelles γ bezeichne [γ] die grosste ganze Zahl,
die nicht grosser als γ ist. Es sei λj>3 (ganz), und

B =

Die Buchstaben a, b, I bezeichnen ganze Zahlen h, k, m, q, s, j positive
ganze Zahlen u, v nicht negative Zahlen p Primzahlen x, yy Θy reelle
Zahlen 8 positive Zahlen e(x) = e2*ίx.

In der Summenzeichen 2 durchlauft h ein vollstandiges Restsystem
h τnoάq
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mod q. In alien ubrigen Summen ist die untere Summationsgrenze,
falls sie nicht ausdrϋcklich angegeben wird, gleich Eins. Leere Summen
sind gleich Null zu setzen.

Herrn Dr. T. Tatuzawa habe ich f ίir kritische Durchsicht des druck-
fertigen Manuskripts zu danken.

§ 1. Die Singulare Reihe.

Die Gaussschen Summen S(h, q) sind durch

S(h,q) = Σ e - - (3)
m mod q \ q I

definiert. Fur (/, q) = l ist

S(Γhy q) = S(h, q)y ( 4 )

und

S(kh, kg) = kS(h, q). ( 5 )

Hilfssatz 1. Sei (h> q) = ί. Dann ist

j q1/2 fur q = 1 (mod 2),

\S(h,q)\ = > 0 fur q = 2 (mod 4), (6)

(2qY/2 fur ^^0 (mod 4)

Beweis. [3], S. 10, Hilfssatz 1.
Hilfssatz 2. Fur (q1 , q2) = 1 ist

S(h, q,q2) = S(hq2,

Beweis. [3], S. 13, Hilfssatz 5.
Hilfssatz 3. Bei ungeradem h ist

S(h 2Ί = ' 4) fUr Zerade r'
' I 2cr-3)/2S(Λ, 8) fur ungerade r > 1 .

Bei pXh (/>>2) ist

^Ur gerade r'S(h ύΊ =
' P p'-wS(h, p) fur ungerade r.

Beweis. [3], S. 11.
Jetzt setzen wir

T(h, q) = q-ίul- Σ μ(m) S(m^h, q), (10)

A(q,n)= Σ Ts(h,q)e-n, (11)
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wobei a\b bedeutet, dass a in b aufgeht, und μ(n) ist die Mδbiussche
Funktion.

Hilfssatz 4. Fur (hy q) = l ist

T(h, q) = (<Γ1/2+ε) (12)

Beweis. Nach (5) und (6) ist

S(h, q) = 0(VTvΦM7)) > (13)

Folglich

), 5>0. (14)
P\g \ p / m\q I

Hilfssatz 5. Fur (q1 , q2) = 1 is/

T(A, ̂ 2) - Γ(Aίlf qJT(hq2, q,). (15)

Beweis. Setzt man zur Abkϋrzung

™ = ̂ π(l-^λ)-\ (16)

und

Tt(h, q) = Σ MW) S(m2λA, ?), (17)
"Ίί rrϊ

so folgt aus (10)

ΓΓA, ί) - Tι(q)T2(h, q). (18)

In Verbindung mit (4) und (7) ergibt sich folgendes

T2(h, q,q2} = Σ Σ μim/n^m^Γ^ml^m^h, q&2)
m^l m2\«2

^ q2)
ml\91

 m

2\92

Σ μ(ml)mϊλS(mlλhq2, q,) Σ μ(m2)mϊλS(mlλhq^ q2)

= T2(hq29q1)T(hg19g2)9 (19)

und ausserdem ist

TΛfcfc) - T,(q^T,(q2\ (ql9 q2) = 1 . (20)

Dann folgt die Behauptung des Hilfssatzes aus (16)-(20).

Hilfssatz 6. Fwr A=/z' (morf #) ̂
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T(h,q) = T ( h f , q ) , (21)

un d fur (k, q) = ί ίst

T(k*h, q) = T(hy q). (22)

Hilfssatz 7. Fur (qlyq2) = l ist

A(q^9 n) = A(ql9 n)A(q2y n). (23)

Beweis. Wegen (11) und (21) ist die linke Seite von (23) gleich

2,n) = Σ T'(h, q&-
*^Ί*2 \

CA1,<71Ϊ2) = 1

= Σ Σ T^^+
A^ίi h2<92

CAj^p^l CA2,ί2)=l

Hier ist nach (21), (22) und Hilfssatz 5

, q2)

Es ist somit

Hilfssatz 8. Setzt man

@ = &(n) = Σ ^4(9, n), (24)
9 = 1

konυergiert © absolut. Setzt man

n), (25)

(26)
P

Beweis. Die Richtigkeit des Hilfssatzes ergibt sich unmittelbar aus
Hilfssatz 4, 7 und (11).

Hilfssatz 9. Es gilt
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X(P)=*ΣA(pl,n) fur />>2, (27)
7=0

und

2\+l

%(2) = Σ Λ(2', n). (28)
/=0

Beweis. Nach Definition von T(h, q), ist es

T(h, pk) = -ίπ — JLj \S(h, pk)—p~λS(p2λh, pk)), (29)

Dann hat man nach (5)

T(h hk\ — -h~k\Λ \ (^(h hk\ />λς>f/7 -hk~2*\\ (b~>9\\ ί'^Π^± \tlfj JJ ) — JJ I λ. v I \Ό\ΐίj y )—JJ O\/£j JJ ))y \K ^^ £jιi\>) . \\j\Jj

Benutzt man hier die beiden Identitaten (8) und (9), so folgt

T(h,pk) = Q fur />>2, k^2\, p X h,

und
k) = 0 fur &^2λ + 2, 2. X h .

Hieraus ergibt sich der Hilfssatz.
Aus Hilfssatz 1 und (29) ergibt sich

I τ(h. pk}\^

27

Wegen (31), (11) und s2>5 ist augenscheinlich

I %(/>)-! I <ξ(P) (P>2), (32)

wobei

= Σ (P-DPk-1-)p-^+ρ-κY. (33)
Λ^2λ-l \ ^Λ/

Hilfssatz 10. Fur ^>2 wwrf λ^3 ist

0<ξ(P)<l. (34)

Beweis. Nach Definition von ξ(p) ist es
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%(P)= Σ (P-l)Pk

Schreibt man zur Abkϋrzung

so folgt

wo ist

Σ
KA<2\-1

= 10

und
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Nun nehmen wir an, es sei λ^3. Dann folgt

und

Folglich ist

H10(2λ-l)/λ

_/27Vί 1 5 10(2λ-l) 10 5 5 11
~ \267 i^Fi+^+ p* +^+^+TF~Ί

^/2ZYA1+1°4-A+A i ,2θλ-5\
^ \26/ \310 36 34 4 33/2 33λ /

= ^Yi-j-lO 4. A + A 1 \ /27V20X-5
\26/ \310 36 34 4 33/2/ \26/ 33λ

-n^« ,/27V20λ-5-υ.d»... +^j -gix-

Setzt man hier

f ίλ^ = 20λ -5 = 20X-5
71 ' 33λ 27λ '

so folgt d-f^ < 0 (λ ̂  3). Es ist dann /(3) ̂ /(λ) (λ ̂  3).
ί/A

Es ergibt sich somit fur λ^3

0.38 - + g

= 0.38... +0.00...
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was zu beweisen war.
Nach (33) 1st

ξ(p) = 0(p-^) (35)

und, wie wir nach (25) sehen werden, ist %(p) reell.
Wegen (32) folgt hieraus

Π%(p)^C, (36)
P>2

wobei ist
(37)

und C nur von λ abhangt.

Hilfssatz 11. Fur sj>5 und λ^2 sei N(s, n) die Lόsungsanzahl von

ml + m2

2+ +m2

s = n (mod 22λ+1), (38)

^Xπii fur l^i^s.
Dann ist

λ-lΓs22λ+1N(s, n). (39)

Zum Beweis brauchen wir zunachst f olgendes :

Hilfssatz 12. Fur

Beweis. Der Fall /=2λ + l ist klar, also sei 0^/^2λ. Nach (3),
(5), der Definition von T(A, 2*) und * = 2λ + l-/ ist

Somit ist

4, 22λ+"') = 2'(S(h,
1)-S(2'+λβ, 2λ+1)

22λ+1

= Σ *(OT)» w.z.b.w.
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Beweis von Hilfssatz 11. Fur 0</^2λ-ι-l ist nach Hilfssatz 12

O(λ+iWOλ ~\\sT<sflι O2X+1-Λ K~~1 ~̂1<£ \Δ — ± ) J. \fly & ) — 7 i ••• / , (

Nach (28) und (11) ist

— / J *1\« , *ϊ/ — / i / \ J. \'V) " / I "o2λ.+i

Σ

= 2-cλ+υs(2λ-l)-522λ+W(^, n).

Dann folgt die Behauptung.

Hilfssatz 13. Zs/ n \-konditional, so folgt

@ ̂  2~cλ+1)5(2λ-l)-s22λ+1C .

Beweis. Die Behauptung des Hilfssatzes folgt aus (25), (36), (40)
und der Definition von N(s, n).

§ 2. Die Funktion f(θ9 u).
Es ist

Σ μ(l) = 1 oder 0, (41)
lλn=m

je nachdem m λ-frei ist oder nicht.
Es sei

g(θ,u)= Σ e(m2θ). (42)

i^w^M

Dann ist nach Definition von S(h, q)

S(h, g) = gUL , q) = Σ e(^\ . (43)
\ Q I m< \ Q fm<,q

Fur u S^q, (h,q) = l ist

(44)

([1], S. 127).
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Setzt man

d=(hy q), hi = h/d und q1 = qfd,

so folgt wegen (5)

(45)

Dann ist nach (6)

(46)

Es sei

f(θ,u)= Σ μχ(m)e(nfθ). (47)

Dann ist nach (41)

/(*, tf) =_Σ_ jιx(m}e(nfx) = Σ .Σ μ(j)e(nfx)

= Σ

Λ Σ
u

x,Γλu). (48)
y=ι

Hilfssatz 14. Es SCT' /ώr (h, q) = 1,

Z? . (49)

Dann ist

f i h , u\ = O(w1/0+cl-1/W2+s). (50)

Beweis. Es ist klar, dass

I £(*,») 1^0. (51)

ist. Nach (46), (48), (49), (51) und (h,q) = l ist
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, q)) + 0(nί/Dq1/2+2) + O(

Beweis. Aus (48), (51) und (52) ergibt sich

λ

was zu beweisen war.

Hilfssatz 15. Es set fur (A, #) = !

q ̂  w1/f?, w < w1/2, C ̂  2λ, F ̂  2λ (52)

(53)

cλ~1)/c^cλ~1)/F) (54)

Wegen (45) ist dann

( ?'2λ// \ 1
— ' /"^) = 4 u Σ μ(J)J-*S(j2*h, q)

-«L" * 0 / ^

/ i μ(j/j b\j ft* Q)

/™»+ ). (55)

Anderseits ist wegen (4)

Σ / / I 1 \ 1 ~~ ^1 Ί rt Sϊ\ >^ >^ i f f Ί\ Ί~^ ^( Ίi^rt Π\μ\j)j ^\j '*> q) — z-i Z-i μ\j)j &\j n> q)

= μ(mk)(mkΓxS(m2χk2χhy q)

^

Vc-l
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Σ μ(m}m~l Σ μ(k)k~λS(m2λk2λhy q)
m\q k<Ml/cq-l/Fm~l

) S(m2λhy q) Σ μ(k)k-χ , (56)
m\q m

wo q = mql ist.
Weiter

- Σ +
VOq-W
p\k,m

wobei sind

Σ = ^ μ(k)
1 ^— I I,λ

und

= — —
m-1 kλ

p\k,m

μ(P)μ(h) =
p\m

^~ Σ
p\rn λ

= o

Folglich ist

Σ = T π i—
P

Nach (10), (13), (56) und (57) ist
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1

,<7)

π ι--
ζ(λ')p\q\ P

qT(h,

1 qT(h,

und somit

^S^ ιι( 1\ 1 ^( Ί ^/7 Π\/ i ι-"\j)j ^\j '"y y) — ?(λ)
Zusammenfassend haben wir

Nach C^2λ folgt die Behauptung.

Hilfssatz 16. Es set 2λ5^D,

w1/5< ί ̂  ̂ "1/jB , I « I < nl/B~lq-\ (A, ^) = 1 . (58)

, n1'2 = CX«1/D+cl-B"1)/2+E) . (59)
\ /

Beweis. Es ist

) =1Σn(/(| , VT)-/(| , VΛΓΪ))^) (60)

also, auf Grund vom Abelschen Lemma
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Hilfssatz 17. Es set

Dann ist

, n] = ̂ — Γ(M)ψK*) + 0{Λ^-cλ-lv^ (61)
/ 6ζ(Λ>)

mit

ψ(<2, u) = 2 _A AZ 0(/α). (62)

Beweis. Trivial ist zunachst die Abschatzung

= V1 " + 0(/-1/2). (63)

Setzen wir jetzt

, q ' v ' / r<λ) Λ v"' "' /! '

dann ist nach Hilfssatz 4 und 15

r(/+-S

~-ι/2 t ε

v7 /

= θ(^1/2-cλ-υ/ Vλ"1)/F+λ"3/2+ε) (1 ̂  / ̂  w) (65)

Benutzt man hier (62) und die Identitat

// ^> 1 \ /fi«\

7! (/-I)! 2/Γ ('^^' lbb^
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SO folgt

Γ '+ Γ ' + (67)

Aus (60), (63) und (66) folgt,

a \)).

Damit folgt die Behauptung (61) aus C^2λ, F^2λ.
Es sei /(A, #) ein Intervall der Gestalt

-* —tf"1^ ̂  ̂  ̂  —+ ί"^0 mit ^0 - rc1^1, (68)

wo

l<<7<rcv*, 1^A<^, (A,^) = 1 (69)

ist. Es ist ersichtlich, daβ je zwei verschiedene /(A, #) keinen Punkt
gemeinsam haben und alle I(h, q) im Intervall (#0, 1 + ̂ 0) enthalten sind.
Es sei E die Menge θζ(θQy 1 + #0), wo 61 zu keinem I(hy q) gehort

Hilf ssatz 18. Es sei θ 6 E. Dann ist

f(θy \Tn) = O(nl/D+^-B'^2+ς). (70)

Beweis. Es gibt q und h mit

-h\^n^B-l = θoy q^ri'l/B fur (h, q) =1. (71)
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Hierbei ist nach Definition von E Θ0<^Θ<ΘQ+1 und 0 £7(1,1). Es ist
somit 00<0<1-00. Aus diesem und (71) folgt 0</z^tf. Somit ist,

nach Definition von E, nl/B<^q^nl~l/B. Nimmt man hier a=θ— — , so

folgt \a\<^n1/B~1q~l. Hieraus folgt die Behauptung durch Anwendung
des Hilfssatzes 16.

Hilfssatz 19. Es set 5^5, D<2^B. Dann ist

fs(θy V^n)e(-nθ)dθ = O(ns/2-l^s-w/2B~l/DW). (72)
E

Beweis. Nach (47) ist

f\θ, \X¥) = Σ cme(mθ)
m = 2

wo cm die Anzahl gewisser Darstellungen von m als Summe von zwei
Quadraten ist. Es sei r(m) die Anzahl der Darstellungen von m als
Summe von 2 Quadraten. Dann ist Q^cm^r(m) = O(mζ). Daher ist
nach Hilfssatz 18

f'(θ,Vn)e(-nθ)dθ ^ \f (θ,n)\dθ

\f\θy n)\dθ)
E

und hieraus ergibt sich sofort die Behauptung (72).

§3. Beweis von Satzen Tλιl und Tλ(2.

Fur die Anzahl NSιλ(n) der Darstellungen von n in der Form

n =

wii (1 ̂  ̂  ̂  s)> λ-freie Zahlen,

gilt dann

S 0Q + 1

f (θ,n)e(-nθ)dθ. (73)
ΘQ

Dieses Integral Ns,λ(n) wird in die beiden Integrate

Ns,λ(n) = Iι + l2 (74)

zerlegt.
Wir setzen
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JE

und

Λ = Σ/Λ Σ /(*,ί), (76)

(*,?)=ι
wo

f*(θ,
.q)

I vh\ f V* / //
= * ( - — ) /*(— + ", χ/¥M^)^ (77)

\ ί/J-βo/9 \ ί

ist.
Wir betrachten jetzt das Integral Ilt das einem vorgegebenen Bruch

— entspricht. Nach (62), (63) und (66) ist

I ψ (α, u I ̂  t(0, «) = 2 -^ = 0( v7^) - (78)
L^J

Hilfssatz 20. Sei n'l<i\a\^^- . Dann ist
£

) = 0(|α|-1/z) (79)

(80)

Beweis. [1], S. 130, Lemma 8.
Aus (78) und (79)

Hilfssatz 21. E^ seien /i^O, ••• , /^^O ganz. Fur
ist

/I + /2+ -+/* = «

Beweis. [1], S. 131, Lemma 9.
Aus (62) und Hilfssatz 21 ergibt sich

ri r

/,+ +/,=ι., \ 2 λ

-2). (82)

'(f)
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Aus (79) und β^n1'*'1 folgt

S
'QQ/q -,s/2 /Γ1/2

f s(a, n)e(- ncC) da = -±_v- w5'2'1 + O(ws/2-2) + Of I *(<*, »)β(- wα) a
-«„/« \Jβr(^_\ \Jβ0/*'

\ 2 /
7Γ*/2

Γ(f)
ns/2~l + O(w5/2'2) + O(ns/2-l^s/2-l^B~ V72"1) (83)

Hilfssatz 22. £5 5̂ ' q<Lnl/B. Fur (h, q) = l ist

+ O

Beweis. Benίitzt man hier Hilfssatz 17 und (12), (80) so folgt

n)

— + I α: I

(1 + W I Λ I )^V2-Cλ-υ/C^Cλ-i)/F+λ-3/2.+ε j

*"8*/2+8 (1 + « I ̂  I *)

-f O/ w3/2-(λ-υ/c^-V2-ι+α-i)/F+λ+ε/_l_ + i Λ i W+v*\ (85)

\ \ n I I

Aus (77) ergibt sich

-9n/«
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und hierin hat man nach (85)

J ΘQ/Q C θo/g

O,da = O(racl/2-cλ-1)/C)5 ̂ λ- WF+λ -a*/2+β (1 + n i a i γda
-ΘQ/Q J-ΘQ/Q

und

J θn/4' / Γ 1 / 1 \(3-S)/2 \
O2da = θ(^/2-cλ-υ/c.-s/2-ι+cλ-ιvF+λ+s lJL + \a\] da)

-θQ/q \ Jθ\ U / /

Die Behauptung (84) des Hilfssatzes folgt aus (83).

Wegen (84) ist dann

Σ Σ /<*,*)= Σ Σ
Γ

=

Σ
2

A(q,n)

(86)

wo sind

Λ - θ(ns/2~2

Setzt man
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C = F = 2\ D= 2λ£, s ̂  5, und

so gilt erstens

und ferner,

Wegen Hilfssatz 22 ist

Σ Σ J(h,q) = ?rS/2

/ , ns/2~l Σ A(h, q) + O(ns/2~l-*)y (87)
ΛJ s

wo ist

δ == δ(λ, 6) > 0 .

Nach (11) und Hilfssatz 4 ist

Setzen wir @ = Σ3^(^ w)> so ergibt sich
9 = 1

) ) = 0 ( Σ ^cs

ί>»VΛ

. (88)

Aus (72), (73), (87) und (88) ergibt sich

N,.λ(n) = - *"** . Λ /ϊ-1© + O(«f/!-1-ί), δ > 0 . (89)

Beweis von Satz Tλa :
Dies folgt unmittelbar a us (89) und Hilfssatz 13.

Hilfssatz 23. Es sei

n = ml+ml +ml^ + 1 (mod 2λ+1), (90)

2 λ/m, , i = 1,2, -,5-1.
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Dann ist die Zahl n \-konditionaL

Beweis. Wir setzen jetzt

—^

a = A (mod 2λ), O^A^2λ-l.

Wir setzen ferner a = A + 2H (t ganz). Daraus folgt

= a2λ+ί

Somit ist

^2λ+1) (mod 22λ+1) .

Die Behauptung des Hilf ssatzes folgt aus folgendem Hilfssatz :

Hilfssatz 24. Die Kongruenz

m2

s = l-A2*+1 (mod 22λ+1)

ist losbar mit 2λ^ms

Beweis. Nach λj>2 ist

und

l-^2λ+1 = l (mod 23).

Die Richtigkeit dieses Hilf ssatzes ergibt sich unmittelbar aus [2], S. 69.

Hilfssatz 25. Es set s^2λ+1. Dann sind alle positive ganze Zahlen
\-konditional.

Beweis. Hier ist es genug, ^=2λ+1 anzunehmen. Ist O^Λ^^2λ+1 — 1,
so hat die Kongruenz

-3* = ΛM-4 (mod 2λ+1),

0^^^2λ+1-l,

eine Losung. Setzt man hier

O^ y = 2λ+1-l-Jt:<2λ+1-l,

so ist

χ!2+y22 = N (mod 2λ+1)

mit
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N=n-l (mod 2λ+1).

Hieraus folgt die Behauptung durch Anwendung des Hilfssatzes 23.

Beweis von Sat2 Tλ>2:

Die Richtigkeit des Satzes Tλι2 ergibt sich unmittelbar aus Satz Tλll

und Hilfssatz 25.

(Eingegangen 16 Februar, 1960)
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