

Title	On multiply transitive groups.
Author(s)	Hiramine, Yutaka
Citation	Osaka Journal of Mathematics. 1977, 14(3), p. 453-463
Version Type	VoR
URL	https://doi.org/10.18910/7992
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Hiramine, Y. Osaka J. Math. 14 (1977), 453-463

ON MULTIPLY TRANSITIVE GROUPS

YUTAKA HIRAMINE

(Received June 18, 1976)

1. Introduction

The known 4-fold transitive groups are A_n $(n \ge 6)$, S_n $(n \ge 4)$, M_{11} , M_{12} , M_{23} and M_{24} . Let G be one of these and assume G is a $(4, \mu)$ -group on Ω with $\mu \ge 4$. Here we say that G is a (k, μ) -group on Ω if G is k-transitive on Ω and μ is the maximal number of fixed points of involutions in G. Let t be an involution in G with $|F(t)| = \mu$, then $G^{F(t)} = G(F(t))/G_{F(t)}$ is also a 4-fold transitive group. Here we set $F(t) = \{i \in \Omega \mid i^t = i\}$ and denote by G(F(t)), $G_{F(t)}$, the global, pointwise stabilizer of F(t) in G, respectively.

In this paper we shall prove the following

Theorem 1. Let G be a 4-fold transitive group on Ω . Assume that there exists an involution t in G satisfying the following conditions.

(i) G is a $(4, \mu)$ -group on Ω where $\mu = |F(t)|$.

(ii) $G^{F(t)}$ is a known 4-fold transitive group; A_n $(n \ge 6)$, S_n $(n \ge 4)$ or M_n (n=11, 12, 23 or 24).

Then G is also one of the known 4-fold transitive groups.

This theorem is a generalization of the Theorem of T. Oyama of [10]: the case that $G^{F(t)} \simeq A_n$ $(n \ge 6)$, S_n $(n \ge 4)$ or M_{12} has been proved by T. Oyama and the case that $G^{F(t)} \simeq M_{11}$, M_{23} or M_{24} by the author.

To consider the case that $G^{F(t)} \simeq M_{23}$ or M_{24} , we shall prove the following theorem in §3 and §4.

Theorem 2. Let G be a (1, 23)-group on Ω . If there exists an involution t such that |F(t)| = 23 and $G^{F(t)} \simeq M_{23}$. Then we have

(i) If P is a Sylow 2-subgroup of $G_{F(t)}$, then P is cyclic of order 2 and $N_{G}(P) \cap g^{-1}Pg \leq P$ for any $g \in G$.

(ii) $|\Omega| = 69$ and G is imprimitive on Ω .

(iii) $O(G) \neq 1$ and is an elementary abelian 3-group. If we denote by ψ the set of O(G)-orbits on Ω , then $|\psi| = 23$ and $G^{\psi} \simeq M_{23}$.

It follows from this theorem that there is no (3, 24)-group such that for an involution t fixing exactly twenty-four points $G^{F(t)} \simeq M_{24}$.

In the remainder of this section we introduce some notations: Let G be a permutation group on Ω . For $X \leq G$ and $\Delta \subseteq \Omega$, we define $F(X) = \{i \in \Omega | i^x = i \text{ for all } x \in X\}$, $X(\Delta) = \{x \in X | \Delta^x = \Delta\}$, $X_{\Delta} = \{x \in X | i^x = i \text{ for every } i \in \Delta\}$ and $X^{\Delta} = X(\Delta)/X_{\Delta}$. If p is a prime, we denote by $O^p(X)$, the subgroup of X generated by all p'-elements in X and by $O^{p'}(X)$, the subtroup of X generated by all p-elements in X. I(X) is the set of involutions in X.

Other notations are standard (cf. [6], [13]).

2. Preliminaries

First we describe the various properties of M_{23} .

(i) M_{23} is a 4-fold transitive group on twenty-three points $\{1, 2..., 23\}$ and a Sylow 2-subgroup of the stabilizer of four points in M_{23} is of order 2⁴. It has a seven fixed points and acts regularly on the remaining points.

(ii) M_{23} is a (4, 7)-group and has a unique conjugate class of involutions.

(iii) M_{23} is a simple group and the outer automorphism group of it is trivial.

(iv) The centralizer of an involution \tilde{w} in M_{23} is a split extention of an elementary abelian normal subgroup \tilde{E} of order 2⁴ by a group \tilde{M} which is isomorphic to GL(3, 2).

(v) The center of a Sylow 2-subgroup of M_{23} is cyclic of order 2. Set $\tilde{C} = C(\tilde{w})$ and $F(\tilde{w}) = \Delta = \{1, 2, 3, 4, 5, 6, 7\}$. Then we have (vi) $\tilde{E}^{\Delta} \simeq 1$ and \tilde{E} is regular on $\{8, 9, \dots, 23\}$.

(vii) \tilde{M} is doubly transitive on Δ .

(viii) $M_{23} \simeq A_7$ and $M_{23}(\Delta) = N(\widehat{E})$.

(ix) $O(\tilde{C})=1, O^2(\tilde{C})=\tilde{C} \text{ and } O^{\tau'}(\tilde{C})=\tilde{C}$

We now prove the following lemmas.

Lemma 1. Let P be a 2-group and ϕ an automorphism of P of order 2. If $|C_P(\phi)| \leq 2^a$, then $|\Omega_1(P/P')| \leq 4^a$.

Proof. Set $|\Omega_1(P/P')| = 2^r$ and $Q/P' = \Omega_1(P/P') \cap C(\phi)$. Then $|Q/P'| \ge 2^{1/2}r$ (cf. (2.7) of [8]). Since $[\phi, Q] \le P'$, $(\langle \phi \rangle Q)' \le P'$, whence $|\langle \phi \rangle Q : (\langle \phi \rangle Q)'| \ge 2^{1/2}r^{+1}$. On the other hand $|C_{\langle \phi \rangle Q}(\phi)| = |\langle \phi \rangle C_Q(\phi)| \le 2^{a+1}$ and so $|\langle \phi \rangle Q : (\langle \phi \rangle Q)'| \le (\langle \phi \rangle Q)'| \le 2^{a+1}$ (cf. (2.8) of [8]). Thus $r \le 2a$.

Lemma 2. Let (G, Ω) be a (1, 23)-group. Suppose there exists an involution t such that |F(t)| = 23 and $G^{F(t)} \simeq M_{23}$. If P is a Sylow 2-subgroup of $G_{F(t)}$, then one of the following holds.

(i) $C_G(P)^{F(P)} \simeq M_{23}$ and there is an involution u in $N_G(P) - P$ satisfying $u^G \cap P \neq \phi$.

(ii) $N_{\mathcal{C}}(P)^{F(P)} \simeq M_{23}$ and $N_{\mathcal{C}}(P) \cap g^{-1}Pg \leq P$ for every $g \in G$.

Proof. Since $G(F(t)) = N_G(P)G_{F(t)}$, we have $N_G(P)^{F(P)} \simeq M_{23}$. Suppose that

 $N_{c}(P) \cap g^{-1}Pg \leq P$ for some g in G. Since $F(P) \neq F(g^{-1}Pg)$, there is an involution u in $g^{-1}Pg$ satisfying (i). As $|F(u^{F(P)})| = 7$ (cf. (ii) of §2) and |F(u)| = 23, $|((\Omega - F(P)) \cap F(u)| = 16$ and so $|C_{P}(u)| \leq 16$ by the semi-regularity of P on $\Omega - F(P)$. By Lemma 1, $|\Omega_{1}(P/P')| \leq 2^{8}$. Since |GL(n, 2)| is not divisible by the prime 23 when $1 \leq n \leq 8$, $O^{23'}(N_{c}(P))$ is a normal subgroup of $N_{c}(P)$ contained in $C_{c}(P)$ by Theorem 5.1.4 and 5.2.4 of [6]. Thus we obtain $C_{c}(P)^{F(P)} \simeq M_{23}$.

According as the lemma, the proof of Theorem 2 is divided into two cases.

3. Case (i)

In this section, we prove that the case (i) does not occur.

- (3.1) The following hold.
- (i) P is cyclic of order 2 and so we can choose P such that $P = \langle t \rangle$.
- (ii) $N_G(P) = C_G(t) = \langle t \rangle \times O^2(C_G(t)).$

(iii) Set $O^2(C_G(t)) = L(t)$. Then $L(t)/O(L(t)) \simeq M_{23}$, $O(L(t))^{F(t)} = 1$, $t \notin \{g^2 \mid g \in G\}$ and L(t) has a unique conjugate class of involutions.

(iv) Let s be an involution of L(t), then $s \in \{g^2 | g \in G\}$, $I(C_G(t)) \subseteq t^G \cup s^G$, $t \not\sim s$ and s is a central involution.

Proof. Since P is a Sylow 2-subgroup of $N_G(P)_{F(P)}$, Z(P) is a unique Sylow 2-subgroup of $C_G(P)_{F(P)}$ and so we have $C_G(P)_{F(P)} = Z(P) \times O(C_G(P))$. Set $\overline{C_c(P)} = C_c(P) / O(C_c(P))$. Considering the normal series of $C_c(P)$, $\overline{Z(C_c(P))} =$ $\overline{Z(P)}$ and $\overline{C_{G}(P)}/\overline{Z(P)} \simeq M_{23}$. As the Schur multiplier of M_{23} is trivial ([7]), there exists a subgroup \overline{L} of $\overline{C_c(P)}$ such that $\overline{C_c(P)} = \overline{Z(P)} \times \overline{L}$ and $\overline{L} \simeq M_{23}$. Let L be the inverse image of \overline{L} in $C_c(P)$. Then $C_c(P) = Z(P)O(C_c(P))L$, hence $C_{G}(P) = Z(P) \times L$ because $O(C_{G}(P)) \leq L$. Since $L = O^{2}(C_{G}(P)), P \times L$ is a normal subgroup of $N_c(P)$ and so $O^{2'}(N_c(P)) \leq P \times L$. Hence if u is an involution satisfying (i) of Lemma 2 there are an element v in $I(P) \cup \{1\}$ and w in I(L) with u = vw. Clearly $\tilde{C} \simeq C_{\bar{t}}(\bar{w}) = \overline{C_{t}(w)} \simeq C_{t}(w)/O(C_{t}(w))$ where $O(C_{t}(w)) = O(L) \cap$ $C_L(w)$ (cf. (ix) of §2). We denote $O(C_L(w)) = H$. Then $C_L(w)/H$ is isomorphic to \tilde{C} and $C_L(w)/H = E/H \cdot M/H$ such that $E/H = E^{F(P)} \simeq E_{16}$, $E^{F(P) \cap F(w)} = 1$, $C_L(w)^{F(P)\cap F(w)} = M^{F(P)\cap F(w)} = M/H \simeq GL(3, 2), E$ is a normal subgroup of $C_L(w)$ and $E^{F(P)} \cap M^{F(P)} = 1$. By the fact that u is conjugate to some element of P, $G^{F(u)} \simeq M_{23}$ and it follows that either $y^{F(u)} = 1$ or $y^{F(u)}$ is an involution for y in I(E). If $y^{F(u)} = 1$, then $F(y) \supseteq F(u)$. If $y^{F(u)}$ is an involution, $|F(y^{F(u)})| = 7$ and so $F(y) \cap F(u) = F(u) \cap F(P)$ because $F(u) \cap F(P) \subseteq F(y) \cap F(u)$ and $|F(u^{F(P)})| =$ $|F(w^{F(P)})| = 7.$

We argue $F(y) \cap F(u) = F(u) \cap F(P)$ for any y in I(E). Suppose $F(y) \supseteq F(u)$. Since $|F(y)| \le 23$, F(y) = F(u) and hence $\langle y, u \rangle$ is contained in a Sylow 2-subgroup of $G_{F(u)}$ and so $y^{c} \cap P \neq \phi$. Since $G^{F(y)} \simeq M_{23}$, [P, y] = 1, $F(P) \cap F(y) =$ $F(P) \cap F(u)$ and P is semi-regular on $\Omega - F(P)$, we have $P \simeq P^{F(y)}$ and P is an elementary abelian 2-group of order at most 16. Hence any element which is conjugate to some element of $P - \{1\}$ is not a square of any element in G. But the element y in L is a square of some element in L because $L/O(L) \simeq M_{23}$ and (ii) of §2, which is a contradiction. This shows that $F(u) \cap F(y) = F(u) \cap F(P)$ for any y in I(E).

Set $\Delta = F(u) - F(P) = F(u) - F(y)$. Since $|F(u) - F(P)| = |F(u) - (F(u) \cap F(P))| = 16$ and a Sylow 2-subgroup T of E is isomorphic to E_{16} , T acts regularly on Δ .

We argue |P|=2. Suppose $|P|\geq 4$. Then $|C_P(v)|\geq 4$. Since $C_P(v)$ is semi-regular on Δ and $[C_P(v), C_L(w)]=1$, we have $O^{7'}(C_L(w))^{\Delta}=1$. As $E \triangleright O(C_L(w)), O(C_L(w))^{\Delta}=1$ and so by (ix) of §2, $C_L(w)^{\Delta}=1$, a contradiction. Thus (i), (ii) and (iii) are proved.

Let s be an involution of L(t). Since t is not a square of any element of G, t is not conjugate to s and u is of the form tw where w is an element in I(L(t)). On the other hand w is conjugate to s in L(t) by (iii) and so u is conjugate to ts. Hence t is conjugate to ts. The four-group $\langle t, s \rangle$ is the center of a Sylow 2-subgroup of $C_c(t)$ by (v) of §2. Hence to complete the proof of (iv), we may assume t is not a central involution. Since $\langle t, s \rangle$ contains a central involution and $t \sim ts$, s must be a central involution. Thus (iv) is proved.

(3.2) Let notations be as in (3.1). Then

(i) If $t_1 \in t^G$, $u_1 \in I(G)$ and $[t_1, u_1] = 1$, then $t_1 = u_1$ or $|F(t_1) \cap F(u_1)| = 7$.

(ii) There exist an involution s in L(t) and a four-group $\{u_i | 0 \le i \le 3\}$ of L(t) satisfying the following.

 $u_0=1$. $[s, u_i]=1$, $F(tu_i) \cap F(u_j)=F(t) \cap F(\langle u_1, u_2 \rangle)$ if $0 \le i, j \le 3$ and $j \ne 0$. Set $F(t) \cap F(\langle u_1, u_2 \rangle) = \Delta$. Then $|\Delta|=7$ and $|F(s) \cap \Delta|=3$.

Proof. By (ii) and (iii) of (3.1), (i) is obvious.

Let w, E and M be as in the proof of (3.1) and s an involution in M. Let T be a Sylow 2-subgroup of E normalized by s. Since T is isomorphic to E_{16} , there is a subgroup $\{1, u_1, u_2, u_3\}$ of T centralized by s (cf. Lemma 1). By (vi) of $\{2, |F(T) \cap F(t)| = 7$ and T is regular on F(t) - F(T) and so $|F(t) \cap F(\langle u_1, u_2 \rangle)| = |\Delta| = 7$. Since $F(tu_i) \cap F(u_j)$ contains Δ , $F(tu_i) \cap F(u_j) = \Delta$ follows from (i). By (viii) of $\{2, |F(s) \cap (F(t) \cap F(T))| = 3$, hence $|F(s) \cap \Delta| = 3$.

(3.3) Let s, $\{u_0, u_1, u_2, u_3\}$ be as in (ii) of (3.2). For $t_1 \in t^G$ and $s_1 \in I(L(t_1))$, we set $L(t_1) \cap C(s_1) = L(t_1, s_1)$. Then we have

(i) Set $\Gamma_i = F(tu_i) \cap F(s)$ and $N_i = L(tu_i, s)$ $(0 \le i \le 3)$, then $|\Gamma_i| = 7$, $F(s) \supseteq \bigcup_{i=0}^{3} \Gamma_i$, $\Gamma_k \cap \Gamma_l = \bigcap_{i=0}^{3} \Gamma_i$ $(k \ne l)$, $|\bigcap_{i=0}^{3} \Gamma_i| = 3$ and $N_i / O(N_i) = N_i^{F(tu_i)} \simeq \tilde{C}$.

(ii) There exist subgroups E_i , M_i of N_i for each $i \in \{0, 1, 2, 3\}$ such that $N_i | O(N_i) = E_i | O(N_i) \cdot M_i | O(N_i) \triangleright E_i | O(N_i)$, $E_i | O(N_i) = E_{16}$, $M_i | O(N_i) = GL(3, 2)$, $E_i^{\Gamma_i} = 1$, $N_i^{\Gamma_i} = M_i^{\Gamma_i} = GL(3, 2)$ and $M_i^{\Gamma_i}$ is doubly transtive.

Proof. By the choice of s and u_i $(0 \le i \le 3)$, (i) is clear. Since tu_i is con-

jugate to t for each i, we can define E_i and M_i in exactly the same way as E and M mentioned in the proof of (3.1). From this, (ii) immediately follows.

- (3.4) Let notations be as in (3.1), (3.2) and (3.3). Then
- (i) There is a $C_c(s)$ -orbit Λ on F(s) with $F(s) \supseteq \Lambda \supseteq \overset{\circ}{\cup} \Gamma_i$.
- (ii) $|\Lambda| = 19$, 21 or 23 and |F(s)| = 19, 21 or 23.
- (iii) If $k \in \Lambda$, then $C_{\mathcal{G}}(s)_k$ has an orbit on $\Lambda \{k\}$ of length at least 18.
- (iv) If $|\Lambda| = 19$, then $C_G(s)^{\Lambda} \simeq A_{19}$ or S_{19} .

Proof. Since $N_i \leq C_G(s)$ and $N_i^{\Gamma_i}$ is doubly transitive for *i* with $0 \leq i \leq 3$, (i) follows immediately from (i) of (3.3). By assumption, $|F(s)| \leq 23$ and obviously $|\bigcup_{i=0}^{3} \Gamma_i| = 19$, hence $19 \leq |\Lambda| \leq 23$. On the other hand $\Lambda \supseteq \Gamma_0 =$ $F(\langle t, s \rangle)$, so $|\Lambda|$ is odd. Thus (ii) holds. To prove (iii), we may assume $k \in \bigcap_{i=0}^{3} \Gamma_i$. Since $(N_i)_k \leq C_G(s)_k$ and $(N_i)_k$ is transitive on $\Gamma_i - \{k\}$, we have (iii).

Now suppose $|\Delta| = 19$. Then $C_G(s)^{\Delta}$ is primitive and $N_i^{\Gamma_i} \simeq GL(3, 2)$. Hence $C_G(s)^{\Delta}$ possesses an element of order 7. By Theorem 13.10 of [13], $C_G(s)^{\Delta} \ge A_{19}$ holds and (3.4) is proved.

(3.5) Let notations be as in (3.1)—(3.4). There exists a Sylow 2-subgroup Q of $G_{F(s)}$ such that $s \in Z(Q)$ and $t \in N_{C}(Q)$. Let Γ be the $G^{F(s)}$ -orbit containing Λ . Then

- (i) $F(Q) = F(s), G^{F(s)} = N_G(Q)^{F(s)}$ and $|\Gamma| = 19, 21 \text{ or } 23.$
- (ii) If $k \in \Gamma$, then $N_G(Q)_k$ has an orbit on $\Gamma \{k\}$ of elngth at least 18.
- (iii) If $|\Gamma| = 19$, then $N_G(Q)^{\Gamma} \simeq A_{19}$ or S_{19} .
- (iv) If $|\Gamma| = 21$, then $N_{G}(Q)^{\Gamma} \simeq A_{21}$ or S_{21} .
- (v) If $|\Gamma| = 23$, then $N_G(Q)^{\Gamma} \simeq A_{23}$ or S_{23} .

Proof. Let T be a Sylow 2-subgroup of $C_G(s)$ containing t. As s is a central involution by (iv) of (3.1) and $C_G(s) \leq G(F(s))$, T is a Sylow 2-subgroup of G(F(s)). Set $Q = T \cap G_{F(s)}$. Then Q satisfies the condition of (3.5). Now we prove (i)—(v). (i), (ii) and (iii) follow immediately from (3.4).

To prove (iv), first we argue that $N_G(Q)^{\Gamma}$ is primitive. If $|\Lambda| = 19$, $C_G(s)^{\Gamma}$ possesses an element of order 19 by (iv) of (3.4), hence $N_G(Q)^{\Gamma}$ is primitive. Therefore we may assume $|\Lambda| = |\Gamma| = 21$ and we argue that $C_G(s)^{\Lambda}$ is primitive. Suppose $C_G(s)^{\Lambda}$ is imprimitive. Let B_1 be a nontrivial block of $C_G(s)^{\Lambda}$, then by (ii) of (3.4) we have $|B_1| = 3$. Let $\Pi = \{B_1, B_2, \dots, B_7\}$ be a complete system of blocks. Since N_i is transitive on Π and $[N_i, tu_i] = 1$, tu_i fixes all blocks in Π . Hence $F(tu_i) \cap B_i \neq \phi$ for every l with $1 \leq l \leq 7$. On the other hand $|F(tu_i) \cap \Lambda| = 7$, hence $|F(tu_i) \cap B_i| = 1$. From this $(tu_i tu_j)^{\Lambda} = (u_i u_j)^{\Lambda} = 1$ for any $i, j \in \{0, 1, 2, 3\}$. If $F(Q) \neq \Lambda$, then $|F(Q) - \Lambda| = 2$ and so $(tu_i tu_j)^{\Lambda_1} = (u_i u_j)^{\Lambda_1} = 1$ where $\Lambda_1 = F(Q) - \Lambda$. Hence $F(\langle u_1, u_2 \rangle) = F(Q) = F(s)$, which is contrary to (ii) of (3.2). Thus $N_G(Q)^{\Gamma}$ is primitive.

Next we shall show that we many assume $E_0^{F(Q)} = 1$. Since $M_0^{\Gamma_0} \simeq GL(3, 2)$ and $M_0 \leq G(F(Q))$, $M_0^{F(Q)}$ possesses an element of order 7. We may assume this element has no fixed point on Γ , for otherwise we obtain $N_G(Q)^{\Gamma} \geq A_{21}$ by Theorem 13.10 of [13]. Hence an arbitrary M_0 -orbit on Γ has length 7 or 14 and so $O(M_0)^{\Gamma} = 1$ holds because $M_0/O(M_0) = M_0^{\Gamma_0} \simeq GL(3, 2)$. Hence $O(M_0)^{F(Q)}$ =1. Set $\Gamma - F(t) = \Delta_0$. Then $\Delta_0 = \Gamma - \Gamma_0$ and $|\Delta_0| = 14$. Since the element of $M_0^{F(Q)}$ of order 7 as above and the element t have no fixed point on Δ_0 , $\langle t \rangle \times N_0$ is transitive on Δ_0 . It follows from $N_0 \triangleright E_0$ that the orbits of $\langle t \rangle \times E_0$ on Δ_0 form a complete system of blocks of $\langle t \rangle \times N_0$. We denote this $\Pi =$ $\{B_1, \dots, B_r\}$. Since $O(M_0) = O(N_0)$, $O(M_0)^{F(Q)} = 1$ and $E_0/O(N_0) \simeq E_{16}$, we have $\langle t \rangle \times E_0$ is a 2-group on Δ_0 . Hence $|B_1| = 2$ and r = 7. By (i) of (3.2), $F(s) \cap$ $F(tv) = F(s) \cap F(t)$ holds for every $v \in I(E_0)$ and so $\Delta_0 \cap F(tv) = \phi$. Hence $v^{B_k} =$ $t^{B_k t v^{B_k} = 1$ for each B_k with $1 \leq k \leq 7$, which implies $E_0^{\Gamma} = 1$. If $F(Q) \equiv \Gamma$, then $|F(Q) - \Gamma| = 2$. Since $(F(Q) - \Gamma) \cap F(tv) = (F(s) \cap F(tv)) - \Gamma = \phi$ for every $v \in$ $I(E_0)$, we get $v^{F(Q)-\Gamma} = t^{F(Q)-\Gamma} tv^{F(Q)-\Gamma} = 1$. Thus $E_0^{F(Q)} = 1$.

We denote $L(t)^{F(t)} = \overline{L(t)}$. Since $\overline{L(t)} = L(t)/O(L(t))$ and $O(E_0) = E_0 \cap O(L(t))$, we have $(\overline{L(t)} \cap N(\overline{E_0}))^{\Gamma_0} \cong A_7$ by (viii) of §2. Hence $(L(t) \cap N(E_0O(L(t))))^{\Gamma_0} \cong A_7$ and so if T is a Sylow 2-subgroup of E_0 , we have $N_{L(t)}(T)^{\Gamma_0} \cong A_7$. We note that F(T) = F(Q) because $E_0^{F(Q)} = 1$ and L(t) has a unique conjugate class of involutions. So we have $N_{L(t)}(T) \leq G(F(Q)) \cap G(\Gamma_0)$. Let y_0 be a 5-element of $N_{L(t)}(T)$ such that the order of $y_0^{\Gamma_0}$ is 5. Since $y_0 \in G(F(Q)) \cap G(\Gamma_0)$, we get $y_0 \in G(\Gamma) \cap G(\Gamma_0)$. Therefore $|F(y_0^{\Gamma})| \geq 6$. As $N_G(Q)^{\Gamma}$ is primitive, it follows from Theorem 13.10 of [13] atht $N_G(Q)^{\Gamma} \geq A_{21}$. Thus (iv) is proved.

Finally we prove (v). If $|\Gamma|=23$, $F(Q)=\Gamma$. Since $G^{\Gamma} \ge N_i^{\Gamma}$ and N_i^{Γ} involves the group isomorphic to GL(3, 2), G^{Γ} is not solvable. Hence by the result of [11], we have $G^{\Gamma} \simeq M_{23}$, A_{23} or S_{23} . If $G^{\Gamma}=N_G(Q)^{F(Q)}\simeq M_{23}$, we can apply (iii) of (3.1) to s and obtain $s \notin \{g^2 | g \in G\}$, which is contrary to (iv) of (3.1). (Here we note that $I(L(t)) \subseteq s^G$ and hence (i) of Lemma 2 occurs with respect to s.)

(3.6) Let notations be as in (3.5). We set $N=C_{G}(Q)$ if $F(Q)=\Gamma$ and $N=C_{G}(Q)_{\psi}$ where $\psi=F(Q)-\Gamma$ if $F(Q)=\Gamma$. Then $N^{\Gamma}\geq A_{|\Gamma|}$.

Proof. Since $|\Gamma \cap F(t)| = 7$, by (i) of (3.2) $C_Q(t)$ acts semi-regularly on $F(t) - \Gamma$ and so $|C_Q(t)| \le 16$. Hence $|\Omega_1(Q/Q')| \le 2^8$ by Lemma 1. Since GL(n, 2) is a 19'-group when $1 \le n \le 8$, $O^{19'}(N_G(Q))$ is a normal subgroup of $N_G(Q)$ contained in $C_G(Q)$ by Theorem 5.1.4 and 5.2.4 of [6]. Hence $C_G(Q)^{\Gamma} \ge A_{|\Gamma|}$ by (iii), (iv) and (v) of (3.5), so that $N^{\Gamma} \ge A_{|\Gamma|}$ because $|\psi| \le 4$.

(3.7) We have now a contradiction in the following way.

Let notations be as in (3.1)—(3.6). Set $H = \langle t \rangle N$. We denote $H^{\Gamma} = \overline{H}$. Since $|F(\overline{t})| = 7$ and by (3.6) $\overline{N} \geq A_{|\Gamma|}$, there exists in N an element v such that the order of \overline{v} is 5, $[\overline{t}, v] = 1$ and $v^{F(t)} \neq 1$. We may assume v is a 5-element.

Cleary v normalizes $\langle t \rangle N_{\Gamma}$. Since Z(Q) is a unique Sylow 2-subgroup of N_{Γ} , $\langle t \rangle Z(Q)$ is a Sylow 2-subgroup of $\langle t \rangle N_{\Gamma}$. By the Frattini argument there is a 5-element w in N such that $\overline{v} = \overline{w}$ and w normalizes $\langle t \rangle Z(Q)$. It follows from $Z(Q) \leq Z(N)$ that w stabilizes a normal series $\langle t \rangle Z(Q) \triangleright Z(Q) \triangleright 1$. By Theorem 5.3.2 of [6], w centralizes $\langle t \rangle Z(Q)$ and hence $w \in L(t, s)$. Since $F(t) \cap F(s) =$ $F(t) \cap \Gamma$, $w^{F(t) \cap F(s)} = v^{F(t) \cap \Gamma} \neq 1$. Hence $L(t, s)^{F(t) \cap F(s)} \simeq GL(3, 2)$ has a nontrivial 5-element, a contradiction.

4. Case (ii)

In this section we shall prove that if the case (ii) of Lemma 2 holds, then (G, Ω) is an imprimitive group of degree 69 and has properties listed in the conclusion of Theorem 2. From now on we assume the involution t is contained in P because P is an arbitrary Sylow 2-subgroup of $G_{F(t)}$.

(4.1) $O(G) \neq 1$.

Proof. Let (G, Ω) be a minimal counterexample to (4.1).

Since $|G: N_G(P)|$ is odd, there is a Sylow 2-subgroup S of G such that $S \triangleright P$. Set H=G(F(t)). If $t \in H^g$ for some $g \in G$, then $t^{g^{-1}} \in H$ and $(t^{g^{-1}})^h \in S$ for some $h \in H$ because S is a Sylow 2-subgroup of H. Since $N_G(P) \cap P^{g^{-1}h} \leq P$, $F(t^{g^{-1}h})=F(P)=F(t)$, hence $g^{-1}h \in H$, which implies $g \in H$. Consequently $t \in H^g$ if and only if $g \in H$. If $t_1(\pm t)$ is an involution in $t^G \cap C(t)$, then as above $t_1 \in$ $H_{F(t)}$ and so $tt_1 \in I(H_{F(t)})$. Hence $(tt_1)^g \in H$ if and only if $g \in H$.

Thus we can apply Theorem 3.3 of [1] to t, H and G. Set $\langle t^G \rangle = L$. Since $O(G) = O_2(G) = 1$, the 2-rank of any nontrivial characteristic subgroup of L is at least 2 by the Theorem of Brauer-Suzuki ([3]) and Theorem 7.6.1 of [6]. Hence $H \cap L'$ is strongly embedded in L'. By the Theorem of Bender ([2]), L^{∞} is a simple group isomorphic to PSL(2, q), Sz(q) or PSU(3, q) for $q=2^n \geq 4$. Here L^{∞} is the last term of the derived series of L. Set $L^{\infty}=N$. We note that N is a normal subgroup of G and $|N: N \cap H| \geq 5$.

Since $G^{F(t)} \ge N^{F(t)}$ and $G^{F(t)} \simeq M_{23}$, we have $N^{F(t)} \simeq M_{23}$ or 1. Suppose $N^{F(t)} \simeq M_{23}$. Since $N \ne M_{23}$, we have $N \le G(F(t))$. If $|N_{F(t)}|$ is odd, $G = \langle t \rangle N$ and $P = \langle t \rangle$ by the minimality of G. By the Glauberman's Z^* -theorem ([5]), $G \triangleright \langle t \rangle O(G) = \langle t \rangle$, a contradiction. If $|N_{F(t)}|$ is even, by the minimality of G, G = N. Since N has a unique conjugate class of involution, $I(N_G(P)) \subseteq I(P)$ by the assumption (ii) of Lemma 2. Hence S/P is an elementary abelian 2-group (cf. section 3 of [2]), which is contrary to $N_G(P)^{F(P)} \simeq M_{23}$.

Now we suppose $N^{F(t)} = 1$. Since $N \cap P \neq 1$ and $NC_G(N) = N \times C_G(N)$, the assumption (ii) of Lemma 2 forces $|C_G(N)_{F(t)}|$ is odd. Hence if $|C_G(N)|$ is even, $C_G(N)^{F(t)} \neq 1$ and so $C_G(N)^{F(t)} \simeq M_{23}$ because $M_{23} \simeq G^{F(t)} \triangleright C_G(N)^{F(t)}$. Obviously $C_G(N) \leq G(F((N \cap P)^g)) = G(F(t^g))$ for any $g \in G$. Therefore $\{F(t)^g \mid g \in G\}$ forms a complete system of blocks of G on Ω and an involution of $C_G(N)$

has exactly seven fixed points on each block. But (G, Ω) is a (1, 23)-group and hence $|\{F(t)^g | g \in G\}| = 3$, which implies $|N: N \cap H| = 3$, a contradiction. Thus we have $C_c(N)=1$. From this G/N is isomorphic to a subgroup of outer automorphism group of N. Hence G/N is solvable ([12]) and so $G^{\infty}=N$. Thus $N^{F(t)} \geq (G^{F(t)})^{\infty} \simeq M_{23}$, a contradiction.

(4.2) P is cyclic or generalized quaternion.

Proof. Suppose that P contains a four-group Q. Then $O(G) = \langle C_{0(G)}(x) | 1 \\ \pm x \in Q \rangle$ by Theorem 5.3.16 of [6] and $O(G) \leq G(F(P)) = G(F(t))$. Since $O(G)^{F(t)} \triangleleft G^{F(t)} \simeq M_{23}, O(G)^{F(t)} = 1$. Hence $O(G) \leq G_{F(t)}$, so that O(G) = 1, which is contrary to (4.1). Thus P is cyclic or generalized quaternion.

Let us note that the automorphism group of P is a $\{2, 3\}$ -group. Hence $N_{G}(P)^{F(P)} = C_{G}(P)^{F(P)} \simeq M_{23}$. By the similar argument as in the first paragraph of the proof of (3.1), we have

(4.3) $C_G(P)^{F(P)} \simeq M_{23}$. $C_G(P) = Z(P) \times O^2(C_G(P))$. Set $L = O^2(C_G(P))$. Then $L^{F(P)} = L/O(L) \simeq M_{23}$.

By the Feit-Thompson theorem ([4]), O(G) is solvable. Hence we have (4.4) Let N be a minimal normal subgroup of G contained in O(G). Then N is an elementary abelian p-group for some odd prime p.

(4.5) Set $K = \{x \in N \mid x^t = x^{-1}\}$. Then

(i) L normalizes K and $K \leq G(F(t))$.

(ii) Set $X = (\langle t \rangle \times L)K$ and $\Gamma = \alpha^X$ where $\alpha \in F(t)$. Then $\Gamma \supseteq F(t)$, $|\Gamma| > 23$ and $|\Gamma|$ is odd.

Proof. Since $N^{F(t)} \triangleleft G^{F(t)} \simeq M_{23}$, $N^{F(t)} = 1$. Hence $N \leq G(F(t))$. By Lemma 2.1 of [2], $N = C_N(t)K$ and so $K \leq G(F(t))$. If $x \in K$ and $y \in L$, $x^y \in N$. It follows from (4.2) that $t \in Z(P)$. Hence [L, t] = 1 and $(x^y)^t = x^{yt} = x^{ty} = (x^{-1})^y = (x^y)^{-1}$. So we have $x^y \in K$. Thus (i) holds.

Since $L^{F(t)} \simeq M_{23}$ and $K \leq G(F(t))$, $\Gamma \supseteq \alpha^L = F(t)$ and $\Gamma \neq F(t)$. Let T be a Sylow 2-subgroup of L. Then $F(T) \cap F(t) \neq \phi$ and $\langle t \rangle \times T$ is a Sylow 2-subgroup of X. Therefore $|\Gamma|$ is odd. Thus (ii) holds.

(4.6) Let $\prod = \{\Delta_1, \Delta_2, \dots, \Delta_r\}$ be the set of K-orbits on Γ . Then the following hold.

(i) $r=23, K^{\Pi}=t^{\Pi}=O(L)^{\Pi}=1, X^{\Pi}=L^{\Pi}\simeq M_{23} \text{ and } X_{\Pi}=\langle t \rangle O(L)K.$

(ii) If $y \in I(\langle t \rangle \times L)$ and $y \neq t$. Then $|F(y^{\pi})| = 7$ and for $\Delta_i, \Delta_j \in F(y^{\pi})$, $|\Delta_i \cap F(y)| = |\Delta_i \cap F(y)|$.

(iii) For $y \in I(\langle t \rangle \times L) - \{t\}$ and $\Delta_i \in F(y^{\Pi})$ we set $|\Delta_i \cap F(y)| = m(y)$. Then m(y)=1 or 3 and $|F(y) \cap \Gamma| = 7 \times m(y)$.

Proof. If r=1, then K^{Γ} is regular, so that $|F(t^{\Gamma})| = |K^{\Gamma} \cap C(t^{\Gamma})|$. On the other hand $|F(t^{\Gamma})| = 23$ and by the definition of K, $|K^{\Gamma} \cap C(t^{\Gamma})| = 1$, a contradiction. Thus $r \neq 1$.

We consider the action of X on the set \prod . Since $K^{\pi}=1$, [t, L]=1 and X

is transitive on Π , we have $t^{\Pi} = 1$ and L is transitive on Π . Hence for $\Delta_i, \Delta_j \in \Pi$, there is an element $x \in L$ such that $(\Delta_i)^x = \Delta_j$. Then $|F(t) \cap \Delta_i| = |(F(t) \cap \Delta_i)^x| = |F(t) \cap \Delta_j|$, so that $|F(t)| = |\Delta_i \cap F(t)| \times r$ for any $\Delta_i \in \Pi$. Hence $|\Delta_i \cap F(t)| = 1$ and r = 23. Since $F(O(L)) \supseteq F(t), O(L)^{\Pi} = 1$ and $X_{\Pi} = \langle t \rangle O(L)K$. Thus (i) holds.

Let $y \in I(\langle t \rangle \times L)$ and $y \neq t$. Then $y^{\pi} \neq 1$ and by (ii) of §2, $|F(y^{\pi})| = 7$. Since $X_{\pi} = \langle t \rangle O(L)K$, $L^{\pi} \cap C(y^{\pi}) = (C_{L}(y))^{\pi}$. By (vii) of §2, $L^{\pi} \cap C(y^{\pi})$ is transitive on $F(y^{\pi})$. Therefore as above we obtain (ii).

Since $23 \ge |F(y) \cap \Gamma| = |F(y^{\pi})| \times m(y) = 7 \times m(y)$, we have $m(y) \le 3$. By (ii) of (4.5), $|\Gamma|$ is odd and so m(y) is odd. Thus (iii) holds.

(4.7) Let $s \in I(L)$. Then the following hold.

(i) m(s)=3 and $|F(s) \cap \Gamma|=21$.

(ii) If $\Delta \in F(s^{\pi})$, then $F(s) \supseteq \Delta$. Moreover $|\Delta| = 3$ and N is an elementary abelian 3-group.

(iii) $F(s) \subseteq \Gamma$ and |F(s)| = 21.

Proof. Suppose $m(s) \neq 3$. Then by (iii) of (4.6) m(s)=1. Since K^{Δ} is regular for any $\Delta \in \prod$, if $\Delta \in F(s^{\Pi})$, s^{Δ} inverts K^{Δ} . Hence $(ts)^{\Delta}$ centralizes K^{Δ} and so $F(ts) \supseteq \Delta$ and $m(ts) = |\Delta|$. Since $|\Delta| \neq 1$, by (iii) of (4.6) we have $|\Delta| = m(ts) = 3$. Therefore by (iii) of (4.6) $|F(ts) \cap \Gamma| = 21$. Since $L/O(L) \simeq M_{23}$, s^{Γ} is an even permutation. Furthermore $|F(s) \cap \Gamma| = 7$ because m(s) = 1. On the other hand $|\Gamma| = |\Delta| \times 23 = 69$ and s^{Γ} is an odd permutation, a contradiction. Thus (i) holds.

Since $|F(s) \cap \Gamma| = 21$ and s^{Γ} is an even permutation, t^{Γ} is an odd permutation because $|F(t) \cap \Gamma| = 23$. Hence $(ts)^{\Gamma}$ is an odd permutation and so m(ts)=1 and $(ts)^{\Delta}$ inverts K^{Δ} for $\Delta \in F(s^{\Pi}) = F((ts)^{\Pi})$. Therefore $s^{\Delta} = (t^{\Delta})(ts)^{\Delta}$ centralizes K^{Δ} and $F(s) \supseteq \Delta$, so that $m(s) = |\Delta| = 3$. Hence K and N are elementary abelian 3-groups, so (ii) holds.

Since $L^{F(t)} = L/O(L) \simeq M_{23}$, by (vi) of §2, there exists a four-group $\langle s_1, s_2 \rangle$ of L such that $F(s_1) \cap F(t) = F(s_2) \cap F(t)$. Since L has a unique conjugate class of involutions (cf. (ii) of §2), $m(s_1) = m(s_2) = m(s_1s_2) = 3$. Hence $F(s_1) \cap \Gamma = F(s_2) \cap \Gamma$ $= F(s_1s_2) \cap \Gamma$ and $|F(s_1) \cap \Gamma| = 21$. To prove (iii) it will suffice to show that $|F(s_1)| = 21$. Assume $|F(s_1)| \neq 21$. Then $|F(s_1)| = 23$ and $|F(s_1) \cap (\Omega - \Gamma)| = 2$. Since $L/O(L) \simeq M_{23}$, we have $C_L(s_1)/O(C_L(s_1)) \simeq \tilde{C}$ by the property of M_{23} . $C_L(s_1)$ acts on $F(s_1) \cap (\Omega - \Gamma)$ and $O^2(\tilde{C}) = \tilde{C}$ by (ix) of §2, hence $C_L(s_1)$ acts trivialy on $F(s_1) \cap (\Omega - \Gamma)$. Therefore $F(s_1) = F(s_2) = F(s_1s_2)$ and $|F(s_1)| = 23$. By Theorem 5.3.16 of [6], $N = \langle C_N(s) | 1 \neq s \in \langle s_1, s_2 \rangle$ and hence N acts on $F(s_1)$. From this $3 ||F(s_1)|$, a contradiction. Thus (iii) holds.

(4.8) The following hold.

- (i) O(G) is an elementary abelian 3-group.
- (ii) G is imprimitive on Ω and the length of an O(G)-orbit is three. |P|=2.

(iii) $|\Omega| = 69$. Let ψ be the set of O(G)-orbits on Ω . Then $|\psi| = 23$ and $G^{\psi} \simeq M_{23}$.

Proof. Since $L^{F(t)} = L/O(L) \simeq M_{23}$, there exist two subgroups $\langle s_1, s_2 \rangle, \langle s_3, s_4 \rangle$ of L satisfying the following (cf. §2). $\langle s_1, s_2 \rangle \simeq \langle s_3, s_4 \rangle \simeq E_4$, $F(s_1) \cap F(t) = F(s_2) \cap F(t) = F(s_1s_2) \cap F(t)$, $F(s_3) \cap F(t) = F(s_4) \cap F(t) = F(s_3s_4) \cap F(t)$, $|(F(s_1) \cap F(t))| = 3$. By (ii) and (iii) of (4.7), we have $\Gamma \supseteq F(s_1) = F(s_2) = F(s_1s_2)$, $|F(s_1)| = 21$, $\Gamma \supseteq F(s_3) = F(s_4) = F(s_3s_4)$, $|F(s_3)| = 21$ and $|F(s_1) \cap F(s_3)| = 9$.

On the other hand $O(G) = \langle C_{0(G)}(s) | 1 \pm s \in \langle s_1, s_2 \rangle \rangle = \langle C_{0(G)}(s) | 1 \pm s \in \langle s_3, s_4 \rangle \rangle$ by Theorem 5.3.16 of [6]. Hence O(G) acts on $F(s_1)$ and $F(s_3)$, so that also on $F(s_1) \cap F(s_3)$. Therefore the length of an O(G)-orbit is three because it is a common divisor of 9 and 21. From this O(G) is an elementary abelian 3-subgroup and by (4.2) P is cyclic of order 2. Thus (i) and (ii) hold.

Let ψ be the set of O(G)-orbits on Ω . Since $\psi \supseteq \prod$, $\prod = F(t^{\psi})$ and $X^{\pi} \simeq M_{23}$, we have $G^{\pi} \ge M_{23}$. If $G^{\pi} = M_{23}$, then $G^{\pi} \ge A_{23}$ by the result of [11]. But if S is as in (4.1), the order of S/P is equal to that of a Sylow 2-sulgroup of M_{23} , a contradiction. Hence $G^{\pi} \simeq M_{23}$.

Now we suppose $\psi \neq \prod$. Then $t^{\psi} \neq 1$ and G^{ψ} satisfies (ii) of Lemma 2. On the other hand $O(G^{\psi})=1$, which is contrary to (4.1), so (iii) holds.

5. Proof of Theorem 1

The proof of Theorem 1 is obtained in the following way: By the Theorem of Oyama and his lemma of [10], it will suffice to consider the case that $G^{F(t)}$ is isomorphic to M_{11} , M_{23} or M_{24} . Since G is 4-fold transitive on Ω , $G^{F(t)} \neq M_{23}$ and M_{24} by Theorem 2. Hence we consider the case that $G^{F(t)} \simeq M_{11}$.

Suppose that $G^{F(t)} \simeq M_{11}$. Let P be a Sylow 2-subgroup of $G_{F(t)}$ and S a Sylow 2-subgroup of a stabilizer of four points of Ω in G such that $S \ge P$. Then $N_s(P) \le G(F(P))$, hence $N_s(P)^{F(t)} = 1$ by the structure of M_{11} , so $F(N_s(P)) = F(t)$. Since P is a Sylow 2-subgroup of $G_{F(t)}$, $N_s(P) = P$, which forces S = P, hence |F(S)| = 11. By the Theorem of [9], $G^{\Omega} = M_{11}$, a contradiction.

Osaka Kyoiku University

References

- [1] M. Aschbacher: On finite groups of component type, Illinois J. Math. 19 (1975), 87-115.
- [2] H. Bender: Transitive Gruppen gerader Ordnung, in denen jede Involution genau einen Punkt festlast, J. Algebra 17 (1971), 527-554.
- [3] R. Brauer and M. Suzuki: On finite groups of even order whose 2-Sylow subgroup is a quaternion group, Proc. Nat. Acad. Sci 45 (1959), 1757-1759.

MULTIPLY TRASNITIVE GROUPS

- [4] W. Feit and J.G. Thomson: Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029.
- [5] G. Glauberman: Central elements in core-free groups, J. Algebra 4 (1966), 403–420.
- [6] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
- [7] R.L. Griess: Schur multipliers of the known finite simple groups, Bull. Amer. Math. Soc. 178 (1972), 68-71.
- [8] Y. Hiramine: On transitive groups in which the maximal number of fixed points of involutions is five, to apper.
- [9] T. Oyama: On multiply transitive groups IX, Osaka J. Math. 7 (1970), 41-56.
- [10] T. Oyama: On multiply transitive groups XII, Osaka J. Math. 11 (1974), 595-636.
- [11] E.T. Parker and P.J. Nikolai: A search for analogues of the Mathieu groups, Math. Comp. 12 (1958), 38-43.
- [12] R. Steinberg: Automorphisms of finite linear groups, Canad. J. Math. 12 (1960), 606-615.
- [13] H. Wielandt: Fimite permutation groups, Academic Press, New York, 1964.