<table>
<thead>
<tr>
<th>Title</th>
<th>On multiply transitive groups.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hiramine, Yutaka</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 14(3) P.453-P.463</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1977</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/7992</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/7992</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
ON MULTIPLY TRANSITIVE GROUPS

YUTAKA HIRAMINE

(Received June 18, 1976)

1. Introduction

The known 4-fold transitive groups are A_n $(n \geq 6)$, S_n $(n \geq 4)$, M_{11}, M_{12}, M_{23} and M_{24}. Let G be one of these and assume G is a $(4, \mu)$-group on Ω with $\mu \geq 4$. Here we say that G is a (k, μ)-group on Ω if G is k-transitive on Ω and μ is the maximal number of fixed points of involutions in G. Let t be an involution in G with $|F(t)| = \mu$, then $G_F = G(F(t))$ is also a 4-fold transitive group. Here we set $F(t) = \{i \in \Omega | i^t = i\}$ and denote by $G(F(t))$, G_F, the global, pointwise stabilizer of $F(t)$ in G, respectively.

In this paper we shall prove the following

Theorem 1. Let G be a 4-fold transitive group on Ω. Assume that there exists an involution t in G satisfying the following conditions.

(i) G is a $(4, \mu)$-group on Ω where $\mu = |F(t)|$.

(ii) G_F is a known 4-fold transitive group; A_n $(n \geq 6)$, S_n $(n \geq 4)$ or M_n $(n=11, 12, 23$ or $24)$.

Then G is also one of the known 4-fold transitive groups.

This theorem is a generalization of the Theorem of T. Oyama of [10]: the case that $G_F = A_n$ $(n > 6)$, S_n $(n > 4)$ or M_{12} has been proved by T. Oyama and the case that $G_F = M_{23}$, M_{24} by the author.

To consider the case that $G_F = M_{23}$ or M_{24}, we shall prove the following theorem in §3 and §4.

Theorem 2. Let G be a $(1, 23)$-group on Ω. If there exists an involution t such that $|F(t)| = 23$ and $G_F = M_{23}$. Then we have

(i) If P is a Sylow 2-subgroup of $G_{F(t)}$, then P is cyclic of order 2 and $N_G(P) \cap g^{-1}Pg \leq P$ for any $g \in G$.

(ii) $|\Omega| = 69$ and G is imprimitive on Ω.

(iii) $O(G) = \{1\}$ and is an elementary abelian 3-group. If we denote by ψ the set of $O(G)$-orbits on Ω, then $|\psi| = 23$ and $G^\psi = M_{23}$.

It follows from this theorem that there is no $(3, 24)$-group such that for an involution t fixing exactly twenty-four points $G_{F(t)} = M_{24}$.
In the remainder of this section we introduce some notations: Let G be a permutation group on Ω. For $X \leq G$ and $\Delta \subseteq \Omega$, we define $F(X) = \{i \in \Omega | i^x = i \text{ for all } x \in X\}$, $X(\Delta) = \{x \in X | \Delta^x = \Delta\}$, $X_{\Delta} = \{x \in X | i^x = i \text{ for every } i \in \Delta\}$ and $X_{\Delta}^\Delta = X(\Delta)/X_{\Delta}$. If p is a prime, we denote by $O^p(X)$, the subgroup of X generated by all p'-elements in X and by $O^p(X)$, the subgroup of X generated by all p-elements in X. $I(X)$ is the set of involutions in X.

Other notations are standard (cf. [6], [13]).

2. Preliminaries

First we describe the various properties of M_{23}.

(i) M_{23} is a 4-fold transitive group on twenty-three points $\{1, 2, \ldots, 23\}$ and a Sylow 2-subgroup of the stabilizer of four points in M_{23} is of order 2^4. It has a seven fixed points and acts regularly on the remaining points.

(ii) M_{23} is a $(4, 7)$-group and has a unique conjugate class of involutions.

(iii) M_{23} is a simple group and the outer automorphism group of it is trivial.

(iv) The centralizer of an involution ω in M_{23} is a split extension of an elementary abelian normal subgroup \mathcal{E} of order 2^4 by a group \mathcal{M} which is isomorphic to $GL(3, 2)$.

(v) The center of a Sylow 2-subgroup of M_{23} is cyclic of order 2. Set $\mathcal{C} = C(\omega)$ and $F(\omega) = \Delta = \{1, 2, 3, 4, 5, 6, 7\}$. Then we have

(vi) $\mathcal{E}^{\Delta} = 1$ and \mathcal{E} is regular on $\{8, 9, \ldots, 23\}$.

(vii) \mathcal{M} is doubly transitive on Δ.

(viii) $M_{23}^3 = A_4$ and $M_{23}(\Delta) = N(\mathcal{E})$.

(ix) $O(\bar{C}) = 1$, $O^2(\bar{C}) = \bar{C}$ and $O^7(\bar{C}) = \bar{C}$

We now prove the following lemmas.

Lemma 1. Let P be a 2-group and ϕ an automorphism of P of order 2. If $|C_P(\phi)| \leq 2^a$, then $|\Omega(\phi)/P'| \leq 2^b$.

Proof. Set $|\Omega(\phi)/P'| = 2^r$ and $Q/P' = \Omega(\phi)/P' \cap C(\phi)$. Then $|Q/P'| \geq 2^{1/2b}$ (cf. (2.7) of [8]). Since $[\phi, Q] \leq P'$, $(\langle \phi \rangle Q)' \leq P'$, whence $|\langle \phi \rangle Q : (\langle \phi \rangle Q)'| \geq 2^{1/2b+1}$. On the other hand $|C_P(\phi)| = |\langle \phi \rangle C_P(\phi)| \leq 2^{a+1}$ and so $|\langle \phi \rangle Q: (\langle \phi \rangle Q)'| \leq 2^{a+1}$ (cf. (2.8) of [8]). Thus $r \leq 2a$.

Lemma 2. Let (G, Ω) be a $(1, 23)$-group. Suppose there exists an involution t such that $|F(t)| = 23$ and $G_F(t) = M_{23}$. If P is a Sylow 2-subgroup of $G_{F(t)}$, then one of the following holds.

(i) $C_P(\phi)^{F(t)} = M_{23}$ and there is an involution u in $N_G(P) - P$ satisfying $u^G \cap P = \phi$.

(ii) $N_G(P)^{F(t)} = M_{23}$ and $N_G(P) \cap g^{-1}P g \leq P$ for every $g \in G$.

Proof. Since $G(F(t)) = N_G(P)G_{F(t)}$, we have $N_G(P)^{F(t)} = M_{23}$. Suppose that
MULTIPLY TRANSITIVE GROUPS

N_G(P) ∩ g^{-1}Pg ≤ P for some g in G. Since F(P) + F(g^{-1}Pg), there is an involution u in g^{-1}Pg satisfying (i). As |F(u^F(P))| = 7 (cf. (ii) of §2) and |F(u)| = 23, |((Ω−F(P)) ∩ F(u))| = 16 and so |C_F(u)| ≤ 16 by the semi-regularity of P on Ω−F(P). By Lemma 1, |Ω_F(P)P'| ≤ 2^k. Since |GL(n, 2)| is not divisible by the prime 23 when 1 < w < 8, O_{23}^*(N_G(P)) is a normal subgroup of N_G(P) contained in C_G(P) by Theorem 5.1.4 and 5.2.4 of [6]. Thus we obtain C_G(P)^F(P) ∼ M_{23}.

According as the lemma, the proof of Theorem 2 is divided into two cases.

3. Case (i)

In this section, we prove that the case (i) does not occur.

(3.1) The following hold.

(i) P is cyclic of order 2 and so we can choose P such that P = 〈t〉.

(ii) N_G(P) = C_G(t) ∩ O^*(C_G(t)).

(iii) Set O^*(C_G(t)) = L(t). Then L(t)/O(L(t)) ∼ M_{23}, O(L(t))^F(t) = 1, t ∈ {g^2 | g ∈ G} and L(t) has a unique conjugate class of involutions.

(iv) Let s be an involution of L(t), then s is an involution of M_{23} and C_G(L(t)) < C_G(P), hence s is a central involution.

Proof. Since P is a Sylow 2-subgroup of N_G(P), Z(P) is a unique Sylow 2-subgroup of C_G(P). Consider C_G(P) = Z(P) ∪ 〈t〉 and C_G(L(t)) = Z(P) ∪ L(t) because O^∗(C_G(P)) = C_G(P). Let C_G(L(t)) = Z(P) ∪ L(t) be the normal series of C_G(P) such that C_G(L(t)) = Z(P) ∪ L(t) and L(t) is a normal subgroup of C_G(L(t)) < C_G(P).

Hence if u is an involution satisfying (i) of Lemma 2 there are an element v in I(P) ∪ {1} and w in I(L) with u = vω. Clearly C_i(w) = C_i(ω) ∩ C_i(w)/O(C_i(w)) where O(C_i(w)) = O(L) ∩ C_i(w) (cf. (ix) of §2). We denote O(C_L(w)) = H. Then C_L(w)/H is isomorphic to C_i(w)H = E/H ∙ M/H such that E/H = E^F(P) ∼ E_{16}, E^F(P) ∩ F(u) = 1, C_i(w)^F(P) ∩ F(w) = M^F(P) ∩ F(w) = M/H ∼ GL(3, 2), E is a normal subgroup of C_i(w) and E^F(P) ∩ M^F(P) = 1. By the fact that u is conjugate to some element of P, G^F(u) ∼ M_{23} and it follows that either y^F(u) = 1 or y^F(u) is an involution for y in I(E). If y^F(u) = 1, then F(y) ⊆ F(u). If y^F(u) is an involution, |F(y^F(u))| = 7 and so F(y) ∩ F(u) = F(u) ∩ F(P) because F(u) ∩ F(P) ⊆ F(y) ∩ F(u) and |F(u^F(P))| = |F(u^F(P))| = 7.

We argue F(y) ∩ F(P) = F(u) ∩ F(u) for any y in I(E). Suppose F(y) ⊆ F(u). Since |F(y)| ≤ 23, F(y) = F(u) and hence ⟨y, u⟩ is contained in a Sylow 2-subgroup of G^F(u) and so y^F ∩ P = ∅. Since G^F(y) = M_{23} |P, y⟩ = 1, F(P) ∩ F(y) = F(P) ∩ F(u) and P is semi-regular on Ω−F(P), we have P ∼ P^F(y) and P is an elementary abelian 2-group of order at most 16. Hence any element which is
conjugate to some element of \(P - \{1\} \) is not a square of any element in \(G \). But the element \(y \) in \(L \) is a square of some element in \(L \) because \(L/O(L) \cong M_{23} \) and (ii) of §2, which is a contradiction. This shows that \(F(u) \cap F(y) = F(u) \cap F(P) \) for any \(y \) in \(I(E) \).

Set \(\Delta = F(u) - F(P) = F(u) - F(y) \). Since \(|F(u) - F(P)| = |F(u) - (F(u) \cap F(P))| = 16 \) and a Sylow 2-subgroup \(T \) of \(E \) is isomorphic to \(E_{16} \), \(T \) acts regularly on \(\Delta \).

We argue \(|P| = 2 \). Suppose \(|P| > 4 \). Then \(|C_P(v)| > 4 \). Since \(C_P(v) \) is semi-regular on \(\Delta \) and \([C_P(v), C_L(w)] = 1 \), we have \(O'(C_L(w))^a = 1 \). As \(E \triangleright O(C_L(w)), O(C_L(w))^3 = 1 \) and so by (ix) of §2, \(C_L(w)^3 = 1 \), a contradiction. Thus (i), (ii) and (iii) are proved.

Let \(s \) be an involution of \(L(t) \). Since \(t \) is not a square of any element of \(G \), \(t \) is not conjugate to \(s \) and \(u \) is of the form \(tw \) where \(w \) is an element in \(I(L(t)) \). On the other hand \(w \) is conjugate to \(s \) in \(L(t) \) by (iii) and so \(u \) is conjugate to \(ts \).

Hence \(t \) is conjugate to \(ts \). The four-group \(\langle t, s \rangle \) is the center of a Sylow 2-subgroup of \(C_G(t) \) by (v) of §2. Hence to complete the proof of (iv), we may assume \(t \) is not a central involution. Since \(\langle t, s \rangle \) contains a central involution and \(t \sim ts \), \(s \) must be a central involution. Thus (iv) is proved.

(3.2) Let notations be as in (3.1). Then

(i) If \(t_i \in \mathbb{C}, u_i \in I(G) \) and \([t_i, u_i] = 1 \), then \(t_i = u_i \) or \(|F(t_i) \cap F(u_i)| = 7 \).

(ii) There exist an involution \(s \) in \(L(t) \) and a four-group \(\{u_i | 0 \leq i \leq 3\} \) of \(L(t) \) satisfying the following.

\[
\begin{align*}
u_0 = 1, \quad [s, u_i] = 1, \quad F(tu_i) \cap F(u_j) = F(t) \cap F(\langle u_i, u_j \rangle) & \text{ if } 0 \leq i, j \leq 3 \text{ and } j \neq 0.
\end{align*}
\]

Set \(F(t) \cap F(\langle u_i, u_j \rangle) = \Delta \). Then \(|\Delta| = 7 \) and \(|F(s) \cap \Delta| = 3 \).

Proof. By (ii) and (iii) of (3.1), (i) is obvious.

Let \(w, E \) and \(M \) be as in the proof of (3.1) and \(s \) an involution in \(M \). Let \(T \) be a Sylow 2-subgroup of \(E \) normalized by \(s \). Since \(T \) is isomorphic to \(E_{16} \), there is a subgroup \(\{1, u^2, 2, 3\} \) of \(T \) centralized by \(s \) (cf. Lemma 1). By (vi) of §2, \(|F(T) \cap F(t)| = 7 \) and \(T \) is regular on \(F(t) - F(T) \) and so \(|F(t) \cap F(\langle u_i, u_j \rangle)| = |\Delta| = 7 \). Since \(F(tu_i) \cap F(u_j) \) contains \(\Delta \), \(F(tu_i) \cap F(u_j) = \Delta \) follows from (i).

By (viii) of §2, \(|F(s) \cap (F(t) \cap F(T))| = 3 \), hence \(|F(s) \cap \Delta| = 3 \).

(3.3) Let \(s, \{u_0, u_1, u_2, u_3\} \) be as in (ii) of (3.2). For \(t_i \in \mathbb{C} \) and \(s_i \in I(L(t_i)) \), we set \(L(t_i) \cap C(s_i) = L(t_i, s_i) \). Then we have

(i) Set \(\Gamma_i = F(tu_i) \cap F(s) \) and \(N_i = L(tu_i, s) \) \((0 \leq i \leq 3)\), then \(|\Gamma_i| = 7, F(s) \supseteq \bigcup_{i=0}^{3} \Gamma_i \cap \Gamma_i \cap \bigcap_{i=0}^{3} \Gamma_i \cap (k \neq l), \bigcap_{i=0}^{3} \Gamma_i \cap (k \neq l) = 3 \text{ and } N_i/O(N_i) = N_i^f(tu_i) \cong \mathbb{C} \).

(ii) There exist subgroups \(E_i, M_i \) of \(N_i \) for each \(i \in \{0, 1, 2, 3\} \) such that \(N_i/O(N_i) = E_i/O(N_i), M_i/O(N_i) \supseteq E_i/O(N_i), E_i/O(N_i) = E_{16} \), \(M_i/O(N_i) \cong GL(3, 2), E_i \cong 1, N_i^f = M_i^f, E_i \cong GL(3, 2) \text{ and } M_i \) is doubly transitive.

Proof. By the choice of \(s \) and \(u_i \) \((0 \leq i \leq 3)\), (i) is clear. Since \(tu_i \) is con-
jugate to \(t \) for each \(i \), we can define \(E_i \) and \(M_i \) in exactly the same way as \(E \) and \(M \) mentioned in the proof of (3.1). From this, (ii) immediately follows.

(3.4) Let notations be as in (3.1), (3.2) and (3.3). Then

(i) There is a \(C_G(s) \)-orbit \(\Lambda \) on \(F(s) \) with \(F(s) \supseteq \Lambda \supseteq \bigcup_{i=0}^{3} \Gamma_i \).
(ii) \(|\Lambda| = 19, 21 \) or \(23 \) and \(|F(s)| = 19, 21 \) or \(23 \).
(iii) If \(k \in \Lambda \), then \(C_G(s)_k \) has an orbit on \(\Lambda - \{k\} \) of length at least 18.
(iv) If \(|\Lambda| = 19 \), then \(C_G(s)_\Lambda \approx A_{19} \) or \(S_{19} \).

Proof. Since \(N_i \leq C_G(s) \) and \(N_i^{s_i} \) is doubly transitive for \(i \) with \(0 \leq i \leq 3 \), (i) follows immediately from (i) of (3.3). By assumption, \(|F(s)| \leq 23 \) and obviously \(|\bigcup_{i=0}^{3} \Gamma_i| = 19 \), hence \(19 \leq |\Lambda| \leq 23 \). On the other hand \(\Lambda \supseteq \Gamma_0 = F(<t, s>) \), so \(|\Lambda| \) is odd. Thus (ii) holds. To prove (iii), we may assume \(k \in \bigcap_{i=0}^{3} \Gamma_i \). Since \((N_i)_k \leq C_G(s)_k \) and \((N_i)_k \) is transitive on \(\Gamma_i - \{k\} \), we have (iii).

Now suppose \(|\Lambda| = 19 \). Then \(C_G(s)_\Lambda \) is primitive and \(N_i^{s_i} \approx GL(3, 2) \). Hence \(C_G(s)_\Lambda \) possesses an element of order 7. By Theorem 13.10 of [13], \(C_G(s)_\Lambda \approx A_{19} \) holds and (3.4) is proved.

(3.5) Let notations be as in (3.1)—(3.4). There exists a Sylow 2-subgroup \(Q \) of \(G_{F(i)} \) such that \(s \in Z(Q) \) and \(t \in N_G(Q) \). Let \(\Gamma \) be the \(G_{F(i)} \)-orbit containing \(\Lambda \). Then

(i) \(F(Q) = F(s) \), \(G^{F(i)} = N_G(Q)^{F(i)} \) and \(|\Gamma| = 19, 21 \) or \(23 \).
(ii) If \(k \in \Gamma \), then \(N_G(Q)_k \) has an orbit on \(\Gamma - \{k\} \) of length at least 18.
(iii) If \(|\Gamma| = 19 \), then \(N_G(Q)^\Gamma \approx A_{19} \) or \(S_{19} \).
(iv) If \(|\Gamma| = 21 \), then \(N_G(Q)^\Gamma \approx A_{21} \) or \(S_{21} \).
(v) If \(|\Gamma| = 23 \), then \(N_G(Q)^\Gamma \approx A_{23} \) or \(S_{23} \).

Proof. Let \(T \) be a Sylow 2-subgroup of \(C_G(s) \) containing \(t \). As \(s \) is a central involution by (iv) of (3.1) and \(C_G(s) \leq G(F(s)) \), \(T \) is a Sylow 2-subgroup of \(G(F(s)) \). Set \(Q = T \cap G_{F(i)} \). Then \(Q \) satisfies the condition of (3.5). Now we prove (i)—(v). (i), (ii) and (iii) follow immediately from (3.4).

To prove (iv), first we argue that \(N_G(Q)^\Gamma \) is primitive. If \(|\Lambda| = 19 \), \(C_G(s)_\Lambda \) possesses an element of order 19 by (iv) of (3.4), hence \(N_G(Q)^\Gamma \) is primitive. Therefore we may assume \(|\Lambda| = |\Gamma| = 21 \) and we argue that \(C_G(s)_\Lambda \) is primitive. Suppose \(C_G(s)_\Lambda \) is imprimitive. Let \(B_i \) be a nontrivial block of \(C_G(s)_\Lambda \), then by (iii) of (3.4) we have \(|B_i| = 3 \). Let \(\Pi = \{B_1, B_2, \ldots, B_j\} \) be a complete system of blocks. Since \(N_i \) is transitive on \(\Pi \) and \([N_i, tu_i] = 1 \), \(tu_i \) fixes all blocks in \(\Pi \). Hence \(F(tu_i) \cap B_j \neq \phi \) for every \(l \) with \(1 \leq l \leq 7 \). On the other hand \(|F(tu_i) \cap \Lambda| = 7 \), hence \(|F(tu_i) \cap B_1| = 1 \). From this \((tu_i)_j^{s_i} = (u_i, u_j)^{s_i} = 1 \) for any \(i, j \in \{0, 1, 2, 3\} \). If \(F(Q) \neq \Lambda \), then \(|F(Q) - \Lambda| = 2 \) and so \((tu_i, tu_j)^{s_i} = (u_i, u_j)^{s_i} = 1 \) where \(\Lambda_i = F(Q) - \Lambda \). Hence \(F(\langle u_i, u_j \rangle) = F(Q) = F(s) \), which is contrary to (ii) of (3.2). Thus \(N_G(Q)^\Gamma \) is primitive.
Next we shall show that we may assume $E_0^{F(0)} = 1$. Since $M_2^{F_2} = GL(3, 2)$ and $M_0^{F(0)}$ possesses an element of order 7. We may assume this element has no fixed point on Γ, for otherwise we obtain $N_0^G(0)^{\Gamma} \geq A_{21}$ by Theorem 13.10 of [13]. Hence an arbitrary $M_0^{F(0)}$-orbit on Γ has length 7 or 14 and so $O(M_0)^{\Gamma} = 1$ holds because $M_0/O(M_0) = M_0^{F_0} = GL(3, 2)$. Hence $O(M_0)^{F(0)} = 1$. Set $\Gamma - F(t) = \Delta_0$. Then $\Delta_0 = \Gamma - \Gamma_0$ and $|\Delta_0| = 14$. Since the element of $M_0^{F(0)}$ of order 7 as above and the element t have no fixed point on Δ_0, $<t> \times N_0$ is transitive on Δ_0. It follows from $N_0 > E_0$ that the orbits of $<t> \times E_0$ on Δ_0 form a complete system of blocks of $<t> \times N_0$. We denote this $\Pi = \{B_1, \ldots, B_r\}$. Since $O(M_0) = O(N_0)$, $O(M_0)^{F(0)} = 1$ and $E_0/O(N_0) = E_{15}$, we have $<t> \times E_0$ is a 2-group on Δ_0. Hence $|B_i| = 2$ and $r = 7$. By (i) of (3.2), $F(s) \cap F(tv) = F(s) \cap F(t)$ and so $\Delta_0 \cap F(tv) = \phi$. Hence $v^{\pi k} = t^k$ for each B_i with $1 \leq k \leq 7$, which implies $E_0^{v^\pi} = 1$. If $F(Q) \not\equiv \Gamma$, then $|F(Q) - \Gamma| = 2$. Since $F(Q) - \Gamma \cap F(tv) = F(s) \cap F(tv) - \Gamma = \phi$ for every $v \in I(E_0)$, we get $v^{F(Q) - \Gamma = t^{F(Q) - \Gamma}} t^{F(Q) - \Gamma} = 1$. Thus $E_0^{F(Q)} = 1$.

We denote $L(t)^{F(0)} = L(t)$. Since $L(t)/O(L(t)) < G(F(t))$, we have $(L(t) \cap O(E_0))^{v_0} = A_7$ by (viii) of §2. Hence $L(t) \cap O(L(t))^{v_0} = A_7$ and so if T is a Sylow 2-subgroup of E_0, we have $N_{L(t)}(T)^{v_0} = A_7$. We note that $F(T) = F(Q)$ because $E_0^{F(Q)} = 1$ and $L(t)$ has a unique conjugate class of involutions. So we have $N_{L(t)}(T) \subseteq G(F(Q))$. Let y_0 be a 5-element of $N_{L(t)}(T)$ such that the order of $y_0^{F_0}$ is 5. Since $y_0 \in G(F(Q)) \cap G(\Gamma_0)$, we get $y_0 \in G(\Gamma) \cap G(\Gamma_0)$. Therefore $|F(y_0)|^{\Gamma} \geq 6$. As $N_0^G(0)^{F(0)}$ is primitive, it follows from Theorem 13.10 of [13] that $N_0^G(0)^{F(0)} \geq A_{21}$. Thus (iv) is proved.

Finally we prove (v). If $|\Gamma| = 23$, $F(Q) = \Gamma$. Since $G^F \geq N_1^F$ and N_1^F involves the group isomorphic to $GL(3, 2)$, G^F is not solvable. Hence by the result of [11], we have $G^F = M_{23}, A_{23}$ or S_{23}. If $G^F = N_0^G(0)^{F(0)} = M_{23}$, we can apply (iii) of (3.1) to s and obtain $s \notin \{g^{s} g \in G\}$, which is contrary to (iv) of (3.1). (Here we note that $I(L(t)) \subseteq v^G$ and hence (i) of Lemma 2 occurs with respect to s.)

(3.6) Let notations be as in (3.5). We set $N = C_0(0) \cap F(Q) = \Gamma$ and $N = C_0(0)^{F}$, where $\psi = F(Q) - \Gamma$ if $F(Q) = \Gamma$. Then $N^F \geq A_{1\Gamma}$.

Proof. Since $|\Gamma \cap F(t)| = 7$, by (i) of (3.2) $C_0(t)$ acts semi-regularly on $F(t) - \Gamma$ and so $|C_0(t)| \leq 16$. Hence $|\Omega t(0)/\Omega(Q)| \leq 2^8$ by Lemma 1. Since $GL(n, 2)$ is a 19'-group when $1 \leq n \leq 8$, $O^G(N_0(0)^F)$ is a normal subgroup of $N_0^G(0)$ contained in $C_0(0)$ by Theorem 5.1.4 and 5.2.4 of [6]. Hence $C_0(0)^{F} \geq A_{1\Gamma}$ by (iii), (iv) and (v) of (3.5), so that $N^F \geq A_{1\Gamma}$ because $|\psi| \leq 4$.

(3.7) We have now a contradiction in the following way.

Let notations be as in (3.1) — (3.6). Set $H = <t> \times N$. We denote $H^F = H$. Since $|F(0)| = 7$ and by (3.6) $N \geq A_{1\Gamma}$, there exists in N an element v such that the order of v is 5, $[F(v)] = 1$ and $v^F = 1$. We may assume v is a 5-element.
Cleary \(v \) normalizes \(< t > N_T \). Since \(Z(Q) \) is a unique Sylow 2-subgroup of \(N_T \), \(< t > Z(Q) \) is a Sylow 2-subgroup of \(< t > N_T \). By the Frattini argument there is a 5-element \(w \) in \(N \) such that \(\vartheta = \bar{w} \) and \(w \) normalizes \(< t > Z(Q) \). It follows from \(Z(Q) \leq Z(N) \) that \(w \) stabilizes a normal series \(< t > Z(Q) \triangleright Z(Q) \triangleright 1 \). By Theorem 5.3.2 of [6], \(w \) centralizes \(< t > Z(Q) \) and hence \(w \in L(t, s) \). Since \(F(t) \cap F(s) = F(t) \cap \Gamma, w^{F(t) \cap F(s)} = w^{F(t) \cap \Gamma} \neq 1 \). Hence \(L(t, s)^{F(t) \cap F(s)} \cong GL(3, 2) \) has a nontrivial 5-element, a contradiction.

4. Case (ii)

In this section we shall prove that if the case (ii) of Lemma 2 holds, then \((G, \Omega)\) is an imprimitive group of degree 69 and has properties listed in the conclusion of Theorem 2. From now on we assume the involution \(t \) is contained in \(P \) because \(P \) is an arbitrary Sylow 2-subgroup of \(G \).

4.1) \(O(G) \neq 1 \).

Proof. Let \((G, \Omega)\) be a minimal counterexample to (4.1). Since \(|G: N_G(P)| = 1 \), there is a Sylow 2-subgroup \(S \) of \(G \) such that \(S \triangleright P \). Set \(H = G(F(t)) \). If \(t \in H^S \) for some \(g \in G \), then \(t^g \in H \) and \((t^g)^{-1} \in S \) for some \(h \in H \) because \(S \) is a Sylow 2-subgroup of \(H \). Since \(N_0(P) \cap P^g \leq P \), \(F(t^g) = F(P) = F(t) \), hence \((t^g)^{-1} h \in H \), which implies \(g \in H \). Consequently \(t \in H^S \) if and only if \(g \in H \). If \(t_1(\neq t) \) is an involution in \(t^G \cap C(t) \), then as above \(t_1 \in H_{F(t)} \) and so \(t_1 \in I(H_{F(t)}) \). Hence \((t_1 t)^S \in H \) if and only if \(g \in H \).

Thus we can apply Theorem 3.3 of [1] to \(t, H \) and \(G \). Set \(< t^G > = L \). Since \(O(G) = O_d(G) = 1 \), the 2-rank of any nontrivial characteristic subgroup of \(L \) is at least 2 by the Theorem of Brauer-Suzuki ([3]) and Theorem 7.6.1 of [6]. Hence \(H \cap L \) is strongly embedded in \(L \). By the Theorem of Bender ([2]), \(L^w \) is a simple group isomorphic to \(PSL(2, q), Sz(q) \) or \(PSU(3, q) \) for \(q = 2^n > 4 \). Here \(L^w \) is the last term of the derived series of \(L \). Set \(L^w = N \). We note that \(N \) is a normal subgroup of \(G \) and \(|N: N \cap H| \geq 5 \).

Since \(G^{F(t)} = N^{F(t)} \) and \(G^{F(t)} = M_{23} \), we have \(N^{F(t)} = M_{23} \) or 1. Suppose \(N^{F(t)} = M_{23} \). Since \(N \neq M_{23} \), we have \(N \leq G(F(t)) \). If \(\rho | N_{F(t)} | = \text{odd} \), \(G = < t > N \) and \(P = < t > \) by the minimality of \(G \). By the Glauberman's \(Z \)-theorem ([5]), \(G \triangleright < t > O(G) = < t > \), a contradiction. If \(\rho | N_{F(t)} | \) is even, by the minimality of \(G \), \(G = N \). Since \(N \) has a unique conjugate class of involution, \(I(N_0(P)) \leq I(P) \) by the assumption (ii) of Lemma 2. Hence \(S/P \) is an elementary abelian 2-group (cf. section 3 of [2]), which is contrary to \(N_0(P)^{F(P)} \neq M_{23} \).

Now we suppose \(N^{F(t)} = 1 \). Since \(N \cap P \neq 1 \) and \(NC_6(N) = N \times C_6(N) \), the assumption (ii) of Lemma 2 forces \(|C_6(N)|_{F(t)} \) is odd. Hence if \(|C_6(N)| \) is even, \(C_6(N)^{F(t)} = 1 \) and so \(C_6(N)^{F(t)} = M_{23} \) because \(M_{23} = G^{F(t)} \triangleright C_6(N)^{F(t)} \). Obviously \(C_6(N) \leq G(F((N \cap P)^t)) = G(F(t)^t) \) for any \(g \in G \). Therefore \(\{F(t)^t \mid g \in G \} \) forms a complete system of blocks of \(G \) on \(\Omega \) and an involution of \(C_6(N) \)
has exactly seven fixed points on each block. But \((G, \Omega)\) is a \((1, 23)\)-group and hence \(|\{F(t)^g \mid g \in G\}| = 3\), which implies \(|N: N \cap H| = 3\), a contradiction. Thus we have \(G(N) = 1\). From this \(G/N\) is isomorphic to a subgroup of outer automorphism group of \(N\). Hence \(G/N\) is solvable \(([12])\) and so \(G = N\). Thus \(N^F = M_{23}\), a contradiction.

4(2) \(P\) is cyclic or generalized quaternion.

Proof. Suppose that \(P\) contains a four-group \(Q\). Then \(O(G) = \langle C_{G(G)}(x) \rangle \) by Theorem 5.3.16 of \([6]\) and \(O(G) \leq G(F(P)) = G(F(t))\). Since \(O(G)^F = G^F = M_{23}, O(G)^F = 1\). Hence \(O(G) \leq G(F(t))\), so that \(O(G) = 1\), which is contrary to (4.1). Thus \(P\) is cyclic or generalized quaternion.

Let us note that the automorphism group of \(P\) is a \([2, 3]\)-group. Hence \(N^F = C_G(P)^F = M_{23}\). By the similar argument as in the first paragraph of the proof of (3.1), we have

\[(4.3) \quad C_G(P)^F = M_{23}, \quad C_G(P) = Z(P) \times O^2(C_G(P)). \]

Then \(L^F = L/O(L) = M_{23}\).

By the Feit-Thompson theorem \(([4])\), \(O(G)\) is solvable. Hence we have

\[(4.4) \quad N\text{-group of } P.\]

Let \(N\) be a minimal normal subgroup of \(G\) contained in \(O(G)\). Then \(N\) is an elementary abelian \(p\)-group for some odd prime \(p\).

\[(4.5) \quad |G| = 23.\]

(i) \(L\) normalizes \(K\) and \(K \unlhd G(F(t))\).

(ii) \(X = (t') N\) and \(\Gamma = G(t)\) where \(G(F(t))\). Then \(\Gamma \supseteq F(t), |\Gamma| > 23\) and \(|\Gamma|\) is odd.

Proof. Since \(M_{23}\) is regular, so that \(|K\cap C(t)| = 23\) and by the definition of \(K, |K^t \cap C(t^t)| = 1\), a contradiction. Thus \(r \neq 1\).

We consider the action of \(X\) on the set \(\Xi\). Since \(K_{\pi} = 1, [t, L] = 1\) and \(X\)
is transitive on Π, we have $t^n=1$ and L is transitive on Π. Hence for $\Delta_i, \Delta_j \in \Pi$, there is an element $x \in L$ such that $(\Delta_i)^x = \Delta_j$. Then $|F(t) \cap \Delta_i| = |(F(t) \cap \Delta_i)^y| = |F(t) \cap \Delta_i|$, so that $|F(t)| = |\Delta_i \cap F(t)| \times r$ for any $\Delta_i \in \Pi$. Hence $|\Delta_i \cap F(t)| = 1$ and $r=23$. Since $F(O(L)) \supseteq F(t), O(L)^n = 1$ and $X_n = \langle x \rangle O(L) K$. Thus (i) holds.

Let $y \in I \langle t \rangle \times L$ and $y=t$. Then $y^n \neq 1$ and by (ii) of §2, $|F(y^n)| = 7$. Since $X_n = \langle t \rangle O(L) K, L^n \cap C(y^n) = (C_L(y))^n$. By (vii) of §2, $L^n \cap C(y^n)$ is transitive on $F(y^n)$. Therefore as above we obtain (ii).

Since $23 \geq |F(y) \cap \Gamma| = |F(y^n)| \times m(y) = 7 \times m(y)$, we have $m(y) \leq 3$. By (ii) of (4.5), $|\Gamma|$ is odd and so $m(y)$ is odd. Thus (iii) holds.

(4.7) Let $s \in I(L)$. Then the following hold.

(i) $m(s) = 3$ and $|F(s) \cap \Gamma| = 21$.

(ii) If $\Delta \in F(s^n)$, then $F(s) \supseteq \Delta$. Moreover $|\Delta| = 3$ and N is an elementary abelian 3-group.

(iii) $F(s) \subseteq \Gamma$ and $|F(s)| = 21$.

Proof. Suppose $m(s) \neq 3$. Then by (iii) of (4.6) $m(s) = 1$. Since K^s is regular for any $\Delta \in \Pi$, if $\Delta \in F(s^n)$, s^Δ inverts K^s. Hence $(ts)^s$ centralizes K^s and so $F(ts) \supseteq \Delta$ and $m(ts) = |\Delta|$. Since $|\Delta| = 1$, by (iii) of (4.6) we have $|\Delta| = m(ts) = 3$. Therefore by (iii) of (4.6) $|F(ts) \cap \Gamma| = 21$. Since $L/O(L) \simeq M_{23}$, s^Δ is an even permutation. Furthermore $|F(s) \cap \Gamma| = 7$ because $m(s) = 1$. On the other hand $|\Gamma| = |\Delta| \times 23 = 69$ and s^Δ is an odd permutation, a contradiction. Thus (i) holds.

Since $|F(s) \cap \Gamma| = 21$ and s^Δ is an even permutation, t^n is an odd permutation because $|F(t) \cap \Gamma| = 23$. Hence $(ts)^s$ is an odd permutation and so $m(ts) = 1$ and $(ts)^s$ inverts K^s for $\Delta \in F(s^n)$ and $|(ts)^n| = 21$. Therefore $s^\Delta = (ts)^s$ centralizes K^s and $F(s) \supseteq \Delta$, so that $m(s) = |\Delta| = 3$. Hence K and N are elementary abelian 3-groups, so (ii) holds.

Since $L^{F(t)} = L/O(L) \simeq M_{23}$, by (vi) of §2, there exists a four-group $\langle s_1, s_2 \rangle$ of L such that $F(s_1) \cap F(t) = F(s_2) \cap F(t)$. Since L has a unique conjugate class of involutions (cf. (ii) of §2), $m(s_1) = m(s_2) = m(s_1 s_2) = 3$. Hence $F(s_1) \cap \Gamma = F(s_2) \cap \Gamma = F(s_1 s_2) \cap \Gamma$ and $|F(s_1) \cap \Gamma| = 21$. To prove (iii) it will suffice to show that $|F(s_1)| = 21$. Assume $|F(s_1)| = 21$. Then $|F(s_1)| = 23$ and $|F(s_1) \cap (\Omega - \Gamma)| = 2$. Since $L/O(L) \simeq M_{23}$, we have $C_L(s_1)/O(C_L(s_1)) \simeq \overline{C}$ by the property of M_{23}. $C_L(s_1)$ acts on $F(s_1) \cap (\Omega - \Gamma)$ and $O(\overline{C}) = \mathbb{C}$ by (ix) of §2, hence $C_L(s_1)$ acts trivially on $F(s_1) \cap (\Omega - \Gamma)$. Therefore $F(s_1) = F(s_2) = F(s_1 s_2)$ and $|F(s_2)| = 23$. By Theorem 5.3.16 of [6], $N = \langle C_N(s) | 1 \neq s \in \langle s_1, s_2 \rangle \rangle$ and hence N acts on $F(s_1)$. From this $3 | |F(s_1)|$, a contradiction. Thus (iii) holds.

(4.8) The following hold.

(i) $O(G)$ is an elementary abelian 3-group.

(ii) G is imprimitive on Ω and the length of an $O(G)$-orbit is three. $|P| = 2$.

MULTIPLY TRANSITIVE GROUPS 461
(iii) \(|\Omega|=69\). Let \(\psi\) be the set of \(O(G)\)-orbits on \(\Omega\). Then \(|\psi|=23\) and \(G^\psi=M_{23}\).

Proof. Since \(L^F=\langle L/O(L)\rangle=M_{23}\), there exist two subgroups \(\langle s_1, s_2\rangle, \langle s_3, s_4\rangle\) of \(L\) satisfying the following (cf. §2). \(\langle s_1, s_2\rangle \subset \langle s_3, s_4\rangle \cong E_6, F(s_1) \cap F(t) = F(s_2) \cap F(t) = F(s_3) \cap F(t) = F(s_4) \cap F(t), |(F(s_1) \cap F(t)) \cap (F(s_3) \cap F(t))| = 3\). By (ii) and (iii) of (4.7), we have \(\Gamma \not\supset F(s_1) = F(s_2) = F(s_3), |F(s_1)| = 21, |F(s_2)| = 21\) and \(|F(s_3)| = 21\) and \(|F(s_4)| = 9\).

On the other hand \(O(G) = \langle C_{O(G)}(t) | 1 \neq s \in \langle s_1, s_2\rangle = \langle C_{O(G)}(s) | 1 \neq s \in \langle s_3, s_4\rangle \rangle \) by Theorem 5.3.16 of [6]. Hence \(O(G)\) acts on \(F(s_1)\) and \(F(s_3)\), so that also on \(F(s_1) \cap F(s_3)\). Therefore the length of an \(O(G)\)-orbit is three because it is a common divisor of 9 and 21. From this \(O(G)\) is an elementary abelian 3-subgroup and by (4.2) \(P\) is cyclic of order 2. Thus (i) and (ii) hold.

Let \(\psi\) be the set of \(O(G)\)-orbits on \(\Omega\). Since \(\psi \supseteq \Pi, \Pi = F(t^\psi)\) and \(X^n = M_{23}\), we have \(G^n \geq M_{23}\). If \(G^n = M_{23}\), then \(G^n \geq A_{23}\) by the result of [11]. But if \(S\) is as in (4.1), the order of \(S/P\) is equal to that of a Sylow 2-subgroup of \(M_{23}\), a contradiction. Hence \(G^n = M_{23}\).

Now we suppose \(t^\psi \neq \Pi\). Then \(t^\psi = 1\) and \(G^\psi\) satisfies (ii) of Lemma 2. On the other hand \(O(G^\psi) = 1\), which is contrary to (4.1), so (iii) holds.

5. Proof of Theorem 1

The proof of Theorem 1 is obtained in the following way: By the Theorem of Oyama and his lemma of [10], it will suffice to consider the case that \(G^F(t)\) is isomorphic to \(M_{11}, M_{23}\) or \(M_{24}\). Since \(G\) is 4-fold transitive on \(\Omega, G^F(t) \neq M_{23}\) and \(M_{24}\) by Theorem 2. Hence we consider the case that \(G^F(t) = M_{11}\).

Suppose that \(G^F(t) = M_{11}\). Let \(P\) be a Sylow 2-subgroup of \(G^F(t)\) and \(S\) a Sylow 2-subgroup of a stabilizer of four points of \(\Omega\) in \(G\) such that \(S \geq P\). Then \(N_G(P) \leq G(F(P))\), hence \(N_G(P) F^F(t) = 1\) by the structure of \(M_{11}\), so \(F(N_G(P)) = F(t)\). Since \(P\) is a Sylow 2-subgroup of \(G^F(t), N_G(P) = P\), which forces \(S = P\), hence \(|F(S)| = 11\). By the Theorem of [9], \(G^o = M_{11}\), a contradiction.

References

Y. Hiramine: "On transitive groups in which the maximal number of fixed points of involutions is five," to appear.

