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1. Introduction

The known 4-fold transitive groups are An (w>6), Sn (w>4), Mn, M12,
M23 and M24. Let G be one of these and assume G is a (4, μ)-grouρ on Ω with

μ^4. Here we say that G is a (k, μ)-grouρ on Ω if G is ^-transitive on Ω and

μ is the maximal number of fixed points of involutions in G. Let t be an involu-

tion in G with \F(t)\=μ, then GF^=G(F(t))IGF(i) is also a 4-fold transitive

group. Here we set F(t)= {ieΩ | *W} and denote by G(F(i))> GF(ί), the global,

pointwise stabilizer of F(t) in G, respectively.

In this paper we shall prove the following

Theorem 1. Let G be a 4-fold transitive group on Ω. Assume that there

exists an involution t in G satisfying the following conditions.

(i) G is a (4, μ)-group on Ω where μ= \ F(t) \ .

(ii) GF(/) is a known 4-fold transitive group; An (n>6), Sn (n>4) or Mn

(n=ll, 12, 23 or 24).
Then G is also one of the known 4-fold transitive groups.

This theorem is a generalization of the Theorem of T. Oyama of [10] : the

case that GFw~An (n>6), Sn (n>4) or Af12 has been proved by T. Oyama and

the case that GF™~MU, M23 or M24 by the author.

To consider the case that GF(0~M23 or M24, we shall prove the following

theorem in §3 and §4.

Theorem 2. Let G be a (1, 23)-group on Ω. If there exists an involution t

such that I F(t) \ =23 and GF^~M23. Then we have

(i) If P is a Sylow 2-subgroup of GF(,>, then P is cyclic of order 2 and

NG(P}ΐ}g~lPg<Pfor anyg€ΞG.

(ii) i Ω I — 69 and G is imprίmitίve on Ω.

(iii) O(G)Φ1 and is an elementary abelian 3-group. If we denote by -ψ? the

set of O(G)-orbits on Ω, then | Λ | T | =23 and Gψ— M23.

It follows from this theorem that there is no (3, 24)-group such that for an

involution t fixing exactly twenty-four points
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In the remainder of this section we introduce some notations: Let G be a

permutation group on Ω. For X<G and Δ<ΞΩ, we define F(X)= {ί€ΞΩ|ί*=i

for all x&X}, X(Δ)={x^X\Δ*=Δ}, X±={x^X\i*=i for every /eΔ} and
X*= X(Δ)IX±. If p is a prime, we denote by OP(X), the subgroup of X
generated by all //-elements in X and by Op (X)> the subtroup of X generated

by all ^-elements in ^Y. I(X) is the set of involutions in X.

Other notations are standard (cf. [6], [13]).

2. Preliminaries

First we describe the various properties of M23.

(i) M2? is a 4-fold transitive group on twenty-three points {1, 2 , 23} and

a Sylow 2-subgroup of the stabilizer of four points in M23 is of order 24. It has
a seven fixed points and acts regularly on the remaining points.

(ii) M23 is a (4, 7)-group and has a unique conjugate class of involutions.

(iii) M23 is a simple group and the outer automorphism group of it is

trivial.

(iv) The centralizer of an involution w in M23 is a split extention of an

elementary abelian normal subgroup E of order 24 by a group M which is

isomorphic to GL(3, 2).
(v) The center of a Sylow 2-subgroup of M23 is cyclic of order 2.

Set C=C(w) and F(0)=Δ= {1, 2> 3, 4, 5, 6, 7} . Then we have
(vi) EΔ^1 and Bis regular on {8, 9, •••, 23}.

(vii) M is doubly transitive on Δ.

(viii) M23*^A7 and M^Δ) ==#(!?).
(ix) O(C)=l, O2(C)=C and O7'(C)=C

We now prove the following lemmas.

Lemma 1. Let P be a 2-group and φ an automorphism of P of order 2. If

\CP(φ)\ <2β, then |

Proof. Set | Ω^P/P7) | = 2r and O/P'= Ω^P/P7) Π C(φ). Then
2^ (cf. (2.7) of [8]). Since [φ, 0] <P', «φ>ρ)/<P/, whence | <φ>0: «φ>ρ)r

ι On the other hand | C<φ>ρ(φ)| = |<φ>CQ(φ)| <2 β i l and so |<φ>Q:
«φ>ρy I <2a+l (cf. (2.8) of [8]). Thus r<2a.

Lemma 2. L^ί (G, Ω) be a (1, 23)-group. Suppose there exists an involution

t such that \F(t) =23 and GF^— M23. //P w Λ S'jfow 2-subgroup of GF(t)y then

one of the following holds.

(i) CG(P)F(jF) ̂ ^ M23 βftί/ there is an involution u in NG(P) — P satisfying

(ii) 7VG(P)^p)^M23 and NG(P)^g'lPg<P for eve

Proof. Since G(F(t))=-NG(P)GM, we have NG(P)F^^M23. Suppose that
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NG(P) Π g~lPg^P for some g in G. Since F(P)^F(g-lPg\ there is an involu-
tion w in g-lPg satisfying (i). As \F(uF<p>)\=7 (cf. (ii) of §2) and |F(w)| =23,

|((Ω-F(P))nPO/)|-16 and so |CP(w)| < 16 by the semi-regularity of P on

ίl-F(P). By Lemma 1, | Ω^P/P') \ < 28. Since |GL(», 2)| is not divisible by
the prime 23 when 1 <w<8, O23'(NG(P)) is a normal subgroup of NG(P) contained

in CG(P) by Theorem 5.1.4 and 5.2.4 of [6]. Thus we obtain CG(P)F(P)^M23.
According as the lemma, the proof of Theorem 2 is divided into two cases.

3. Case (i)

In this section, we prove that the case (i) does not occur.

(3.1) The following hold.
(i) P is cyclic of order 2 and so we can choose P such that P= <(£)>.

(ii) NG(P}=CG(t)=φxO\CG(t}}.
(iii) Set 02(CG(t))=L(t). Then L(t}IO(L(t))^M23, O(L(f))F(0=l, t& {g2\

and L(t) has a unique conjugate class of involutions.
(iv) Let s be an involution of L(ί), then *e {g2\g^G}, I(CG(t))<^tG(JsG,

and s is a central involution.

Proof. Since P is a Sylow 2-subgroup of NG(P)F(P), Z(P] is a unique Sylow

2-subgroup of CG(P)F(/0 and so we have CG(P)F(P) = Z(P) X O(CG(P)). Set

Cc(P)=CG(P)/O(CG(P)). Considering the normal series of CG(P), Z(CG(P))=

Z(P)and Q(P)/Z(F) — M23. As the Schur multiplier of M23 is trivial ([7]),

there exists a subgroup L of CG(P) such that Q(P)=Z(PJ X ϊ and L^M23. Let

L be the inverse image of L in CG(P). Then CG(P)=Z(P)O(CG(P))L, hence

CG(P)=Z(P)xL because O(CG(P))<L. Since L=O2(CG(P)), PxL is a normal
subgroup of ΛfG(P) and so O2'(NG(P)) <PxL. Hence if u is an involution
satisfying (i) of Lemma 2 there are an element v in /(P) U {1} and w in /(L) with

M=U«;. Clearly £— Cz(S?)=C^(w)— CL(w)IO(CL(ιo)) where O(C^)) - O(L) Π
CL(w) (cf. (ix) of §2). We denote O(CL(tv))=H. Then CL(iϋ)/H is isomorphic
to C and CL(w)/H=EIH M/H such that E/H=EF^^E16, EF<p>nF™=l,

CL(wy<pwFw=MFwn'Fw=M/H^GL(3, 2), £" is a normal subgroup of CL(w)
and £'/!<(p)nMF(/>) = l. By the fact that u is conjugate to some element of P,
GF(M)— M23 and it follows that either ypw=l or y(M) is an involution for y in

I(E). IfyFw=l, then F(y)^F(u). If yw is an involution, |P(^^) | -7 and

so F( y) Π F(u)=F(u) Π F(P) because P(w) Π F(P)^F(y) n F(w) and F(z/F(p)) | =

We argue F(y) Π F(u)=F(u) Π F(P) for any y in /(£). Suppose
Since |-F(jy)| <23, F(y)=F(u) and hence <j;, w> is contained in a Sylow 2-sιιb-

group of GF(tl} and so j G nPΦφ. Since GF^ ̂  M23, [P, y] = 1 , JF(P)nP(^)-
F(P)Γ\F(u) and P is semi-regular on Ω-P(P), we have P — PF^ and Pis an
elementary abelian 2-group of order at most 16. Hence any element which is
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conjugate to some element of P— {1} is not a square of any element in G. But
the element y in L is a square of some element in L because L/O(L)~M23 and
(ii) of §2, which is a contradiction. This shows that F(u)Γ\F(y)=F(u)f]F(P)
for any y in I(E).

Set Δ = F(u)-F(P)=:F(u)-F(y). Since \F(u)-F(P)\ = \F(u)-(F(u)n
F(P) |—16 and a Sylow 2-subgrouρ T of E is isomorphic to 2?16, Γ acts regularly
on Δ.

We argue \P\=2. Suppose |P| >4. Then \CP(v)\>4. Since CP(v)
is semi-regular on Δ and [CP(v)9 CL(w)] = l, we have OΊ'(CL(w)Y — 1 . As
E\>O(CL(w))> O(CL(«0)Δ=1 and so by (ix) of §2, CL(^)Δ-1, a contradiction.
Thus (i), (ii) and (iii) are proved.

Let s be an involution of L(t). Since t is not a square of any element of G,
£ is not conjugate to s and w is of the form tw where w is an element in I(L(t)).
On the other hand w is conjugate to s in L(t) by (iii) and so u is conjugate to ts.
Hence t is conjugate to ΐs. The four-group <Y, $)> is the center of a Sylow
2-subgrouρ of CG(t) by (v) of §2. Hence to complete the proof of (iv), we may
assume t is not a central involution. Since <7, s)> contains a central involution
and Z^fc, s must be a central involution. Thus (iv) is proved.

(3.2) Let notations be as in (3.1). Then
(i) If *!<=*<% u^I(G) and [ίx, Mj = l, then ^=1^ or l-Ffo) Π^(ttι)l =7

(ii) There exist an involution s in L(i) and a four-group {M, |0<ί^3} of
L(t) satisfying the following.

1*0=1. |>,κj = l, ^(^Π^O^^ΠF^,^)) ifO<;,/<3 a n d j Φ O .
Set F(ί) Π ί\<X, «2»=Δ. Then | Δ | -7 and | F(ί) n Δ | =3.

Proof. By (ii) and (iii) of (3.1), (i) is obvious.

Let w, E and M be as in the proof of (3.1) and s an involution in M. Let

T be a Sylow 2-subgroup of E normalized by s. Since T is isomorphic to Z?16,

there is a subgroup {1, u^ #2> 2/3} of T centralized by s (cf. Lemma 1). By (vi) of

§2, \F(T)nF(t)\=7 and T is regular on F(t)—F(T) and so \ F(t) Γ( F(<ul9 w2»|

= I Δ I =7. Since F(te£) Π F(uj) contains Δ, F(tut) Π -F(My)=Δ follows from (i).

By(vi i i )of§2, IF^n^On^Γ^i-S, hence |F(j)nΔ|=3.

(3.3) Let s, {tt0, M^ MZ, w3) be as in (ii) of (3.2). For t^tG and s^I(L(t^),

we set Lfa) Π C(ί1)=L(ί1, ^). Then we have

(i) Set Γi=F(tu,) Π ̂ (ί) and N~L(tuh s) (0</<3), then | Γ, | -7, F(ί)3

ur,, rΛnιγ= nr, (AΦ/), | nr f |=3 and N^N^N^^C.
ι = 0 ί=0 t = 0

(ii) There exist subgroups £z, Mf of Λ^z for each ίe {0, 1, 2, 3} such that

7Vί/0(7Vi)=^/0(7V,>Mί/0(ΛΓ,.)θ£, /0(]V>.)> E^N^E,,, M^N^GLQ, 2),
E,rι = l, N,τi=Mt

τi^GL(l, 2) and M,Γ< is doubly transtive.

Proof. By the choice of s and u{ (0<z<3), (i) is clear. Since tu, is con-
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jugate to t for each i, we can define E{ and M{ in exactly the same way as E and M
mentioned in the proof of (3.1). From this, (ii) immediately follows.

(3.4) Let notations be as in (3.1), (3.2) and (3.3). Then

(i) There is a CG(s)-orbit Λ on F(s) with F(ί)^Λ2 U Γ, .
(ii) |Λ | = 19, 21 or 23 and \F(s)\ -19, 21 or 23. '"°
(iii) If AeΛ, then CG(s)k has an orbit on Λ— {k} of length at least 18.
(iv) If I Λ I = 19, then CG(*)Λ — Aιg or 519.

Proof. Since TV, <CG(s) and Nf* is doubly transitive for i with 0<z'<3,
(i) follows immediately from (i) of (3.3). By assumption, \F(s)\<23 and

obviously | U Γ , | = 19, hence 19<|Λ|<23. On the other hand Λ^Γ0 =
ί = 0

, s/)9 so |Λ| is odd. Thus (ii) holds. To prove (iii), we may assume

ΠΓ f . Since (Ni)k<CG(s)k and (Nf)k is transitive on Γ, — {k}, we have (iii).
ί=0

Now suppose |Δ|=19. Then CG(s)A is primitive and 7V,Γ* — GL(3, 2).
Hence CG(s)A posseses an element of order 7. By Theorem 13.10 of [13],
CG(s)A>Al9 holds and (3.4) is proved.

(3.5) Let notations be as in (3.1) — (3.4). There exists a Sylow 2-subgroup
Q of GF(s) such that sGZ(Q) and t^NG(Q). Let Γ be the GF(s)-orbit containing

Λ. Then
(i) F(Q)=F(s), GF^=NG(Q)F^ and |Γ|=19, 21 or 23.
(ii) If &eΓ, then NG(Q)k has an orbit on Γ— {k} of elngth at least 18.
(iii) If I Γ I = 19, then NG(Q)Γ = A19 or Sί9.

(iv) If |Γ | =21, then Λ^G(ρ)Γ^^21 or S21.
(v) If 1Π -23, then JVG(0)Γ^ A23 or S23.

Proof. Let Γ be a Sylow 2-subgroup of CG(s) containing t. As s is a
central involution by (iv) of (3.1) and CG(s)<G(F(s)), Γ is a Sylow 2-subgrouρ
of G(F(s)). Set Q=T Π GFω. Then Q satisfies the condition of (3.5). Now
we prove (i) — (v). (i), (ii) and (iii) follow immediately from (3.4).

To prove (iv), first we argue that NG(Q)Γ is primitive. If | Λ | =19, CG(s)Γ

posseses an element of order 19 by (iv) of (3.4), hence NG(Q)Γ is primitive.

Therefore we may assume | Λ | — | Γ | — 21 and we argue that CG(s)A is primitive.
Suppose CG(s)A is imprimitive. Let Bλ be a nontrivial block of CG(s)A

y then by

(iii) of (3.4) we have \B1\—3. Let Π~ {A> A "*> 87} be a complete system of
blocks. Since JV, is transitive on Π and [Nίy tui] = lj tu{ fixes all blocks in Π
Hence F(tul) Π Bt Φ φ for every / with 1 < / < 7. On the other hand | F(*«, ) Π Λ |
=7, hence \F(tuϊ)f\Bl\ — 1. From this (tut , tuj)

A=(uiuj)
A= I for any ί,ye

{0, 1, 2, 3}. If F(β)φΛ, then |F(g)-A|=2 and so (tUftu^^^u^^l
where Λ1=JF(Q) — Λ. Hence F^j, w2»

Γ=:::^(O)::=^W» whihc is contrary to (ii)
of (3.2). Thus NG(Qf is primitive.
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Next we shall show that we many assume £"0

F(ρ)— 1. Since M0

Γo— GL(3, 2)

and MΌ<G(F(Q)), M0

F(Q) posseses an element of order 7. We may assume this

element has no fixed point on Γ, for otherwise we obtain NG(Q)Γ>A2l by
Theorem 13.10 of [13]. Hence an arbitrary M0-orbit on Γ has length 7 or 14

and so O(M0)
Γ-1 holds because M0/O(M0)=M0

Γo^GL(3, 2). Hence O(M0)
F™

= 1. Set Γ-jF(f)=Δo. Then ΔQ= Γ-Γ0 and Δ0 |=14. Since the element
of M/((?) of order 7 as above and the element t have no fixed point on Δ0,

<£>χ JV0 is transitive on Δ0. It follows from NQΐ>EQ that the orbits of <χ>χ£"0

on Δ0 form a complete system of blocks of <(ί)>xΛ^0. We denote this Π~

{Bly ••-,£,}. Since O(Af0)==O(#0), O(M,)F^=l and EG/O(N0)^E^ we have
<f>X#o is a 2-group on Δ0. Hence | BJ =2 and r= 7. By (i) of (3.2), F(s) Π
F(tv)=F(s)ΓiF(t) holds for every v^I(EQ) and so ΔQΓιF(tv)= φ. Hence VB*=
tβktvBk=l for each Bk with 1<6<7, which implies £ΌΓ=1. If F(Q)JrΓ, then

I F(Q) - Γ I =2. Since (F(Q) - Γ) Π F(tv)=(F(s) (Ί F(te)) - Γ=φ for every v e
we get ϋTO»-r

We denote L(t)F^=L(t). Since L(t)=L(t)/O(L(t)) and O(£0)=JB0nO(L(ί)),

we have (Z(ί) n Λ^(F0))
Γo ~ A7 by (viii) of §2. Hence (L(t) n N(E0O(L(t))))Γo^A7

and so if T is a Sylow 2-subgroup of £"0, we have NL(t)(T)Γo — A7. We note
that F(T)=F(Q) because i?/^ = 1 and L(t) has a unique conjugate class of

involutions. So we have NLω(T)<G(F(Q)) Π G(Γ0). Let jy0 be a 5-element of

NLω(T) such that the order of j>0

Γo is 5. Since j0eG(jF(0)nG(Γ0), we get
j0eG(Γ)ΠG(Γ0). Therefore |F(j0

Γ)| >6. As ./VG(Q)r is primitive, it follows

from Theorem 13.10 of [13] atht NG(g)r>4>i- Thus (iv) is proved.

Finally we prove (v). If |Γ|=23, F(Q)=Γ. Since Gr>N,-r and N?

involves the group isomorphic to GL(3, 2), GΓ is not solvable. Hence by the

result of [11], we have GΓ^M23, A23 or S23. If GΓ-Λ^G(ρ)F^^M23, we can
apply (iii) of (3.1) to s and obtain s& {g2 g&G}, which is contrary to (iv) of

(3.1). (Here we note that I(L(t))^sG and hence (i) of Lemma 2 occurs with

respect to s.)

(3.6) Let notations be as in (3.5). We set N=CG(Q) if F(Q)= Γ and

where ψ=F(Q)-Γ if F(Q)*Γ. Then JVΓ>,4IΓ1.

Proof. Since \ΓΠF(t)\=7, by (i) of (3.2) CQ(t) acts semi-regularly on

F(t)-Γ and so |Cg(ί)|<16. Hence \Ωl(QIQ')\<t2* by Lemma 1. Since

GL(n, 2) is a 19'-group when l<w<8, O19\NG(Q)) is a normal subgroup of

NG(Q) contained in CG(Q) by Theorem 5.1.4 and 5.2.4 of [6]. Hence CG(0)r

>^4|Γι by (iii), (iv) and (v) of (3.5), so that NΓ>AlΓl because | ψ | <4.

(3.7) We have now a contradiction in the following way.

Let notations be as in (3.1)— (3.6). Set H^t^N. We denote HY=H.

Since \F(ϊ)\ =•! and by (3.6) N>A\T\, there exists in N an element v such that

the order of ϋ is 5, [?, £]— 1 and 0F ( ί )Φl. We may assume v is a 5-element.
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Cleary v normalizes ζtyNΓ. Since Z(Q) is a unique Sylow 2-subgrouρ of NΓ,

<ί>Z(O) is a Sylow 2-subgroup of <ί>ΛΓΓ. By the Frattini argument there is a
5-element w in N such that ϋ—w and w normalizes (tyZ(Q). It follows from

Z(Q)<Z(N) that w stabilizes a normal series <f>Z(£)[>Z(<2)> 1. By Theorem

5.3.2 of [6], w centralizes <i>Z(Q) and hence weL(ί, *). Since F(ί) Π ίX*) =
^(*)ΠΓ, w* <on/w = ^(onrφ l β Hence L^ ̂ (onF(S)^Gjr,(3j 2) has a nontrivial

5-element, a contradiction.

4. Case (ii)

In this section we shall prove that if the case (ii) of Lemma 2 holds, then

(G, Ω) is an imprimitive group of degree 69 and has properties listed in the
conclusion of Theorem 2. From now on we assume the involution t is contained
in P because P is an arbitrary Sylow 2-subgroup of GF(t).

(4.1) 0(G)Φ1.

Proof. Let (G, Ω) be a minimal counterexample to (4.1).
Since |G: NG(P)\ is odd, there is a Sylow 2-subgroup S of G such that Sΐ>P.
Set H=G(F(ΐ)). If t<=H* for some £<ΞG, then t'~lGH and (f^eS for
some h^H because S is a Sylow 2-subgroup of H. Since NG(P)f\Pg~lh<P,
F(ΐg~lh)=F(P)=F(t), henceg~ lh<=H, which implies £<Ξ#. Consequently t<=Hg

if and only if g^H. If £ι(Φ£) is an involution in tGΓ\C(i)9 then as above ^GΞ

//F(,) and so tt^I(HF(t)). Hence (tt^^H if and only if g^H.
Thus we can apply Theorem 3.3 of [1] to ί, # and G. Set <tGy=L. Since

O(G)~O2(G)=l, the 2-rank of any nontrivial characteristic subgroup of L is at
least 2 by the Theorem of Brauer-Suzuki ([3]) and Theorem 7.6.1 of [6]. Hence
H Γ\L' is strongly embedded in L'. By the Theorem of Bender ([2]), L°° is a
simple group isomorphic to PSL(2, q), Sz(q) or PSU(3, q) for q=2n> 4. Here
L°° is the last term of the derived series of L. Set L°°=N. We note that N is

a normal subgroup of G and | N: N Π // I >5.
Since GF^>[>Λ^^ and GF^^M23, we have Λ^F^^M23 or 1. Suppose

NF^^M23. Since Λ^^M23, we have N^G(F(t)). If |ΛΓFW | is odd, G=<tyN

and P=<*> by the minimality of G. By the Glauberman's Z*-theorem ([5]),

G[><£>O(G)=KO> a contradiction. If \NF^\ is even, by the minimality of G,
G=N. Since JV has a unique conjugate class of involution, /(JVG(P))c:/(P) by

the assumption (ii) of Lemma 2. Hence S/P is an elementary abelian 2-group

(cf. section 3 of [2]), which is contrary to NG(P)F^ — M23.

Now we suppose NF^= 1. Since TV Γ) Pφ 1 and NCG(N)=Nx CG(N), the

assumption (ii) of Lemma 2 forces \CG(N)Fω\ is odd. Hence if \CG(N)\ is

even, CG(N)F™ Φ 1 and so CG(7V)F^ —M23 because M23— GF& ΐ> CG(N)F^.

Obviously CG(N) < G(F((N n P)*))= G(F(F)) for any ̂  e G. Therefore (F(ί)' |

} forms a complete system of blocks of G on Ω and an involution of CG(N)
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has exactly seven fixed points on each block. But (G, Ω) is a (1, 23)-group and
hence | {F(t)g\g^G} \ — 3, which implies \N:NΓ\H\=39 a contradiction.
Thus we have CG(N)=\. From this G/N is isomorphic to a subgroup of outer
automorphism group of N. Hence G/N is solvable ([12]) and so G°°—N. Thus
NF«> >(GF<<>)~ — M23, a contradiction.

(4.2) P is cyclic or generalized quaternion.

Proof. Suppose that P contains a four-group Q. Then O(G) — <C0(G)(#) 1 1
by Theorem 5.3.16 of [6] and O(G) <G(F(P)) = G(F(t)). Since

^M23, O(G)Fw=l. Hence O(G)<GF(i), so that O(G)=1, which
is contrary to (4.1). Thus P is cyclic or generalized quaternion.

Let us note that the automorphism group of P is a {2, 3} -group. Hence
Λ^G(P)F(P)=CG(P)F(P) — M23. By the similar argument as in the first paragraph
of the proof of (3.1), we have

(4.3) CG(Pf>^M23. CG(P) = Z(P)x02(CG(P)). Set L^O2(
Then LF^=LIO(L) ~ M2Z.

By the Feit-Thompson theorem ([4]), O(G) is solvable. Hence we have
(4.4) Let N be a minimal normal subgroup of G contained in O(G). Then

N is an elementary abelian p-group for some odd prime p.

(4.5) Set^ ^eΛΠ*'-*-1}. Then
(i) L normalizes K and K^G(F(t)).

(ii) Set X=«t>xL)K and Γ=ax where a<=F(t). Then.Γ2F(f), |Γ |>
23 and |Γ| is odd.

Proof. Since NF^<]GF^~ M23, NF^=l. Hence N<£G(F(t)). By
Lemma 2.1 of [2], N=CN(t)K and so K^G(F(t)). If xtΞK and y eL, ^e^V.
It follows from (4.2) that *eZ(P). Hence [L, *] = ! and (^)ί=^/=^=(Λ;-1)J'
=(Λ>)-1. So we have xy^K. Thus (i) holds.

Since LF^ — M^ and K^G(F(f)), Γ^al=F(t) and ΓφF(ί). Let T be a

Sylow 2-subgroup of L. Then FίΓJΠ-FOO** and <f>xT is a Sylow 2-sub-
groupof^. Therefore |Γ| is odd. Thus (ii) holds.

(4.6) Let Π^ {Aj,A2, •••, Δr} be the set of .K-orbits on Γ. Then the fol-
lowing hold.

(i) r=23, J^I=ίπ=0(L)TI=l, ̂ Π-LΠ^M23 and Xu

(ii) If j€Ξ/«Ox£) and jyΦί. Then |F(yπ) -7 and for Δ?,

(iii) For ye/«ί>χL)-{ί} and ΔzeF(^Π) we set |Δ,nP(^)| = m(y).
Then m(jy)= 1 or 3 and | F(y) Π Γ |

Proof. If r— 1, then ̂ Γ is regular, so that | F(tr) \ = | ̂ Γ Π C(ίr) | . On the
other hand \F(tΓ)\=23 and by the definition of K, \KΓΓ}C(tΓ)\ =1, a con-
tradiction . Thus r Φ 1 .

We consider the action of X on the set Π Since KΊL=\J [ΐ, L]=l and X
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is transitive on Π> we have £π— 1 and L is transitive on Π Hence for Δ, , Δ^.e

Π, there is an element x(ΞL such that (Δf )*=Δy. Then | F(t) Γϊ Δf | = | (F(t) Π

Δ,.)* I = I F(t) Π Δ ,. I , so that | F(ί) | = | Δ, Π F(t) \ X r for any Δ, e Π Hence
I Λ f Π F(ί) I - 1 and r=23. Since F(O(L))^F(t), O(L)π= 1 and Xκ=-<f>O(L)K.
Thus (i) holds.

Let y<=I«tyxL) and y^t. Then JΠΦ1 and by (ii) of §2,| F(ya)\=7.

Since Xu=φO(L)K, L*nC(y*} = (CL(y)γ. By (vii) of §2, L*Γ\C(y*) is

transitive on /Xy1). Therefore as above we obtain (ii).

Since 23 >: |-F(y)nΓ| = |F(yπ)| x m(y)= 7xm(y), we have m(y)<3. By
(ii) of (4.5), I Γ I is odd and so m(y) is odd. Thus (iii) holds.

(4.7) Let j e/(L). Then the following hold.

(i) m(s)=3 and | F(s) Π Γ | =21.
(ii) If Δ e -F(ίπ), then jP(ί) 3 Δ. Moreover | Δ | = 3 and N is an elementary

abelian 3 -group.

(iii)

Proof. Suppose m(s)*3. Then by (iii) of (4.6) m(ί)=l. Since K* is

regular for any ΔeΠ, if ΔejF(ίπ), 5Δ inverts J^Δ. Hence (ίί)Δ centralizes -KΔ

and so F(ts)^Δ and w(ίί)=|Δ|. Since |Δ |Φ1, by (iii) of (4.6) we have

|Δ|=w(fr)=3. Therefore by (iii) of (4.6) \F(ts)ΠΓ\=2l. Since L/O(L)^M23y

sr is an even permutation. Furthermore \F(s) Π Γ | =7 because m(s)=l. On
the other hand | Γ | = | Δ | X 23 = 69 and sr is an odd permutation, a contra-
diction. Thus (i) holds.

Since | F(s) Π Γ | =21 and sr is an even permutation, tr is an odd permuta-

tion because | F(t) Π Γ i =23. Hence (ts)Γ is an odd permutation and so m(ts)= 1

and (ts)* inverts K* for Δeίi(ίπ)=ίl((ίί)π). Therefore $Δ=(ίΔ)(fr)Δ centralizes
J^Δ and F(s)^. Δ, so that m(s)— | Δ | =3. Hence jRΓ and JV are elementary abelian
3-groups, so (ii) holds.

Since LF(t)—L/O(L)~M23, by (vi) of §2, there exists a four-group <X, s2y

of L such that F(sϊ) Π F(t)=F(s2) n jP(0 Since L has a unique conjugate class of

involutions (cf. (ii) of §2), m(s1)=m(s2)=m(sls2)=3. Hence F(s1)f}T==F(s2)Γ[Γ

=F(s1s2)Γ\Γ and |!?1(j1)nΓ|=21. To prove (iii) it will suffice to show that

\F(sl)\=21. Assume 1^)1*21. Then 1^(^)1 =23 and \F(Sl) n(Ω-Γ)| =2.

Since L/O(L)~ M23, we have CL(sύlO(CL(s^) — C by the property of M23.

Cz(ίO acts on F(s1)Γ\(Ω,-'Γ) and O2(C)=C by (ix) of §2, hence C^) acts

trivialy on F(s1) Π (Ω- Γ). Therefore ίi(ί1)=ίi(ί2)=^1(V2) and I F(sl) \ =23. By
Theorem 5.3.16 of [6], N=<CN(s)\lήrS&ζs19 ί2» and hence JV acts on F(s1).

From this 3 1 1 F(s1) \ , a contradiction. Thus (iii) holds.

(4.8) The following hold.

(i) O(G) is an elementary abelian 3 -group.

(ii) G is imprimitive on Ω and the length of an O(G)-orbit is three. | P \ =2.
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(iii) |Ω|=69. Let -ψ be the set of O(G)-orbits on Ω. Then | ψ| =

Proof. Since LF(ί)— L/O(L)— Λf23, there exist two subgroups <i1? $2X <A> Ό

of Z, satisfying the following (cf. §2). <χ, *2>^<% 54> — ̂ 4, ^W Π ^(0 =

^2) n F(t)=F(slS2) n F(O, TO n *W= W n F(* )=F(* A) n FW, i (̂ 0 n F(t))
Π (F(*3) n F(t)) I -3. By (ii) and (iii) of (4.7), we have T^F(51)=F(s2)=F(sΛ)9

|F(ί1)l=21,Γ2^3)=^4)=^A)ι I ̂ 3) I =21 and 1^)0^)1=9.
On the other hand O(G)=<C0(G)(i) 1 1 =t=ί e<A, ί2»=<C0(G)(j) 1 1 Φί eO3, ί4»

by Theorem 5.3.16 of [6]. Hence O(G) acts on F(^) and F(s3), so that also on

F(s1)ΓiF(s3). Therefore the length of an O(G)-orbit is three because it is a

common divisor of 9 and 21. From this O(G) is an elementary abelian 3-sub-

group and by (4.2) P is cyclic of order 2. Thus (i) and (ii) hold.

Let ψ be the set of O(G)-orbits on Ω. Since -ψo Π, Π=^ψ) and ̂ π —

M23, we have GΠ>M23. If GΠΦM23, then GΠ>^23 by the result of [11]. But

if S is as in (4.1), the order of S/P is equal to that of a Sylow 2-sulgrouρ of M23,

a contradiction. Hence GΠ — M23.

Now we suppose -v/τΦΠ Then £ΨΦ1 and Gψ satisfies (ii) of Lemma 2.

On the other hand O(GΨ)=1, which is contrary to (4.1), so (iii) holds.

5. Proof of Theorem 1

The proof of Theorem 1 is obtained in the following way: By the Theorem

of Oyama and his lemma of [10], it will suffice to consider the case that GF(ί) is
isomorphic to Mn, M23 or M24. Since G is 4-fold transitive on Ω, GF(t)^M23

and M24 by Theorem 2. Hence we consider the case that GF(ί)~Mn.
Suppose that GF(0 — Mn. Let P be a Sylow 2-subgroup of GF(ί) and S

a Sylow 2-subgroup of a stabilizer of four points of Ω in G such that S>P.
Then Ns(P)<G(F(P))y hence Ns(P)F^=l by the structure of Mn, so F(NS(P))
=F(ΐ). Since P is a Sylow 2-subgroup of G^), JVS(P)— P, which forces S=P,
hence \F(S) | =11. By the Theorem of [9], GΩ=Mn, a contradiction.
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